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Abstract

Various questions involving global anomalies in particle theory
and string theory are addressed. It is shown that the question of
whether a manifold is a spin manifold is equivalent to a question about
global anomalies in the propagation of a point particle. In the siper-
string case, it is shown that the measure of the heterotic theory has no
global anomalies on any Riemann surface. This generalizes known one
Toop results. Also, a topological condition is derived which restricts
the possible choices of Wilson lines for grand unified symmetry break-
ing. It is argued that the long-term development of global anomalies in
string theory will involve eventual study of global anomalies in the
determinant of the Dirac-Ramond operator,
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The gravitational interactions of a spin 1/2 particle propagating
on a space-time manifold M are consistent only 1f several conditions are
obeyed.* First of all, M must be a spin manifold on which there is no
topological obstruction to defining spinors.! And if (in 4k+2 dimen-
sions) we wish to discuss spinors of definite chirality, then M must be
orientable. These conditions are needed just in order to make sense of
the single particle Dirac equation i8%=0 (or i#(1-F)y = 0, in the chiral
case; here T = r1r2"'r4k+2 is the chirality operator, the product of the
gamma matrices T,).

If we wish to formulate not just the one particle equation but the
quantum field theory of spin one half particles on-M, some additional
conditions arise. It ts necessary to be able to define the Dirac deter-

minant detipg--or, in the chiral case, detihtliza. In the chiral case,
one encounters an anomaly in perturbation theory in trying to define the
determinant.2 To cancel this anomaly, it is necessary to introduce
fields of various spin, perhaps including antisymmetric tensor fields.3
Even when perturbative anomalies are cancelled the consistency of the
theory is still not guaranteed. It is necessary to consider global
anomalies. Thus let f:M+M be a diffeomorphisn, not continuously con-
nected to the identity, which leaves fixed the spin structure of M. One
must ask whether the Dirac determinant is invariant under f. To answer
this question, it is convenient to define the "mapping cylinder" (stl)f.
It is defined as follows: in the Cartesian product MxI (I=[0,1] is the
unit interval) one identifies (x,0) with (f(x),1) for any xeM. The n
invariant of the Dirac operator on (MxSl)f is defined as follows.S If
Ay are the Dirac eigenvalues on (MxS!) . then

n = 1im ] sign A; exp-s|a;| (1)
s*0 i

Then it can be shown® that the change Af of the chiral Dirac determinant
on M is related to the n invariant on (MxSl)f:

+

. .
Most of the original lecture was devoted to reviewing the derivation of
equation (2). As this material has appeared elsewhere,* I have chosen

in the written version to expand on the concluding portion of the
lecture.
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Af n detip 1 Iy . dm- ((stl)f) mod 2% (2)
Of course, (2) must be summed over all fermion mu1t1p1ets and if pertur-
bative aEOmaly cancel]at1on 1nv01ved'ant1synmetric tensor fields, their
contribution must be included tod, to gkt the proper formula for the
global anoma]y In [4], equation:(2) was used to show that ten difien-
sfona] supergrav1ty theories (whlch akeof interest because they are the
1ow energy Timits of superstring theor1es) have no global' anbmalles’ when
formu]atbd on S19. For the future it will be’ extreme]y 1nterest1ng to
learh whether these:theoties have global anomalies when formulated on
S*xK for various K: Although equation (2) ‘is an aﬁproprlate starting
point for addressing this question, practicable méthods to evaluyate this
formula for a large“class of ten manifolds {and diffebmorphisns) are
currently unknown.

Of course, if ofe finds that'the change in the determinant under a
diffeomorphism f is not zero, one must be careful in drawing conclusions.
Before concluding that the theory'is inconsistent, one:rmust make sure
that there is a sound physical reason thdt lack of invariance under f
would correspond to inconsistency. In essence, lack of invariance under
f leads to inconsistency if upon decompactification from SxK to R¥xK, f
has compact support. Lack of invariance under f-will then cause the .
physically relevant Feynmann path integral to vanish.6 On StxK, a
"dangerous” f (under which the determinant must be invariant if the
theory is to make sense) is one that leayves fixed a copy of K {pxK, where
P is the "point at infinity’ on S*). (ater, we will discuss the physical
meaning of global anomalies in certain casésmjn'which f does not abey
th1s condition. < =

To recap1xu1ate what I have said sp far, tn assess1ng the cons1s-
tency of the quantup fie]d theory of sp1n 1/2 part1c1es on a man1fo1d M,
there are severa1 steps:

(a) One must make sure that M has a“spin structure; and, if
chiral fermions are ta be considered, one must ask whether'M’is
orientable, ; ’ AL

(b) One must ensure the absence of dangerous local and global
anomalies in the Dirac determinant.

¥ i



64

Of course, merelyidetermining whether a theory s consistent should not
satisfy us. We also wish to extract its physical content. I will simply
single out one aspect of this:

(c) 0né.w0u1d like to determine the symmetries of the quantum
field theory, allowing, for possible effects of anomalies and other
subtieties that might spoil an apparent synmetry.

In these notes I will discuss certain aspects of problems (a), (b), and
(c) in f%eJd,thepry, and then discuss the generalization to striqg‘thgory
While (b) and (c).are manifestly questions that ipvolve anomalfes, .
this is not so for (a). However, as we wi]1 now see, the gyestion of
whether a manifold admits spinors can be interpreted as a question about
global anomalies on the world Tine of a point part1c1e. )
There is an action” for a point part1c1e that possesses world 11ne
supersymmetry: . ) k
i .
- fae [ 050x(e)) BB 4 L) (0538 ¢ By (k) ¥
- (3)

Here x' are coordinates on M, w is the spin connection of M, and the

; kij
w‘ are real anticommuting variables, i being a tangent vector index of
M. (In the mathematical sense, the ¢1 take values in the pull-back of
the tangent’ space of M to-the 1ine or circle parametrized by t.) Now,

(3) possesses the worrld-1ine supersymmetry '

le = 'N'.Ié " -
i dx1 k 2
8 = - 1 i
L St e v }(4)

where € is an_ ant1commut1ng constant. (e is a scalar under tranforma-
tions of M, There is a very different po1nt particle act1on that pos-
sesses space-tifie supersymnetry.e) The conserved quantity corresponding

to (4) is Q,= Vs H_— Upon quantization, the . obey jyi(r). ¢j(1)} =
gij(x(r)), so_they are gamma matricgs, in effect. The wave functions--on

' i
which gamma matrices act--must then be spinor fields on M. As for-%é—,
we note that the canondicad .momentum is ‘
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P; = —%‘i'r' = gij %::_J'+ % wi-jk [‘Pj ’Wk] ) (5)
(g
As is usual in quantum mechanics, canonical quantization cqrresponds to
pi-= -1 ;%Tu FS) can ther?fore be inverted to give 943 %%3-= ;iDi,
where ' )

is the usual covariant derivative acting on spinors. The conserved

i .
charge Q = 12 %é—-= -i ¢1 Di is thus the Dirac operator.

This construction seems to make sense for arbitrary M. But if M
is not a spin manifold, spinors and Dirac operators cannot be defined on
M. We must run into trouble somewhere. How does this happen? One
approach to quantization of (4) is path integrals. In this approach,
one must define the fermion effective action vdet Y where Y is the
*"world line Dirac operator"

k
Y = i[%;61j+%’_;—mk]j) (7)

We need the sguare root of det Y since the wi are real. What we will
see is that vdet Y is afflicted with a global anomaly precisely when M
is not a spin manifold.

It is convenient to take the world line to be a circle s1.” Thus,
we will study the eigenvalue problem Y$=r¢, where Y is defined on a
circle, 0<t<2r. 1In essence, AiJ = %éf-mkij is an 0(n) gauge field on |
the circle, n being the dimension of M. The Dirac equation on the
circle should require a singie gamma matrix I' obeying I'2=1; for T we can
1. So VY= 1(%? + A) is indeed a one dimensional

pick the 1x1 matrix T
Dirac operator, o >

+

L]

- . .
We will use periodic boundary conditions for the fermions, correspond-

ing to calculating Tr e'BH‘(-r)E. Antiperiodic ones would give Tr e BH



66

~In one dimension, the only gauge covariant quantity characterizing
the gauge field A is the rotation matrix

2n
R =P exp £ dr A(r) (8)

If, say, n=2k, R can always be brought to canonical form, with "rotation
angles" 91... 8

cose, sing,
-sing, cose, )
c0s8, sim, ~
R = -sing, coso, (9)

, COSlek s1nek
..smek COSGk

For given R, A can be gauge transformed into any form that obeys (8). A
convenient choice is ’ '

i

o
o @
—

-8,

1
A= 2—“_ -92 (10)

i <

With this choice, the eigenvalue$ of Y are easily determined., They are
9. '
n t'i%’ for arbitrary integer n. Hence formally

9.2

(det Y),=1m (n+ 3iJ (n - Ejﬂ = 1 (n2-—21-) (11)
‘ O ni 2 2% i (2n)2

where the subscript "o" means that the divergent infinite product.in
(11) needs to be regularized. Noting that the right-hand side of (11)
is periodic in each 8, with a double zero whenever any 8, is an integer
multiple of 2n, we may guess that the propér ‘formula is '
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5

det Y = sin? ai/2 (12)

1

-
4 - v
- 4

= x

.i

To derive (12), one may divide (11) by an infinite constant, giving

: (Te‘z' 1) (13)
det Y= I n (1 - 13
el n#0 4n2n2
The convergent product in (13) can be evaluated to give (12). ARy

For the square root of the determinant we have then

k .
ydet Y = I sin 61/2 (14)
i=1 .

