Some results and problems
on quantum Bell-type inequalities
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4 old and 6 new theorems (without proofs), and 11 problems are presented in this review on single-time
quantum Bell-type inequalities.*

1. Quantum-free prelude

Behaviors

Suppose that two correlated, but non-interacting subsystems of a physical system are given. Consider
some finite set of (generally, incompatible) measurements over the first subsystem, each measurement having
a finite set of possible outcomes. Denote by M, the set of possible outcomes of the k-th measurement; we
treat sets My,..., Mg as disjoint and put M = M; U...U Mg. A probability p,, corresponds to each
m € M, that is, the probability of obtaining the result m from the corresponding measurement k (m € My);

S0,
VE=1,...,K > pm=1 (1.1)
me My

This p,, is in fact a transition probability & — m, but we prefer** one-index notation for it, exploiting the
fact that k is uniquely determined by m. Similarly, for the second subsystem we introduce N = N;U...UNg,

and Vi=1,...,L Y pa=1. (1.2)
neN;

We treat N as being disjoint of M ; this allows us to use the same letter p both for p,, and for p,.

For examining correlations, introduce joint probabilities: p,,, is the probability of obtaining the com-
bination (m,n) of results from a pair (k,!) of measurements (m € My, n € N;). So,

Vk,n Z Pmn = Dn; Vi, m Z DPmn = Pm- (1.3)
meMy neN,;

Each family {pmn}mem,nen of nonnegative numbers satisfying®*** (1.1-1.3) is called a behavior over the
given behavior scheme (M, ..., Mg; Ny,...,NL).
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* For a more embracing, but older and more concise review see [KT92, Sect. 1].

** Matrix notation, as pg; or p(k — [), obscures the symmetry of the situation: points of M; may be
rearranged independently of M, and so on.

*** More exactly: such that (1.3) is fulfilled with some {pm }menm, {Pn}nen satisfying (1.1), (1.2).
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A behavior {pmn} is called deterministic, if each pp,, is either 1 or 0. Clearly, a deterministic behavior
may be determined by ay € My,...,ax € Mg and 81 € Ny,...,0 € Np:

Papp, =1, other pp,, =0.

Hence, the set of deterministic behaviors may be identified with M; x ... x Mg x Ny X ... x Np.
The set of all behaviors Xp is a convex polytope of dimension

d= (M|~ K+1)(N|-L+1) - (1.4)
here |M| = |M1| + ...+ |Mg| means the number of elements in M. Each deterministic behavior is a vertex
of the polytope: Xps C ex(Xn);

here Xpp is the set of deterministic behaviors (it is finite, | Xpg| = |M1| - ... |Mk| - |N1|-...-|Nz]), and

ex(Xp) means the set of extremal points (vertices) of Xg.
It is vital for the very existence of any Bell-type inequality (classical or quantum), that in general

XDB 75 ex(XB),

or, what is the same,
CO(XDB) 75 XB;

here co(Xpg) means the convex hull of Xpg. It is another convex polytope Xgpp = co(Xpg) of the same

dimension d; and
XDB = ex(XHDB).

Behaviors belonging to Xupp are called hidden deterministic, because they (and only they) can be described
in the framework of a local hidden variables theory. So, it is vital that in general

XupB # XB.

Inequalities
A linear function of a behavior may be written as

Z )\mnpmn;

k,. meM;
neN;

or, what is the same,

with arbitrary real-valued functions fr; : My x N; = R. The value of the function on a deterministic behavior

(a1,...,ak;B1,...,BL) is flon,... o581, B0) = Y fulak, Br). (1.6)
k,l

Clearly it is a special kind of function on M; X ... x Mg x Ny X ... x Np. The space of all such functions
is (d + 1)-dimensional (d being defined by (1.4)) and may be identified with the space of all linear functions
of behaviors (the additional dimension resulting from constant functions).
Positive* functions of the form (1.6) constitute a polyhedral convex cone in the above (d+1)-dimensional
space. Being the cone dual to Xupg, it may be denoted by Xgpg. So,
fe€Xgpg < VreXups f(z)>0; (1.7a)
z € Xupg <<= VfeXapg f(z)>0. (1.70)

The larger polytope Xg generates a smaller cone:
Xp D Xups, X # Xupp = Xpg C Xupg, X5 # Xfps-

Each element f of X{pg, not belonging to Xg, determines a classical Bell-type inequality f(z) > 0.
But a finite number of them is of special interest; these are extremal rays.

