International Journal of Modern Physics A, Vol. 6, No. 16 (1991) 2775-2792
© World Scientific Publishing Company

INTRODUCTION TO
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In these lectures,.I will give' an elementary account of the realization of four dimensional
Donaldson theory, and its various cousins (including {wo dimensional topological gravity) as
conventional Lagrangian field theories. I will follow & rather simple nuts and bolts approach,
somewhat sireamlined compared to [1}, but I should note that more sophisticated points of
view exist. On the one hand, these theories can be derived [2-4] via BRST-BV gauge fixing of
“trivial” underlying gauge invariant Lagrangians. This approach is of substantial conceptual
interest, and would be of practical importance as well in more complicated examples than
the ones that will be considered here. On the other hand, mathematically, these theories are
naturally interpreted in termes of equivarianit cohomology [5] and the “equivariant Euler class”
{6]. The exposition I will give here has been improved through the influence of comments of S.
Axelrod {7]. Also, I recommend introductory lectures by van Baal [§]. Finally, let me note that
a superspace formulation that makes regularization and renormalization almost immediate can
be found in [9].
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2776 E. Witten

We will be discussing quantum field theories that are associated with the cohomology
of various moduli spaces: These are quantum field theories of a rather special aid in some
ways exceptionally simple kind. From a physical standpeint, one might hastily diemiss them
as “trivial.” What is perhaps surprising about them is the extent to which they lead to decp
results — at least in the case of four dimensional Donaldson‘theory — and the fact that in at least
one important example — two dimensional gravity — what are usually regarded as “physical”
quantum field theories are equivalent to spedial cases of gimse mofe primitive “cohomological”

theories.

The typical moduli problem that we will consider in constructing quantum fleld theories
has fields, symmetries, and equations. For illustrative purposes, we will consider the moduli
problem of Yang-Mills jnstantons in four dimensions, with some compact gauge group G. The
fields are then Yang-Mills fields A%{z). The Yang-Miﬁs field is a connection on & G bundle E
over a space-time manifold M (which wd endow with a Riemanpian metric g). The symmetries
are gauge symmetries, which infinitesimally take the form A} — Aj — Dyu®, where-u® is 2
Lie algebra valued zero form. The equations are’the self-dual -Ya.ng-Mills equations F = +F,
where # = dA+ A A A is the Yang-Mills curvature, and «F,, = -}e,wagF“ﬁ. The moduli space
M of interest is the space of all solutions of the self-dual Yang-Mills equations, modulo the

action of the symmetry group.

Now, actually, the paradigm of “symmetries, fields, and equations,” which we ‘will consider
for illustrative purposes, is not universally applicable in moéuli problems. On the one hand,
the symmetries or the equations may be missing. "For instance, “topological sigma models’
are associated ‘with the moduli space of holomorphic maps & : T — K, where T is & Riemamn
surface and K is a Kahler manifold. In this case, the “fields” are the mdps & : & — K| and the

“equa.tions"

are the instanton equations for a holomorphic map, but there are no “symmetries.”
Likewise an important moduli problem that can be formulated without “equations” is the
problem of describing the moduli space of complex Riema'ﬁn surfaces of genus g, regarded as
the space of all metrics ofi a smooth ‘genus g?surfa.ce 5, modulo 'diﬁ'eomorlphisms and Weyl

transformations.

Conversely, a-moduli problem may be more complicated than suggested by the paradigm
of “symmetnes, fields, and equations,” if for instance the equations are not independent (but

are related by “Bianchi identities”) or the action of the gauge group is “reducible” (that is, the

~
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gauge group does not act freely ‘even generically). <In.such a case, one would need.to use the
powerful Batalin-Vilkovisky approach to quantization, and the viewpoint of [2-4]-would really
pay off. But for the cases that have beenimportant so far, the basic paradigm of “symmetries,

fields, and equations” is adequate.

We will also sometimes assume, following [7], that there are metrics on'the Lié: algebra of
the symmetry group, the space of flelds, and the space of equations. In the Yang-Mills case,
the metric on the Lie‘algebra is given by

\ .
= [dtev5 15 ot 1)

.
if u is a generator of gauge transformaticns. Thé metric on the space of fields is

|8AJ% = / d*z /g Tr 64, 54%, (2)
if §A is a tangent vector to the space of convections. The metzic on the space of equations is
defined similarly, When such metrics exist, one can make choices of the “antighost muliiplets”

(which will appear lha,t‘erz that are particularly nice in some ways and aze not possible otherwise.