However, the sign of (14) is ill-defined, because the 8; are well-
defined only modulo 2n. This is the potential source of a global
anomaly. ' )

For a given world line y, we can just define Ydet Y to be posi-.
tive. For some other world line y', the sign of vdet Y must be deter-
mined by smoothly interpolating from y to y' and requiring that vdet' Y
should vary smoothly. Thus, we find a mapping $:S1xI + M, where S! is
parametrized by the time t, and I by an auxiliary variable u, 0 < u g 1.
¢ is chosen so that ¢(t,0) is the curve y, while ¢(1,1) is yv'; thus, as
u varies from 0 toil, ¢(t,u) is a one parameter family of curves varying
from v to y'. Requiring /det Y to vary smoothly then determines its
sign at y' in terms of the sign chosen at v.

Thus, at least for curves within a single homotopy class of curves
in #,(M), we can determine the sign of ydet Y for all curves in terms of
a single overall sign choice.. Is there an inconsistency in this pro-
cedure? An inconsistency would arise if we find an interpolation ¢(r,u)
that starts and ends at the same curve y with the property that (requir-
ing it to vary smoothly with u) vdet Y{u=1l) = - vYdet Y{u=0).

Mathematically, an interpolation from y to itself via a one para-
meter family of curves corresponds to a map )

*

$:S1xS! + M (15)
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Here the first S! is parametrized by time t, and the second by u, 0<u<l,
but now we identify u=l with U=0. Thus, the first Sl is mapped into M
the same way at u=1 as at u=0. Given such a map, we can define for each
u a rotation matrix \

2n
R(u) = P exp % dt A(t;u) (16)

.

As u varies from 0 to 1, R(u) sweeps out a closed curve in the O(n)
manifold (R(1) = R(0)). This closed curve defines an element of
7,(0(n)) = Z,. It is shown in the literature on spin manifolds (for
instance, by Hawking and Pope [1]) that M does not admit a spin
structure if for some ¢:S!xS! + M, R(u) is non-zero in =,(0(n)). We can
now easily see that there is a global anomaly in precisely this
situation. The non-zero element of =,(0(n)) is related to a 2
rotation, so R(u) is non-trivial in w,(0(n)) if (say) one 8, increases
by 2r as u is increased from 0 to 1 and the other ej do not change. But
(14) is odd under a 2n increase in any of the 8,. So vdet Y(u=1) =

- Ydet Y{u=0) precisely when R(u) is non-zero in =,(0(n)).

" At this point we have shown that studying global anomalies on the
world Tine amounts to asking'whether M has a spin structure. Actually,
our treatment is complete only when w,(M) = 0. We will not attempt here
to unravel some further subtleties that arise when =, (M) # 0.

Concerning the other problems on our 1ist above, we have already
discussed those aspects of (b) that we will need for our later discus-
sion of string theory. Therefore, we move on to discuss certain aspects
of (c). Readers who are so inclined can skip the following section and
jump directly fo the remarks on strings.

If we wish to discuss quantum gravity, we are interested in a
situation in which the metric g of M is not fixed but is one of the
dynamical variables. When we try to define /det Y for a'curve in M, we-
may regard it as a functional not just of the curve y but also of the
metric along the curve. We ask whether /det Y is single-valued as a
functional of the curve and metric.

In the above discussion, we considered a map ¢:5S1xS! » M, which
can be viewed as a one parameter family (u, labeling the second sl, is

.+ &
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the parameter) of maps of S! into M--with a fixed metric on M. Instead
of taking a fixed metric on M, we could et the metric on M be u depen-
dent--and so consider a-one parameter family of maps of S! into a one
parameter family of space-times. (I will take the liberty-of referring
to a one parameter family of metrics on M as defining a one parameter
family of space-times.) Non-trivial one parameter families of metrics
on M are in one to one correspondence with topological classes of
diffeomorphisms f:M + M. Thus, let f be such a diffeomorphism and g a
metric on M, and suppose g transforms into gf under f. Then g(u) = (1-
ujg + ugf is a one parameter family of metrics on M. It is intimately
connected with the mapping cy¥inder E = (MxS{)fﬁdiscgssgd earTier; one
can take the metric of E to be ds? = du? + gij(u) dx 'dx9., ‘

A .one parameter family of maps of S! into a one parameter family
of space times can be defined as a map ¢:(S!xS!) + E which is of the
special form ¢(t,u) = (x(r,u),u). A fancier way to consider this is as
follows. The mapping cylinder £ is a fiber bundle over S1, the fibra--
tion g:E » S! being defined by g{x,u)=u. Likewise, SIxS! is a fiber
bundle over the second S}, the fibration «:S!xS1 + Sl being simply
a{t,u)=u. By a one parameter family of maps of S! into a one parameter
family of space-times we mean simply a map ¢:S!xS! + E such that the
diagram -
SixsL — & > . (17)

A\
commytes, in the sense that B¢ = a.

Physically, this means the following. The map ¢{t,u) defines (for
each u) a curve in M, As u varies, both the curve and the metric of M
vary. But at u=1l, the curve and metric are the same as at u=0, up to a

diffeomorphism of M. As before, we can calculate H(u) = +Jdet Y(u) as a
function of u. If all is well on heaven and earth, we may expect H(l) =
H(0). , . s

If instead H(1) = -H(D), what conclusion should we draw? One
might be tempted to conclude that the theory is inconsistent if H(1) #
H(0) for some choice of £ and 4. This is far from being the right
interpretation. To understand this requires a brief digression.
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M is a spin manifold (if the theory under discussion makes sense) ,
so it .has one.or more spin structures. In studying fermions on M, we
choose a spin structure u.* A diffeomorphism f:M + Mmaps u either into
jtself or into another spin structure u.. If f(u) = u, n can be extended
to a spin structure on E = (stl)f. Such an extension is notrpossible
if f(u) # 4. : !

what diffeomorphisms f:M » M are symmetries of our theory? One
necessary condition is that f(i) = u. If f(u) # u, that means that f
changes the boundary conditions obeyed by the fermions, and so is not a
symmetry of the theory formulated with spin structure u.

Returning to the map ¢ in (17), we want to know what it means if
H(1) = -H(0) for some ¢ and E. Our previous discussion of global
anomal ies shows that this means that E is not a spin manifold. This
implies that f(u) # u (since, as we just discussed, if f(u) = u, then E
inherits a spin structure from the spin structures of M and sl). But--
as we discussed a moment ago--if f(u) # u, then f is not a symetry of
the theory with spin structure u. So this is the interpretation of -
finding that H(1) = -H(0): it means that the diffeomorphism f is not a
synmetry of the theory. There is no paradox in this; a diffeomorphism f
that -behaves as described here never has compact support in space-time
(once time is decompactified). What we have discovered is that global
anomalies in a one parameter family of maps into a one parameter family
of space-times are one synmptom of how a classical symmetry may fail to
be a quantun symmetry. What has been described here is a complex way of
looking at a relatively simple restriction on diffeomorphisms (a true
symetry f must leave the spin structure fixed), but it . will stand us in

*As discussed later, choosing a spin structure u means deciding whether
fermions propagate around non-contractible loops with periodic or anti-
periodic boundary conditions. The spectrum ‘of elementary particle
masses depends on p. We do not sum over u. The situation will be
completely different later when we consider spin structures on the
string world sheet, since the physical role of the world sheet is
completely different from that of space-time. K
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good stead later when we discuss the ana]ggous phenomenon in string
theory. S

Although somewhat outside our line of development, I would like to
pause at this point to discuss-a purely mathematical application of the
global anomaly in Ydet Y. et M be .a manifold, and let @(M) be the
space of all (oriented, unbased) maps S! + M. We wish to ask whether
the infinite dimensional manifold (M) is orientable. To answer this we
must find a definition of orientability in the finite dimensional case
which makes sense in the infinite dimensional situation.

One notion of orijentability for finite dimensional manifolds is
that an‘n dimensional manifold Q is orientable if it admits a real,
everywhere non-zero n form (volune element) . This notion does-:not
seem to generalize to the infinite dimensional case. For even'n,
another criterion for orientability is that a.manifold Q is orientable
if it admits a (real) two form w which is everywhere nondegenerate.
(Nondegeneracy of w means that at any point peQ, for any non-zero tan-
gent vector Vi, Vimij # 0. If w is everywhere nondegenerate, the n form
€ = wn/Z is -everywhere. non-zero, so our first criterion for orientabi-
lity is obeyed.) This notion is rather narrow since even an orientable,
even dimensional manifold does not necessarily admit an everywhere non-
degenerate two form w. However, any n dimensional manifold Q admits (if
n is even) a two form w that is nondegenerate except on a subspace of
dimension n-1. Introducing a Riemannian metric and raising an index
gives a matrix m]j = ng W5t It is easy to see that, for any closed -
Toop o in Q, Ydet w changés sign in traversing o if and only if the
orientation of Q changes sign in traversing o. So a finite dimensional
manifold Q (of even dimension) is orientable if, picking any two form w
that is smooth and generically nondegenerate, vdet w can be defined
smoothly throughout Q.

