# nLab D-topology

Contents

### Context

#### Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

tangent cohesion

differential cohesion

singular cohesion

$\array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }$

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

# Contents

## Idea

Given a diffeological space, the D-topology (“diffeological topology”) is a natural topology on its underlying set of points, namely the final topology which makes all its plots be continuous functions.

## Definition

###### Proposition

(adjunction between topological spaces and diffeological spaces)

There is a pair of adjoint functors

$TopologicalSpaces \underoverset{ \underset{ Cdfflg }{\longrightarrow} }{ \overset{ Dtplg }{\longleftarrow} }{\phantom{AA}\bot\phantom{AA}} DiffeologicalSpaces$

between the categories of TopologicalSpaces and of DiffeologicalSpaces, where

• $Cdfflg$ takes a topological space $X$ to the continuous diffeology, namely the diffeological space on the same underlying set $X_s$ whose plots $U_s \to X_s$ are the continuous functions (from the underlying topological space of the domain $U$).

• $Dtplg$ takes a diffeological space to the diffeological topology (D-topology), namely the topological space with the same underlying set $X_s$ and with the final topology that makes all its plots $U_{s} \to X_{s}$ into continuous functions: called the D-topology.

Hence a subset $O \subset \flat X$ is an open subset in the D-topology precisely if for each plot $f \colon U \to X$ the preimage $f^{-1}(O) \subset U$ is an open subset in the Cartesian space $U$.

Moreover:

1. the fixed points of this adjunction $X \in$TopologicalSpaces (those for which the counit is an isomorphism, hence here: a homeomorphism) are precisely the Delta-generated topological spaces (i.e. D-topological spaces):

$X \;\,\text{is}\;\Delta\text{-generated} \;\;\;\;\; \Leftrightarrow \;\;\;\;\; Dtplg(Cdffg(X)) \underoverset{\simeq}{\;\;\epsilon_X\;\;}{\longrightarrow} X$
2. this is an idempotent adjunction, which exhibits $\Delta$-generated/D-topological spaces as a reflective subcategory inside diffeological spaces and a coreflective subcategory inside all topological spaces:

(1)$TopologicalSpaces \underoverset { \underset{ Cdfflg }{\longrightarrow} } { \overset{ }{\hookleftarrow} } {\phantom{AA}\bot\phantom{AA}} DTopologicalSpaces \underoverset { \underset{ }{\hookrightarrow} } { \overset{ Dtplg }{\longleftarrow} } {\phantom{AA}\bot\phantom{AA}} DiffeologicalSpaces$

Finally, these adjunctions are a sequence of Quillen equivalences with respect to the:

Caution: There was a gap in the original proof that $DTopologicalSpaces \simeq_{Quillen} DiffeologicalSpaces$. The gap is claimed to be filled now, see the commented references here.

These adjunctions and their properties are observed in Shimakawa-Yoshida-Haraguchi 10, Prop. 3.1, Prop. 3.2, Lemma 3.3. The model structures and Quillen equivalences are due to Haraguchi 13, Thm. 3.3 (on the left) and Haraguchi-Shimakawa 13, Sec. 7 (on the right, but this may have a gap).

###### Proof

We spell out the existence of the idempotent adjunction (1):

First, to see we have an adjunction $Dtplg \dashv Cdfflg$, we check the hom-isomorphism (here).

Let $X \in DiffeologicalSpaces$ and $Y \in TopologicalSpaces$. Write $(-)_s$ for the underlying sets. Then a morphism, hence a continuous function of the form

$f \;\colon\; Dtplg(X) \longrightarrow Y \,,$

is a function $f_s \colon X_s \to Y_s$ of the underlying sets such that for every open subset $A \subset Y_s$ and every smooth function of the form $\phi \colon \mathbb{R}^n \to X$ the preimage $(f_s \circ \phi_s)^{-1}(A) \subset \mathbb{R}^n$ is open. But this means equivalently that for every such $\phi$, $f \circ \phi$ is continuous. This, in turn, means equivalently that the same underlying function $f_s$ constitutes a smooth function $\widetilde f \;\colon\; X \longrightarrow Cdfflg(Y)$.

In summary, we thus have a bijection of hom-sets

$\array{ Hom( Dtplg(X), Y ) &\simeq& Hom(X, Cdfflg(Y)) \\ f_s &\mapsto& (\widetilde f)_s = f_s }$

given simply as the identity on the underlying functions of underlying sets. This makes it immediate that this hom-isomorphism is natural in $X$ and $Y$ and this establishes the adjunction.

Next, to see that the D-topological spaces are the fixed points of this adjunction, we apply the above natural bijection on hom-sets to the case

$\array{ Hom( Dtplg(Cdfflg(Z)), Y ) &\simeq& Hom(Cdfflg(Z), Cdfflg(Y)) \\ (\epsilon_Z)_s &\mapsto& (\mathrm{id})_s }$

to find that the counit of the adjunction

$Dtplg(Cdfflg(X)) \overset{\epsilon_X}{\longrightarrow} X$

is given by the identity function on the underlying sets $(\epsilon_X)_s = id_{(X_s)}$.

Therefore $\eta_X$ is an isomorphism, namely a homeomorphism, precisely if the open subsets of $X_s$ with respect to the topology on $X$ are precisely those with respect to the topology on $Dtplg(Cdfflg(X))$, which means equivalently that the open subsets of $X$ coincide with those whose pre-images under all continuous functions $\phi \colon \mathbb{R}^n \to X$ are open. This means equivalently that $X$ is a D-topological space.

Finally, to see that we have an idempotent adjunction, we check that the comonad

$Dtplg \circ Cdfflg \;\colon\; TopologicalSpaces \to TopologicalSpaces$

is an idempotent comonad, hence that

$Dtplg \circ Cdfflg \overset{ Dtplg \cdot \eta \cdot Cdfflg }{\longrightarrow} Dtplg \circ Cdfflg \circ Dtplg \circ Cdfflg$

is a natural isomorphism. But, as before for the adjunction counit $\epsilon$, we have that also the adjunction unit $\eta$ is the identity function on the underlying sets. Therefore, this being a natural isomorphism is equivalent to the operation of passing to the D-topological refinement of the topology of a topological space being an idempotent operation, which is clearly the case.

## References

The concept originates with

The relation to Delta-generated topological spaces is due to

Discussion of the D-topology for mapping spaces:

Last revised on June 7, 2020 at 08:06:26. See the history of this page for a list of all contributions to it.