Mikio Sato introduced an infinite-dimensional Grassmannian in relation to the integrable systems. It gives a standard way to describe the $\tau$-function. Constructed also by Graeme Segal and Wilson so it is often called Sato-Segal-Wilson Grassmannian.
Textbooks include
Andrew Pressley?, Graeme Segal, Loop groups, Clarendon Press 1989
T. Miwa, M. Jimbo, E. Date, Solitons: differential equations, symmetries and infinite dimensional algebras (translated from Japanese by Miles Reid) Cambridge Tracts in Math. 135, 120 pp.
Other references
A classical way to introduce tau functions for integrable hierarchies of solitonic equationsis by means of the Sato–Segal–Wilson infinite-dimensional Grassmannian. Every point in the Grassmannian is naturally related to a Riemann–Hilbert problem on the unit circle, for which Bertola proposed a tau function that generalizes the Jimbo–Miwa–Ueno tau function for isomonodromic deformation problems. In this paper, we prove that the Sato–Segal–Wilson tau functionand the (generalized) Jimbo–Miwa–Ueno isomonodromy tau function coincide under a very general setting, by identifying each of them to the large-size limit of a block Toeplitz determinant. As an application, we give a new definition of tau function for Drinfeld–Sokolov hierarchies (and their generalizations) by means of infinite-dimensional Grassmannians, and clarify their relation with other tau functions given in the literature.
The affine Grassmannian of $SL_n$ admits an embedding into the Sato Grassmannian, which further admits a Plücker embedding? into the projectivization of Fermion Fock space…
Maurice J. Dupré, James F. Glazebrook, Emma Previato, A Banach algebra version of the Sato Grassmannian and commutative rings of differential operators Acta Appl Math (2006) 92: 241 doi; On Banach bundles and operator-valued Baker functions, pdf
Ema Previato, Mauro Spera, Isometric embeddings of infinite-dimensional Grassmannians, Regul. Chaot. Dyn. (2011) 16: 356 doi
Last revised on October 25, 2019 at 05:55:46. See the history of this page for a list of all contributions to it.