The theory that we will construct has a “ghost number? I/, which is related to,the dimen-

sion of moduli space, as we will see, and which is viclated by an anomaly.
2

We start with flelds of U = 0; in our example these are the Yang-Mills A%(z). We also
introduce ghosts of U = 1, with opposite statistics from the fields but otherwise with the
same quantum numbers. In our example, these will be an anticommuting one form Vi (2) with
values in the Lic algebra. Andin U = 2, weintroduce fields with the quantum numbers of the
generators of the symmetry group. In the Yang-Mills case, this means a commuting zero form
¢*(x} with value in the Lie algebra of the gauge group.

Next one introduces an anticommuting BRST-like symmetry @, with transformation laws
{in the Yang-Mills case)

[Q, 401 =¥,
{Q.¥92} = —Du¢® (3)
;[Qx ¢?] = 0.

i#
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It is easy to see that Q% = 0 up to a gauge transformation. For instance

4

(@ 42 = {Q,[Q, 437} = —Dyg® ()

and the right hagd side of (4) is the variation of A% under an infinitesimal gauge transformation

generated by the gauge parameter y® = ¢%
" =T n

The transformation laws (3) can be written abstractly for an,arbitrary moduli problem of

the class we are considering, We have in general

)

[Q,FLEI;D] ='GHOST
{Q, GHOST} = §$AUCE(FIELD) _ (5)
(@, ¢ =0 ‘

Here SEAUGE (FIELD) is the transformation'cf the field under an infinitesimal gauge trans-

formation generated by ¢.

1 .
This formula. should be compared with the formulas that atisé in Fadlde’ev-Popov quanti-
zation of gauge theones In that case one mtroduces antzcommutmg zero forms ¢®(z) of U =1

with values in the Lie algebra. The conventional BRST symmetty Q of the Fadde’ev-Popov
1 som o
i “ @, A5 = —Djet
= 1
@} = Loy

g b .
ke [N i

Abstractly, this can be written

quantization is

(6)

[@, FIELD] = JGAUGE(FIELD)
Q=3 6“"‘““ (FIELD), )

in analogy with (5). -

Now, both of these multiplets have a Patura.l mathematical interpretation. The conven-
tional BRST symmetry (6) or (7) has to do with the Lie algebra cohomology of the gauge
group acting on the space of connections, whife (3) or (5) are related in a similar way to the

equivariant cohomology of the gauge group acting on the space of connections. We will not
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develop this point of view, however, and will simply think of the (Ay,v,, @) system as a mul-
tiplet, with a particular kind of fermionic symmetry, that should be studied by conventional
physical methods.

The physical cbservables in the BRST sense are the cohomology classes of @ (in the space
of gauge invariant operators, a natural requirement in any case in gauge theories and necessary
here since @* = 0 only up to a gauge transformation). Since [@, ¢%(z)] = 0, and ¢%(z) (as
opposed to its derivative) does not appear.on the right hand side of (3), any gauge invariant

polynomial in ¢*(x) defines a physical observable. So we let
Oro(2) = Tr ¢*(z) . (8)

O o has ghost number U = 2k. Notice, now, that

8 o a0 4
Fap Orolz) =k Tr ¢*~1 Dud(s)

={Q,~k Tr ¢* 'y} .

(@)

Thus, although Oy g(z) is not a BRST commutator, its derivative is. This means that the
BRST cohomology class of O o{) — and thus its correlation functions ~ are independent of =.
This is a first indication that the theory we will construct is generally covariant (topologically

invariant). We cap rewrite (9) in the form

d O o(2) = {Q, Ox,1} (10)
where d is the exterior derivative on M, and Oy ; is the operator valued one form

Ori=—k Tr ¢* 9. (11)

In addition to implying that correlation functions of Oy o(z) are independent of #, (10) has

the following significance. If C is a circle in M, and

. Wi(C) = [ Ou s (i2)
[#4

it
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then W3(C) is BRST invariant, since

QWO = [4040 =0, (13)
¢

5 T

£, - : .
In.a similar fashion, one recursively solves the equations
! . . 3

¥

" dOk = (@, Ok
0y, ={Q, Ous}
403 = (@, Ox 4]
O =0.

