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0 Introduction

The goal of these notes is to introduce to Hodge theory as a powerful tool to under-
stand the geometry and topology of projective complex manifolds. In fact, Hodge
theory has developed in the context of compact Kähler manifolds, and many of the
notions discussed here make sense in this context, in particular the notion of Hodge
structure. We will not explain in these notes the proofs of the main theorems (the
existence of Hodge decomposition, the Hodge-Riemann bilinear relations), as this is
well-known and presented in [44] I, [22], but rather give a number of applications
of the formal notion of Hodge structures, and other objects, like Mumford-Tate
groups, Hodge classes, which can be associated to them. So let us in this introduc-
tion roughly explain how this works.

For a general Riemannian manifold (X, g), one has the Laplacian ∆d acting on
differential forms, preserving the degree, defined as

∆d = dd∗ + d∗d,

where d∗ = ± ∗ d∗ is the formal adjoint of d (here ∗ is the Hodge operator defined
by the metric induced by g on differential forms and the Riemannian volume form,
by the formula

α ∧ ∗β =< α, β > V olg.)

Hodge theory states that if X is compact, any de Rham cohomology class has a
unique representative which is a C∞ form which is both closed and coclosed (dα =
d(∗α) = 0), or equivalently harmonic (∆dα = 0).

On a general complex manifold endowed with a Hermitian metric, the d-operator
splits as

d = ∂ + ∂,

where each operator preserves (up to a shift) the bigradation given by decomposition
of C∞-forms into forms of type (p, q). It is always possible to associate to ∂ and
∂ corresponding Laplacians ∆∂ and ∆∂ which for obvious formal reasons will also
preserve the bigradation and even the bidegree. However, it is not the case in
general that ∆d preserves this bigradation. It turns out that, as a consequence of
the so-called Kähler identities, when the metric h is Kähler, one has the relation

∆d = ∆∂ + ∆∂ ,

which implies that ∆d preserves the bidegree.
This has for immediate consequence the fact that each cohomology class can be

written as a sum of cohomology classes of type (p, q), where cohomology classes of
type (p, q) are defined as those which can be represented by closed forms of type
(p, q).

Another important consequence of Hodge decomposition is the fact that the so-
called L-operator of a symplectic manifold, which is given by cup-product with the
class of the symplectic form, satisfies the hard Lefschetz theorem in the compact
Kähler case, where one takes for symplectic form the Kähler form. This leads to
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the Lefschetz decomposition and to the notion of (real) polarization of a Hodge
structure.

So far, the theory sketched above works for general compact Kähler manifolds,
and indeed, standard applications of Hodge theory are the fact that there are strong
topological restrictions for a complex compact manifold to be Kähler. Until re-
cently, it was however not clear that Hodge theory can also be used to produce
supplementary topological restrictions for a compact Kähler manifold to admit a
complex projective structure.

Projective complex manifolds are characterized among compact Kähler manifolds
by the fact that there exists a Kähler form which has rational cohomology class. As
this criterion depends of course of the complex structure, it has been believed for a
long time that a small perturbation of the complex structure would allow to deform
the Kähler cone to one which contains a rational cohomology class, and thus to
deform the complex structure to a projective one. This idea was supported by
the fact that in symplectic geometry there is no obstruction to do this, and more
importantly by a theorem of Kodaira, which states that this effectively holds true
in the case of surfaces.

We recently realized however in [42] that Hodge theory can be used to show that
there are indeed non trivial topological restrictions for a compact Kähler manifold to
admit a projective complex structure. One of the goals of these notes is to introduce
the main notions needed to get the topological obstruction we discovered in this
paper. The key notion here is that of polarized rational Hodge structure, which we
develop at length before coming to our main point.

We tried in the course of these notes to give a number of geometric examples
and other applications of the notions related to Hodge theory.

Thanks. I would like to thank the organizers of the AMS summer school,
Dan Abramovich, Aaron Bertram, Ludmil Katzarkov, Rahul Pandharipande, for
inviting me to deliver these lectures and for giving me the opportunity to write
these introductory notes.

1 Hodge structures

1.1 The Hodge decomposition

1.1.1 The Frölicher spectral sequence

Let X be a complex manifold of dimension n. The holomorphic de Rham complex

0 → OX
∂→ ΩX

∂→ . . .
∂→ Ωn

X → 0

is a resolution of the constant sheaf C on X, by the holomorphic Poincaré lemma.
Thus its hypercohomology is equal to the cohomology of X with complex coefficients:

Hk(X, Ω·X) = Hk(X,C). (1.1)

It is interesting to note that if X is projective, the holomorphic de Rham complex
is the analytic version of the algebraic de Rham complex, and thus by the GAGA
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principle [38], its hypercohomology is equal to the hypercohomology of the algebraic
de Rham complex, although the last one is computed with respect to the Zariski
topology, in which the constant sheaf has no cohomology. In fact the algebraic de
Rham complex is not at all a resolution of the constant sheaf in the Zariski topology
(cf [4] for investigation of this).

In any case, the holomorphic de Rham complex admits the näıve filtration

F pΩ·X = Ω≥p
X := 0 → Ωp

X → . . . → Ωn
X → 0,

and there is an induced spectral sequence (called the Frölicher spectral sequence)

Ep,q
i ⇒ Hp+q(X, Ω·X) = Hp+q(X,C),

satisfying the following properties:

1. Ep,q
1 = Hq(X, Ωp

X), d1 = ∂ : Hq(X, Ωp
X) → Hq(X, Ωp+1

X ).

2. Ep,q∞ = Grp
F Hp+q(X,C), where the filtration F is defined on Hk(X,C) by

F pHk(X,C) := Im (Hk(X, Ω≥p
X ) → Hk(X,Ω·X) = Hk(X,C)). (1.2)

This filtration will be called the Hodge filtration only for projective or Kähler com-
pact manifolds, because of the following example 1:

Example 1 If X is affine, then all cohomology groups Hq(X, Ωp
X) vanish for q ≥ 1.

Thus the spectral sequence degenerates at E2, and the filtration is trivial:

F pHk(X,C) = 0, p > k, F kHk(X,C) = Hk(X,C).

In the case of a quasi-projective complex manifold, this filtration is not the Hodge
filtration defined by Deligne [13], which necessitates the introduction of the logarith-
mic de Rham complex on a projective compactification of X with normal crossing
divisor at infinity.

Example 2 If X is a compact complex surface, the spectral sequence above degen-
erates at E1. This implies for example that holomorphic 1-forms are closed (easy:
if ∂α 6= 0, then

∫
X ∂α ∧ ∂α 6= 0, contradicting the fact that the integrand is exact.)

Furthermore, we have an exact sequence:

0 → H0(X, ΩX) → H1(X,C) → H1(X,OX) → 0. (1.3)

In higher dimensions, it is possible to construct examples of compact complex man-
ifolds with non closed holomorphic 1-forms (see [3]).

A complex manifold is Kähler if it admits a Hermitian metric, written in local
holomorphic coordinates as

h =
∑

hijdzi ⊗ dzj

satisfying the property that the corresponding real (1, 1)-form

ω :=
i

2

∑
hijdzi ∧ dzj
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is closed. There are a number of other local characterizations of such metrics. The
most useful one is the fact that at each point, there are holomorphic local coordinates
centered at this point, such that the metric can be written as

h =
∑

i

dzi ⊗ dzi + O(| z |2).

The main consequence of Hodge theory can be stated as follows:

Theorem 1 If X is a compact Kähler manifold, then the Frölicher spectral sequence
degenerates at E1.

For a long time, the only known proof of this statement, even in the case of projective
complex manifolds, was transcendent, making use of the theory of harmonic forms.
In the paper [16], Deligne and Illusie give a beautiful proof of this statement by
reduction to positive characteristic.

The theory of spectral sequences allows to rephrase the theorem above by saying
that for X a projective complex of compact Kähler manifold the Hodge filtration F
on cohomology has the property that

Grp
F Hp+q(X,C) ∼= Hq(X, Ωp

X).

In particular, it implies the following:

Proposition 1 For X a projective complex or compact Kähler manifold, and α ∈
Hq(XΩp

X), there exists a closed k-form, k = p + q

η = ηk,0 + ηk−1,1 + . . . + ηp,q

such that the Dolbeault class of the ∂-closed form ηp,q is equal to α.

Hodge theory however provides the following stronger statement:

Theorem 2 For X a projective complex of compact Kähler manifold, and α ∈
Hq(X, Ωp

X), there exists a closed (p, q)-form ηp,q such that the Dolbeault class of
the ∂-closed form ηp,q is equal to α. Furthermore, the de Rham cohomology class
of ηp,q is uniquely determined by α. In other words, denoting Hp,q(X) the subspace
of Hp+q(X,C) consisting of de Rham cohomology classes of closed (p, q)-forms, the
natural map

Hp,q(X) → Hq(X, Ωp
X)

is an isomorphism.

This statement is not implied by the degeneracy at E1 of the Frölicher spectral
sequence. Indeed, consider the case of Hopf surfaces S = C2 \ {0}/Z, where k ∈ Z
acts by scalar multiplication by λk, for some given λ ∈ C∗, | λ |6= 1. These surfaces
have H1(S,C) = C and H0(S, ΩS) = 0. Indeed, if 0 6= α is holomorphic 1-form,
it is closed, and α is not ∂-exact, because there are no non-constant pluriharmonic
functions on S. Thus we would also have H1(S,OS) 6= 0 and the exact sequence
(1.3) would imply b1(X) ≥ 2.

As we know that H0(S, ΩS) = 0, the exact sequence (1.3) implies now that
H1(S,OS) 6= 0. On the other hand, there are no non zero closed form of type (0, 1),
because if η is such a form, η is holomorphic. Thus we see that Theorem 2 is stronger
than the degeneracy at E1 of the Frölicher spectral sequence.

A consequence of Theorem 2 is known as Hodge symmetry:
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Theorem 3 If X is a compact Kähler manifold, one has

hp,q(X) = hq,p(X),

where hp,q := rk Hq(X, Ωp
X). Furthermore there exists a canonical C-antilinear iso-

morphism
Hq(X,Ωp

X) ∼= Hp(X, Ωq
X).

Indeed, the map ηp,q 7→ ηp,q clearly induces an C-antilinear isomorphism between
the space Hp,q(X) of de Rham cohomology classes of closed forms of type (p, q) and
the space Hq,p(X) of de Rham cohomology classes of closed forms of type (q, p).
Thus the result follows from the canonical isomorphisms Hp,q(X) ∼= Hq(X, Ωp

X).

1.1.2 Hodge filtration and Hodge decomposition

Consider the Hodge filtration F pHk(X,C) on the cohomology of a compact Kähler
manifold. Recalling the spaces Hp,q(X) introduced above, we have:

F pHk(X,C) = ⊕r+s=k,r≥pH
r,s(X). (1.4)

Indeed, the sum must be a direct sum, because if the class of
∑

r+s=k,r≥p αr,s

is 0, with each αr,s closed of type (r, s) then
∑

r,s αr,s = dφ, and writing φ =∑
r′+s′=k−1 φr′,s′ , we get for type reasons :

αr,s = ∂φr,s−1 + ∂φr−1,s, r + s = k.

The form ∂φr−1,s is then d-closed and ∂-exact, thus it is d-exact by Theorem 2
applied to its complex conjugate. Similarly the form ∂φr,s−1 is d-closed and ∂-exact,
thus it is d-exact by Theorem 2. Hence each αr,s is exact.

Next the right hand side is certainly contained in F pHk(X,C), because a closed
form of type (r, s), r ≥ p, r + s = k defines a class in Hk(X, Ω≥p

X ) using the total
complex of the Dolbeault resolution. Finally, to see the reverse inclusion, we use
Theorem 2. Let α ∈ F pHk(X,C); its image α in

Grp
F Hk(X,C) = Ep,k−p

∞ = Ep,k−p
1 = Hk−p(X, Ωp

X)

is represented by a closed form γ of type (p, k − p). Then the class γ of γ lies in
Hp,k−p(X) and α−γ ∈ F p+1Hk(X,C). Thus we conclude by (decreasing) induction
on p.