This notion is readily implemented for @(M). Indeed, Z = iY is a
real, skew hermitian operator that can be interpreted as a two form on
2(M). To see this, we must ask what.is a tangent vector at a point y in
a(M). A point v in (M) is a Toop x1(r) in M. A tangent vector to y is
an infinitesimal displacement 6&3(1) or 6?1(r) of this loop. Then the
quantity T '
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N 2n ; d dxk i
Z(8x, 8x) = {J dt 6‘)( (1) (gij -a?-+ t_ﬁ:—wkij) §x¥( 1)

is bilinear, and Z(8x, 8x) = -2(8X, 6x), so Z defines a two form on
a(M). We thus can consider @(M) to be orientable if Ydet Z is globally
definable. We know the criterion for this--M must be a spin manifold.
So we conclude that it is reasonable to say that Q(M) is orientable if
and only if M-is a spin manifold.: r i

Returning now to our main theme, we want to discuss--and to
implement as far as possible--the steps amalogous to (a), (b), and (c)
above in the context of string theory. At least some of the steps
should be evident: .,

(a') Analogous to anomalies in the propagation of a singie point
particle, we must discuss anomalies in the propagation of a single
string. While world-1ine, anomalies probe whether M has a spin struc-
ture, world-sheet anomalies will probe certain analogous obstacles to
consistency of string theory..

(b') Analogous to anomalies in the Dirac determinant which enters
the second gquantized Dirac field theory, we will have to study anomalies
in some generalization of the Dirac determinant that will enter the
second quantized string field theory.

(c¢') After settling questions of consistency, we will want to
study more general anomalies that affect the question of which apparent
synmetries are actually valid.

As one might expect, the richness of string theory makes all of
these questions much more difficult than their field theory analogues.
It is possible to give a fairly thorough discussion of (a') and to say
something about the other subjects. We will-discuss these matters in
turn.

First we will discuss (a')--anomalies in the propagation of a
single string. This question is most interesting in the heterotic
case,? since in that case the measure associated with the Euclidean
world-sheet integrals is complex. We will discuss global world-sheet
anomalies using the covariant, conformal gauge choice discussed in the
latter part of the second paper in [9], since the expression given there
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for the measure is quite convenient for our purposes. The fact that
supersymmetry is not manifest in this formalism is irrelevant for our .
purposes, . : .

Two of the basic ingredients in world-sheet integrals are a
Riemann surface I (which possesses a conformal structure over which we
must integrate) and a map ¢:% + M of T into the space-time manifold M,
Global anomalies always involve a one parameter family of objects of
some kind. Global .anomalies arise when the function space over which
one is integrating is not simply connected, and the effective action
does not return to its original value (modulo 2wi) in traversing a non-
contractible Toop in function space. 1In string theory, there are .,
several possibilities for which one parameter family of objects one may
consider:

(i) One can investigate a one parameter family of Riemann
surfaces. This arises if one is given a topologically non-trivial dif-
feomorphisn h:z+Z, Generically, the metric g of £ will be transformed
into some other metric gH by th This leads in the usual way to a one
parameter family of metrics on z, gu = (1-u)g + ugh, O0<u<l, which induce
a one parameter family of conformal structures on £, This family is
conveniently studied in terms of the mapping ¢ylinder (szl)h.

(i) Keeping = fixed, one can study a one parameter family of maps
of £ into space-time. This amounts -to consideration of a map ¢:5xSlaM,

(ii1) One can let both © and the map into space-time vary. One is
then dealing with a one paramete} family of maps of a one parameter
fanily of Riemann surfaces into space-time. }his amounts to the con-
sideration of a map ¢:(Zx51)h+M. '

In principle, (i) and (ii) are special cases of (iii). ((i) cor-
responds to the case in which ¢ maps (szl)h to a point, and (ii) to the
case h=1.) However, (i) and (ii) are such natural special cases that it
is reasonable to single them out. It is (ii) that corresponds most
directly to the question which arises--and was discussed above--for a
point particle. Neither (i) nor (ii) nor (iii) is vacuous. Anomalies
of type (i) were shown in [9] to lead, at the one loop level, to the
requirement that the Yang-Mills gauge group be 0(32) or EgxEg--the same
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conclusion that follows from consideration of perturbative anomalies in
space-time.3 We will show below that no mew information comes from
anomalies of type (i) at the multiloop level. As for anomalies of type
(ii), they lead to the quantization of the Wess-Zumino interaction, a
phenomenon that will be explored elsewhere,19 and to a restriction on
the allowed values of magnetic charge.ll Anomalies of type (iii) have
not been considered before (except for the special cases of type (i) and
(ii)); we will see later that they lead to new constraints on allowed
compactification. ' . .

Considering first (i), let us recall the formula of [9] for the
effective world-sheet measure., For heterotic superstrings, there are
ten right-moving fermlons Vis i=1...10. They come with a spin structure
a (one must sum over a ), and contribute to the measure a factor

(det, iﬂ'(l%gj)1°.' Here L is the chirality prOJect1on operator, and
the notation deta is meadt to emphasize that the detenn1nant depends on
the choice of spin structure «. There is also a Rarita-Schwinger ghost,
of the same chirality. It has the same spin structure «, and con-

tributes a factor {det R [1+p)l , where R is the Rarita-Schwinger

*%
operator, Finally, 1f one realizes the gauge, group by fermions, there
are two groups of sixteen left-moving fermions with (in general) two

different spin structuréds 8 and y. They contribute‘[det 1p’(l:3J)15

-(detY yf(;éﬂﬂ]ls For EgxEg gauge group, one suns 1ndependent1y over
g and y; for 0(32), they are restr1cted to obey g=y. The effective mea-
sure is hence o

(det yﬁ J10 (det 1p(1 3 1}46 (det 1ﬂT ) )16 (det, R[1+p))
(18)
This expression is free of gérturbative anomalies, as was noted in [9]
(using formulas in [2] to compare the Rarita-Schwinger and Divac con-
tributions).

o

*

Summing over o is a way to project onto the supersymmetric sector of
states of definite G parity.
**R is the operator ¢u+iﬂbu, wu being a vector-spinor,
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. Now, we will certainly not try to prove here thatsthe multiloop
diagrams are physically acceptable in all respects. We will 1imit our-
selves to the narrower problem of:proving that S, in,(18), is invariant
under any diffeomorphism h:Z+%Z. This has already been proved (using
explicit formulas for the determinants and standard theorems about theta
functions) at the one loop level,3 so the only novelty is the gener-
alization to higher loops. \ ‘

S depends on a, B8, and'Y and on the metric g of L. We will prove
that S(a,8,v,9) = S(a,B,Y,g ) if h is any diffeomorphism that leaves
fixed a, 8, and y (g is the conJuéate of g by h). Whether this is so
or hot is a well-defined question, since one can interpolate con-
tinwusly from g to gh. Once it is established that S(«,8,v,g) is
invariant under any diffeomorphism that léaves fixed a, 8, and v, no new
informtion comes from consideriné a diffeomorphisn h that maps a, g8, and
vy into other spin structures uh, Bh, and yh. One can just define S(ah,
Bh,vh,gh) = S$(a,B,v,9). There is no way to test this statement, since
as spin structures are d1§brete, there is no way to interpolate smoothly
from a, B, and v to ah, eh, and Yh. So what really must be done is to
prove that S{«,8,v,q9) = S(a,B,Y,gh] if h is such that «, 8, and vy are
invariant under it.

We-first consider the special case a=g=y. As dEt BUJ 1+p

. det 1D’LL§EJ is real, pos1t1ve, and anomaly free, S simplifies to

= (det_ i (452 5" )22 (det_ R(l'z*" )-1 - (19)
In view of the basic equatiop (2) for globa1 anomalies, the change in §
under h is "
a2n3 = % (22n(0) + (n(R) - n(D))) | (20),
where n(D) and n(R) are the eté invariants of the Dirac and Rarita-
Schwinger operators on the mapping cylinder Q = (zxsl)h.* Now we use

The appearance of (nR-nD) as the Rarita-Schwinger contribution (rather
than np as one might have guessed) follows from the fact that a three
dimensional vector is a two dimensional vector plus scalar. A similar

combination appears, in.(21) below for the same reason. See [4] for
further discussion. '

*



76

% . . . . . .
the fact that the spin cobordism group is.trivial in three dimensions,
s0 Q'ds the boumdary of a four dimensional spin manifold B. The Atiyah-
Patodi-Singer theorem® then asserts that

"L n(0) = index(p) - [ A(R)
3 n(R) = (index(R) ~ index(D)) - [ (K(R) - A(R)) (21)

Here index(D) and in&ex(RL are the Dirac and Rar%ta-Schwinger fndex on B
(with boundary conditions explained in (51); A.and K are the curvature
polynomials whose integral over a four manifold without boundary would
equal index(R) and index{D). Substituting (21) in (20), we may modulo
2ri drop index(D) and index(R), since they are even in four dimensions
(as explained for instance in [4]), so we get

e = in [ (-20 A-K) mod 2wi (22)
B

» A - - - **
This vanishes because K = -20A in four dimensions.