(14)

The first equation in (14) means that W;(CO) is invariant under small deformations of ¢ (and
in fact depends énly oh the homology class of C'). This equation also ensures, for any Riemann

surface I immersed in M, the BRST invariance of

Wi(Z) = [ Oua(E) . (15)
@7 fo

Ey * L

These obsérvablés, which by virtie of the second equation in (14)“depex‘1'd only on the homology
class of M, played a key role in Donaldson’s work. "Likew;se, the second and third equations
in (14) allow bne to'define a BRST invariant observable

w

Wi1) = [ Ons ‘ (16)
T
fof every three dimensional homology cycle T in"M, and imply that

5Ly = f Ors - {1
M

is BRST invariant and so is 4 new interagtion term that can be added to any Lagrangian that

we may construct,
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We now want to add additional multiplets to the A, ¢y, ¢ system, and write & Lagrangian
possessing the @ symmetry. In doing so, the additional multiplets that we will require have the
following trivial structure. We introduce pairs B, 8 where 8 has the same quantum numbers
as B except that it has opposite statistics and ghost number one greater than that of B. The

transformation laws are
@ B]=28

[Q,8) =65AVCE(B) . (9)

This obviousy closes in the appropriate’way. I will call these multiplets “antighost multiplets,”
and indeed, they are analogous to the antighost multipiets that are introduced in the BRST
approach to conventional Fadde’ev-Popov gauge ﬁxing..’ Preciscly as in that case, there'is much
freedom in the choice of the aqtighost multiplets; the only requirenient is that they must be
chozen so that an appropriate Lagrangian (or; in the conventional case, an appropriate gauge
fixing term of the form {Q, A}) can be written. With a little practice, one finds that there are

many ways that this can be déne.

In a case, such as the gauge theory cdse, in which there are metrics (1), (2) on the various
function spaces of interest,a choice of the antighost miltiglets that is particularly nice from
some points of view can be described as follows, First, we ifitroduce a multiplet (A, 7}, where
A has the same quantum numbers as ¢ (and thus, transforms as the Lie algebra of the gauge
group) but has U. = -2, and 7 is its partner, of U = —1. Thus, in the Yang-Mills case,
X%(z) and 9%(z) are regpectively commuting and anticommuting zero forms with values in the
Lie algebra. And we introduce a multiplet (x, H); whe;e x has the quantum numbers of the
equations but opposité statistics, and H is its partner; x and H.have U = —1 and I/ = 0,
respectively; Thus, in the Yang-Mills case, if the equation of jnterest is the instanion equation
F — F = 0, which asserts the vanishing of an anti-self-dual two form, with values.in the Lie
algebra, the new multiplet"consists of anti-self-dual Lie algebra valued two forms {5 and Hj .

The BRST invariant Lagrangian is now

1
5=3 [en (19)
" E
where e is a constant and we make any chotce of ¥V _such that £ has a pon-degenerate kinetic
!

[
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energy for all fields. In the gauge theory case, & very convenient choice is

. V= f d*z./g :[&E-D@_ % — Zxap (H":ﬁ - -21-(1«““43 -;fpﬂﬁ))] (20)
M
The various terms can be described abstractly. For instance, the first term jg*
/ d*zy/g Te(Doh ¢°) = ~(6FAVCE 4 ) (21)
where SEAUGEAQ = —Dgl is the variation of A, under a gauge transformation generated by

A, and (‘, } is the metric (2) on the space of fields.

