Contents

# Contents

## Definition

Given a set $T$ with a dense linear order $\lt$, a pair of subsets $(L, R)$ of $T$ with injections $i_L:L \to T$ and $i_R:R \to T$ is a Dedekind cut structure if it comes equipped with the following structure

• an element $l \in L$
• an element $r \in R$
• for every element $a \in L$ and $b \in T$, a function
$c_d(a, b):]b, a[ \to \{c \in L \vert i_L(c) = b\}$
• for every element $a \in R$ and $b \in T$, a function
$c_u(a, b):]a, b[ \to \{c \in R \vert i_R(c) = b\}$
• for every element $a \in L$, an element
$o_d(a) \in \{b \in L \vert i_L(a) \lt i_L(b)\}$
• for every element $a \in R$, an element
$o_u(a) \in \{b \in R \vert i_R(b) \lt i_R(a)\}$
• for every element $a \in L$ and $b \in R$, an element
$t(a, b) \in ]i_L(a), i_R(b)[$
• for every element $a \in T$ and $b \in T$, a function
$L(a, b):]a,b[ \to (\{c \in L \vert i_L(c) = a\} \uplus \{c \in R \vert i_R(c) = b\})$

where $]a, b[$ is the open interval bounded by $a$ from below and by $b$ from above.