Recalling that Hp,q(X) and Hq,p(X) are complex conjugate inside Hk(X,C), we
also get

F qHk(X,C) = ⊕r+s=k,s≥qH
r,s(X),

and we conclude that the subspaces Hp,q(X) ⊂ Hp+q(X,C) are determined by the
Hodge filtration, by the rule:

Hp,q(X) = F pHk(X,C) ∩ F qHk(X,C), p + q = k.

Note that not any filtration is associated to a Hodge decomposition as in (1.4).
In fact, given a decomposition of a complex vector space VC = VR ⊗ C with real
structure

VC = ⊕p+q=kV
p,q, V q,p = V p,q, (1.5)
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the associated filtration

F pVC := ⊕r+s=k,r≥pV
r,s (1.6)

obviously satisfies the property

F pVC ∩ F q+1VC = {0}, F pVC ⊕ F q+1VC = VC, p + q = k. (1.7)

Conversely, it is an easy exercise to show that a filtration satisfying condition (1.7)
is associated to a decomposition (1.5), where the V p,q are defined as

V p,q = F pVC ∩ F qVC, p + q = k.

Remark 1 We already mentioned that for X projective, we have an isomorphism

Hk(X,C) = Hk(X, Ω·X),

where we can take here hypercohomology in the Zariski topology of the algebraic de
Rham complex. Thus, if X is defined over a field K ⊂ C, the right hand side has a
K-structure, which means that it is of the form

M ⊗K C

for a K-vector space M . This K-structure has nothing to do with the rational
structure on the left hand side given by the change of coefficients:

Hk(X,C) = Hk(X,Q)⊗ C.

Even if X is defined over R, the two R-structures on Hk(X,C) obtained by this
argument do not coincide. Thus complex conjugation acting on Hk(X,C) cannot be
understood algebraically and the Hodge decomposition is not algebraic on Hk(X,C),
while the Hodge filtration is algebraic, as it is given by

F pHk(X, Ω·X) = Im (Hk(X, Ω≥p
X ) → Hk(X,Ω·X)).

1.1.3 Hodge structures

The complex cohomology of a compact Kähler manifold carries the Hodge decom-
position. On the other hand, it is not only a complex vector space, since it has a
canonical integral structure, namely we have the change of coefficients theorem:

Hk(X,C) = Hk(X,Z)⊗ C.

In the sequel we will denote by Hk(X,Z), the integral cohomology of X modulo
torsion. Thus Hk(X,Z) is a lattice, and Hodge theory provides us with an interesting
continuous invariant attached to a Kählerian complex structure on X, namely the
position of the complex spaces Hp,q with respect to the lattice Hk(X,Z). This leads
to the notion of Hodge structure.

Definition 1 A weight k (integral) Hodge structure is a lattice V , with a decompo-
sition

VC = ⊕p+q=kV
p,q, V q,p = V p,q,

where VC := V ⊗ C. The associated Hodge filtration on VC is defined by (1.6).
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The contents of the previous section can be summarized by saying that if X is a
compact Kähler manifold, each cohomology group (modulo torsion) Hk(X,Z) carries
a canonical Hodge structure of weight k.

Given a weight k Hodge structure V , we can define a representation ρ of C∗ on VR,
defined by the condition that z ∈ C∗ acts by multiplication by zpzq on V p,q. Then
the restriction of ρ to R∗ is the map λ 7→ multiplication by λk. Conversely, given
a representation of C∗ on VR satisfying the last condition, the associated character
decomposition of VC will provide a Hodge structure on V .

Remark 2 One should not ask that the sum is only over pairs of non negative
integers. While the Hodge structures coming from geometry are “effective”, in the
sense that the Hodge decomposition is a sum only over pairs of non negative integers,
we will see below that the Hodge structures obtained by natural operations on the
set of Hodge structures (eg taking Hom’s) lead to non-effective Hodge structures.
On the other hand, it is always possible to shift a non-effective Hodge structure to
an effective one, by defining

V ′ = V, V ′p,q = V p−r,q−r,

where r is large. The new Hodge structure is then of weight k + 2r. It is called a
r-Tate twist of the Hodge structure (V, F pVC).

Example 3 The simplest Hodge structures are trivial Hodge structures of even
weight 2k. Namely, one defines VC = V k,k, V p,q = 0, (p, q) 6= (k, k).

Example 4 The next simplest Hodge structures are effective weight 1 Hodge struc-
tures. Such a Hodge structure is given by a lattice V (necessary of even rank 2n),
and a decomposition

VC = V 1,0 ⊕ V 0,1, V 0,1 = V 1,0.

Given V , weight 1 Hodge decompositions as above on VC are determined by the
subspace V 1,0 of VC which belongs to the dense open set of the Grassmannian
Grass(n, 2n) of rank n complex subspaces W of VC satisfying the property W ∩W =
{0}.

If V, VC = V 1,0 ⊕ V 1,0 is such a Hodge structure, we have VR ∩ V 1,0 = {0}, and
thus via the natural projection

VC → VC/V 1,0

VR projects isomorphically to the right hand side. As V ⊂ VR is a lattice, the
projection above sends V to a lattice in the complex vector space VC/V 1,0. It
follows that the quotient

T = VC/(V 1,0 ⊕ V )

is a complex torus, the complex structure being given by the complex structure on
VC/V 1,0.

Conversely, a n-dimensional complex torus T is a quotient of a complex vector
space K of rank n by a lattice V of rank 2n. The inclusion

V ⊂ K
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extends by C-linearity to a map of complex vector spaces

i : VC → K,

which is surjective, as V generates K over R. Thus, denoting V 1,0 = Ker i, we find
that T = VC/(V 1,0 ⊕ V ). As V is a lattice in the quotient VC/V 1,0 = K, it follows
that VR ∩ V 1,0 = {0}, or equivalently V 1,0 ∩ V 1,0 = {0}.

This way we have an equivalence of categories between effective Hodge structures
of weight 1 and complex tori.

Remark 3 The weight 1 Hodge structure associated to T above is a particular
example of a Hodge structure on a cohomology group. Namely, consider

H2n−1(T,Z) ∼= H1(V,Z).

Then the weight 2n− 1 Hodge structure on H2n−1(T,Z) associated to the complex
structure on T is nothing but the decomposition VC = V 1,0 ⊕ V 1,0 above. More
generally, any n-dimensional compact Kähler manifold X has an associated complex
torus, which is called the Albanese torus of X, obtained as the torus associated to
the Hodge structure on H2n−1(X,Z). This Hodge structure has in fact Hodge level
1, which means that it is a n−1-Tate twist of an effective Hodge structure of weight
1.

A number of operations can be done in the category of Hodge structures.
We can take the direct sum of two Hodge structures of weight k: the lattice is

the direct sum of the two lattices, and the (p, q) components are the direct sum of
the (p, q)-components of each term.

We can take the dual of a Hodge structure of weight k, which will have weight −k.
Its underlying lattice is the dual of the original one, and its Hodge decomposition is
dual to the original one, with the rule

V ∗p,q = V −p,−q∗.

With this definition, we can verify that if X is a compact Kähler manifold of dimen-
sion n, whose cohomology has no torsion, the Hodge structures on Hk(X,Z) and
H2n−k(X,Z) are dual via Poincaré duality, up to a n-Tate twist.

The tensor product of two Hodge structures V, W of weight k, l is the Hodge
structure of weight k + l whose underlying lattice is M = V ⊗W and which has

Mp,q = ⊕r+t=p,s+u=qV
r,s ⊗W t,u.

To conclude, let us introduce a very important notion: the Mumford-Tate group
of a Hodge structure. Given a Hodge structure (V, F pVC) of weight k, determined
by a representation of C∗ on VR, where λ ∈ R∗ acts by multiplication by λk, the
Mumford-Tate group of (V, F pVC) is defined as the smallest algebraic subgroup of
Aut VR which is defined over Q and contains ρ(S1), where S1 ⊂ C∗ is the set of
complex numbers of mudulus 1. We will see in next section nice applications of this
notion.
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1.2 Morphisms of Hodge structures

1.2.1 Functoriality

Definition 2 A morphism of Hodge structures (V, F ·VC), (W,F ·WC) of respective
weights k, k + 2r is a morphism of lattices

φ : V → W,

such that the C-linear extension φC of φ sends V p,q to W p+r,q+r. Such a morphism
is said to be of bidegree (r, r), as it shifts by (r, r) the bigraduation given by the
Hodge decomposition.

Natural examples of morphisms of Hodge structures are induced by holomorphic
maps

f : X → Y

between compact Kähler manifolds. The pull-back on cohomology

f∗ : Hk(Y,Z) → Hk(X,Z)

is a morphism of Hodge structures of weight k, because the pull-back by f of a closed
form of type (p, q) is again a closed form of type (p, q).

We also have the Gysin map

f∗ : Hk(X,Z) → Hk+2r(Y,Z),

where r := dimY − dimX. It is defined on integral cohomology as the composition

PD−1
Y ◦ f∗ ◦ PDX ,

where PDX is the Poincaré duality isomorphism

H l(X,Z) ∼= H2n−l(X,Z), n = dimX

and similarly for PDY , and f∗ at the middle is the natural push-forward map induced
on homology by f . One can show that f∗ is a morphism of Hodge structures of
bidegree (r, r), observing the following fact: Under Poincaré duality, the Hodge
structure on H l(X,Z) is dual to the Hodge structure on H2n−l(X,Z, up to a Tate
twist of n. Using the definition of the dual Hodge structure, this amounts to say
that Hp,q(X), p + q = l is orthogonal with respect to the intersection pairing to
⊕p′+q′=2n−l,(p′,q′)6=(n−p,n−q)H

p′,q′(X), which is obvious by degree reasons, and thus
identifies to the dual of Hn−p,n−q(X).

Up to now, we have been working with integral Hodge structures. It is sometimes
more convenient to use rational Hodge structures, which are the same objects, except
that the lattice is replaced by a rational vector space.

Morphisms of rational Hodge structures are defined in the same way as above,
morphisms of lattices being replaced with morphisms of Q-vector spaces. Given a
morphism of Hodge structures

φ : VQ → WQ

there is an obvious induced Hodge structure on Ker φ, due to the fact that, since φ
preserves up to a shift the bigradation given by Hodge decomposition, its kernel is
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stable under Hodge decomposition. For the same reason there is an induced Hodge
structure on Coker φ. Thus we have kernels and cokernels in the category of rational
Hodge structures.

The following lemma is also useful.

Lemma 1 A morphism of Hodge structure is strict with respect to the Hodge filtra-
tions.

By this we mean the following: a morphism φ : V → W of Hodge structures, of
bidegree (r, r), shifts the Hodge filtrations by r:

φ(F pVC) ⊂ F p+rWC.

Then φ being strict means that

F p+rWC ∩ Im φ = φ(F pVC).

This is obvious using the Hodge decomposition.

1.2.2 Hodge classes

Definition 3 Let (V, F ·VC) be a Hodge structure of even weight 2k. Then Hdg(V ),
the set of Hodge classes of V , is defined as the set of classes α ∈ V ∩ V k,k, where
the intersection is inside VC.

Examples of Hodge classes on Kähler compact manifolds are given by classes of closed
analytic subsets (cf [44], I, 11.1). If Z ⊂ X is a closed irreducible reduced analytic
subset of codimension k, one can desingularize Z to get j : Z̃ → X. Then the class
[Z] of Z is defined as j∗(1Z̃

), which is a Hodge class because 1Z ∈ H0(Z̃,Z) is a
Hodge class. Other Hodge classes can be constructed as Chern classes of holomorphic
vector bundles or coherent sheaves. In the case of compact Kähler manifolds, Chern
classes of coherent sheaves cannot in general be expressed as rational combinations
of classes of analytic subsets (think to the case of a complex torus admitting a
holomorphic line bundle which is not topologically trivial, but not admitting any
semi-positive not topologically trivial line bundle).

It is proven in [45] that on compact Kähler manifolds, Chern classes of coherent
sheaves cannot be in general expressed as polynomials into Chern classes of holo-
morphic vector bundles, which implies (by the Whitney formula) the existence of
coherent sheaves not admitting locally free resolutions. Thus on general Kähler man-
ifolds, the construction of Hodge classes as rational combinations of Chern classes of
coherent sheaves is strictly more general than the construction via classes of analytic
subsets or Chern classes of holomorphic vector bundles.