* Not strictly; that is, f(ai,...,ak;B1,---,85) > 0 for all combinations of variables.
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A classical Bell-type inequality f(x) > 0 is called extremal, if f lies on an extremal ray of the cone,
f € exx(Xgpg) \ XB-
Considering all extremal classical Bell-type inequalities f;(z) > 0,..., f,(z) > 0, we obtain

Ve Xg (z€Xupp <= fi(z)>0,...,f.(x)>0). (1.8)

So, these inequalities form a full and non-redundant set of consequences of local realism for a given behavior
scheme.
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a non-deterministic
extremal behavior This face is XupnCXqeCXe

axh tremal
\ Dell-type
1nequaity

Xs{ Xups
This vertex is
a deterministic
behavior
\
A three-dimensional caricature to Xg and Xups The set Xqs of quantum behaviors (see Sect. 2)

Fig. 2

The simplest scheme
The simplest non-trivial behavior scheme is (2 4+ 2) x (2 + 2):

P11 P12 | P13 D14
P21 P22 | P23 P2a Pm1 + Pm2 = Pm3 + Pm4, (1.9)
P31 P32 | P33 P34 Pin + P2n = P3n + Pin-

P41 Pa2 | Pa3  Paa
The scheme has numerous symmetries; 8 “horizontal” symmetries
(p1p2|p3pa), (prip2|paps), (p2pi|p3ps), (P2pi|paps),
(p3pa|pip2), (P3pa|p2pi), (paps|pip2), (paps|p2pi)

together with 8 similar “vertical” symmetries lead to a symmetry group of 64 elements, allowing us to give
a concise description of Xg and Xypg. Both sets are 8-dimensional (d = (4 —2+1)(4—-2+1)—1=28)
convex polytopes; X has 24 vertices and 16 faces, Xgpp has 16 vertices and 24 faces. Vertices of Xypp are
exactly the deterministic behaviors; one of them follows, with the others being symmetric to it:

(1.10)

They are all vertices of Xg, as well; 8 other vertices of Xp, non-deterministic extremal behaviors, are
symmetric to the following one:

(1.11)

The dual space may be identified with the 9-dimensional space of functions f of four binary variables
i, s, f1, B2, taking two values £1 each, of the form

ara1 + a2as + b1 f1 + b2f2 + cria1 1 + craa1 B2 + ca10281 + ca2anfa +d (1.12)
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with 9 coefficients ay, b, ¢k, d. Such a function is identified with the following linear function of a behavior:
a1 + agaz + b1 1 + b2fB2 + criyin + ci2viz + ca1y21 + ca2ye2 +d (1.13)
where a1 = (P11 + p12) — (P21 + P22) = (P13 + P14) — (P23 + P2a),

Y11 = P11 — P12 — P21 + P22,
and so on. Now, one face of Xg is

(1.14)

o1+ 1 —m1 <1, (1.15)

with the others being symmetric. They are all faces of Xupg, as well; 8 other faces of Xuypg, extremal
classical Bell-type inequalities, are symmetric to the following one:

71+ Y2 + 721 — 22 < 2. (1.16)

Polytopes Xg and Xupp are dual to one another: there exists a symmetric non-degenerated bilinear
form b on the 8-dimensional space such that

z€Xp <= Vyé€ Xups b(z,y) <1;

1.17
y€Xupp <<= VzeXp b(m,y) <1. ( )

The matrix of the form b in the basis (a1, a2, 81, 82,711, Y12, Y21, Y22) follows:

—1/2 —1/2 0 0
—1/2 +1/2 0 0 0
0 0 —1/2 —1/2

¢ 0 S /4 —1/4 —1/4 —1/4 | - (1.18)

—1/4 +1/4 —1/4 +1/4
—1/4 —1/4 +1/4 +1/4
—1/4 +1/4 +1/4 —1/4

0

Remarks
A clear and general understanding of the geometric meaning of classical Bell-type inequalities was

reached by M. Froissart [Fr81]. He pointed out that:

(1) Any “logical configuration” (which is treated more extensively by him than “behavior scheme” by
myself) determines a polytope, consisting of all probabilities (here “behaviors”) compatible with local
realism.

(2) Faces of the polytope are exactly classical Bell-type inequalities.

(3) The faces may be found algorithmically, in a finite number of steps.

(4) Several examples were solved by a computer, giving new inequalities.

Strangely enough, I failed to find even a single reference to [Fr81], except for mine. Accordingly, a recent
paper [Le89] is cited as giving the most general set of inequalities following from local realism [HS91, p.46];
the very idea of reducing the continuum of inequalities to a finite number does not appear in [Le89].

Having the algorithm [Fr81], we still hope for an analytical method of finding the extremal classical
Bell-type inequalities. Some progress was made by Fine [Fi82] and Garg, Mermin [GM84], but the problem
remains unsolved.

The class of all behaviors Xp appeared in [KT85], [Ra85]. Each behavior is a convex combination (a
probabilistic mix) of extremal behaviors. However, extremal behaviors are identified for the (24 2) x (2 + 2)
scheme only. An algorithm is again available, but no analytical method has been proposed.

The duality of Xp and Xpupp for the (2 4+ 2) x (2 + 2) scheme seems to be new. Its origin and meaning
remain vague.