* An oriented manifold has w;=0; if it has a spin structure, then wy=0
in addition. (Here W, are Stiefel-Whitney classes.) If w;=w,=0, the
tangent bundle is trivial when restricted to the two skeleton, and hence
(since w,(0(N))=0) it is also trivial when restricted to the three
skeleton. Hence wy=0 if w;=w,=0. Consequently, a three dimensional
{oriented) spin manifold has all Stiefe]-whitnej classes and all
Stiefel-Whitney (or Z,) characteristic mmbers zero, Hence ([12], p.
42) such a manifold (if it has no boundary) bounds an oriented manifold.
Except in 8k+l or 8k+2 dimensions, every spin manifold that bounds an
oriented manifold bounds a spin manifold ([12]), pp.  46-7). So every
three dimensional (closed, oriented) spin manifold is the boundary of a
spin manifold.

w0 ) ) 2 x5 /2 4
corresponds to the term of order x.4 in I and K to the
j=1 sinh xi72’

. 2 x;/2
term of:order Xi in ]I=[1 m‘ . J

H IR =

(2 cosh x).
1 J

¥e
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We still must consider the possibility that a, 8, and y are not
all equal., The correction factorbetween S and 3 is

. 1- . 1-p
_ (detB ig ijl ) 16 (detY iB G—EQJ) 16 23

0 .y (1-p cof (1-p
det ip (55 det if (557

and we must prove that this is invariant under any diffeomorphism h:z+z
that fixes a, B, and y. Actually, we will prove the stronger statement
that
o lep
det i (=5&) 8
V= (—E—25 (24)
det_ g (1:2)

N
5.

is invariant under any diffeomorphism h that fixes o and g. Eight is
incidentally the lowest exponent for which this is true, as one loop
calculations show.

Since a and 8 are invariant under h, they both extend to spin
structures (which we will also call a and g) on the mapping cylinder T =
(zxsl)h. We have two different Dirac operators on T (with spin struc-
tures a and B); the two n invariants associated with these two Dirac
operators will be called "a(D) and nB(D). In view of equation (2),
the change in U under a diffeomorphism is

aenl = 8 5T (ng (D) - ng(D)) mod 2 (25)

The general theory for calculating differences such as.na(D)-nB(D) has
been developed by Atiyah, Patodi, and Singer in the last paper in [5].
As we do not wish to calculate nu(D)-nB(D), but only to prove that it is
an integer multiple of 1/2 (so that (25) vanishes modulo 2ri), a short
cut is available. Actually, for any orientable three manifold T (not
necessarily a mapping cylinder) and any two spin structures a and B, we
will prove

8% (n_(T) - nB(T)) = 0 mod 2w (26)
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A key to proving this is to understand what is the nature of the
difference between two spin structures w and g. When a vector is paral-
lel transported around a closed curve y in T, it is rotated by a rota-
tion matrix RYe 0(3). When a spinor (with Fpin Sstructure ¢ or 8) is
paraltel transported around y, it returds rotated by a matrix Ry(a) or
RY(B) which is a matrix that represents the sanie RY in the spinor rep-
resentation. Since the spinor representation is double-valued, it is
not necessarily-so that RY(B) equals RY(u). In general Ry(B) = (—1)"(7).
RY(a), where n(y)=%l for each y.' Thé€ mapping y+n(y) is a "homomorphism
nl(T)+ZZ. Given one spin structure a, possible choices of another spin
structure g are in one to one correspondence with homomorphisms pimg+L,,

Qur goal will be to represent the difference between o and B spin
structures as an interaction with an auxiliary SU(2) or 0(3) gauge field
that will have Fija=0, so it will just enter in modifying the law of
parallel transport around closed loops. To this‘end, think of a mapping
v:T+0(3), Any such mapping v maps a closed curve vy -in T into a closed
curve v(y) in 0(3), so it induces a homomorphisn w;(T)+x,(0(3)}= Z,. We
want to show that every homomerphism wim,(T)+Z, is induced in thii way
from a mapping v:T+0(3). To this end, pick a-triangulation of T. This
means roughly that we realize T as a collection of tetrahedra glued
together'ori their faces. The vertices of the tetrahedra are called 0-
simplices Sy, the edges.are called 1-simplices S;, the faces are-called
2-simplices S,, and the interiors are called 3-simplices S;. The bound-
ary asq of a g-simplex Sq is topotogically a g-1 sphere sL. 1f for
some q simplex Sq a mapping vg:asd+0(3J has been-defined, the obstruc-
tion to extending v, over Sq is an element of o1 (0(3)).

-+ Now, given a homamorphism u:iw,(T)+n;(0(3)) =Z,, we.wish to find ‘a
mapping R:T+0(3) which "induces" u in the manner described in the last
paragraph. The strategy is to first define R on 0-simplices, then on 1-
simpiices, then on 2-simpticies, and finally'on 3-simplices. On O~
simplices, one may just takew(x)=1 for any O-simpPex x.* On l-sim-
plices, the definition of R is determined up-to homotopy by u. (Pick

*
This is a standard concept in topology; see for instance [13]. A brief
exposition was given in [11].
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any ordering of the one simplices, DefineR first on the "first" one
simplex, then on the "second," and finally on the last. At each stage
the.choice of R is-arbitrary unless the 1-simplex which is being added
completes a closed loop, in which case u determines a topglogical res-
triction on R which must be obeyed.- There never is an inconsistency in
obeying these restrictions since u is a homomorphism of =,(T) into

7(0(3)) = Z,.) Now we try to extend R over two-simplices. The bound-
ary of a two-simplex y is a curve y. y is trivial in «;(T) (since it
bounds y) .so w(¥)=0 in m,(0(3)). Hence, having defined R on one sim-
plices to induce the homomorphism u of fundamental groups, the mapping
R:y+0(3) is topologically trivial for any y which bounds y and can be
extended to R:y*0(3). Having thus defined R over two simplices, it can
always be extended over three simplices, since the obstruction would 1lie
in w,(0(3))=0. This compietes the proof that every homomorphism
win (T)+Z, = w,(0(3)) is induced by some mapping R:T+(3). .
Now, we will wish to study the SU(2) gauge field A, = R'19iR.. In
integer spin representations of SU(2), this is completely trivial, a
puce gauge, In half integer spip representations, R (being double-
valued) is not well defined, but Ai = R“laiR is well-defined. However,
jn half integer spin representations of SU(2), A; is trivial only local-
1ys not globally. In such a representation, for any closed ‘curve v,

Pexp [ Aedx = (-1)n(Y) . (27)
Y

+

where y+n(y) is our homomorphism yu.

Now we wish to pick two representations P and Q of SU(2) with the
following properties:

(x) They are real and of the same dimension.

(y) They have the same quadratic Casimir operator,

(z) In P the center of SU(2) is represented by +1, and in Q by -1.

The lowest dimension for which such representations exist is 8.
This is why U in (24) will turn out to be single-valued with the expo-
nent 8, The minimal chaice is that P should be the 3®1 016101 @
1 of SU(2), while Q is2@2@20 2. '



To evaluate (25), we must understand the quantities 8na and 8n
As regards B“a’ it is the eta invariant for eight spinors with spin
structure a. There is no harm in saying they lie in the P representa-
tion of SU(2) and interact with the gauge field Ai = R'laiR--since that
gauge field is trivial in that representation. So we say

g

8n_ =n~ (28)

where n.p js the eta invariant for a fermion in the P representation of
SU(2). The eight fermionsinteracting with spin structure g, on the
other hand, will be treated in a slightly less trivial way. Eight
fermions with spin structure g are exactly equivalent to eight fermions
in the Q representation of SU(2) with spin structure a--Since the not-
quite-trivial SU(2) gauge field A; = R'laiR has, in the Q
representation, the sole effect of flipping the boundary condition,
turning spin structure a into g. So

(29)

Now we will use the Atiyah-Patodi-Singer theorem to evaluate "aQ and n.p
--or at least their difference. Let W = TxI; I is a unit-interval with
parameter u, O<u<l, In contrast to the rather trivial gauge fields we
have been discussing, we now consider a highly non-trivial instanton
gauge field on W. Let Bi(xk,u) = uAi(xk), B, =0 (xk being coordinates
for T). This B, interpolates from 0 at u=0 to A; at u=1l. The Atiyah-
Patodi-Singer applied to the manifold W with gauge field B gives

-

indexP(D) -f AP

_]é (naP - 311“) f

1 o os Ny

> (naQ - 8na) = 1nder(D) - & AQ | (30)
Here 1ndexP(D) and inder(D) are the index of the Dirac operator on W
(with spin structure «) in the P or Q representation. These are even,
since P and Q are real. ﬁp and KQ are the curvature polynomials related
to the Dirac index in four dimensions; they are equal, since we chose P
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and Q to have the same quadratic Casimir operator. The left-hand side
of (30) involves "aP"B“aa"d “aQ"8“& since the boundary of W has two
components; the u=l component coﬁtribute5£nap’or Qe while the u=0
component contributes 8na. Subtracting the:-two equations in (30) and
“using the facts just noted, we learn

ap = Mg ~ 0 modulo 4 (31)

¥

Equations (28), (29), and (31) 1mp1y that AgnU in (25) is zero. This
completes the proof that the measure S(a,B,v;9) is invariant under
diffeomorphisms tht leave a«, 8, and y fixed.