On projective manifolds, the three constructions generate over Q the same space
of rational Hodge classes [5], and rational Hodge classes are conjectured to be com-
binations with rational coefficients of classes of analytic subsets, or equivalently of
Chern classes of coherent sheaves (the Hodge conjecture). In [42], it is shown that the
Weil classes on Weil complex tori cannot be expressed as combinations with rational
coefficients of Chern classes of coherent sheaves, thus showing the impossibility of
extending the Hodge conjecture to compact Kähler manifolds.

One relation between Hodge classes and morphisms of Hodge structures is the
following lemma, which follows readily from the definitions :
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Lemma 2 Let (V, F ·VC), (W,F ·WC) be Hodge structures of weights k, k+2r. Then
the set of morphisms of Hodge structures from V to W identifies to the set of Hodge
classes in the weight 2r Hodge structure

Hom (V, W ) = V ∗ ⊗W.

For example, consider the identity map Id ∈ End(Hk(X,Q)), where X is a com-
pact Kähler manifold. This is a Hodge class. On the other hand, via Poincaré
duality, End(Hk(X,Q)) identifies as a Hodge structure, up to a Tate twist of n
to H2n−k(X,Q)⊗Hk(X,Q). The later is via Künneth decomposition a sub-Hodge
structure of H2n(X×X,Q). Hence we get this way natural Hodge classes on X×X,
called the Künneth components of the diagonal. It is not known whether they are
algebraic when X is projective, except for certain cases (abelian varieties or more
generally complex tori T for example, where this is obvious because one can express
the Künneth components as adequate combinations of the classes of the graphs of
the map m : T → T of multiplication by m ∈ Z).

Let us conclude with the following important fact concerning the relation between
the Mumford-Tate group of a rational Hodge structure and Hodge classes.

Theorem 4 Let (H,F ·H) be a Hodge structure of weight k. Then the Mumford-
Tate group of H is the algebraic subgroup of AutQ(H) consisting of elements acting
as the identity on all the Hodge classes in the tensor products (H∗)⊗t ⊗ H⊗s for
k(s− t) even.

It is clear by the definition of the Mumford-Tate group that it has to be contained
in the algebraic group fixing Hodge classes in all these tensor products. Indeed, the
S1-action on H induces an S1-action on each tensor power (H∗)⊗t ⊗ H⊗s, which
is the identity on the component of type (r, r), 2r = k(s − t) of (H∗)⊗t ⊗H⊗s; As
Hodge classes are of type (r, r), S1 acts trivially on them and thus it is contained
in this group; On the other hand, as the Hodge classes are rational, this group is
defined over Q. Hence it must contain the whole Mumford-Tate group.

The reverse inclusion necessitates some notions of invariant theory.
An interesting application of this, due to Deligne [14], is the fact that if we

have an algebraic family of projective complex manifolds (Xt)t∈B parameterized by
a quasi-projective basis B, for general t ∈ B, the Mumford-Tate group of the Hodge
structure on H l(Xt,Q) contains a subgroup of finite index of the monodromy group

Im ρ : π1(B, t) → AutH l(Xt,Q).

This is due to the fact that the monodromy group preserves the space of Hodge
classes in tensor products H l(Xt,Q)⊗−s ⊗ H l(Xt,Q)⊗t for general t ∈ B (here, if
“general” means “away from a countable union of Zariski closed algebraic subsets”,
we have to use the theorem of [10] for this result, but if we just want to know
that the result holds on a countable intersection of dense open sets, it is quite easy).
Furthermore the monodromy acts on these spaces of Hodge classes via a finite group,
a result which is a consequence of the notion of polarization introduced later on.

1.2.3 Cohomology ring

Coming back to geometry, we have the cup-product between the cohomology groups
Hk(X,Z) of a manifold (or topological space):

∪ : Hk(X,Z)⊗H l(X,Z) → Hk+l(X,Z). (1.8)
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At the level of complex cohomology, where cohomology classes are represented via
de Rham theory as classes of closed forms modulo exact ones, the cup-product is
given by the exterior product, namely, if α ∈ Hk(X,C), β ∈ H l(X,C) are repre-
sented respectively by closed complex valued differential forms α̃, β̃, then α ∪ β is
represented by the closed differential form α̃ ∧ β̃.

Now, if X is a complex manifold and α̃, β̃ are respectively of type (r, s), r + s =
k, (t, u), t + u = l, then α̃ ∧ β̃ is closed of type (r + t, s + u).

Thus, if X is a compact complex manifold, the definition of the Hp,q groups of
X shows that

Hr,s(X) ∪Ht,u(X) ⊂ Hr+s,t+u(X).

Using the definition of the Hodge structure on the tensor product Hk(X,Z) ⊗
H l(X,Z), this amounts to say that the cup-product (1.8) is a morphism of Hodge
structures of weights k + l.

Another application of this is the fact that Hodge classes α ∈ Hdg2r(X,Z) on
compact Kähler manifolds give rise to morphisms of Hodge structure

∪α : H l(X,Z) → H l+2r(X,Z),

a fact which will be very much used in the sequel.

1.3 Polarizations

1.3.1 The hard Lefschetz theorem

A very deep application of Hodge theory is the hard Lefschetz theorem, which says
the following: let X be a compact Kähler manifold of dimension n and ω ∈ H2(X,R)
the class of a Kähler form Ω on X. Cup-product with ω gives an operator usually
denoted by

L : H∗(X,R) → H∗+2(X,R).

Theorem 5 For any k ≤ n,

Ln−k : Hk(X,R) → H2n−k(X,R)

is an isomorphism.

The proof involves first a pointwise computation, saying that wedge product with
Ωn−k induces a pointwise isomorphism

k∧
ΩX,C →

2n−k∧
ΩX,C.

The second ingredient is the fact that wedge product with the Kähler form Ω pre-
serves harmonic forms, which are the canonical de Rham representatives of coho-
mology classes on X, given the Kähler metric. Thus one has to check the result by
looking at the wedge product with Ωn−k on harmonic forms. And the last ingredient
is the Poincaré duality which says that both spaces have the same dimension, so that
bijectivity is equivalent to injectivity.

It is interesting to note that if X is projective, we can take for ω the first
Chern class of a very ample line bundle (cf section 2.1), and then the hard Lefschetz
theorem implies immediately the injectivity statement in the Lefschetz theorem on
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hyperplane sections, at least for smooth hyperplane sections and rational coefficients.
The Lefschetz theorem on hyperplane sections says that if j : H ↪→ X is the inclusion
of an ample divisor, the restriction map

j∗ : H∗(X,Z) → H∗(H,Z)

is an isomorphism for k < n − 1, injective for k = n − 1. It is well-known that
j∗ ◦ j∗ = L on H∗(X,Z) (cf [44] I, p 287). Thus the injectivity of j∗ on Hk(X,Q)
for k < n follows from that of L, given by Theorem 5.

We will see later on that the surjectivity statement in Lefschetz restriction the-
orem can be recovered as a consequence of the second Hodge-Riemann bilinear re-
lations. It is interesting to note that the Lefschetz theorem on hyperplane sections
can be given a proof using vanishing theorems (cf [44], II, 1.3, and that the later
ones can be proved algebraically (cf [16]). On the other hand, the hard Lefschetz
theorem has no known algebraic proof.

A first formal consequence of the hard Lefschetz theorem is the so-called Lef-
schetz decomposition. With the same notations as before, define for k ≤ n the
primitive cohomology of X by

Hk(X,R)prim := Ker (Ln−k+1 : Hk(X,R) → H2n+2−k(X,R)).

For example, if k = 1, the whole cohomology is primitive, and if k = 2, primitive
cohomology is the same as the orthogonal part, with respect to Poincaré duality, to
ωn−1 ∈ H2n−2(X,R).

The Lefschetz decomposition is the following (it can also be extended to k > n
using the hard Lefschetz isomorphism).

Theorem 6 The cohomology groups Hk(X,R) for k ≤ n decompose as

Hk(X,R) = ⊕2r≤kL
rHk−2r(X,R)prim.

We have to prove surjectivity and injectivity of the natural map

⊕2r≤kH
k−2r(X,R)prim

∑
Lr

→ Hk(X,R).

For the surjectivity, one uses induction on k and the hard Lefschetz theorem, which
says that if β ∈ Hk(X,R), then

Ln−k+1β = Ln−k+2γ

for some γ ∈ Hk−2(X,R). Then β − Lα is primitive, and we continue with α. The
injectivity is also easy.

1.3.2 Hodge-Riemann bilinear relations

We consider a Kähler compact manifold X with Kähler class ω. We can define an
intersection form qω on each Hk(X,R) by the formula

qω(α, β) =
∫

X
ωn−k ∪ α ∪ β.
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By hard Lefschetz theorem and Poincaré duality, qω is a non-degenerate bilinear
form. It is skew-symmetric if k is odd and symmetric if k is even. Furthermore, the
extension of qω to Hk(X,C) satisfies the property that

qω(α, β) = 0, α ∈ Hp,q, β ∈ Hp′,q′ , (p′, q′) 6= (q, p).

Another way to rephrase this is to say that the sesquilinear pairing hω on Hk(X,C)
defined by

hω(α, β) = ikqω(α, β)

has the property that the Hodge decomposition is orthogonal with respect to hω.
This property is summarized under the name of first Hodge-Riemann bilinear

relations.
Coming back to qω, note also that the Lefschetz decomposition is orthogonal

with respect to qω. Indeed, if α = Lrα′, β = Lsβ′, with r < s, and α′, β′ primitive,
then

Ln−kα ∪ β = Ln−k+r+sα′ ∪ β′,

with Ln−k+r+sα′ = 0 because Ln−k+2r+1α′ = 0.
The second Hodge-Riemann bilinear relations play a crucial role, especially in

the study of the period domains. Note first that, because the operator L shifts
the Hodge decomposition by (1, 1), the primitive cohomology has an induced Hodge
decomposition:

Hk(X,C)prim = ⊕p+q=kH
p,q(X)prim,

with Hp,q(X)prim := Hp,q(X) ∩Hr(X,C)prim. We have now

Theorem 7 The sesquilinear form hω is definite of sign (−1)
k(k−1)

2 ip−q−k on the
component LrHp,q(X)prim, 2r + p + q = k of Hk(X,C).

The first application of this theorem is the well-known Hodge index theorem for
the intersection form on H2 of a compact Kähler surface X. As we are looking at
the middle cohomology, the form qω is equal to the natural intersection pairing on
H2(X). The primitive cohomology is in this case the orthogonal complement of the
Kähler form and Theorem 7 says that qω is negative definite on the real part of
H1,1(X)prim and positive definite on the real part on the real part of H2,0(X) ⊕
H0,2(X). It is also obviously positive on the line < ω >, which is perpendular to
both of these spaces.

This shows that the Hodge numbers of compact Kähler surfaces are determined
by their topology, which is not the case in higher dimension.

As a second application, let us prove the surjectivity part in Lefschetz hyperplane

section theorem: If X is projective and H
j

↪→ X is the inclusion of a smooth ample
divisor, then

j∗ : Hk(X,Q) → Hk(H,Q)

is surjective for k < n− 1 = dim H.
Indeed, choose for Kähler class ω the class of H, and consider the Lefschetz

decomposition on Hk+2(X,Q) with respect to ω:

Hk+2(X,Q) = Hk+2(X,Q)prim ⊕ LHk(X,Q).
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Note that, as L = j∗ ◦ j∗, the first term is equal to

j∗(j∗Hk(X,Q)).

Thus, the surjectivity statement is equivalent to the fact that for k +2 ≤ n, we have

j∗Hk(H,Q) ∩Hk+2(X,Q)prim = 0.

(Indeed, we use here the fact that j∗ is injective on Hk(H,Q) by hard Lefchetz
theorem on H.)

Note that if α ∈ Hk(H,Q) satisfies

j∗α ∈ Hk+2(X,Q)prim,

then Ln−k−2j∗α = 0 and thus

j∗Ln−k−2j∗α = 0 = Ln−k−1
H α.