Another general approach to classical Bell-type inequalities was presented by Pitowsky [Pi86, 89, 91a].
His “correlation polytopes” have much in common with polytopes Xppp. Pitowsky proved the high al-
gorithmical complexity* of several natural tasks related to his polytopes [Pi89, 91a]. A general inequality
including known classical Bell-type inequalities was pointed out [Pi91, eq. (2.5)] with a challenge to find an
inequality not contained in the given one.

Generalization of Xp and Xgpp to any finite number of subsystems is straightforward. Much more
broad generalization, including continuous variables instead of k,[, m,n; continuous space-time instead of a

* Modulo some well-known problems of the theory of algorithmical complexity, see [Pi89, 91a].
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finite collection of space-separated subsystems; and possible non-local observables, was introduced in [KT85].
A discrete multi-time case was considered in [KT92] and, in explicit connection with algebraic field theory,
in [VT92].

2. Quantum restrictions

Behaviors

We continue to consider two correlated but non-interacting subsystems of a physical system, however
the system is now supposed to be a quantum system. Hence, the joint probabilities p,,,, introduced in
Sect. 1, may be expressed as follows:

Pmn = Tr(Fp, B, W), (2.1)
where W is a density matrix, W0, (W) =1, (2.2)
and F,,, F,, are operators, satisfying
YvmeM F, >0, VneN FE,>0, (2.3a)
Vk=1,....K > Fn=1, V¥l=1,...,L Y F,=1, (2.3b)
meE Mj, neN;
YmeMVneN E,F,=F,F,,. (2.3¢)

These are minimal quantum requirements, while maximal ones follow:
Pmn = (Y|P ® P,|¥), (2.4)
where ¥ is an “entangled” state vector,
¥ et ®Ho, (T|®) =1, (2.5)
and P,,, P, are projection operators in H;, Hs respectively:

YmeM P,:H,—H, P.L=P, P2=P,,

" (2.6a)
VneN P,:Hs—Hy, P'=P, P2=P,
Vk=1,....,K > Pp=1, Vl=1,...,L Y P,=L1 (2.6b)
meM;, neN;

It follows from (2.6b) that Py, Py, = 0 for my,ma € My, my # ma. So, each {Pp, }menm, is a “projection
measure.” Without loss of generality we may suppose that each m is a real number, that is, M C R, and
also N C R. Forming Hermitian operators

Ay= > mPn, Bi=)Y_ nP, (2.7)

me M, neN;

we see that {pmn tmen, nen, is nothing but the joint distribution of two observables Ay, B; (acting on My, Ho
correspondingly). Note that in general

Ay Ay # Aks Ak By, B, # By, By, .

The setting (2.1-2.3) is more general than (2.4-2.6) in the following;:
(1) The quantum state may be mixed.
(2) Measurements may be non-ideal.
(3) Two observed subsystems may be correlated with other (unobserved) subsystems.
(4) The von Neumann algebra for the system is not necessarily a tensor product, because of superselection,
non-type-I factors, or other reasons.

Nevertheless:

The class of behaviors generated by the setting (2.1-2.3) coincides with the class of behaviors
generated by the setting (2.4-2.6).




A behavior* {p;,,} admitting a representation of the form (2.1-2.3), and hence also (2.4-2.6), is called
a quantum behavior.

The set of all quantum behaviors (over a given behavior scheme (My,..., Mg;Ni,...,NL)) is a d-
dimensional convex compact body Xqg (d being defined by (1.4));
Xups C XqgB C X, (2.8)

and in general
8 Xupp # Xqb # Xb; (2.9)

see Fig. 2. The noncoincidence Xupp 7# XqB is equivalent to the existence of classical Bell-type inequalities,

while the noncoincidence Xqp # X3 is equivalent to the existence of quantum Bell-type inequalities .

Inequalities
The class Xgpp may be defined in terms of (2.1-2.3) or (2.4-2.6), and very simply: by demanding all
used operators to commute. From the quantum point of view, it means that:

Classical Bell-type inequalities are inequalities for commuting observables, while quantum Bell-
type inequalities are inequalities for observables commuting only when related to different subsys-
tems.

In contrast to Xg and Xupg, the convex body Xqg is in general not a polytope. Hence, it cannot be
described by a finite number of linear inequalities. It seems plausible that its boundary 0 Xqg is a piecewise
smooth surface, but this has not been proved.

2.10. Problem. Does the set of quantum behaviors admit a description by a finite number of analytic
inequalities? Or even — polynomial inequalities?

Not any boundary point of Xqg is an extremal point, since 0 Xqgp contains some flat regions (see Fig. 2),
and some flat pieces of smaller dimension. An extremal point of Xqp, — an extremal quantum behavior, is a
quantum behavior that cannot be decomposed into a probabilistic mix of other quantum behaviors. It seems
plausible that the set ex(Xqg) of all extremal quantum behaviors consists of a finite number of analytical
pieces of various dimensions, but this has not been proved.