This proof required only very general considerations and few
detailed facts about Riemann surfaces. Of course, it leaves open many
other questions tied to the consistency of the theory whose resolution
may require deeper knowledge of Riemann surfaces. For instance, it is

expected from supersynmetry that § Sth,B,T}g)'=:0 but I do not think

a,B,Y
that this can be proved using only,tﬂe methods above.

Returning to our list of problems, this completes what we will say
here about anomalies involving purely a one paraneter'famiT} of confor-
mal structures on . We now turn very briefly to discuss anomalies ¢
involving mappings into space-time of a fixed Riemann surface . I will
not describe any new examples of anomalies {beyond those described in
[10] and [11]), but I w1]1 comment br1efﬁy on the settlng for this
problem. : :

85 soon as we consider non-trivial maps ¢ of £ into the spaceutime
M, the spin connection and gauge field 1n'space-tihe become highly
relevant. The spin connection m1k£ is ‘an 0(10) connection on pﬁe tangent
bundle T of M. Its pull-back to £ is an 0(10) gauge field aakz =
iy K The factor (det iff (1+5))10 in (18) becomes replaced b

isg a -7 placed by

——-—m
30

dethUH L—%é- where det . is thé determinant for ten fermions (with spin
structure o) interacting with a_. Henceforth we will abbreviate posi-
tive or negative chirality determinants as dett. Likewise we have in
spacetime an EgxEq bundle V =V, @ V, with the two Eg gauge fields
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A(l)i’ A(Z)i' There is no convenientway for Eg gauge fields to act on
16 fermions. But pragmatically, on the four skeleton of M (all that .
enters in discussing world-sheet-anomalies) the structure group of any
Eg bundle can be reduced to 0(16). So for our limited purposes we
probably lose little in assuning A(1)1 and A(2)1 are.0(16) gauge fields.
Anyway, at present it is the best we can do. Then A(l) and A(Z) can be

i
puiled back to gauge fields B(l) = 25-—-1\(1)1’ B(g)a x A(2)1 on I.

The factors in (18) involving (det )16 .and (det )16 become detév) nd
deti;). In addition, one more potent1a11y anoma1ous term must be
incluﬁed in the measure. In space—tlme there is a two form B Its
interaction thh the str1ng is 1Id20 e“B a x1 anJ B (x(o)), which we
will abbrev1ate as 1f2 ) B 1¢ B is the pu11back of B from Mto L via

¢.) So the measure is

. LN ) *
S = (det;T)(detévl](det;vz)(det;Rl‘l expi £ ¢ B (32)

L ' v - ' L

Now, one difference between the string,and the point part1c1e is that in
the part1q1e‘ca§e we only had to gonsjder global anomalies on the world
line, but in the case of the string both perturbative and global anoma-
11es on the world sheet must be considered. Indeed, the perturbative
anomalies cance1,;9] if one considers a trivial map of £ into space-
time. But as soon as one considers a non-trivial map it appears, at
first sight, that the anomaly cancellation would be spoiled by so-called
sigma model anomalies!"* involving the spin connection and gauge field of
space-time. This would indeed be so if we considered only the product
of determinants in (32). But the last factor ip&plving B saves the
day.15 Indeed, the sigma model anomaly can be canceled in (32) if one
accompanies a gauge and local Lorentz'yransformation in space-time with

s

.. 6B = tr (AdA) - tr {wde) ’ (33)

Here A and @ are the parameters of jnfinitessimal.gauge and local
lorentz transformations. This is the same gauge transformation law that
cancels anomalies in space-time--a satisfying relation between space- -
time and world-sheet anomalies.
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(33) implies that the gauge invariant field strength H of B obeys
not dH=0 but

di = Tr F2 - tr R2 (34).

This, in turn, has a certain topological interpretation [16]. In de
Rham cohomology, dH=0 while TrF2 and trR2 represent the first Pontryagin
classes (with real coefficients) of the EyxE; bundle V and the tangent
bundle T. So (34) implies that the theory is only consistent if T and V
are such that 3 "

. . PL(ViR) = P (T;R) (35).

Here Pl( ;R) denotes Pontryagin classes with real coefficients. It is
satisfying to see that the world-sheet theory is "aware" of this rela-
tion, which also follows from space-time considerations.

Now, Pontryagdin classes with real coefficients have a natural
generalization--Pontryagin classes P, ( ;Z) with"integer coefficients.
These entered and were explained in [11]. (In that paper, P, was some-
times called the second Chern class C,--which is equivalent for real
bundles.) It was found there that magnetic monopoles are not permitted
in string theory unless their magnetic charge is such as ‘to not con-
tribute to P (V;Z). This result can be unified with (35)-if;we assume
that the actual requirement for ‘consistency of:the theory is

-

o Pr(vsZ) = Py(T37) - (36)

Although I believe that(36) is probably needed in generality for con-
sistency of the theory,, it-would be beyond the scope of the present
notes to try to prove this in full. Many technicalities arise, some of
which will be mentioned later: I will 1imit.myself to providing new
evidence for (36) by showing that it is required for consistency in a

*By P,(F;Z) for an Eg bundle F I mean the fourth cohomology class that .
is the first obstruction to triwiality of F. If F is induced from an
0(16) bundle F by the embedding 0(16) &-Eg, P,(F;Z) should be taken to
mean P, (¥;2).
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new physical situation, - In the situation I have in mind, 1ittle can be
learned by considering a one parameter family of maps of a fixed Riemann
surface into space-time (corresponding, as was described earlier, to a
map ¢:Zx51+M). It will be necessary to consider a one parameter family
of maps of a one parameter family of Riemann surfaces into space-time.
This corresponds to a map ¢:T+M where T = (szl)h is a mapping cylinder,
Physically, the rationale for considering anomalies in this situation is
as follows. If u is a parameter for S!, then as u is varied, both £ and
its map into M vary. But on returning these to their original values,
we require that the amplitude associated with the string propagation
should return to its original value.

The situation we wish to consider is that. of compactification of
the ten dimensional theory on M*xK, M* being four dimensional Minkowski
space and K some compact six manifold. We assume that the spin con-
nection of K is embedded in one Eg factor of the gauge group, breaking
EgxEg to EgxEg, 0(10)xU(1)xEg, or 0(10)xE, depending on whether K has
Su(3), U(3), or 0(6) holonomy.l7 (Actually, if K has U(3) holonomy,
there are several other possibilities for the unbroken groupl®.) By
itself, this does not introduce any global anomalies, since embedding
the spin connection in one E; factor gives a vector-1ike non-1inear
sigma model on the string world sheet.

If now K ismnot simply connected, it is possible to introduce
grand unified symetry breaking via Wilson lines. This means that one
picks a homomorphism =, (K)+G of the fundamental group of K into the
unbroken group G. This breaks G to the subgroup that commutes with the
image of 7 (K) in G. The Wilson lines define a flat vector bundle V.
What we wish to investigate is whether there are global anomalies
associated with the choice of Wilson lines., Gliobal anomalies, being a
topological notion, can only detect topological invariants of V., By far
the simplest topological invariant of V is its first Pontryagin class,
so it is natural to look for global anomalies associated with the Wilson
Tines via P,(V;Z).

Rather.than trying to be general, we will consider a simple ‘
example. Let K =w(55/Zn)x81. Here S5/7_.is the “lens space" consisting
of three complex variables (Z,,Z,,Z3) with |Z;|2 + |Z,[2 + |Z4{?2 = 1
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and with (Z,,Z,,23) considered equivalent to (Z,a,Z;a,Z3a) where a = ..
exp 22xi/n. Ignoring the S! factor, we will consider Wilson lines
associated with $3/Z  only. As = (S5/Z,) = Z,, we must pick a single
Wilson line U obeying U"=1. It always fits into a subgroup U(8) < 0(16)
CEy, and in that subgroup it can be written

U = exp Zniki/n o0 2xiky/n . (37)

exp 2nikg/n

Actually, we have two such matrices, one for each Eg, and one of them is
restricted to commute with the embedded spin connection (requiring
ki=k,=kg if K has SU(3) holonomy). We want to calculate global

anomal ies associated with the choice of U.

Amap ¢:T»K can (since T=(Ix$!), fs three dimensional) only
"cover" a three dimensional subspace of K. We will pick this subspace
to be the subspace of S5/Zn defined by Z3=0. This itself is a lens
space L=53/Z .

