absolute pushout




An absolute pushout is a pushout which is preserved by any functor whatsoever. In general this happens because the pushout is a pushout for purely “diagrammatic” reasons. See absolute colimit for more.



A particular pushout diagram in a particular category CC is an absolute pushout if it is preserved by every functor with domain CC.

Equivalently, since the Yoneda embedding is the free cocompletion of CC:


A particular pushout diagram in a particular category CC is an absolute pushout if it is preserved by the Yoneda embedding C[C op,Set]C \hookrightarrow [C^{op},Set].

Split pushouts

We propose the following notion of split pushout.


A commutative square

defines a split pushout if there exist sections ps=1p s = 1, qt=1q t = 1, mu=1m u = 1

so that pt=unp t = u n.

Split pushouts are absolute pushouts


Split pushouts are absolute pushouts.


Note that split pushouts are preserved by arbitrary functors, so it suffices to show that a split pushout is a pushout in the category in which it lives. To that end consider, a cone under the span (p,q)(p,q):

Upon composing with the sections to qq and mm

we see that cc factors through the claimed pushout PP as c=(bu)nc = (b u) n. We must verify that bb also factors as b=(bu)mb = (b u) m. Since pp is an epimorphism, it suffices to prove that bp=bumpb p = b u m p, which follows easily:

bp=cq=bunq=bump. b p = c q = b u n q = b u m p.

This produces the desired factorization. Finally, since mm is an epimorphism, such factorizations are unique.

Note the proof that a split pushout defines a pushout square in the category in which it lives did not require pp to be a split epimorphism. However, arbitrary functors do not preserve epimorphisms. They do however preserve split epimorphisms, and thus the section guarantees that the image of pp will define an epimorphism in any category.


In their study of generalized Reedy categories, Berger and Moerdijk introduce the notion of an Eilenberg-Zilber category, one of the axioms of which demands that spans of split epimorphisms admit absolute pushouts. In practice, this seems to be the case because the pushout of these split epimorphisms is a split epimorphism as above, often with an additional section vv of nn satisfying the additional equation that vm=qsv m = q s.


The Berger-Moerdijk definition of an Eilenberg-Zilber category appears in:

Last revised on June 10, 2019 at 09:23:16. See the history of this page for a list of all contributions to it.