Upon computing {@, V} and eliminating the auxiliary field H; the Lagrangian becomes

1 e 1
L= ?J V8 Trl5(Fap — #Fop)® + DaAD¢ — Doy
) :

©o(22)
+ Nas ¥7] = X*(Dathg —Dgtbe — capé DH’))
Now, the kinetic energy of the gauge bosons is
17 i
= of .
f.gauge = Ei /-\/E T{(FaﬁF ) — Z-e—i / Tr FAF .. (23)

M M

¥a

The first term is te conventional’ “Yang-Mills kinetic energy. The second term’is the §'term
of Yang-Mills theory, which’ measures the instanton pumber (but ‘with an imaginary value of
the #-angle). This teim céduld be dropped, if one wishes, without spoiling the @ ’invariande. ‘As
for the kinetic efiergy of the spin zero fields ¢ and A, this can’Be interpreted in vdrious ways
as the discussion has been somewhat formal up to this point. If one’interprets ¢ as a complez
Li¢ algebra ¥alued: zero form (that is, ¢ takes values in the complexification of the Lie algebra),

and A = & as the complex conjugdte of ‘¢, then the scalar-kinetic energy
1 -
Llcnlur = ? /dqm \/5 Tr Dad’Da‘?s (24)
i .

is the conventional kinetic energy of a complex scalar field. The fermion kinetic energy in
(22) is of a fairly conventional first order form, except for the fundamental difference that
the fermions have integral rather than hali-integral spin. This was of course necessary in the

construction”of the fermiohic symmetry Q:



Intraduction to Cokomologicel Field Theories 2783

Despite its exotic features, the Lagrangian (22) is obvicusly rather close to conventional
Yang-Mills theories conpled to matter. Indeed, it- can easily be seen that, with a minor mod-
ification of the choice of V', one obtains precisely a twisted version of conventional N = 2

supersymmetric Yang-Mills theory. In particular, this theory is asymptotically free,

Now, what is special zbout the example that we have just constructed? Mathematically,
one could attempt to consider global properties of the solutions of a variety of partial differential
equations: But 'the special case of the self-dual Yang-Mills equations leads to a deep theory,
Donaldeon theory. Physically, ‘one could construct along the above lines a quantum field
theory 'associated with any ‘moduli problem. But in the special case of the self-dual Yang-
Mills -equations, one cah obtain a representation for this theory that.is particularly. close to

conventional physical theories, and in particular is asymptotically free.

Let us analyze some of the properties of the Lagrangian that we have constructed. The
first fundamental prope:‘ty of this theory is topological invariance. A change in the metric g
of M will induce a change in the Lagrangian of the form

5= %{Q,SV} . (25)

In particular, the change in the Lagrangiad is & BRST commutator, and is irrelevant in com-
puting the correlation functions of the physical (BRST invariant) observables. The correlation
functions of those observables are consequently independent of the metric and so are topological

invariants.

Let us state this argement a little more precisely. A path integral

»

(oloz...o,.)=f1>A...Dne-‘ 0:10;...0, (26)

éieﬁning a correlation function {10;... Oy) of physical observables requires a choice of some
nondegenerate Lagrangian L.in order to be well.defined. Once we-pick sich a Lagrangian,
the correlation functions should be invariant under £ — £+ {Q, AV} for AV in some open
set in the epace of coupling constants. The only restriction on the allowed choice of AV is
that sufficiently large AV might move us to a degenerate Lagrangian (giving an ill-defined

theory), or conceivably to a.non-degenerate Lagrangiap that, is in a different’ “universality
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=
class,” corresponding ‘to -an entirely new quantum field theory, In the case at:hand, the
Lagrangian. that we are considering is nondegenerate for any choide-of the background metric
o M. As the space of possible metrics is tonnected, there is therefofe-no problem with
the formal argument showirtg that- correlation’ functigns of BRST invariant observables are

independent of the background meirit_i.

A second. key property of this theory is that this is~a theory in which the semi-classical
approximation is exact. To-understand this, note that the same argument that shows that
the partition function isindependent of the metric ‘'on M shows-that”it is independent®of
the coupling constafif e, “We“can therefore consider the limit of yery small e. The leading
approximation: for.small e involves expanding around zeros of 4he classical action. -For the
classical action to vanish,first of all the instanton equation Fyg —#*Fyg = 0 must.be obeyed.
Secondly, ¢ must bewfovarian"tl} constant, Dg¢ = 0. For irreducible instantons, this requires
¢ =0, 5o in good cases in which all of the, instantons are irreducible, the space of classical
minima is simply the instamt.on"im"oduli space M with ¢ = 0., As a first orientation, we, will
mainly consider this case. The main difficulties in understanding Donaldson._tfleory, whether
by physical or mathematical methods, come from the fact that in genera] there are reducible

instantons for which ¢ can have zero modes..