2.11. Problem. What is the dimension of ex(Xqg), that is, of its most multi-dimensional piece?

XqB, being a convex compact, may be described by an infinite system of linear inequalities. We know
a general form of linear function of a behavior,

f(IL') = Z Z fkl(man)pmna

k,0 meM;
neN;
see (1.5); it is easy to see that
max f(z) = max | max spechk,l(Ak,Bl) ; (2.12)

v€Xan X
the left-hand side is the quantum bound for f; on the right-hand side fi (A, B;) is the operator in H; ® Ha,
resulting from applying the scalar function fi; to the pair of commuting operators Ay, B; introduced in (2.7);
“max spec” means the maximal number belonging to the spectrum of the written operator;** and the outer
maximum is taken over all collections (Ay,...,Ak;Bi,...,Br) of operators on H1, Ha respectively, with

Vk=1,...,K spec(Ag) C My, Vi=1,...,L spec(B;) C N;. (2.13)

So, to find a quantum bound for a linear function, we have to find an “optimal” collection of operators. Its
existence is guaranteed by the fact that Xqp is compact.
2.14. Problem. What are algebraic properties characterizing “optimal” collections of operators?

* Tt is easy to see that numbers p,,, defined by (2.1) or (2.4) under imposed conditions form a behavior
in the sense of Sect. 1. Quantum theory does not predict faster-than-light communication!
** The decomposition of f into the sum of fy; is not unique, but nevertheless the written sum of operators
is determined uniquely.



Correlation matrices

If we restrict ourselves to bilinear functions fi(Ax,B;) = cuArB; in (2.12), we reach the following
notion.

A matrix v = {7y} is called a quantum correlation matrix, if it admits a representation

Vit = Tr(ABW) (2.15)

with some density matrix W and some Hermitian operators Ay, ..., Ak, B1,..., B, satisfying
VE Al <1, VBl <1, (2.16a)
Vk,l ApB; = B A (2.16b)

Here || Ag|| is the operator norm of Ag; so, ||Ax|| <1 if and only if spec(Ag) C [—1,+1]. The above definition
follows the style of (2.1-2.3), but it may clearly be reformulated in the style of (2.4-2.6).

The set of all quantum correlation matrices of a given size K x L is a convex compact body Mqg in the
K L-dimensional space of matrices.

Any matrix from Mqg can be represented in the form (2.15-2.16) with the additional restriction

Yk A7 =1, VI B} =1, (2.17)

that is, spec(Ag) and spec(A4;) contain +1 only.
For any matrix ¢ = {cg; } the corresponding quantum bound is

max Zkl: CriVk = max || ; criArBil], (2.18)

the maximum on the right-hand side being taken over all collections of operators satisfying (2.16) or, equiv-
alently, (2.16b, 2.17).

2.19. Theorem. A matrix {;} is a quantum correlation matrix if and only if it admits a representation

Yot = (Tk, Y1) (2.20)

with some unit vectors zy,y; in a Euclidean space.

Extremal quantum correlation matrices v € ex(Mqg) are of special interest. A necessary condition close
to a sufficient one follows.

2.21. Theorem. Let v € ex(Mqg); let z1,...,ZK,y1,---,yr be unit vectors in R" such that each vector

of R" is a linear combination of z1,...,Zk,¥y1,...,yr; and let vg = (zk,y;) for all k,I. Then

(a) each vector of R" is both a linear combination of z1,...,zx and a linear combination of y;,...,yrL;
(b) any quadratic form @ on R satisfying the equations Q(zr) = 0, Q(y;) = 0 for all k, is identically zero;
(c) there exist numbers Ay, ..., Ak, ft1,...,pr such that

YE 20 D =L Yo 20 Y m=1
k i

and Z A Q(zg) = Z wQ(y;) for any quadratic form @ on R".
k 1

2.22. Theorem. Let unit vectors z1,...,ZTk,¥1,---,yr € R have the properties (a—c) of Theorem 2.21,
and in addition let Ay > 0, gy > O for all k,I. Then v € ex(Mqg), where vi = (zr, y1).

The dimension r of the Euclidean space R" is uniquely determined by v € ex(Mqg); we call r the rank
of v. It follows from (b) and (c) that

1
rrt) g (2.23)
Vectors x1,...,2x,Y1,--.,yr are determined by v up to an isometry.
A matrix v = {vy} is called a classical correlation matrix, if it admits a representation
= (AkB) = [ An()Bi(w)P(de), (2.24)
Q
Vh Ve [Aw)] <1, [Bi(w)] < 1 (2.25)
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here Ay, B; are random variables, that is, measurable functions on a probability space (2, P). Once again, an
additional condition A7 = 1, B = 1 may be imposed without changing the class of all classical correlation
matrices. These form a convex polytope Mypgp in the K L-dimensional space of matrices,

Myupp C Mgg.