Thus α ∈ Hk(H,Q)prim.
Finally, note that the forms qω defined on H∗(X), H∗(H) are compatible with

j∗:
qω,H(α, β) = qω(j∗α, j∗β),

for α, β ∈ Hk(H,Q), k ≤ n− 2. Indeed,

qω(j∗α, j∗β) =
∫

X
Ln−2−kj∗α ∪ j∗β =

∫

H
Ln−2−k

H α ∪ j∗(j∗β) =

=
∫

H
Ln−1−k

H α ∪ β = qω,H(α, β).

Now let K ⊂ Hk(H,Q)prim be the set of classes α such that j∗α ∈ Hk+2(X,Q)prim.
This is a sub-Hodge structure of Hk(H,Q)prim. Thus it suffices to show that each

(p, q)-component of K is 0. Now, if 0 6= α ∈ Kp,q, we have (−1)
k(k−1)

2 ip−qqω,H(α, α) >

0, while (−1)
(k+2)(k+1)

2 ip−qqω(j∗α, j∗α) > 0, which is a contradiction.

As another application of this which will be used later on, we can also conclude
the following:

Lemma 3 Let X be a compact Kähler manifold. Assume there is a rank 2 subspace
V ⊂ H2(X,R) such that

V ∪ V = 0

in H4(V,R). Then the Hodge structure on H2(X,Q) is non trivial.

Indeed, if it were trivial, that is entirely of type (1, 1), then for ω a Kähler form on
X, the non-degenerate intersection form qω on H2(X,R) would have one positive
sign, and thus the dimension of a maximal isotropic subspace would be 1. But V is
isotropic, which is a contradiction.
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Other first applications of the Hodge-Riemann bilinear relations concern the
period domains for Kähler surfaces. Let X be a compact Kähler surface and let
V := H2(X,Z), which is endowed with the intersection pairing <,>. To each
Kähler complex structure Xt on X, one associates the subspace

H2,0(Xt) ⊂ H2(X,C).

This is the so-called period map. The dimension h2,0 of this subspace is deter-
mined by the topology of X. Thus this space is a point in the Grassmannian
Grass(h2,0,H2(X,C)). The Hodge-Riemann bilinear relations say the following:

1. This point belongs in fact to the isotropic Grassmannian of those subspaces
on which the intersection form vanishes identically.

2. This point belongs to the open set of the isotropic Grassmannian consisting
of those subspaces on which the Hermitian bilinear form h(α, β) =< α, β > is
positive definite.

3. This point determines the whole Hodge decomposition on H2(Xt,Z) by the
rules:

H0,2(Xt) = H2,0(Xt), H1,1(Xt) = (H2,0(Xt)⊕H0,2(Xt))⊥.

Note that if a subspace V ⊂ H2(X,C) of rank h2,0 satisfies the properties 1 and 2,
then certainly V ∩V = 0 and one can define a Hodge decomposition on H2(X,C) by
the two rules above, for which V = H2,0 and satisfying the Hodge-Riemann bilinear
relations. One thus may ask whether one can hope that any such Hodge structure
comes from a deformation of the complex structure on X, at least in a neighbourhood
of a given point. However, this is forbidden by the so-called transversality property,
discovered by Griffiths, which imposes strong conditions on the differential of the
period map, showing that it is not surjective on the tangent space of the period
domain described by the conditions above. Only in the case where h2,0 = 1, the
transversality condition is empty, and indeed, at least if the rank of H2(X) is not
larger than 20, the period map for K3 surfaces allows to fill-in the period domain
described by conditions 1 and 2 above.

1.3.3 Rational polarizations

The Lefschetz decomposition is particularly useful if the Kähler class can be chosen
to be rational, or equivalently if the manifold X is projective (see section 2.1.1).
Indeed, in this case, the Lefschetz decomposition is a decomposition into rational
subspaces, and as each of these subspaces is stable under the Hodge decomposition, it
is a decomposition into sub-Hodge structures. This is very important for using Hodge
theory to study moduli spaces of projective complex manifolds. Indeed, the period
map, which roughly speaking associates to a (Kähler or projective) complex structure
the Hodge decomposition on the complex cohomology groups regarded as a varying
decomposition on a fixed complex vector space, splits in the projective case into
period map for each primitive component (considering deformations of the complex
structure with fixed integral Kähler class). However the Hodge decomposition on
primitive cohomology satisfies the second Hodge-Riemann bilinear relations (here, as
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ω is fixed, qω is also fixed). The polarized period domain has much better properties,
in particular curvature properties in the horizontal directions (those satisfying the
transversality condition) and this leads by pull-back via the period map to many
interesting curvature results on the moduli spaces themselves (see [23], [41]).

We shall focus on the notion which emerges from the Lefschetz decomposition
on a compact Kähler manifold, with respect to a rational Kähler cohomology class.

Definition 4 A rational polarized Hodge structure of weight k is a Hodge structure
(V, F ·V ) of weight k, together with a rational intersection form q on V , symmetric
if k is even, skew-symmetric if k is odd, such that the associated Hermitian bilinear
form h on VC, defined by h(v, w) = ikq(v, w) satisfies the Hodge-Riemann bilinear
relations:

1. The Hodge decomposition is orthogonal with respect to h.

2. The restriction of h to each V p,q is definite of sign (−1)p.

This is (up to a sign) the structure we get on the primitive components of the coho-
mology of a compact Kähler manifold endowed with a rational Kähler cohomology
class.

The category of polarized Hodge structures behaves much better than the one
of general Hodge structures:

Lemma 4 Let (V, F ·VC) be a polarized Hodge structure, with intersection form q,
and let L ⊂ V be a sub-Hodge structure (that is LC is stable under the Hodge
decomposition). Then there is an orthogonal decomposition

V = L⊕ L⊥,

where ⊥ stands for the orthogonal complement with respect to q and L⊥ is also a
sub-Hodge structure of V .

Indeed, it is clear by the first Hodge-Riemann bilinear relations that L⊥C , which
is also the orthogonal complement of LC with respect to h, is also a sub-Hodge
structure. Thus it suffices to show that q|L is non-degenerate. This is equivalent
to say that h|LC is non-degenerate. But this follows from the fact that LC is an
orthogonal direct sum with respect to h:

LC = ⊕Lp,q
C

and that each h|Lp,q
C

is non-degenerate, because h is definite on V p,q
C .

Example 5 We have seen that a weight 1 integral Hodge structure is the same
thing as a complex torus. Let us show that a weight 1 integral polarized Hodge
structure is the same as a projective complex torus (an abelian variety) with a given
integral Kähler cohomology class. Indeed, let (V, VC = V 1,0 ⊕ V 1,0) be a weight 1
Hodge structure and

q :
2∧

V → Z

be a polarization. Then, recalling that the corresponding complex torus T is given
by

T = VC/(V 1,0 ⊕ V ),
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we find that
2∧

V ∗ ∼=
2∧

H1(T,Z) = H2(T,Z),

and thus q can be seen as an integral cohomology class on T . Furthermore, q is
represented in de Rham cohomology by the R-linear extension qR of q to VR, which
is a 2-form on T , and VR is isomorphic to V 0,1 by the projection, which gives the
complex structure on the real tangent space VR of T . Now one verifies ([44], I,
7.2.2) that the first Hodge-Riemann bilinear relation says that qR is of type (1, 1)
and the second Hodge-Riemann bilinear relation says that qR is a positive real (1, 1)
form, that is a Kähler form. Thus T is projective by the Kodaira criterion (see next
section).

In this example, Lemma 4 says that if A ⊂ B is an abelian subvariety of an abelian
variety, then there is a spliting up to isogeny:

A⊕ C
s→ B,

where s is finite. This can be seen from an algebrogeometric as follows: let C be
the quotient B/A and denote by q : B → C the quotient map. As B is projective,
there is a subvariety

Y ⊂ B

which projects in a finite way to C via q. Then we can construct a rational map,
which in fact must be holomorphic and necessarily a morphism of abelian varieties
[31]:

σ : C → B

by the rule:
σ(c) =

∑

y∈Y,q(y)=c

y,

Clearly the composition q ◦ σ is multiplication by the degree of q|Y and thus we
conclude that the map

A⊕ C → B, (a, c) 7→ a + σ(c)

is an isogeny.

Example 6 There is a beautiful formal construction, due to Kuga and Satake [30],
which associates to a polarized weight 2 Hodge structure H of K3 type (that is h2,0 =
1) an abelian variety A such that H2(S,Q) can be realized as a direct summand in
H2(A,Q) as a Hodge structure. Hence, by lemma 2, assuming H = H2(S,Q)prim for
S an algebraic K3 surface, there is a degree 4 Hodge class on S × A which induces
this inclusion

H2(S,Q) ↪→ H2(A,Q), (1.9)

and the Hodge conjecture thus predicts that there should be an algebraic cycle of
codimension 2 in S ×A inducing this inclusion at the cohomology level.

Such an inclusion does not exist for a general weight 2 Hodge structure coming
from geometry, by a Mumford-Tate group argument (cf [14]).
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The construction goes as follows. On starts with a Hodge structure H with
h2,0 = 1, and polarization q. Let us introduce the Clifford algebra

C(H, q) =
⊗

H/ < v ⊗ v = −q(v)1 > .

This is a rational vector space. A complex structure is defined on it using an
orthonormal basis e1, e2 of (H2,0 ⊕ H0,2)R and defining e := e2e1 ∈ C(H). (The
orientation comes from the real isomorphism H2,0 ∼= (H2,0 ⊕ H0,2)R, and one sees
that e does not depend on the choice of the oriented orthonormal basis.) Then
e2 = −1 and left Clifford multiplication by e defines a complex structure on C(H)R.
This defines a rational Hodge structure of weight 1, hence a complex torus up to
isogeny. One can show that this complex torus is in fact an abelian variety.

Finally there is a morphism of Hodge structures

H → Hom (C(H), C(H))

given by left Clifford multiplication. Thus for the abelian variety associated up to
isogeny to the weight 1 rational Hodge structure on C(H) ⊕ C(H)∗, there is an
inclusion of Hodge structures as in (1.9).

To conclude this section, let us explain why the second Hodge-Riemann relations
imply that for a projective family of varieties (Xt)t∈B, (that is, there exists a line
bundle on the total space of the family which restricts to an ample one on the fibers),
the monodromy acts as a finite group on the set of Hodge classes in H2k(Xt,Z), for
general t.

The point is that there is a relative Lefschetz decomposition on the cohomology
of the fibers, relative to the (locally constant) integral Kähler class, given as the first
Chern class of the relatively ample line bundle. The monodromy preserves this rela-
tive Lefschetz decomposition, which is a decomposition of a subgroup of finite index
in H2k(Xt,Z). Furthermore, on each component of the Lefschetz decomposition, the
monodromy preserves the integral structure and the intersection form qω. But as the
Hodge classes are of type (k, k), the second Hodge-Riemann bilinear relations imply
that on the set of Hodge classes in each component of the Lefschetz decomposition,
the form qω is non degenerate and has a definite sign. Thus the monodromy acts
on each of them via the orthogonal group of an integral positive definite form on a
lattice, that is via a finite group.

2 Kähler and complex projective manifolds

2.1 The Kodaira criterion

2.1.1 Polarizations on projective manifolds

The Kodaira criterion [27] characterizes projective complex manifolds inside the
class of compact Kähler manifolds.

Theorem 8 A compact complex manifold X is projective if and only if X admits a
Kähler class which is rational, that is belongs to

H2(X,Q) ⊂ H2(X,R).
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The only if comes from the fact that if X is projective, one gets a Kähler form on X
by restricting the Fubini-Study Kähler form on some projective space PN in which
X is imbedded as a complex submanifold. But the Fubini-Study Kähler form has
integral cohomology class, as its class is the first Chern class of the holomorphic line
bundle OPN (1) on PN .

Conversely, if the class β of a Kähler form Ω is rational, some multiple α = mβ
is integral, and as α is represented by a closed form of type (1, 1), its image in
H2(X,OX) vanishes. Thus, via the long exact sequence induced by the exponential
exact sequence:

Pic X = H1(X,O∗X) c1→ H2(X,Z) → H2(X,OX),

one concludes that α = c1(L) for some holomorphic line bundle L. The conclusion
then follows from the following two facts:

- L can be endowed with a Hermitian metric whose Chern form is equal to mΩ,
a non-trivial fact which involves the ∂∂-lemma, and uses the fact that X is Kähler.