A third key property of this theory is the ghost number,anomaly, and its relatiop to_the
zero modes of the instanton goduli problem. Let us recall that of the fermions, ¢ has I/ = 1,
and 5; x have U =.—1., According to the index’thedrem, the net number of U = 1-zero modes
minus U = —1 zero modes is equal to what is called the formal dimension of instanton moduli
space (which coincides with the actual dimension in good cases in which the ’m"odn]i space is
smooth and non-singular). To see this explicitly, [ét us note that if Ag 18 an instanton, that
is, & solution of Fnpg — %Fag = U, then the condition that A, + 84, cbeys the same equation
to first order in 64, is N

DobAp,— D 6Aa — capys D75Ad =0 . (2n)

A

To ensure that § A, it orthogonal to the.changes in A, that would be induced by infinitesimal

gauge transforméations, ong imposés the.gauge condition

t

Da 5A% =0. (28)

Looking at the formof the Lagrangian,. we sec that the equations for a ¢, zero mode are
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precicely the same as (27) and (28). We see therefore that'the 1, zere modes are precisely the
tangent veclors to, instanton moduli space. As.for 5 and "y zero*modes,-it can be shown that
they; like ¢ zero modes, are associated with singularities of instanton -moduli space. (In fact,
an # zero mode must obey Don = 0 which coincides with the condition for a ¢ zeyq mode.) In
getting a first orientation to the theory, we thus wish to consider the case in which, only A,

and 1, have zero modes.
If M is the instanton moduli space, then M) the moduli space of the combined (Aq, ¥ia)

system, is 8 supermanifold of a very special kind. Denoting, the moduli and supermoduli- as

———
m; and f7i;; respectively, a function, on M has.an expansion

f{mll'--)mﬂ:ﬁh"wﬁﬂ) = fo(mll"'lmﬂ')

+ f(l)i(mh; LRR} mﬂ)ﬁl'

(29)

- oo = o
+ f(z)"j(ml, fa ,mn)m;m,-
= i - 2

+...

where fyi,. i, (M, - o, M ), .. ALy, caw be interpreted-as a k form on M. The functions
on M can thus be interpreted as differential forma on M.

If we are willihg to rename i a8 dm;, then the BRST formula
(@, mi] = i = dmy 130)

which comes froin the undeflying formula [Q, Apl = ¥n shows that on instanton moduli space,

Q is the exterior derivative,
Y 8
Q = ;rdm. '5;; - (31)

I have desciibed a particular construction of a Lagrangian quantum field theory, but actu-
ally theories constructed this way have many equivalent Lagrangidin realizations. This should
be Gi:ﬁous;‘there was enormous freedom in the choice of the antighost multiplets. How, then,

do we see that different formulations-are equivalent? The formulas

{@¥uf =-Dyu¢

1Qx) = B=3r o) (&)

(the second step follows upon solving the field equation of the auxiliary field’ H) shows that in
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the theory that we have consiructed.instantons with D,¢ = 0 are the Q invariant configura-
tions. Any theory with this property, and with the property that on instanton moduli space

Q-reduces-to the exterior derivative,.will give a Lagrangian realization of Donaldson theory.

In addition to thefreedom in the choice’ of the antighost multiplets, there is another
important pétential sourcé of freedom in conséructing Lagrangians. The theory that we have
constructed depended on the choice of 2 moduli problem. In the casethat ‘we cénsidered in
detail, this was the préblem of Yang-Mills instantons. In thdt case; the description of the
moduli problem in terms, of gauge fields and the self-dual Yang-Mills equations was the only
apparent one. In other important cases, though, it may happen {hat.the same-moduli problem

may have several very different-looking descriptions.

A particularly striking instance of this arises in the case of two dimensional gravity. The
moduli space of Riemann sarfaces 8f genus g has many different-sounding descriptions. It can
be described ns the space of all metrics modulo diffeomorphisms and Weyl transformations,
as the space of all'metrics of R = —1 with a given area element modulo area-preserving
diffeomorphisms, or as the space of all flat SL(2; R) ‘connections (on a I‘Jundle of a particular
topological type) modulo gauge transformations and the-action of the mapping cldss group.
These three descriptions of moduli space of Riemann surfaces will give rise to.three very
different-locking constructions of the same guantum field theory. The theory that one obiains
by adopting one's favorite point of view abdut moduli space of Riemann surfaces and then
“turning the crank” along the lines sketched above is Jhe two dimeneional topological gravity
model,txhat has recently turned out tc be, apparently, equivalent to the hermitiar one matrix

model.

