Alexander M. Vinogradov is working in the geometric theory of differential equations, the theory of diffieties with applications to variational calculus.
A. M. Vinogradov, Cohomological analysis of partial differential equations and secondary calculus, bookpage Translations of Mathematical Monographs 204, Amer. Math. Soc. 2001, 247 p.
A. M. Vinogradov, Local symmetries and conservation laws, Acta Appl. Math., Vol. 2, 1984, p. 21, MR85m:58192, doi
A. M. Vinogradov, Symmetries and conservation laws of partial differential equations: basic notions and results, Acta Appl. Math., Vol. 15, 1989, p. 3. MR91b:58282, doi
A. M. Vinogradov, Scalar differential invariants, diffieties and characteristic classes, in: Mechanics, Analysis and Geometry: 200 Years after, 379–414, MR92e:58244
G. Vezzosi, A. Vinogradov, On higher order analogues of De Rham cohomology, Diff. Geom. and Appl. 19 (2003), 29-59.
G. Vezzosi, A.M. Vinogradov, Infinitesimal Stokes’ formula for higher-order de Rham complexes, Acta Appl. Math. 49, N. 3 (1997), 311-329.
Last revised on November 7, 2016 at 06:00:52. See the history of this page for a list of all contributions to it.