There is a natural connection between Mqp and Mupp on the one hand, and Xqg, Xups for the
2+...42)x(24...42) = (2K) x (2L) behavior scheme, on the other. Indeed, a behavior in such a
scheme may be described by means of parameters

ar =(Ar), Bi=(Bi), = (ArB) (2.26)

as in (1.14). The K L-dimensional space of matrices v may now be considered as a subspace of the d-
dimensional space of triples (o, 8,7); hered = (|[M|-K+1)(|]N|-L+1)-1= (2K-K+1)2L-L+1)-1=
K+ L+ KL, see (1.4). The subspace is determined by equations oy = ... =axg =0, 81 = ... = =0.
It is easy to see that the intersection of the subspace with Xupgp is Mups, and the intersection with Xqgn
is Mge. A natural projection of the d-dimensional space onto the K L-dimensional subspace emerges by
discarding all ay, ;. The projection maps Xupgp onto Mupg, and Xqp onto Mqgg.

2.27 Theorem. If v = {yu} € Mqg, then 7' = {,,} € Mupg, where
.2 T,
Vi = _ arcsin i, Tkt =8I0 5 Yk (2.28)

The converse is false. An example follows of v,+' satisfying (2.28) such that v' € Mupg, but v ¢ Mqg:

2 1 -1 -2 -1 3 1 -1 -3 -1
1t 2 11 1 1 v 38 1-1 o1
y==|-1 1 2 1 -1 |, Yy==|-1 1 3 1 -1 |. (2.29)
202 1 1 2 a1 3 Vs -1 1 3 1
-1 1 -1 1 2 -1 1 -1 1 3

2.30. Theorem. Let v = {vu}, V' = {7}, 7" = {7}, and V&, v = vjy7g;- Then

v,v" € Mupg => 7 € Mups;

!

777”€MQB - VEMQB.

2.31. Corollary. Let v = {y;} and 7' = {7}, } be connected by the relation

o oo
Y =Fmw)s  FO =D et D el <L
=1 i=1

Then
v € Mups = 7' € Mups; vyEMgg = 'y'GMQB.

Applying Theorem 2.31 with -1
f@t) = (sinh 5) sin §t

together with Theorem 2.27, we obtain
 —1
v E MQB — (Sinh 5) v E MHDB-
The best constant, however, is the well-known* Grothendieck’s constant Kq:
v E MQB > (K(;)_l v E Mupg- (2.32)

The Grothendieck’s constant has been studied by mathematicians since 1956, but as yet it is only known
that Kg ~ 1.73 £ 0.06. This enigmatic constant is an exact constant for (2.32), when matrices of any size
K x L are considered. For 2 x 2 matrices** the exact constant is /2.

* In mathematics, but not yet in physics!
** And even for 3 X L matrices with any L.



The role that Grothendieck’s constant plays in correlation matrices of any size is the same role
that v/2 plays in 2 x 2 correlation matrices.

It appears to be unexpectedly difficult to give a low-dimensional example of v € Mqp such that
(1/4/2)y ¢ Mupg. The best result is now a 20 x 20 matrix giving the ratio ~ 1.428 > v/2 [FR93].
The simplest scheme

For the (2 + 2) x (2 + 2) behavior scheme we deal with four operators A;, A, By, Ba, see (2.26), such
that A2 =1, B? = 1, see (2.17). Fortunately, all the operators necessarily commute with 4; 4> + A>A; and
BBy + B2 B;. This good fortune (available for the (24 2) x (2 + 2) scheme exclusively!) allows us to reduce
the general case to the well-studied pair of spin-1/2 particles. So, an explicit description of Xqg is available
[Ts80], but it is too cumbersome to be reproduced here. In contrast, Mqg is simple enough: the necessary
condition 2.27 appears to be sufficient for the (24 2) x (2+2) scheme. So, v € Mqg if and only if v’ € Mups
(see 2.28). But +' belongs to Mypg if and only if it satisfies 8 extremal Bell-type inequalities, see (1.8) and
(1.16), that is, Y€ Mups = VE L i+ b + v — 27l < 2. (2.33)
Hence

v€ Mg <= Vk,I |arcsinyii + arcsinvyz 4 arcsin-ys; + arcsinysy — 2 arcsinyg| < 7. (2.34)

Trigonometric functions may be eliminated; an explicit algebraic formula was given [La88]:

711712 — Y21702| < \/1 -7 \/1 — Vi + \/1 — V31 \/1 — V325 (2.35)

and an explicit polynomial formula (of degree 6) was given [Ts85].