One of the striking facts about “physical” two dimensional quantum field theories is that
there are many unexpected identities between seemingly different models. Since we are begin-
ning to learn that at least in some instances the physical models ¢an be derived from topological
ones, it may well be that some of the relations hetwe?n physical models can be deduced from

more transparent relations among topological models.

Now let us consider the evaluation of a correlation function, such as
(Tegh. Trg? .. Trgf) . (33)

Fach operator Tr¢% has ghost number 2d;, and will absotb 2d; fermion.zero modes. To
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lowest order of perturbation theory, which we know will give the exact answer, each operator
will absorb ihe requisite number of fermion zero modes independent .of; the others. Each

operator Tr ¢% thus becomes a function of M )

_ TrgY = fay(ma,. .., madmy,... dm,) (34)
or in other words a differential form on moduli space, of dimension 2d;. BRST invariance,
[Q,Trtﬁdf] == 0, implies that each Tr ¢% corresponds to a closed differential form on moduli

space.

So we get a formula

(Tr g% '1‘:¢‘i=_..,’1‘r¢d")=jflf\f2/\---’\fk’ (35)
M

where f; is the closed form on M corresponding to Tr g%, If one adds a BRST commutator
10 one of the operators, Tr¢% — Tré% + {Q, A}, then the corresponding differential form
transforms as f; — f; + dA, where A is the 3d; ~ 1 form on M determined by the amplitude

for A to absorb 2d; — 1 fermion zero modes.

So really, the Tr ¢% define cohemology classes on moduli space. The correlation functions
are given according to (35) by the integral over modulisspace of the cup product of these
cohomology clasges (that is, the integral of the wedge product of the differential forms). Dually,
the cohomology classes represented by the Tr¢% are.assotiated with Poincaré dual homology

classes, and the-correlation functions are the “intersection numbers” of these classes.

Though we have considered only physical' methods so far, it'is natural at this point to
comphre to the'conventional mathematical viewpoint about the subject. Mathematically, co-
homology classes on A are naturally constructed [10] as characteristic classes of the “universal
instanton,” What this means is the following. On the product M x M of space-time M with
moduli space M, ¥e wish to construct a gauge field A = {Au, A;) (Ag and Ai-are the com-
ponents tangent to M: and M, respectively) with the following properties. Since M is the
modauli space of instantons on M, every point p € M labels an instanton A,(=";p) on M which
is uniqyely defined up fo a gauge transformation. (Here z” are coordinates on M, and the

notation A,(z”; p) is meant to emphasize the dependence of the instanton on-p.) A universal
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instanton, if it exists; is simply a connlection A on a‘suitable G bundle W, ovér M x M (finding
W.is the efsential problem) such that on M x {p}, for every p € M, A coincides up to & gauge
transformation with A,(=%;p). .o >

In ‘general, because of problems assotiated with the gauge symmetries of instantons, the
universal instanton may not exist. However, if we keep“away from the tingularities of moduli
space, then the problem comes-only. from the center.of the gauge group. This would mean
that for G = SU(2) the universal instanton wou.ld exist, as an SU(2)/E2 50(3) 53.;1515 field,
but perhaps not as an SU(2) gauge field. If go, one cannot define‘the Chern classes of ‘the
hypothetical SU(2).universal instanton, but only certain integral multiples thereof. As we :.re
not interested in such questions of integrality, we will proceed as if the universa] instanton

exists.

If 50, the univergal instanton A has a’curvature form E= dA + AN A, and we can define

a characteristic class Tr F* (that is, Tr F A F A ... A E, with k factors). Now,"Tr F* is a

«closed form of degree 2k on M x M;iif we pitk 2 €°M, we can testrict it to {z}:x M to get-a

closed:2k form on M that-we will call Tr *(z)., This is very-reminiscent of the closed -2k form

on_M_coming from the quantum field opérator Tr ¢*(z). It has been precisely demonstrated

that the differential forms on M determined by Tr'¢* represent the éohomology classes Tr F*
3. .