- Kodaira’s vanishing theorem for line bundles endowed with metrics of positive
associated Chern forms, applied to the blow-up of X along points, which finally
allow to conclude that L is ample.

Definition 5 A polarization on a projective manifold X is the data of a rational
Kähler cohomology class.

As explained in the previous section, a polarization on X induces an operator L of
cup-product with the given Kähler class and a Lefschetz decomposition on each coho-
mology group Hk(X,Q) and a polarization on each component LrHk−2r(X,Q)prim

of the Lefschetz decomposition, which is essential for most statements concerning
the period map.

The polarizations play a crucial role in the construction of moduli spaces as
quasi-projective varieties (see [40]). In particular, the notion of a family of polarized
varieties is the following:

Definition 6 A polarized family of complex manifolds, is a complex analytic space
X , together with a smooth proper map f : X → B, where B is an analytic space,
and a rational cohomology class α ∈ H2(X ,Q), such that each α|Xt

is a Kähler
cohomology class.

Thus by Kodaira’s criterion, the fibers are smooth complex projective manifolds.
A standard example of a non polarized family of Kähler manifolds is the twistor

family associated to a K3 surface S with given Kähler class α (see [8], [26], [33]). By
Yau’s theorem [47], the class α admits a representative Ω which defines a Kähler-
Einstein metric. The K3 surface has trivial canonical bundle, and if η ∈ H0(S, KS)
is a generator, the metric is Kähler-Einstein if and only if η is Ricci-flat with respect
to the metric. Note that Ω is also Ricci-flat. For each s ∈ S we have the three
complex 2-forms ηs, ηs, Ωs on the real tangent space TS,s at s, and by Ricci-flatness,
we find that a combination

µs = aηs + bηs + cΩs, a, b, c ∈ C
satisfies µ2

s = 0 in
∧4 ΩS,s,C if and only if it does at every point of S. The closed

2-form µ = aη+bη+cΩ then defines a new almost complex structure on TS,s: indeed,
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as µ2
s = 0 at every point s, µs determines a rank 2 subspace Vs of TS,s,R ⊗C, which

is transverse to its complex conjugate because µ ∧ µ > 0 at any point.
This rank 2 subspace determines the almost complex structure at the considered

point. As µ is closed, this almost complex structure is integrable. In conclusion, we
have constructed a family of complex structures on S parameterized by the conic C
in P2(C) determined by equation

µ2 = 0.

With some more work, one can define a complex structure on S ×C, (note C ∼= P1)
such that the second projection is holomorphic and the induced complex structure
on the fibers is precisely the one described above.

This family is not a polarized family of complex manifolds, although one can show
that each fiber is Kähler (in fact the initial metric remains Kähler for each of these
complex structures, although the Kähler form does not of course remain Kähler).
Indeed, the total space X is diffeomorphic to S × P1. Thus a rational cohomology
class β on X can be written as pr∗1u + pr∗2v, u ∈ H2(S,Q), v ∈ H2(P1,Q), and
saying that α polarizes the family means that u remains Kähler for any µ ∈ C.
However, note that by definition, for the complex structure defined by µ ∈ C,
µ = aη + bη + cΩ is holomorphic of type (2, 0) for this complex structure. As u is
Kähler for this complex structure, we must have

< u, [µ] >= 0,

where [µ] is the de Rham cohomology class of µ and <, > is the intersection pairing
on S. As this equality must be true for all µ ∈ C, we conclude that in fact u has to
be orthogonal to η, η and α. But then the Hodge index theorem, that is the second
Hodge-Riemann bilinear relations for H2(S) says that u2 < 0, contradicting the fact
that u is Kähler.

LeBrun [33] uses this family to exhibit examples or real 6-dimensional manifolds
admitting infinitely many complex structures with different Chern numbers. In
contrast, the Chern numbers of compact almost complex surfaces depend only on
topology, as a consequence of Hirzebruch’s signature theorem 16.

One important property of polarized families of complex manifolds is the follow-
ing theorem due to Deligne [12] and Blanchard:

Theorem 9 Let π : X → B be a polarized family of compact complex manifolds.
Then the Leray spectral sequence of π with rational coefficients degenerates at E2. In
particular any cohomology class α ∈ H0(B, Rkπ∗Q) comes from a global cohomology
class α̃ ∈ Hk(X ,Q).

The proof plays on the relative Lefschetz decomposition associated with the polar-
ization of the family, and the fact that it is compatible with the differentials di of
the Leray spectral sequence, leading to the conclusion that di = 0, i ≥ 2.

Remark 4 For this theorem, a real polarization suffices. Hence its range of appli-
cations does not restrict to families of projective manifolds.

2.1.2 Applications of the Kodaira criterion

The simplest application of Kodaira characterization of projective complex manifolds
is the following.
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Theorem 10 Let X be a compact Kähler manifold such that H2(X,OX) = 0. Then
X is projective.

Indeed, by the Hodge decomposition theorem, the assumption implies that H2(X,R)
can be represented by real closed forms of type (1, 1). Working a little more, one
can even choose a representative to vary continuously with the class. Now start
from a Kähler class α represented by a Kähler form α̃. Then as H2(X,Q) is dense
inside H2(X,R), α can approximated by rational cohomology classes αn. Choosing
representative α̃n of αn, which are real closed forms of type (1, 1) converging to α,
we conclude that α̃n must be positive non-degenerate for n large enough, as it is
an open property of real (1, 1)-forms on compact complex manifolds. Thus αn is
Kähler for large n, and X is projective.

Another simple application is due to Campana [7]. We described above a varying
family of Kähler K3 surfaces but showed that the total space could not be Kähler.
On the other hand, if we allow singular fibers, it is easy to construct non isotrivial
families of projective K3 surfaces whose total space is projective. For example,
if f, g are two generic homogeneous polynomials of degree 4 on P3, then denote
ft := t0f + t1g, t = (t0, t1) ∈ P1, and let

X = {(x, t) ∈ P3 × P1, ft(x) = 0},
with application π = pr2 : X → P1.

X is smooth, being the blow-up of P3 along the base-locus of the pencil, and the
generic fiber is the K3 surface defined by the equation ft = 0 in P3.

Campana shows the following (we refer to [7] for a more general statement):

Theorem 11 Let X be Kähler, and π : X → B be holomorphic with generic fiber a
K3 surface. Then either the generic fiber is projective, or the family is generically
isotrivial (which means that the complex structure on the fiber Xt is constant on the
open set where the fiber remains a smooth K3 surface).

Indeed, one has the Torelli theorem for K3 surfaces (cf [37]), which says that the
complex structure on a K3 surface S is determined by corresponding the Hodge
structure on H2(S,Z). One then looks at the restriction map:

H2(X ,Z) → H2(St,Z) (2.10)

whose image is a constant sub-Hodge structure. If the induced map between the
(0, 2)-pieces

H2(X ,OX ) → H2(St,OSt) (2.11)

is non-zero, then it is surjective because the right hand side has rank 1. Then
the cokernel of (2.10) has a trivial Hodge structure, and it follows that the Hodge
structure on H2(St,Z) is constant, thus implying isotriviality. But if the map (2.11)
is 0, then the image of (2.10) consists of classes of type (1, 1). Consider the restriction
map:

rest : H2(X ,R) → H2(St,R)

On one hand, the image is defined over Q, so that rational cohomology classes are
dense in it. On the other hand, it consists of classes of type (1, 1), hence by Lemma
1, it is equal to the image of the map

rest1,1 : H1,1(X )R → H2(St,R).
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We then apply the same reasoning as in the proof of the previous lemma, approxi-
mating the restriction of a Kähler class by rational classes in Im rest = Imrest1,1.

2.2 Kodaira’s theorem on surfaces

2.2.1 Some deformation theory

Kodaira’s characterization theorem can also be used to show that certain compact
Kähler manifolds X become projective after a small deformations of their complex
structure. The point is that the Kähler classes belong to H1,1(X)R, the set of
degree 2 cohomology classes which can be represented by a real closed (1, 1)-form.
They even form an open cone, the Kähler cone, in this real vector subspace of
H2(X,R). This space deforms differentiably with the complex structure, and by
Kodaira’s criterion we are reduced to see whether one can arrange that after a small
deformation, the Kähler cone contains a rational cohomology class.

Let us recall a few facts about deformations of complex structure and variations
of Hodge structure. Let B be a ball in Cn, and let π : X → B be a family of complex
manifolds parameterized by B. Thus π is smooth and proper. If X = X0 is the
central fiber, X is called a family of deformations of X. The exact sequence

0 → TX → TX |X → TB,0 ⊗OX → 0

of vector bundles on X induces the Kodaira-Spencer map

ρ : TB,0 = H0(X, TB,0 ⊗OX) → H1(X, TX).

Concretely, to get a representative of ρ(u), one chooses a C∞ trivialization of X over
B

T : X ∼= X ×B,

which has the property that the T−1(x × B), x ∈ X are complex submanifolds of
X , and then T−1∗ u gives a C∞ section χ of TX which lifts u: π∗χ = u. Then ∂χ|X
gives a ∂-closed section of A0,1(TX), which represents ρ(u). Next, we want to see
how the Hodge filtration on Hk(Xt,C) ∼= Hk(X,C) varies with the point t ∈ B.

Recall that F pHk(Xt,C) is the set of classes α representable by a closed form α̃
which is of type (k, 0)+. . .+(p, k−p). This subspace varies differentiably with t ∈ B
because it has constant rank. (In fact each hp,q must be constant because their sum∑

p+q=k hp,q is constant equal to bk, while each of them is upper-semicontinuous.)
Furthermore, it is a consequence of Hodge theory that when t varies and α ∈

F pHk(Xt,C) varies, α̃ can be chosen to vary differentiably with α. Choose a differ-
entiably varying αt ∈ F pHk(Xt,C). Using the lift α̃t, and the trivialization t, we
can construct a k-form β on X which has the property that β|Xt

= α̃t and that for
any vector field v tangent to the t−1(x×B), x ∈ X, int(v)(β) = 0.

Because the T−1(x×B), x ∈ X, are complex submanifolds, the form β is of type
(k, 0)+ . . . +(p, k− p) on X . It is not closed, and in fact the Cartan formula for the
Lie derivative says that for u ∈ TB,0, one has

du(αt) = [int(χ)(dβ)|X ]. (2.12)
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Here we see αt as a differentiable from B to Hk(X,C). The [ ] on the right means
that we take the cohomology class of the considered form, which is closed. A more
intrinsic formula would involve the Gauss-Manin connection.

As a corollary we get the famous transversality theorem of Griffiths:

Theorem 12 For αt ∈ F pHk(Xt,C), and u ∈ TB,0, we have

duαt ∈ F p−1Hk(X,C).

Indeed, as β is of type (k, 0)+. . .+(p, k−p), dβ is of type (k+1, 0)+. . .+(p, k−p+1),
and as χ is of type (1, 0), we get that the closed form int(χ)(dβ)|X is of type
(k, 0) + . . . + (p− 1, k − p + 1).

The formula (2.12) also gives us an explicit computation of the map

du : F pHk(X,C) → Hp−1,k−p+1(X) = F p−1Hk(X,C)/F pHk(X,C), u ∈ TB,0,

which computes the infinitesimal deformation of F pHk(X,C) ⊂ Hk(X,C) with the
complex structure in the direction u. (Here we use implicitly the fact that the
tangent space of the Grassmannian Grass(l,W ) at a point V ⊂ W is canonically
Hom(V, W/V ).) We have

Theorem 13 (Griffiths) du(α) vanishes for α ∈ F p+1Hk(X,C) so that

du ∈ Hom(Hp,k−p(X),Hp−1,k−p+1(X)),

and we have

du(α) = int(ρ(u))(α), ∀α ∈ Hp,q(X). (2.13)

Here, ρ(u) ∈ H1(X, TX), and we use the obvious product-contraction

H1(X,TX)⊗Hk−p(X, Ωp
X) → Hk−p+1(X,Ωp−1

X )

to define int(ρ(u))(α).
The first statement is obvious by the transversality property applied to F p+1Hk(Xt).