Remarks

Investigation of quantum restrictions was started in [Ts80]. Theorems 2.19 and 2.21(a—b) were proved
in [Ts85]; 2.21(c) and 2.22 are new. Theorems 2.27, 2.30, and Corollaries 2.31, 2.32 are due to Grothendieck
[Gr56], but of course for Xqp defined by (2.20) rather than (2.15-2.16); Bell-type version (2.32) of the
corresponding Grothendieck’s result was given in [Ts85], while 2.27, 2.30, and 2.31 are presented for the first
time. Grothendieck’s bounds for K¢ were: 1.571 = 71/2 < Kg < sinh(7/2) ~ 2.301. A better upper bound
Kg < m/2log(1 + v/2) ~ 1.782 was given by Krivine [Kr79]. A lower bound better than 7/2 was recently
found by Reeds [Re93] in connection with a work [FR93] encouraged by [Ts85]. The main result of Fishburn
and Reeds [FR93] states that the constant /2 is not suitable for 20 x 20 matrices. For sizes 4,5, ...,19 the
question remains open!

Another approach was proposed [Pi86, 89] with (2.1) substituted by pp, = Tr((Pm A Pn)W) with
noncommuting projections Py, Pp; here P, A P, = lim, _, (P, P,,)" is the projection onto the intersection
P, (H)N P,(H). Waiving locality, this approach missed crucial points of the theory presented here.

A. M. Vershik repeatedly asked me about the asymptotical ratio (in some sense) between Xqp and
XupBg, as the scheme grows (in some sense); but I am unable to reply.

3. Related properties of observables and states

Behaviors

The further from mathematics and closer to physics, the more detailed the description required for
observables and states implementing quantum behaviors of interest. However, limitations peculiar to present-
day technologies are beyond the scope of this article; see [FMS90, HS91, Sa91] for limitations, and [TWC91,
Zu91, Ha91, YS93] for new technologies.

Any quantum behavior p = {pmn} € Xq may be given by Hermitian operators Ay : H1 — Hi,
B; : Ha — H2 and a density matrix W on H; ® Ha:

Dmn = Tr((Em(Ak) ® En(Bl))W) for m € My, n € Np; (3.1)

here E,,(Ayg) is the spectral projection operator, corresponding to m € My, My = spec(Ag).

3.2. Problem. Does any p € Xqp admit a representation (3.1) with finite-dimensional H;, Ha?

If all Ay commute (that is, Ag, Ag, = Ak, Ag, for all k1, k), then p € Xgpg. If all B; commute, then
again p € Xupp. Conversely, if p € Xyupp for all W, then all Ay commute or/and all B; commute [La87,
p- 117].



rw=>%" c,,W,Sl)QZ) ,52) with some ¢, > 0 and some density matrices ,51) on Hi; and .52) on Hs (such
W are called classically correlated or decomposable), then p € Xypg. The converse is wrong: R.Werner
[We89] discovered the existence of a density matrix W that is not classically correlated, but nevertheless
p € Xupg for any choice of Ay, B;. However, if W = |¥)(¥| for a vector ¥ € H; ® Hs, and p € Xypp for
any choice of Ay, By, then necessarily ¥ = ¥; ® ¥y; see [HS91], [Gi91], [GP92], [MNR92].

Correlation matrices
The notion of quantum correlation matrix (see 2.15-2.16) was defined by means of arbitrary operators.
Surprisingly, it appears to be closely related to anticommuting operators.

Suppose r is an even natural number, and Hermitian operators X,..., X, : H — H satisfy
Vi#j X X;=-X;X;; Vi XP=L1 (3.3)
Then H may be identified with a tensor product H = H, ® H' such that dim H, = 2"/? and each X; acts
in fact on H,, that is, X; = Xi(r) ®1, Xi(T) : Hyr — Hp, 1:H' — H'. The collection (H,; Xl(r),..., T(T))

satisfying (3.3) exists for each r = 2,4,6, ... and is unique up to unitary equivalence. Let us call it Clifford
representation of order r.*
There exists one and only one (up to a phase factor) entangled unit vector ¥ € H,. ® H, satisfying
vi (#Xx" o xM 1wy =1. (3.4)
Let us call it the Clifford singlet state vector of rank r.**
3.5. Theorem. Any quantum correlation matrix v € Mqp may be written as
Y = (P|Ar ® B;|T) (3.6)
where ¥ is the Clifford singlet state vector of some order r, all Ay, B; being some linear combinations of
x o x.

It is a luck! Even the existence of finite-dimensional implementation is not evident (cf. 3.2). However,
the proof is simple: represent v as {(zy,y;) following 2.20, and take

Ay = Za}g)Xi(r), B = Zyl(j)X](.r); (3.7)
i J

(1) (r)
k>

here z,’,...,z; ’ are coordinates of the vector xy.

So, arbitrary operators may be replaced with Clifford operators (that is, linear combinations of Xz.(T)).
The following theorem shows that Clifford operators are irreplaceable for an extremal case.