I havé vsed Tr ¢ and Tr F* as examples, but:more generally any degree r invariant poly-
nomial Plon the Lie algebra would lead; ins either the-physical or mathématical construction,
to an observable or characteristic class-of dimension 2r. In the mathematical descripfion we
would denote it*as P{F(2)):and in the physical descriptioh 4s R(¢(z)). This close patallel
Between the two constructiqns is of course no accident. It arises naturally if one thinks of the
(Au3y, ¢) multiplet as a model for the equivarjant, cohomology-of the gauge group, acting on
the space of all.connections [56].

"Mére-general cohomology clagses on M of a similar origin can be described as follows. If
¥ is an r-dimensional submanifold of M , then we restrict tlie universal instanton-from M x M
to Y M. Then %e regard Tr F*.as an element of H 21‘(1”)( M R), and by integrating along
the fibers of the projection Y x-AM — M, we get an elérhent Wi(Y) in H?*=(M,R) (which
can be'shown to depend pnly on théhomologyclass of Y'). This predisely corresponds to the
physical observable of ghost nimber 2k—r thit-we dssociated in equafions (15)=(17) with the
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r dimensional submanifold ¥ of M.

If we wish tq describe two dimensional gravity in a similar vein [12,13], we must replace
instanton moduli space by the moduli space of Riemann surfaces. For every way to describe
this moduli space im terms of “fields, symmetries, and equations,” we will get an alterna-
tive Lagrangian realization of the same theory. As I have already notéd, there are several
quite. different-looking possibilities for the formulation of this moduli problem. The low genus
correlation functions of the resulting theory can bé computed conveniently from their charac-
terization in terms of cohomology of moduli space, as I have explained at length elsewhere [14].
Though the reasons are not ‘yet s well inderstood as we would like, the resulting theory seems
to be equivalent to the hermitian matrix model of two dimensiénal gravity. At the moment, the
matrix model is easily the most powerful method of computation Gust as quantum groups are
in many respects the most powerful method of computation in another topological field theory,
2+1 dimensional ChernSimoris gguge theory"ﬁ'. However, the interpretation of two dimensional
gravity in terms of intersection’ theory on moduli space gives a different vantage point about
what the computations mean, embeds two dimensional gravity in a much wider theoretical
contéxt™that includes, for-instance; four dimensional Donaldson theory, and-makes cbvious
the existence of“certain types of matter couplings (couplings of tbpgloéi;al sigma models, for

instance) that are not otherwise known. ' - }
3 =

If I have gi‘ven any impression that the story I am explaining is é__ﬁnisihed or polished story,
this is entirely misleading. The formal constxuction of tLa,grangia.ns is understood well enough.
The problem arises when one wmhcs to understqod the physical and mathematical phenomena
described by the resuliing quantum field theones I have described formal arguments showing
that the quantm:n field theories in question are theories in which the semiclassital approxi-
mation is exact, an;i I have sketched the topological meaning of the formulas obtained in the
semiclassical a[;proxima.f;ion. The problem is that the semiclassical approximation involves a
reduction to a classical moduli space, and if this moduli space is singnlar or noncompact, the
implementation and interpretation of the semiclassical approximation is not straightforward,
Singl;la.rities of moduli space mean physically that the Gaussian approximation which is sup-
posed to be the leading tefm in perturbation theory breaks down because of accidental zero
modes that appear at the singularities. Noncompactness of moduli space means that conver-

gence of the integrals given by the semiclassical approximation is not automatic;*it also means

#
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that the topological interpretation of those integrals is not clear. These phenomena may sound
at first sight like unlikely nuisances, but actually they are ubiquitous and both physically and

mathematically are the main obstacle to understanding Donaldson theory more fully.