As for the second it is an immediate consequence of formula (2.12), observing that
the (p− 1, k − p + 1)-component of int(χ)(dβ)|X is equal to int(χ)(∂β)|X and that
this is equal to int(∂χ)(β)|X modulo a ∂-exact form.

2.2.2 Density of projective complex manifolds

Given a compact Kähler manifold X, there is the following criterion for the existence
of a projective small deformation of the complex structure on X.

Proposition 2 Assume deformations of X are unobstructed, and for some Kähler
class α ∈ H1,1(X)R the product-contraction map:

.α : H1(X, TX) → H2(X,OX), u 7→ int(u)(α)

is surjective. Then there exist arbitrarily small deformations of the complex structure
of X which are projective.
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Recall that “unobstructed” means that there exists a family of deformations of X

π : X → B,

such that the Kodaira-Spencer map ρ : TB,0 → H1(X,TX) is an isomorphism.
Buchdahl stated this criterion in [6] without the assumption that X is unob-

structed, but the proof (which is much more analytic) does not seem to be complete.
Let us sketch the proof of the criterion. The proof is the same as in [44], II,

5.3.4, where it is used to prove the density of the Noether-Lefschetz locus. We claim
that the condition .α be surjective is equivalent to the fact that the natural map

φ : H1,1
R → H2(X,R)

is submersive at α, where H1,1
R is the vector bundle over B with fiber H1,1(Xt)R at

t ∈ B and the map sends αt ∈ H1,1(Xt)R to αt ⊂ H2(Xt,R) = H2(X,R).
The claim implies the theorem, because if φ is submersive at α, it is open, hence

φ(V ) contains an open set U in H2(X,R), for V a small open neighbourhood of
α that we may assume to be contained in K, where K ⊂ H1,1

R is the union of the
Kähler cones:

K = ∪t∈BKt ⊂ ∪t∈BH1,1(Xt)R = H1,1
R .

But the rational classes are dense in U , and thus there is a point t close to 0, together
with a Kähler class αt close to α, with αt rational.

To see the claim, we note that the submersivity of φ is implied by the submer-
sivity of the map

Φ : F 1H2 → H2(X,C),

where F 1H2 is the vector bundle with fiber F 1H2(Xt) over t ∈ B, and the map
Φ is defined on F 1H2(Xt) as the inclusion F 1H2(Xt) ⊂ H2(Xt,C) followed by the
identification H2(Xt,C) = H2(X,C). Indeed, one notices that

H1,1(Xt)R = F 1H2(Xt) ∩H2(Xt,R).

Hence φ is nothing but the restriction of Φ to Φ−1(H2(X,R)).
Finally the fact that submersivity of φ at α is equivalent to the surjectivity of

.α follows from Griffiths’ formula (2.13).

Example 7 K3 surfaces and more generally hyper-Kähler manifolds satisfy the
criterion. A hyper-Kähler manifold is a Kähler compact manifold which admits
one holomorphic 2-form η ∈ H0(X, Ω2

X) which is everywhere non-degenerate (see
[1], [26]). By Hodge symmetry, such a manifold has H2(X,OX) of rank 1. It is a
well-known theorem due to Tian, Bogomolov, Todorov (cf [39]) that these manifolds
are unobstructed. If α is a Kähler form on X, then α ∈ H1(X, ΩX). As η is non
degenerate, the map

.η : H1(X, TX) 7→ H1(X, ΩX)

is an isomorphism, hence
α = int(u)(η)

for some u ∈ H1(X, TX). Then int(u)(α) is equal up to a coefficient to q(α)η, where
q is the Beauville quadratic form (cf [1]). Hence, as q is positive on the Kähler cone,
the map ·α is surjective.
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Example 8 Complex tori satisfy the criterion. Again they are unobstructed, this
is immediate because they are locally parameterized by an open set in the Grass-
mannian Grass(n, 2n) of n-dimensional subspaces of a 2n-dimensional complex
space (cf Example 4) and it is easy to verify that the Kodaira-Spencer map for
this family is an isomorphism. The infinitesimal criterion is easy to check using
H1(X,TX) = T0 ⊗ H1(X,OX), where T0 is the tangent space at 0 of the complex
torus X, H1(X, ΩX) = Ω0 ⊗H1(X,OX) and H2(X,OX) ∼= ∧2 H1(X,OX).

To conclude this section, let us state the beautiful theorem of Kodaira which was at
the origin of the work [42].

Theorem 14 Let S be a compact Kähler surface. Then there is an arbitrarily small
deformation of S which is projective.

Kodaira proved this theorem using his classification of surfaces. We will sketch
in the next section an argument due to Buchdahl, proving this theorem without
classification, in the case of unobstructed surfaces.

2.2.3 Buchdahl’s approach

Buchdahl [6] starts with a compact Kähler surface which he assumes to be minimal,
without loss of generality. He uses Proposition 2 in order to prove Kodaira’s theorem
14 for unobstructed surfaces. His main result can be stated as follows:

Theorem 15 Let S be a compact Kähler surface, and α̃ be a Kähler form on S. If
the map

.α : H1(S, TS) → H2(S,OS), u 7→ int(u)(α)

is not surjective, then S is projective.

The idea of his proof is as follows: one notes that by Serre duality, the condition
is equivalent to the following:

There exists 0 6= η ∈ H0(S, KS), such that

ηα = 0 in H1(S, ΩS(KS)).

Indeed H1(S, ΩS(KS)) is Serre dual to H1(S, TS) and one has up to sign:

< ηα, u >=< η, int(u)(α) >, ∀u ∈ H1(S, TS).

Thus it suffices to take for η an element vanishing on Im (·α).
Note that this means concretely that

ηα̃ = ∂ω

for some section ω of ΩS(D) where D is the divisor of η. It will be convenient to
consider η as a section of KS identifying KS to OS(D) and write s for the canonical
section of OS(D). Then equation above can be better written as

α̃ = ∂(
ω′

s
),

for some C∞ section ω′ of ΩS(D) on S.
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Next the goal is to show that if S is not projective, this implies that α is supported
on D. Then, since α2 > 0, it will follow that S carries a divisor of positive self-
intersection, which gives a contradiction (see [2], p 126).

Observe that as S is minimal we must have D2 ≥ 0, and as S is assumed not
algebraic, D2 ≤ 0. Thus D2 = 0.

The only divisors on S are the components of D; in particular any line bundle L
on S satisfies h0(S,L) ≤ 1. Indeed, let D′ be an irreducible divisor not supported on
D. Then D′ does not intersect D since otherwise (D + D′)2 > 0 and S is algebraic.
But then, as α̃ = ∂(ω′

s ) is ∂-exact away from D, we find that
∫

D′
α = 0

which is absurd.
Let us come back to the equation

α̃ = ∂(
ω′

s
).

It can be also written as

α̃ = d(
ω′

s
)− ∂(

ω′

s
). (2.14)

Note that ∂(ω′
s ) is a holomorphic 2-form on S \D, with at most order 2 poles along

D, because

∂∂(
ω′

s
) = −∂α̃ = 0.

Thus, as h0(S,KS(2D)) ≤ 1, we must have a relation

∂(
ω′

s
) = µη,

for some coefficient µ ∈ C. One deduces from this and equation (2.14) that α̃ + µη
is exact on S \D.

However the kernel of the restriction map

H2(S,C) → H2(S \D,C)

is generated by the classes of the components of D (see [44], I, 11.1.2). Thus it
follows that in fact µ = 0 and the cohomology class α of α̃ is supported on D. But
as S is not algebraic, the intersection form on the subspace generated by the classes
of the components of D is non positive, contradicting the fact that α2 > 0.

2.3 The Kodaira problem

2.3.1 The Kodaira problem

Kodaira’s theorem 14 leads immediately to ask a number of questions in higher
dimensions:

Question 1:(The Kodaira problem) Does any compact Kähler manifold admit
an arbitrarily small deformation which is projective?
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In order to disprove this, it suffices to find rigid Kähler manifolds which are
not projective. However, the paper [17] shows that it is not so easy: if a complex
torus T carries three holomorphic line bundles L1, L2, L3 such that the deformations
of T preserving the Li are trivial, then T is projective. The relation with the
previous problem is the fact that from (T, L1, L2, L3), one can construct a compact
Kähler manifolds whose deformations identify to the deformations of the 4-uple
(T,L1, L2, L3).

A weaker question concerns global deformations.

Question 2: (The global Kodaira problem) Does any compact Kähler manifold
X admit a deformation which is projective?

Here we consider any deformation parameterized by a connected analytic space
B, that is any smooth proper map π : X → B between connected analytic spaces,
with X0 = X for some 0 ∈ B. Then any fiber Xt will be said to be a deformation
of X0. In that case, even the existence of rigid Kähler manifolds which are not
projective would not suffice to provide a negative answer, as there exist varieties
which are locally rigid but not globally (consider for example the case of P1 × P1

which deforms to a different Hirzebruch surface). This means that we may have a
family of smooth compact complex manifolds π : X → B whose all fibers Xt for
t 6= 0 are isomorphic but are not isomorphic to the central fiber X0.

Note that if X is a deformation of Y , then X and Y are diffeomorphic, because
the base B is path connected, and the family of deformations can be trivialized in
the C∞-category over any path in B.

In particular, X and Y should be homeomorphic, hence have the same homotopy
type, hence also the same cohomology ring. Thus Question 2 can be weakened as
follows :

Question 3: (The topological Kodaira problem) Is any compact Kähler manifold
X diffeomorphic or homeomorphic to a projective complex manifold?

Does any compact Kähler manifold X have the homotopy type of a projective
complex manifold?

Our results will provide a negative answer to all these questions, answering neg-
atively the last one.

It should be mentioned that the examples built in [42] had the property that they
are bimeromorphically equivalent to complex tori or Kummer manifolds, which, as
explained in the previous section have small projective deformations. Thus, a natural
question was the following, asked by Buchdahl, Campana, Yau:

Question 4: (The birational Kodaira problem) Is any compact Kähler mani-
fold X bimeromorphic to a smooth compact complex manifold which deforms to a
projective complex manifold?

This is also disproved by topological methods in [43]. However, the compact
Kähler manifolds constructed there do not have nonnegative Kodaira dimension, as
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they are bimeromorphic to P1 × P1-bundles on a product of Kummer manifolds.
Thus the following remains open:

Conjecture 1 (Campana) Is any compact Kähler manifold X of nonnegative Ko-
daira dimension bimeromorphic to a smooth compact complex manifold which de-
forms to a projective complex manifold?

2.3.2 Topological restrictions

In this section, we want to give a perspective to our results by recalling a number
of other results providing topological obstructions for differentiable manifolds to be
either symplectic, almost complex, complex or Kähler.

Starting from the notion of compact differentiable manifold M , we have a number
of more or less restrictive conditions that we can impose to M . The weakest one
is the existence of an almost complex structure, namely a complex structure on the
tangent bundle. It is an observation due to Gromov that the existence of an almost
complex structure is equivalent to the existence of a non degenerate 2-form on M .
The easiest direction is from almost structures to non-degenerate 2-forms, as one
can obtain these as the imaginary part of a Hermitian metric on the tangent bundle.
In the other direction, this follows from the fact that compatible complex structures
I on a real vector space endowed with a symplectic form ω form a contractible set.
Here the compatibility means that ω is positive of type (1, 1) with respect to I. Not
every even dimensional compact manifold admits an almost complex structure [36].
For example, if a 4-dimensional manifold M admits an almost complex structure,
one has the Hirzebruch signature theorem [25]:

Theorem 16 The signature b+
2 − b−2 of a compact 4 dimensional manifold M ad-

mitting an almost complex structure (compatible with the orientation) is given by

b+
2 − b−2 =

1
3
(c2

1 − 2c2),

where the ci’s are the Chern classes of TM considered as a complex (rank 2) vector
bundle.

Thus S4 does not admit an almost complex structure, because one would have
c2
1 = 0 = b+

2 = b−2 , because H2(S4,Z) = 0, while c2(S4) = e(TS4) = χtop(S4) = 2.
When we introduce integrability conditions, we are led to two distinct notions,

that of complex structure, where one asks that the almost complex structure comes
from a true complex structure :this is characterized by the the Newlander-Nirenberg
theorem :

Theorem 17 An almost complex structure comes from a complex structure if and
only if the bracket of two vector fields of type (1, 0) is again of type (1, 0).