Now, we want to choose a Riemann surface I and a map h:Z+Z such
that we can find a degree one map ¢.(2x51)h . We will pick £ to be a
torus with periodic coordinates (t,0), 0<o,1<2w. As for h, it will be
the map h(t,o) = (t+no,s). Thus, (zxsl)h will consist of triples
(t,0,u) with (1,0,0) identified with {t+no,0,1}. As h has been chosen
to"leave ¢ invariant, T = (szl)h is actually in this case a fiber
bundle over a torus T; = SixS! spanned by ¢ and u. The fiber S! is
spanned by . ' ' ‘

L is also a fiber bundle over a two manifold, in this case a two
sphere $2 with coordinates w = 2*32 (as we set Z3=0 to define L, there
are two Z.; o are the standard Pauli matrices). From L1712 = 1 it
follows that W2=1; the map {z, }+{wk} is a fibration L+S2

To pick a degree one map ¢:T+L, we begin by picking a degree one
map yoéT0+Sz. There is a simple analytic formula for a degree two map
T0;§§;given by polar coordinates (w1 = 5in2wu cosa, W, = sin2ra sino, wy
= cosgru) . Although there seems to be no simple analytic-formula for a
degree one map, such a map exists. (Pick a disc D in T; and map its
boundary and exterior to a single point in S2. D is thus effectively
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compactified to a sphere, whith has a degree oné map onta: S2. This
completes the specification of the'map Ty»S2.) Now, L is an S! fiber
bundle over S2, so pulling back this fiber bundle via the map $g:Tg*S2
gives an Sl fiber bundle over T,. The total space of this fiber bundle
is a three manifold T fibered over T,. ¢, “1ifts" automatically to a
degree one map ¢:T+L. Actually T was chosen earlier to be isomorphic to
the manifold T just encountered, and ¢ is the desired degree one map
¢:T»L.

Now, we want to calculate the global anomaly associated with the
Wilson Tine U of equation (37). While Ey can be realized on 16 real
fermions, it .is convenient, in view of the diagonal form in (37), to
think of these as eight.complex fermions Ve @S 1...8 and their complex
conjugates. A given fermion ¥ interacts with an Abelian gauge field
A 2) in space-time. A(a) is a pure gauge locally but has global holo-
nomy U = exp 2rik /n Now A(a) "pulls-back" to an abelian gauge field
A(a) — A(a) (here ¢® is 1, o, or u). A(:) is again a pure gauge
1oca11y?Or Its g]obal_ho]onomx_can be inferred from that of A(a):

-

2n (a)
expi [ dt A . = exp 2wk /n
0

2% 1
expi [ do A% = expi [ aun(® =1 (38)
0 0

Now we wish to calculate the change in the effective action of the
fermion y, between u=0 and u=1. This is the variatipn under h of

B
detg(OZ
Here det' (A ) is a negative chirality fermion determinant with spin
structure B and abelian gauge field A(a) det‘(O) is a negative chira-
lity determinant without A( ) “X is the factor by which the world
sheet measure is corrected by the interaction of ¥, with A(a). ‘Since

+ L] i

' - rala)
. .. det= (A
X = et ( ) (39)
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the theory was invariant under h at A(a)=0, it is the correction factor
X that we must study.

By our usual formula (2) {multiplied by a factor of 2 since ¢a is
complex while (2) refers to Majorana-Weyl fermions), the change in X
under h is

ank = in (ng(A%)) - n,(0)) (40)

mod? wi

are the n invariants on T with and without

w?ege ng (A(a)(O)] and n g

ALY

Now, to evaluate (40), we will pick a manifold B whose boundary is
T and use the Atiyah-Patodi-Singer theorem. B.is conveniently chosen as
follows. The circle S! with coordinate v is the boundary of a disc D
with polar coordinates (p,t),0 < p < 1, 0 < t < 2r. The S! bundie T+T,
can be extended to a disc bundle B+T,. (The metric for B may be, for
instance, ds2 = dp? + p2 (dt - nuds)? + do? + du?.) B has boundary T.
Actually, B is a spin manifold only if n is even, and we will content
ourselves with this case. (The more general case can be studied by
using a spinc structure on B.) Also, the hitherto arbitrary h invariant
spin structure g on £ must be chosen to be extendable over B.

The next step is to extend the U(1l) gauge field A(a) on T to a
U(1) gauge field {which we will also cail A(a)) on B, Since A(a) is
topologically non-trivial, it is awkward to write an explicit formula
for it. But a suitable formula for F = dA(a) is

k(2)
F = —7;—*[dp (dt - nu do) - (1-p) ndu do] (41)

This formula has the following key properties:

(1) 1t is invariant under u + wl, © + T+no, so it actually is
defined on B, not just some covering space of B.

(2) dF = 0, so locally F = dA for some A.

(3) Restricted to T (p = 1, dp = 0), F = 0. So the gauge field A
associated with F is on T locally a pure gauge. It also has the global
holonomy desired for A(a). For instance, expi f%“dr A(g) = expi IDF =

2ui k@)

exp ——

, as desired,



Having found the right gauge field, we can evaluate (40) via the
Atiyah-Patodi-Singer theorem. In fact

%'hB (A(a)] = 'indexB (A(a)) - £ R~[A(a)]
‘% ng(0) = .index (0) - é A (0)"~ w2)

Here indexB (A(a)) and indexB(O) are the Dirac index with and without
A

the gauge field A(a). Aso, A(A%) and A(0) are the polynomials related

to the index theorem, with and without A(a). In fact A(A(a)] - A(0) =

1‘ FAF. So we get
2(2n )2
aeoX = -2ni [ (A(AR) - A(0)) = - —251_ [ ppf
B 2-(2x)2 B
.1 2n 2n 1 (a) 2
C e =T o [ dr [ do [ du () n(1-p)
2+(27)20 O 0 0

(a)y2
2ni L)% mog 2 (43)

The total global anomaly is obtained by summing (43) overall fermion
4 *
species (a), and vanishes if

*At first sight, it is not clear why Wilson lines are such that-% zk(a)z
is always an integer. This is paradoxical, since with m,(K) = L, we
must at most get mod n, not mod 2n, global anomalies. The resolution of
the paradox is as follows. With x)(K) = Z_, the only Wilson lines that
can be defined are those for which U" = 1 not just in U(8) but also in
Eg when U(8) is embedded in Eg via U(8) < 0(16) « Eg. The key point is
that the adjoint of E; contains the double-valued spinor of 0(16). As a
result of this, when n'is even, all Wilson lines that can be defined in
Eg have zak(a) even--which always makes-% Zk(a)2 an integer. When'n is
odd, so that B is not a spin manifold, there are further intricacies
which we will not try to unravel.
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I-% k(a)2 = 0 mod n (44)
a

But as was explained in [11], the contribution of the Wilson lines to
P (V3Z) is-% za k(a)zyz, where y is the generator of H2(K;Z). As 2y2=0
in H*(K;Z) if and only if 2=0 mod n, equation (44) can be regarded as
further evidence for the general validity of the requirement (36) that
P,(V;Z) = P,(T;Z) for consistency. .

This calculation raises many questions. First of all, how would
one generalize it to establish a universal requirement P,(V;Z) = J
P,(T5Z)? As this equation holds rationally because of perturbative
anomalies, it is only the torsion piece that we have to worry about. A
torsion part of P, is necessarily a torsion element of H*(K;Z), the
fourth cohomology group of K with integer coefficients. By the univer-
sal coefficients theorem, this is related to a torsion class in Hy(K;Z),
the third homo1ogy'group of K with integer coefficients. Such a class
can be represented by an immersed three Tanifo1d L. To try to find a
global anomaly that forces P,(V;Z) = P{T;Z), one must then look for a
Riemann surface £, a map h:I+I, apd a degree one map ¢:(2x51)h+L. If
this can be found, one can try to repeat the above calculation and find
a global anomaly. While I expect that this last step can be pushed
through, I will not attempt it here. A more difficult problem arises
because, in general, L is such that for any £ and h there is no degree
one map ¢:(Ex51)h+L. How then can a requirement on P, emerge? While I
do not know the answer to this question, it is encouraging to note that
a similar problem arises in the point particle case. A manifold M fails
to be a spin manifolq if there is an jmmersed twnimanifold N with
wy(N)=0. (w, is the second Stiefel-Whitney class of M.) Our discussion
of global anomalies detected the failure of M to be a spin manifolq
only if there is some NeM with a degree one map SlxSIsN and w,(N)#0. In
practice, this means N must be S or SIxSl. A more refined treatment of
the particle case, exhibiting the fact that the point particle theory is
il11 defined if there is any N € M with w,(N)#0, would hopefully general-
ize to a string theory argument establishing that (irrespective of the
topology of L) consistency requires P,(V;Z) = P,(T;Z).

v,
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This leads to another question. A three manifold L in space-time
must be topologically non-trivial (and so non-zero in Hy(K;Z)) if a
global anomaly is to arise from a degree one map ¢:(2x51)h+L. But why
must L be a torsion class in H3(K;Z)? If not, L has nothing to do with
iF(K;Z) or P{: For instance, suppose we compactify not on K =
(572 )xst but on K = (S3/Z) x S3. We could still do the calculation
leading to (43), using the subspace L = S3/Z of K. But L now has
nothing to do with H* --and in fact H“(K Z) = 0. So is not this
evidencé that the global world sheet anomaly in general can not be
interpreted in terms of Pontryagin classes? The answer to this
question is rather 'surprising. If L is not a torsion class in Hs(Kﬁz),
but an element of infinite order, it is always possible to add a Wess-
Zunino interaction whose integral over L is non-zero. Adding this term
with suitable (fractional) coefficient, it cancels any anomaly
associated with fermion determinants on L. 'This“is a curious situation
i which a Wess-Zumino interaction is needed for tonsisténcy.