To underscore the point, let me note that in Donaldson thegry, the space of BRST in-
variant configurations up to gauge transformation, which is the moduli space we are really
interested when we attempt to carry out the semiclassical approximation, is not just the space
of instantons. Rather, what arises, as we have seen in the above discussion, is the space of pairs
(Ag, 9), where Ay obeys the instanton equation and ¢ is covariantly constant, D¢ = 0. Now,
with a favorable choice of the four manifold and the instanton number, it will happen that the
holonomy group of the generic instanton will be the full gange group, and then the equation
Dy = 0 will force ¢ = 0. It is in that case that one can forget about ¢ and carry out a semi-
classical computation on instanton moduli space. But in general degenerate instantons with a
reduced holonomy group will also exist, leading to nonzero solutions of the equation Dy¢ = 0.
Since this equation is linear in @, its solutions are a vector space and always noncompact in a

very serious way — one must understand the behavior for ¢ — oo.

One should think of the moduli spaces in Donaldson theory as having two-branches. There
are the “good” branches, let us call them of type (A), corresponding to irreducible instantons
with ¢ = 0. There are also the “bad” branches, let us call them of type(B), corresponding to
¢ # 0 (and necessarily, therefore, corresponding to degenerate instantons). The contributions
of type (A) ate more or less understood; this is what I have exI;Ia.ined above. The problem
in Donaldson theory is that the role of the branches of type (B} is not understood. In addi-
tion, there are smgulantles where the type (A} and type (B) Branches intersect (at reducible
instantons with ¢ = 0) To give a concrete example of a moduli space with a ‘branch of type
(B), let the space-time manifold M be a four sphere S and take the instanton number to be
zero. The only solution of the self-dual Yang-i\/[ilis équation, up to gauge transforma(t‘ion, is
then 4, = 0. With A, = 0, the equ;t.ion Dy = 0is then (;beyed by ¢ =constant, giving a
branch of fype (B). .

“These notes have been written purely from the path integral point of view. The other im-

« There are other sources of uingﬁlarities and noncbmpactness in Donaldson theory, but I have explained the
ones that I think are the real obstacles to better understanding. Likewise in discussing the Hamiltonian
treatment below, I will describe only the smgula.rtt.xes and noncompactness that § regard s the real cause
of difficulties. v
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portant tool in understanding a quantum field theory is of course the Hamiltonian formulation,
in which one considers four manifolds of the tvpe M =Y x ]Rl, where Y is a three manifold
and'IR? represenits “time,” and by canonical quantization one &mstricts 4. “physical Hilbert
space” associated with Y. In the context of Donaldson theory the theory of this physical
Hilbert space:was initiated by A.-Floer, Again from the canonical point of view, we havea
difficulty analogous to the one that I'discussed above. The BRST symmetry can be used to
show that the physical Hilbert spaces are naturally independent of the gauge coupling constant
e, 50 we would l,i]:.e to determine them by considering the limit of small £ and, constructing the
leading p;rturbg-tive approximation. To_this aim, we look at the classical Hamiltonian; which

contains a term

1 . -
. H= ] (E Te Fy FF + D5¢p‘¢) (36)
¥ .

(whete Fjj is the restriction of the curvature to ¥). The minima of the classica) energy
correspond to Fi; =0 and Di¢ = 0. Now we have a story analogous to what we have said
before. The moduli space-of solutions of this pair of equations consists of. two branches.

branch of type (A) consists of irreducible fiat connections, that is, solutions of F; = 0 with
a sufficiently generic holonomy, which necéssarily have ¢ = 0. A Branch of type (B) consists
of fields with ¢ # 0, in which case the holonomy must be reducible. In addition one has
singularities-where the two branches intersect. (at reducible flat connections with ¢ = 0). Just
ag-in the path integral approach, the role of the branches of type (A) is clear enough, at least
in principle, but the role of the branches of-type (B) is not understood. As a simple example
‘in which one encounters a branch of type (B), consider the basic case in which ¥ = S§? is the
three sphere. Then up to gauge transformation a flat connection is A; = 0, and hence the

equation D= 0 reduces to ¢ = constant; giviig a-branch of type (B).

I have been lecturing about a certain class of quantum field theories. One theory in this
class, two dimensibnal topological gjra\;ity, ‘has come to seem “physi.i:a.l”‘ recently, because of
its apparent equivalence with matrix models. ‘This indeed has placed the matrix models in a
broader and perhaps unexpected context. I hope that other theories in this class will come
to be considered “physical”,in the relatively near future, and if so this will hopefully lead to

progress in understanding the problems I have cited in the last few paragraphs.
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