3.8. Theorem. Let (2.15-2.16) be fulfilled for some v € ex(Mqg), and r = rank(y) be even. Then the
Hilbert space H, on which the operators Ay, B;, W act, admits a decomposition

H=H,9H, QH & H" (3.9)

into a pair of Clifford representation spaces and additional spaces H',H" (of dimensions — zero, finite, or
infinite) satisfying the following two conditions. First,

W= (¥ ¥)W' @ 0 (3.10)

with the Clifford singlet state vector ¥ € H, ® H,. and some density matrix W' on H'. Second, the subspace
H, ® H, ® H' is invariant for all operators Ay, B;, their restrictions onto H, ® H, ® H' being of the form

Alemen =AY ®101,  Blyenenw =19 B @1 (3.11)
with some Clifford operators A;f) , BZ(T).

* For the simplest case r = 2 operators X1(2), X2(2)

Og,0y.
** For r = 2 it may be identified with the well-known singlet state of a pair of spin-1/2 particles, but with
one particle rotated 180° around the z-axis.

may be identified with well-known Pauli spin matrices
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Implementation of an extremal quantum correlation matrix (of even rank) is unique up to
irrelevant tensor factor, irrelevant direct summand, and unitary equivalence. The single Clifford
singlet state implements all matrices of a given rank.

The case of odd r = rank(v) is similar, but more involved; see [Ts85].

Schmidt coefficients
Any unit vector ¥ € H; ® Ho admits a Schmidt decomposition

o
U = Z Aip; ® 0; (3.12)
i=0
with some orthogonal unit vectors p; € Hi, 6; € Hz and some Ag > Xy > ... >0, > /\% = 1. The sequence
{Ai} — the spectrum of ¥ — is the sole invariant of an entangled vector ¥, when no additional structure
on Hi,H- is available.
The singlet state of a pair of spin-j particles has 2j + 1 equal Schmidt coefficients [Me80]:

N=(2j+1)? foro<i<2j+1, X\i=0 fori>2j+1. (3.13)

The Clifford singlet state vector (3.4) of an even rank r has 2"/2 equal Schmidt coefficients. So, the Clifford
singlet state of an even rank r may be identified with the singlet state for the spin j such that 2j +1 = 27/2,
if all operators are considered feasible observables.

3.14. Theorem. Let v € ex(Mqgg), and r = rank(vy) be even. Then for any unit vector ¥ € H; ® Ha the
following two conditions are equivalent.
(a) There exist Hermitian operators A : H; — H; and By : Ha — Ha such that for all &,

||Ak|| S ]., ||Bl|| S ]., and <IIJ|Ak ®Bl|‘IJ) = Ykl-

(b) The spectrum of ¥ has multiplicity 27/2, that is, the sequence of Schmidt coefficients contains each
number 27/2 times.

3.15. Corollary.

It is impossible to implement all quantum correlation matrices (of all sizes K x L) with a single
state vector.

The simplest scheme
Applying Theorem 3.8 to a single but famous extremal quantum correlation matrix

% (i} j) : (3.16)

(the only matrix maximally violating the Bell-CHSH inequality 11 + Y12 + 721 — Y22 < 2), and taking into
account that the Clifford singlet for r = 2 is the usual singlet for spin-1/2 particles, we see that [SW87a,
p.2442], [PR92]:

Each state maximally violating the Bell-CHSH inequality is essentially the same as the singlet
state for a pair of spin-1/2 particles.

Nevertheless, such states in general are mixed [BMR92], since an arbitrary (irrelevant!) density matrix W'
appears in Theorem 3.8 in addition to the (relevant) pure state |¥){(¥|.

It is clear from (3.13) and Theorem 3.14 that the maximal violation of Bell-CHSH inequality can be
implemented with the singlet state of a pair of spin-j particles for any half-integer j [GP92], but for no
integer j [PR92].

Several estimations are known for the maximal violation R of Bell-CHSH inequality, implementable with
a given entangled vector ¥ with known Schmidt coefficients A;:

R > 2(1 4 4X2X2)1/2; [Gi91] (3.17a)
(in fact, 2(1 4+ 4XoX1)~1/? was written instead, — an obvious mistake)

11



R>2(1+400M + Aods +..)2) "% [GP92] (3.17b)
R>2+2002 +)2) (\/1 Y- 1) with ¢ = 20A1 /(A2 + A2); [MNR92] (3.17c)
R > 2)\2 +2v2(1 — \2); (3.17d)

(Tsirelson; announced [KT92, p. 894], proved [PT93]).

Only (3.17b) gives an exact result 2v/2 when {);} has multiplicity 2: A\g = A\; > Xa = A3 > .... Only (3.17d)
shows that R — 2v/2 when g — 0.