Now let us briefly discuss the physical applications of these
résults. It'must be stressed that the anomaly cancellation in (44) can
involve a cancellation of a prob1eh in one E3 agalnst an equal and
opposite problem in the second Eg. “In fact, it is 1ntr1gu1ng to
speculate that nature may operate in that way. In that’ case, Wilson
lines carrying out grand unified symmetry bredking in "our® Eg would
def1ne a topologically non-trivial bundle, and grand unified synmetry
break1ng would be unavoidable (in the sector of the theory based on this
bundle) for topological reasons. " )

This completes what I will say about consistency conditions coming
from anoma1ies on the string worIH sheet, A1though much more remains to
be done, it is plausible that a fairly comp]ete p1cture will emérge in
the not too distant future. When these questions are all resolved, we
will have merely settled the preliminaries, analogous in the point
parti€le case to making sure that M is a spin manifold. It is necessary
then to move on and explore giobal anomalies i the full-fledged second
quantized theory. ' ) -

In the field theory case, this involves considering anomalies in
the determinant of the operator ijﬂ That operator has the following"
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properties. In Minkowski space, its zero modes are the physical, on

mass shell states. It flips the chirality, so that in chiral theories
it maps physical modes of the right chirality into unphysical modes of
the wrong chirality, and vice-versa. Here chirality is measured by_an
operator T that anticommutes with all the gamma matrices in ¥ = zir‘oi.

In string theory, then, we want an operator which (a) generalizes
the Dirac operator; {(b) vanishes for physical states; (c) anticommutes
with some analogue of the chirality operatpr T.

The operator we want is just the ogperator introduced by Ramond in
his original attemptld to generalize the Dirac equation to string
theory! It is often called the Dirac-Ramond operator, In a modern
language, it is the supersymmetry operator on the string world sheet.

In the original version, there was a single Dirac-Ramond operator for
open strings and two for closed strings. In the heterotic case, there.
is a single right-moving supercharge on a closed string. Temporarily
suppressing the degrees of freedom that carry gauge quantum numbers, the

supercharge can be derived from the action with N = 1/2 supersym-
metryzo 515

- 2 . i J . k J
I [d%q [gij(x(°)) Igx 3_xY + iy (gij a_ + 3_x mkij) ¥ (45)
. . i _ 9 + 1 J
Here g.. is the metric of space-time, 3, = —— where ¢ = — (ttd), ¥
1 et V2

are the fermions of the Ramond-Neveu-Schwarz model, and a possible Wess-
Zunino interaction (plus an infinity of possible couplings to massive
modes of the string) is being suppressed. The conserved charge is

2m . J J 2n . J
_ i orox X"y _ i . D X
0= flrayg v bt gg) s [ (1 pR e gy 5 (e)

The first form is the classical expression, and the second arises from
it by canonical quantization, since--much as in our discussion of the
. . . X X . dxj . D
point particle--canonical quantization gives g.. = -i where
) . ij do Dxi(uj
. = +
NS 1 )
generalization of the usual Dirac operator, indeed has many similarities
to it. For instance (in a suitable formalism) on mass shell states |A>

mijk(x(o)) ¢j(a) ¢k(a). Q, which was invented as a
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are those that obey Q[A> = 0. Also, the analogue of the chirality
operator F is the operator (- l)F (or in .an older language, G par1ty)
which anticommutes with all the ¢ (o) 1t certainly obeys (-1) Q
-Q(- 1)F Moreover, in superstring theory physical states |A> obey

(- 1) |o> = +]|&>, while.Q maps these to states obeying (-1) |A> = -|D.
Thus the operator Q relevant in superstring theory is a chiral Dirac-
Ramond operator, which 1ike the chiral Dirac operator jﬂ'on a finite
dimensional manifold maps physical states of positive chirality to
unphysical states of negative chirality (and on mass shell states are
zero modes of Q or iﬂﬁ.

I would 1ike to make a few remarks aimed at clarifying in what
sense Q is a generalization of the finite dimensional Dirac operator.
The following remarks may also clarify the tast section of [21]. Let M
be the space time manifold, and let @(M) be the corresponding loop
space. A Riemannian metric ds2 = g1 dx1de induces a Riemannian metric
on @(M) as follows. As we discussed before in our discussion of whether
Q(M) is or1entab1e, a tangent vector at a point ye@(M)--y corresponding
to a loop x (o)--1s a tangent field 5x along the loop. The metric on
Q(M) is defined by saying <éx, 6x> = f do 93 (x{0)) Sxi(o)‘sxj(o).

0
Now, viewing (M) as an infinite dimensional Riemannian manifold,

it is natural to try to define a Dirac operator on (M) as on a finite
dimensional Riemannian manifold. To do so, we need gamma matrices PI, 1
being a tangent vector index on @(M). But a tangent vectoﬁ’1ndex I on
q(M) is really a pair of indices (i,0)--since a loop x' (¢) in M can be
varied at any point ¢ and in any d1rect1on i tangent to M. Gamma
matrices rI are thus really fields T (c)--and they obey a Clifford
algebra {r' (o), PJ(G )} = 2913 §(g-0'). These are the canonical com-
mutation relations for fermions! The Dirac operator on Q(M) would then
be

Qp = -1 ZI I'—y (47)

I D
Dx

But in fact }, is a short hand for L [do, s0
on

Si [ de ¢ (o) —2 ' 48
1 é o ¢ ( )'B;T(;T (48)

%
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where henceforth we call the gamma matrices by their more familiar name:
wiig).. ) f

Two things may be noted here. First, Qo is almost, but not quite,
the: Dirac-Ramond operator. The second term in (46) is missing in (48),
§gcond, Q0 is a formal construction which--even when M is flat-and
everything-can be diagonalized by Fourier transforms--doesn't make
sense. As is explained in every book on quantum field theory, the ‘
second term in Q is needed to make an operator,that makes sense, with a
well-defined spectrum, on the infinite dimensional manifold a(M). .
Adding the second piece to Q may not be sufficient to make a meaningful
operator, but it is certainly necessary! " -

-Still, armed with our success in interpreting the first term in Q,
we try to find a reasonable interpretation of the second one. Consider
then a finite dimensional spin manifold W. On W we have a Dirac
operator ip. If in addition a conbinqous isometry of W is given,
generated by a Killing vector fielq K1, then a simple generalization of
the Dirac operator is iﬁk = ip + F1Kif In fact, iﬂk is not just a
simple generalization of the Dirac operator. It is in its own right an
operator associated with a rich mathematical theory. It can be used22
to prove the Tocalization theorem associated with the Atiyah-Singer
index theorem. Its analogue for the de Rham complex2! is related23 to
equivariant cohomology, and its analogue for the § operator of a complex
manifold is related to a system of holomorphic Morse inequalities2"
which so far have not attracted much mathematical attention.

Now, on the lToop space of maps Sl+M, there is a continuous sym-
metry induced from rotations of the circle. It maps a loop xi(c) to
xi(o+s), for any e. The infinitesimal form of the transformation is

: i
6x1(a) = %gwn This formula shows that the (io) component of the associ-
ated Killing vector field KI is just 6x1(o) = 3x /30, The analogue of
yfﬁion a finite dimensional manifold is thus

2n i
Co =ik, - [ do o) 55 (49)

L}

Q, is just the second piece of the Dirac-Ramond operator! The Dirac-



94

Ramond operator Q = Qg+Qy is thus an analogue of the operator iﬂk on a
finite dimensional manifold. It is remarkable that unlike tﬁ, iﬂk has a
meaningful infinite dimensional analogue.

» We now’see that (-l)F, which anticommutes with all the gamma mat-
rices wi(o), is really the chirality operator of @(M). As in the finite
dimensional case, the chiral Dirac-Ramond operator should make sense
only if (M) is orientable. Is this so? We concluded earlier that (M)
is orientable precisely, if"M is a spin manifold.: Thus, superstring
theory should make sense only if space-time is a spin manifold--a satis-
factory result. Moving on in the same vein, to define a Dirac-Tike
operator on 2(M) should be possible only if @(M) is itself a spin mani-
fold. 1Is.this so? The same sort of reasoning we used to decide if R(M)
is orientable would indicate that Q(M) is a spin manifold precisely if
w3 (M)--the third Stiefel-Whitney class of space-time--is zero. Happily,
an orientable spin manifold M always has wy(M) = 0.

Now we want to consider a more realistic situation with left-
movers as well as right movers along the string. Thus we add to (45)
additional: terms described in [15] involving left-moving fermions AA and
preserving N = 1/2 supersynmetry:

-
L]

a1 = %0 [10P(gpq 24 + Appg(x(e)) 2ax') 2B - FFLopa(x(a)) o TWINAP)
(50)

For any fixed loop yeR(M), quantization of the AA gives an infinite
dimensional Hilbert space HY. As y varies, HY varies smoothly, giving
an infinite dimensional vector bundle X over &(M). In the presence of
the AA, the Dirat-Ramond operator thus acts not on "ordinary" spinor
fields on Q(M) but on spinor fields with values in X. The supercharge
or Dirac-Ramond operator is still

2n
D
Q= é do ¢ (x(a)) (-1 —— o) + g1J-a——) (51)-

but now the connection in-ET is modified to include a connection on X.
Dx

Indeed, by analogy with our previous discussion, canonical quantization

of (50) reveals that the covariant derivdtive is now

.
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D_ - _ 0O
Dx1

ST g V) ¥*(0) + Apg A0) 2¥e)  (52)
Thus, Q is in this case an analogﬁe of iﬂk + T+K on a finite dimensional
manjfold, where iﬂ% is the Dirac equation acting on spinors with values
in some auxiliary vector bundle with connection A.