In the symplectic direction, we might want that the non-degenerate 2-form ω be
closed, which leads to the notion of symplectic manifold. There are obvious obstruc-
tions for a 2n-dimensional manifold to be symplectic: namely, if M is symplectic,
the closed 2-form ω has a cohomology class [ω] in H2(M,R), and ωn being a volume
form, we see that [ω]n does not vanish in H2n(M,R). Thus in particular [ω] 6= 0. For
example, the sphere S6, which admits a non-degenerate 2-form (cf [36], p 118), is not
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a symplectic manifold. It is not known however if S6 carries a complex structure,
while it carries an almost complex structure.

Finally, one might want to impose both integrability conditions, namely that I
be integrable and that ω be closed, and this is exactly the Kähler condition. As we
have seen before, this imposes a lot of supplementary topological restrictions. The
easiest one is the fact that the odd Betti numbers should be even, because of the
Hodge decomposition

H2k+1(X) = ⊕p+q=2k+1H
p,q(X)

together with the Hodge symmetry hp,q(X) = hq,p(X) (Theorem 3). It is well known
that for complex surfaces, being Kähler is equivalent to the condition that b1 (hence
also b3 by Poincaré duality) is even.

More subtle restrictions are the following:
- The Hodge decomposition on the cohomology of a compact Kähler manifold is

compatible with the cup-product, or in other words, the complex cohomology ring
is bigraded, with a bigradation which satisfies the Hodge symmetry. It is easy to
see that not any cohomology ring admits such a bigradation.

- The hard Lefschetz theorem implies that the operator L is injective on Hk(X,R),
for k < dimX. Thus we get that the even Betti numbers b2i(X) are increasing with
i in the range 2i ≤ n, and similarly for the odd Betti numbers.

- Further restrictions are given by the second Hodge-Riemann bilinear relations,
for example, in the surface case, they say that the intersection form is positive
definite on the space (H2,0(S) ⊕ H0,2(S)) ∩ H2(S,R) ⊕ R[ω] and negative on the
supplementary space H1,1(S)R ∩ [ω]⊥. As the first space has odd dimension, one
concludes that b+

2 is odd for a compact Kähler surface.
These restrictions are purely topological and do not depend on the symplectic

structure. One might wonder if some of them are already satisfied in the symplectic
case, or ask whether those properties which involve only the Kähler class are sat-
isfied in the symplectic case. But the answer to this is negative. There are known
examples of symplectic non Kähler manifolds, starting from real dimension 4 (cf
[36] p 89 for a non simply connected example, quotient of R4, and [35] for simply
connected examples). The hard Lefschetz theorem imposes a non trivial condition
for a symplectic compact manifold to be Kähler, as it asks that the L operator,
which depends only on the symplectic structure, satisfies the Lefschetz theorem 5.
There are examples of symplectic manifolds not satisfying the Lefschetz property.
Namely, the Lefschetz property implies that odd Betti numbers are even, because it
implies by Poincaré duality that the skew-symmetric form

qω(α, β) =
∫

X
ωn−k ∪ α ∪ β), α, β ∈ Hk(X,R), k odd,

is non-degenerate.
Thus the (real) 4-dimensional example of [36], p 89, which has b1 = 3, does not

satisfy the Lefschetz property. It is also possible to construct examples of compact
symplectic manifolds with no odd cohomology, and which do not satisfy the Lefschetz
property.

Note that if M is symplectic, with symplectic form Ω, a small perturbation of
Ω will have rational cohomology class. This is the starting point in Donaldson’s
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construction of symplectic submanifolds of codimension 2, namely one can choose
the symplectic form to be integral and hence the first Chern class of a complex line
bundle.

The contents of the results we will present in the next section is that in the
Kähler context, imposing that the Kähler form be of rational class, that is choosing
the Kähler complex structure to be projective, may be impossible for topological
reasons.

2.3.3 Statement of the results

We want to state here the existence of compact Kähler manifolds for which there are
topological obstructions to the existence of projective complex structures on them.
As mentioned in section 2.3.1, this disproves any higher dimensional generalization
of Kodaira’s theorem 14, except maybe Conjecture 1. Our first result is the following
(cf [42]).

Theorem 18 There exist, in any dimension ≥ 4, examples of compact Kähler man-
ifolds which do not have the integral cohomology ring of a projective complex mani-
fold.

The first example we constructed was non simply connected and in fact bimeromor-
phic to a complex torus. Deligne provided then us with lemma 6, which allowed him
to prove the following ([11], [42]):

Theorem 19 There exist, in any dimension ≥ 4, examples of compact Kähler man-
ifolds, which do not have the rational or even complex cohomology ring of a projective
complex manifold.

We then realized that Deligne’s lemma 6, combined with Hodge index theorem,
could be used to produce examples of simply connected compact Kähler manifolds
satisfying the conclusion of Theorem 18, at least in dimension ≥ 6 (cf [42], section
3).

All these examples were built by blowing-up in an adequate way compact Kähler
manifolds which had the property of deforming to projective ones, namely self-
products of complex tori, or self-products of Kummer varieties. This led open the
possibility that under bimeromorphic transformations, the topological obstructions
we obtained above for a Kähler manifold to admit a projective complex structure
would disappear. However we proved in [43] the following result.

Theorem 20 In dimensions ≥ 10, there exist compact Kähler manifolds, no smooth
bimeromorphic model of them has the rational cohomology ring of a projective com-
plex manifold.

We will give the examples and the detail of the argument in the next sections. Let us
say that the topological obstruction that we exhibit comes from the Hodge-Riemann
bilinear relations. The point is that the Hodge decomposition on the cohomology
groups of a compact Kähler manifold is compatible with the ring structure (cf section
1.2.3). If the ring structure is rich enough, this may force the Hodge structures to
admit endomorphisms of Hodge structures. But certain endomorphisms of Hodge
structures are forbidden by the existence of a polarization.
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3 Hodge theory and homotopy types

3.1 Construction of examples

3.1.1 The torus example

The simplest example of a compact Kähler manifold which cannot admit a projective
complex structure for topological reasons is based on the existence of endomorphisms
of complex tori which prevent the complex tori in question to be algebraic. Let Γ
be a rank 2n lattice, and let φ be an endomorphism of Γ.

Assume that the eigenvalues of φ are all distinct and none is real.
Choosing n of these eigenvalues λ1, . . . , λn, so that no two of them are complex

conjugate, then one can define

Γ1,0 := eigenspace associated to the λ′is ⊂ ΓC,

and
T = ΓC/(Γ1,0 ⊕ Γ).

Clearly, the extended endomorphism φC of ΓC preserves both Γ1,0 and Γ, and thus
descends to an endomorphism φT of T .

We have then the following [42]:

Proposition 3 If n ≥ 2 and the Galois group of the field Q(λ1, . . . , λn, λ1, . . . , λn),
(that is the splitting field of Q(φ),) acts as the full symmetric group S2n on the
eigenvalues of φ, then T has Hdg2(T,Q) = 0 and thus T is not projective.

Remark 5 In fact it would suffice here to know that the Galois group acts bitran-
sitively on the eigenvalues. However, for the purpose of [43], which needs also the
absence of Hodge classes of higher degree on T × T̂ , except for the obvious ones, this
stronger condition on the Galois group is needed.

Indeed, one looks at the action φ∗T of φT on H2(T,Q) =
∧2 Γ∗Q. φ∗T identifies to

∧2tφ. The assumption on the Galois group then shows that this action is irreducible.
On the other hand, this action preserves the subspace Hdg2(T,Q), which must

then be either 0 or the whole of H2(T,Q). As n ≥ 2, we have H1,1(T ) 6= H2(T,C)
and thus Hdg2(T,Q) = 0.

Our first example was the following. Let (T, φT ) be as before, satisfying the
assumptions of Proposition 3. Inside T × T we have the four subtori

T1 = T × 0, T2 = 0× T, T3 = Diag, T4 = Graph(φT ),

which are all isomorphic to T .
These tori meet pairwise transversally in finitely many points x1, . . . , xN . Blowing-

up these points, the proper transforms T̃i are smooth and do not meet anymore. We
can thus blow-up them all to get a compact Kähler manifold X. This is our example.

Theorem 21 If Y is a compact Kähler manifold such that there exists an isomor-
phism

γ : H∗(Y,Z) ∼= H∗(X,Z)

of graded rings, then Y is not projective.
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In other words, X does not have the cohomology ring of a projective complex man-
ifold. We shall explain later on a simple proof of that. With the help of Lemma 6,
to be explained later on, Deligne then proved:

Theorem 22 If Y is a compact Kähler manifold such that there exists an isomor-
phism

γ : H∗(Y,Q) ∼= H∗(X,Q)

of graded algebras, then Y is not projective.

Deligne also modified our example X in such a way that in the statement above,
rational cohomology can be replaced with complex cohomology (cf [42], section 3.1).

3.1.2 Simply connected examples

This example is very similar, but in our first geometric argument to prove Theorem
21, we used heavily the Albanese map and this made the argument unlikely to work
for simply connected varieties. However a combination of Deligne’s lemma and
Hodge index theorem allows finally to adapt the argument to the simply connected
case, replacing the study of the Hodge structure on H1 by a study of the Hodge
structure on H2.

We start with the same torus T as before, but we ask now that n ≥ 3. Let us
introduce the Kummer variety K of T , which is the desingularization of the quotient
T/{±Id} obtained by blowing-up the 2-torsion points (which are the fixed points
of the involution −Id). K ×K is a compact Kähler manifold, which contains two
submanifolds birationally isomorphic to K, namely the diagonal ∆ and the graph
G of the rational map φK : K 99K K deduced from φT . (φK is not necessarily
holomorphic because φT may send a non 2-torsion point to a 2-torsion point.) We
can then blow-up ∆, and then blow-up the proper transform of G. This gives our
second example X ′. X ′ is simply connected as K is simply connected.

This last fact can be seen as follows: K is an étale quotient of T away from its
exceptional divisors over the 2-torsion points. Denoting

U := K \ {exceptional divisors over 2− torsion points},

we thus have a surjection π1(U, u) → π1(K,u), where π1(U) identifies to the sub-
group of End (ΓC) generated by translations by Γ and −Id. This surjection contains
in its kernel the classes of the loops which start from u, turn around one of the ex-
ceptional divisors and then come back to u by the same path in reversed way. These
are well defined under conjugation by the considered exceptional divisor. But the
class γ of any of these loops sends to −Id, via the exact sequence

0 → Γ → π1(U) → ±Id → 0.

As Γ is commutative and the brackets [−Id,Γ] generate 2Γ, one concludes that 2Γ
goes to 0 in π1(K), and thus that π1(K) is a quotient of Γ/2Γ ⊕ {±Id}. But as
one can see, for an exceptional divisor Dη associated to a 2-torsion point η ∈ Γ/2Γ,
the class of the loop γη described above is equal modulo 2Γ to η + (−Id). Hence
we have the equalities η + (−Id) = 0 in π1(K) for all η ∈ Γ/2Γ, which shows that
π1(K) = 0.
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We shall sketch in the next section the proof of the following

Theorem 23 If Y is a compact Kähler manifold such that there exists an isomor-
phism

γ : H∗(Y,Q) ∼= H∗(X ′,Q)

of graded algebras, then Y is not projective.

3.1.3 Bimeromorphic examples

The previous examples are all bimeromorphic to the simplest possible compact
Kähler compact manifolds, namely self-products of complex tori, or self-products
of Kummer manifolds. These manifolds admit arbitrarily small deformations which
are projective (Example 8). We sketch now the construction of [43].

We start again from a pair (T, φT ) satisfying the assumptions of Proposition
3, but ask that n ≥ 4. We introduce the dual complex torus T̂ = Pic0(T ) which
parameterizes topologically trivial holomorphic line bundles on T . Recalling that
T corresponds to a weight 1 Hodge structure (Example 4), T̂ is the complex torus
corresponding to the dual weight 1 Hodge structure.