At thig point, one may be tempted to believe that the analogue of
de;yz’in field theory is detQ in string theory. For at least one
reason, this is not quite right in the case of closed strings. One is
required to project onto states that are invariant under translations of
s, g*o+c. Translations of o are generated by a "momentum" operator P.
One must project oﬁto states of P=0. Since [P,Q]=0, Q maps the P=0
subspace of Hilbert space into itself. Let Q be the restriction of Q to
the P=0 subspace. I believe that defﬁhis the proper string theoretical
generalization of detiff. I will refer to it as the "equivariant deter-
minant" of Q.

An analogous concept can be considered, but does not seem too
natural, in field theory. Given a manifold M and 3 continuous symmetry
generated by a Killing vector field K, we could restrict the Dirac
operator to act on the K invariant spinor fields and calculate the cor-
responding equivariant determinant detilf. Like the ordinary D%rac
determinant, the equivariant determinan; may be afflicted with anoma-

lies. We may call these equivariant anomalies. Equivariant anomalies
may not be a natural concept in field theory, but in the case of pertur-
bative anomalies there is a natural way to calculate them. In fact, the
same family index theorem that gives a topological interpretation of
ordinary perturbative Dirac anomalies?5 also gives a topological inter-

¥

pretation of equivariant perturbative Dirac anomalies. When coupled
with the localization theorem mentioned. earlier, it predicts the equi-
variant anomaly in terms of ordinary anomalies of a suitable Dirac
operator defined on the fixed point, set of K--the subspace My of M
consisting of points invariant under K. By contrast there is no local-
jzation theorem for global equivariant anomalies.2$

Now, what can we expect to learn from Dirac-Ramond anoma11es? 1,
do not beljeve that perturbative Dirac-Ramond anomalies will teach us
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much we do not already know. In fact, the localization theorem would
relate the perturbative equivariant anomalies on (M) to anomalies of a
suitable operator on QO(M)--the subspace of loops tpat are ?nvariant
under tran'slations of o. But such loops, bbeying x‘(a) = xq(o+c) for
any c, are constant maps SI1+M. So (M) = M, and perturbative equivari-
ant anomalies are related to calculations on M. Thus--while many
details of this argument must be worked out--perturbative equivariant
anomalies can be (and presumably already have beenz’g) understood from
suitable calculations on the finite dimensional manifold M. *

Global equivariant anomalie$ are another matter, since there is no
localization theorem for g1oba3 equivariant anomalies. There is no
telling what secrets may be locked in global equivariant Dirac-Ramond
anomalies--or how long it will be before we know enough about string
theory to unlock them. Although general argunents® show that field
theoretic global anomalies could not exp151n why we do not live in
uncompactified ten dimensional space, it is not obvious that this is
impossible for Dirac-Ramond global ‘anomalies. It is also possible that
some presently known superstring theories’may be rendered wholly
inconsistent by global Dirac-Ramond anomalies.

A localization argument similar to the one just sketched was used
elsewhere?l to argue that in the supersymmetric nonlinear sigma model in
1+1 dimensions, formulated on S!, any state with zero energy in lowest
order actually has precisely zero energy. (Under special conditions,
but not generically, this follows more simply from an index theorem.)
This has applications to string thedry in proving that states massless
in the field theoretic 1imit are actually massless in string theory.

The argument in [21] wé$ carried out for N=1 supersynmetry with periodic
fermion boundary conditions in both directions. Superstring theory
requires both this and other cases. It is not clear if the argument
generalizes to*the other cases.

In the field theory case, we discussed one other question about
global anomalies on the particle world line. Let g:M+M be a gauge
transformation or diffeomorphism of space-time, and E = (M&Sl)g the
associated cylinder. We repeat here equation (17) for convenience:
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slxs! —& L (53)
a \Sl,,/s

4

Here ¢ is a map that makes the above diagram commute. We found that a
global anomaly associated with such a picture means that g is not a
symetry of the quantum theory.

4

In string theory the analogous picture is

(mxst), —+— € (54)

N\t

Here £ is a Riemann surface, h is a diffeomorphism of L, E is again
(MxSl)g, and we again require B¢=a. AMn anomaly associated with such a
picture presunably means, as in field theory, that g is not a valjd
symmetry,

I will make no effort to investigate this situation systematical-
1y, but I cannot resist mentioning one example. Let A be the "big"
gauge transformation associated with QCD instantons. In QCD, A is con-
served, and this is a nuisance, It means that the phxsica] world has a

’BQCD

4

quantup, number called eQCD defined by saying Ala> = e |@>. (Since A
commutes with all local operators, GQCD is the same for all states in a
given "world".) The appearance of eQCD makes trouble. It is the origin
of the strong CP problem. How much happier we would be if the'QCD
Hamiltonian did not commute with A! There would be no GQCD’ and. no
strong CP problem, . ] ..
let us probe for conservation of A, in superstring theory. 'To this
end, we take space-time to be M=SlxS3xK, where S! is "time," S3 is
"space" on which A acts, and K is the Kaluza-Klein space. We then con-
sider the mapping cylinder EA = (stl)A. {(As A is a gauge transforma-,
tion rather than a diffeomorphism, (MxS!), is just MxS! with:a modified
EgxEg vector bundle.) Because of the relation of A with instantons), and
the fact that the instanton field has a non-zero P, the equation P, (V)
= Pl(T) needed to avoid anomalies is violated on EA' S0 there are
anomal ies (even perturbative ones) in (54), and A is not a symmetry. We
are thus led to hope that superstring theory will solve the strong CP
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problem. In fact, the arguments just described seem to be a rather
baroque way to understand the appearance of axions in superstring
theory.l® While that can be understood more straightforwardly, the

example reassyres us that we are interpreting correctly (54), which may
have other applications.

I would Yike to thank M. F. Atiyah, D. Freed, T. Killingback, J.
Mather, E. Miller, and I. Singer for discussions.

References

1. R. Geroch, J. Math. Phys. 11 (1970) 343; S.W. Hawking and C.N.
Pope, Phys. Lett. 73B (1978) 42.

2. L. Alvarez-Gaune and E. Witten, Nucl. Phys. 6234 (1983) 269.

3. M.B. Green and J.H. Schwarz, Phys. Lett. 1498 (1984) 117.

4. E. Witten, "Global Gravitational Anomalies," to appear in Corim.

" Math. Phys.

5. M.F. Atiyah, V.K. Patodi, I.M. Singer, Proc. Camh. Philos. Soc. 77
(1975) 43, 78 (1975) 405, 79 (1976) 71.

6. E. Witten, Phys. Lett. 1178 (1982) 324,

7. L. Brink, S. Deser, B. Zumino, P. Di Vecchia, and P. Howe, Phys.
Lett. 648 (1976) 43s. " '

8.' L. Brink and J.H. Schwarz, Phys. Lett. 1008 (1981) 310.

9. D.J. Gross, J.A. Harvey, E. Martinec, and R. Rohm, Phys. Rev. Lett.
52 (1985) 502, and Princeton preprints (1985).

10. R. Rohm and E. Witten, Princeton preprint, to appear,

1}, X.-G. Wen and E. Witten), Princeton preprint (1985).

12. R. Stong, ‘Notes on Cobordism Theory {Princeton University Press,
1968). boe

13. See for'instance E.H. Spanier, Algebraic pro]ogy (McGraw Hil1,
1966), Chapter 3.

‘14. G. Moore and P. Nelson, Phys. Rev. Lett. 53 (1984) 1519;
P. di Vecchia, S. Ferrara, and L. Girardello, CERN preprint
Th.4026/84 (1984)5 E. Cohen and C. Gomez, CERN preprint Th.4043/84
(1984).




15.

16.
17.

18.
19.
20.

21l
22.

23.

24.

25.
26.

99

C.G. Callan, Jr., D. Friedan, E. Martince, and M. Perry, Princeton
preprint (1985); P. Candelas, G. Horowitz, A. Strominger, and E.
Witten, these proceedings; C. Hull and E. Witten, to appear. )

E. Witten, Phys. Lett. 149B (1984) 351.

P. Candelas, G. Horowitz, A. Strominger, and E. Witten, to appear in
Nucl. Phys. B.

K. Pilch and A. Schellekens, SUNY-Stony Brook preprint (1985).

P. Ramond, Phys. Rev. D3 (1971) 2415.

W. Siegel, Nucl. Phys. B238 (1984) 307; M. Sakamoto, Phys. Lett.
151B (1985) 115,

E. Witten, J. Diff. Geom., 17 (1982) 661.

E. Witten, in the Proceedings of the 1983 Shelter Island Conference,
ed. N. Khuri et al. (MIT Press, 1985).

M.F. Atiyah and R. Bott, Harvard preprint (1983).

E. Witten, in Algebraic and Differential Topology - Global

Differential Geometry, ed. G.B. Rassias (Teubner-Texte zur
Mathematik, Band 70, 1984).

M.F. Atiyah and I.M. Singer, Proc. Nat., Acad. Sci. 81 (1984) 2597.
M.F. Atiyah and I.M. Singer, private communication.