On T × T̂ we have the Poincaré line bundle L which is determined by the con-
ditions:

1. The restrictions L|T×0 and L|0×T̂
are trivial.

2. For each t ∈ T̂ parameterizing a line bundle Lt on T , the line bundle L|T×t is
isomorphic to Lt.

We also have the line bundle Lφ := (φT , Id)∗L.
Consider the two vector bundles on T × T̂

E = L ⊕ L−1, Eφ = Lφ ⊕ L−1
φ .

They have associated P1-bundles

P(E), P(Eφ),

and we can take the fibered product

P(E)×
T×T̂

P(Eφ).

Recall now that K is birationally the quotient of T by the involution ι := −IdT

and introduce similarly K̂ which is the quotient of T̂ by ι̂ := −Id
T̂
. Thus K × K̂ is

birationally the quotient of T × T̂ by the group generated by (ι, Id) and (Id, ι̂). One
can show that this group lifts to a group G ∼= Z/2Z×Z/2Z acting on P(E)×

T×T̂
P(Eφ)

(The point is that (ι, Id)∗L ∼= L−1 so that we can lift (ι, Id) to an action on L⊕L−1

permuting the two summands, and similarly for Lφ.)
Our manifold X ′′ will be any desingularization of the quotient of P(E)×

T×T̂
P(Eφ)

by G.

Theorem 24 For any compact Kähler manifold Y , and any smooth bimeromorphic
model X̃ ′′ of X ′′, if there exists an isomorphism

γ : H∗(Y,Q) ∼= H∗(X̃ ′′,Q)

of graded algebras, then Y is not projective.
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The proof uses a sophisticated elaboration of the arguments used for the proof of
Theorem 23.

3.2 Proofs of the theorems

3.2.1 The torus case

We want to sketch here the proof of Theorem 21. Thus let X be constructed as in
section 3.1.1, and Y, γ : H∗(Y,Z) ∼= H∗(X,Z) be as in the Theorem. Our goal is to
show that the Hodge structure on H1(Y,Z) cannot be polarized, thus proving that
Y is not projective.

The cohomology group H2(X,Z) contains the classes ei of the exceptional divi-
sors Ei over the T̃i. We claim the following:

Lemma 5 The classes ai := γ−1(ei) are Hodge classes on Y .

Assuming this, it follows that the morphisms of Hodge structures

∪ai : H1(Y,Z) → H3(Y,Z)

have for kernels sub-Hodge structures Li of H1(Y,Z). Of course Li = γ−1(Ker ∪ei).
Recall now that X is obtained from T × T by blow-ups. Thus H1(X,Z) =

H1(T,Z)⊕H1(T,Z). Furthermore, an easy computation involving the cohomology
ring of a blow-up (cf [44], I, 7.3.3) shows that Ker ∪ ei, i = 1, . . . , 4, are equal
respectively to

pr∗2H
1(T,Z), pr∗1H

1(T,Z), ∆−, Graph(φ∗T )−,

where
∆− := {(α,−α), α ∈ H1(T,Z)},

Graph(φ∗T )− = {(φ∗T α,−α), α ∈ H1(T,Z)}.
But it follows that the 4 sub-Hodge structures Li of H1(Y,Z) satisfy

L1 ⊕ L2 = H1(Y,Z)

as Hodge structures, and furthermore

L3 ⊂ L1 ⊕ L2, L4 ⊂ L1 ⊕ L2

can be seen as the graphs of two isomorphisms of Hodge structure L1
∼= L2. Thus

we can set L1 = L2 =: L, and the second isomorphism gives an automorphism ψ of
L. It is immediate to see that ψ identifies to φ∗T .

Thus we proved that the Hodge structure on H1(Y,Z) is a direct sum L ⊕ L,
and that L carries an automorphism wich is conjugate to φ∗T . By proposition 3, L
is not polarizable, and neither the Hodge structure on H1(Y,Z) .

It remains to prove the Lemma. We will be brief here, as the use of Deligne’s
lemma 6 gives a much better approach to this statement, working for the rational
cohomology ring as well. The point is that looking at the isomorphism γ, we can
conclude that the Albanese map aY of Y must be birational to its image, as it is
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the case for X. Indeed this property can be seen on the cohomology ring of a m-
dimensional Kähler compact manifold, because it is equivalent to the fact that the
natural map given by cup-product:

2m∧
H1(Y,Z) → H2m(Y,Z)

is an isomorphism.
Having this, one checks that the γ−1(ei) must be in the kernel of the Gysin map

(aY )∗ : H2(Y,Z) → H2(Alb(Y ),Z),

and because aY is birational, this kernel consists of Hodge classes.

3.2.2 Deligne’s lemma and applications

As we have seen in the previous proof, the key point under the assumptions of
Theorem 21 was to show that certain classes in H2(Y,Z) must be Hodge classes,
and then use them to show the existence of automorphisms of Hodge structures
which prevent the existence of a polarization on the Hodge structure of H1(Y,Z).

The following provides an alternative proof for Lemma 5, namely the fact that
the classes γ−1(ei) must be Hodge classes, even if γ is only an isomorphism of rational
cohomology rings, which leads to the proof of Theorem 22.

Let A∗ = ⊕Ak be a graded Q-algebra, and assume that each Ak carries a weight
k Hodge structure, compatible with the product. (Recall that this means that the
product map

Ak ⊗Al → Ak+l (3.15)

is a morphism of weight k + l Hodge structures.)

Lemma 6 Let Z ⊂ Ak
C be a closed algebraic subset defined by homogeneous equa-

tions expressed only in terms of the product map on A∗, and let Z ′ ⊂ Z be an
irreducible component of Z. Assume the vector space < Z ′ > generated by Z ′ is
defined over Q, that is

< Z ′ >= B ⊗ C,

for some Q-vector subspace B of Ak.
Then B is a rational sub-Hodge structure of Ak.

Here, by “defined by homogeneous equations expressed only in terms of the product
map on A∗”, we mean eg the following kind of algebraic subsets:

1. Z = {α ∈ Ak
C, αl = 0 in Akl}, where l is a fixed integer.

2. Z = {α ∈ Ak
C, rk (α· : Al → Ak+l) ≤ m} where l, m are fixed integers.

The proof is immediate. Indeed, as B is rational, to say that it is a sub-Hodge
structure of Ak is equivalent to say that BC is stable under the Hodge decomposition,
or equivalently, that BC =< Z ′ > is stable under the C∗-action (see section 1.1.3)
defining the Hodge decomposition.

But this is immediate because the compatibility of the Hodge structures with
the product is equivalent to the fact that the product map (3.15) is equivariant with
respect to the C∗-actions on both sides. Hence Z, and also Z ′, are stable under the
C∗-action, and thus, so is < Z ′ >.
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A first application of this is the following proof of Lemma 5. (In fact we will
prove a slightly weaker statement, but which is enough for our purpose.) First of
all, consider the subset P ⊂ H2(X,Q) generated by classes of exceptional divisors
over T ×T . This set P is characterized intrinsically by the cohomology ring of X, as
being the subspace annihilating (under cup-product) the image of

∧4n−2 H1(X,Q)
in H4n−2(X,Q).

Inside P , there is the subspace P ′ generated by the classes of the total transforms
of exceptional divisors over points. This P ′ has the property that for any a ∈ P ′,
the cup-product map a∪ : H1(X,Q) → H3(X,Q) vanishes, and in fact P ′ is the
subspace characterized by this property. Thus by Deligne’s lemma, we find that
both γ−1(P ′) and γ−1(P ) are sub-Hodge structures of H2(Y,Q).

Finally, we look at the natural map induced by cup-product on Y :

µ : γ−1(P )/γ−1(P ′) → Hom (H1(Y,Q),H3(Y,Q)).

Looking at the structure of the cohomology ring of X, we find that the set of elements
p of (γ−1(P )/γ−1(P ′)) ⊗ C for which µ(p) : H1(Y,Q) → H3(Y,Q) is not injective
is the union of the four lines generated by ai = γ−1(ei) (or more precisely their
projections modulo P ′). Hence Deligne’s lemma shows that the projection of each
ai in γ−1(P )/γ−1(P ′) is a Hodge class. The rest of the proof then goes as before,
because we conclude that the µ(ai) are morphisms of Hodge structures, which is the
only thing we need.

Let us give a few other applications of Deligne’s lemma, towards the proof of
Theorem 23.

Consider the manifold X ′ constructed in section 3.1.2. Recall that X ′ admits a
holomorphic map ψ to T/±Id× T/±Id. There are thus two Q-subalgebras

A∗1 := (pr1 ◦ ψ)∗H∗(T/±Id,Q), A∗2 := (pr1 ◦ ψ)∗H∗(T/±Id,Q)

of H∗(X,Q).
One can show the following:

Lemma 7 Irreducible components of

Z = {α ∈ H2(X,Q), α2 = 0}

are given as
Zi = {(pri ◦ ψ)∗α, α ∈ H2(T/±Id,Q), α2 = 0}.

Furthermore we have < Zi >= A2
i .

Let Y, γ be as in Theorem 23. Deligne’s Lemma combined with Lemma 7 gives
us:

Lemma 8 The two subspaces γ−1(A2
i ) are rational sub-Hodge structures of H2(Y,Q).

The conclusion of the proof of Theorem 23 uses now two ingredients.
First of all, Lemma 3 guarantees us that the Hodge structures on γ−1(A2

i ) ⊂
H2(Y,Q) are non trivial.

Next, we consider P ⊂ H2(Y,Q) defined as the annihilator of the image of⊗2n−1(γ−1(A2
1)⊕ γ−1(A2

2)) in H4n−2(Y,Q). This space is generated by the γ−1(e),
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where e are the classes of the exceptional divisors of the map ψ. This P is a sub-
Hodge structure of H2(Y,Q) by Deligne’s lemma. Looking at the cup-product map

∪p : γ−1(A2
1)⊕ γ−1(A2

2) → H4(Y,Q), p ∈ P

and applying Deligne’s Lemma again, one concludes that P has a lot of Hodge
classes, and finally, as in the end of the previous section, that the two rational
Hodge structures γ−1(A2

1) and γ−1(A2
2) are isomorphic, say to L, and that L carries

an automorphism of rational Hodge structures conjugated to ∧2φ∗T .
But the action of ∧2φ∗T on H2(T/±Id,Q) = H2(T,Q) is irreducible, and as the

Hodge structure on γ−1(A2
i ) is non trivial, we conclude that γ−1(A2

i ) contains no
non zero Hodge classes. Thus all the Hodge classes of H2(Y,Q) lie in P , and it is
then easy to conclude that there is no rational Kähler class on Y , as classes in P
cannot polarize the Hodge structure on H2(Y,Q).

3.3 Concluding remarks

In conclusion, the results in [42], [43], [45] show that there is an important gap
between Kähler compact and complex projective geometry. Results of [45] point out
a gap from the point of view of analytic geometry, while results of [42] show that
there is even a gap from the point of view of topology.

It would be interesting to investigate other important conjectures from the point
of view of Kähler geometry. A number of results are not known to hold in the
general Kähler case. For example, the main results of Mori et al on the minimal
model programm are not known in Kähler geometry. It is conjectured (and proved
up to dimensions 3) that projective manifolds of negative Kodaira dimension are
uniruled. Is this conjecture reasonable in the general Kähler case?

We would like to point out also a number of interesting questions asked by
Catanese, concerning his Q.E.D. equivalence. Q.E.D. equivalence is the equivalence
relation between complex projective (or singular compact Kähler) varieties with
canonical singularities generated by:

1. Birational equivalence.

2. Deformation equivalence (allowing only singular fibers with canonical singu-
larities).

3. Quasi-étale maps.

Here quasi-étale means étale in codimension 1. One question asked in [9] is the
following.

Question. Is any Kähler compact manifold QED equivalent to a projective one?

This is not a priori disproved by our example of section 3.1.3, which up to
birational equivalence is a quotient of a P1 × P1-bundle on a product T × T̂ . The
fixed points of the group action are in codimension ≥ 2, so that the quotient map is
quasi-étale. One can show that the P1 × P1-bundle on the product T × T̂ does not
deform to a projective manifold; however it is unclear if this property remains true
for any of its smooth bimeromorphic models.
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Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975).
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