Implementing all quantum behaviors with a single state

Let ¥ € H; ® Ha be a unit vector, and p a quantum behavior. A collection {P,,}, {P,}, satisfying
(2.6), such that Vm,n p;,, = (¥|Pn ® P,|¥), may be called an implementation of p with ¥. Corollary 3.15
shows that for each ¥ there exists p, admitting no implementation with ¥. This is why we introduce the
following definition.

Let ¥y, Ps,... € H; ® Hs be a sequence of unit vectors, and p a quantum behavior. A collection
{Pn}, {Pn}, satisfying (2.6), is called an implementation of p with {¥;}, if
Vm,n pmn = lim (¥;|Pp, @ Pp|¥;) (3.18)
71— 00

(that is, the limit exists and is equal t0 pryy)-

3.19. Theorem. There exists a sequence ¥y, ¥y, ... € H; ® Ha such that any quantum behavior (over
any behavior scheme) admits an implementation with {¥;}.

The general theory of states on C*-algebras gives us a state p such that p(A4) = lim(¥;|A|¥;) for each A
such that the limit exists. So, any quantum behavior admits an implementation with p: pmn = p(Pm ® P).

A single state can implement all quantum behaviors (over all schemes), and all quantum corre-
lation matrices (of all sizes), and maximally violate all Bell-type inequalities.

However, the existence of such p is highly nonconstructive; no concrete example of p can be given. This
is why I prefer a sequence.

We saw a connection between Bohm’s version of the EPR thought experiment and implementation of all
quantum 2 x 2 correlation matrices. Interestingly, there is a connection between the original EPR thought
experiment [EPR35] and implementation of all quantum behaviors!

Consider a pair of one-dimensional spinless particles with coordinate operators ()1, @2 and momentum
operators P, P». A sequence {¥;} of entangled state vectors of the pair will be called an EPR-sequence, if

(i(Q1 — @2)*|¥;) -0  and (U|(PL + P2)?|¥;) -0 for i — oco. (3.20)
3.21. Theorem. There exists an EPR-sequence {¥;} implementing all quantum behaviors.
Clearly, for any EPR sequence
(T;](Q1 4 @2)°|¥;) 500 and  (T|(PL — P)*|¥;) 00 for i — oo. (3.22)
Indeed, the uncertainty relation gives
A(Q1—Q2)-A(PL — ) > h, A(Q1 + Q2) - A(PL+ P2) > h. (3.23)

Equalities hold for coherent states that give us the most natural example of an EPR sequence. However, my
proof of Theorem 3.21 gives {¥;} such that the quantity

S=53 il_i{go(Ai(Ql —Q2) - Ai(PL— P2) - Ai(Q1 + Q2) - Ai(PL + P»)) (3.24)

is equal to oco.

3.25. Problem. Is there an EPR sequence {¥;} with S < oo, or even with S = 1, implementing all
quantum behaviors?

3.26. Problem. Is there a Bell-type inequality that holds for all coherent states, but not for arbitrary
states?

12



As was shown by Summers and Werner [SW87b], the vacuum state of the free boson field can simulate
the EPR state with respect to some observables localized in spacelike separated regions of special kind
(complementary wedge regions). They conclude that the Bell-CHSH inequality can be maximally violated
in the vacuum state. Is it true for higher Bell-type inequalities?

Combining two pairs of particles, each having an entangled state vector ¥ = > A\;jp; ® 6;, Ag < 1, we

obtain o2 :\Il®‘1’ZZ/\MJ(%®¢J-)®(0¢®01),

i,J
and clearly Ao (¥2) = (/\O(lI"))2 = A\J. Similarly, Ao (¥") = AJ’. Hence, A\o(¥") — 0 for N — oo. Applying
(3.17d), we obtain [PT93]:

Bell-CHSH inequality can be maximally violated with an infinite collection of independently
and identically prepared correlated pairs.

3.27. Problem. Is it true for any Bell-type inequality?

Remarks

Theorem 3.5 is taken from [Ts85]; Theorem 3.8 is essentially a reformulation of a theorem from [Ts85].
Theorem 3.14 follows easily from 3.8 (and 3.5). All results of the last subsection (“implementing ...with a
single state”) are new.

4. Generalizations

The case of three and more correlated subsystems is attracting increasing attention [Zu91, Ha91, YS93]
after recognizing the following surprising distinction between two- and three-point correlations: for the
famous CHSH linear function of a behavior,*

Fousu(p) =11 + Y12 + Y21 — Y22 = (A1B1 + A1Bs + A By — A2 Bs) (4.1)
we have three different bounds

ax F, =2, max F = 2V/2, max F, =4, 4.2
LA cusH(p) hax cusu(p) max cusH(p) (4.2)

while for a similar three-point expression
F3(p) = 211 +M21 + Y12 — Y222 = (A2B1C1 + A1 BoCy + A1 B1Cy — A2B>Cs) (4.3)
two of them coincide:

jdax Fy(p) =2, max Fs(p) =4, max Fy(p) = 4. (4.4)
This fact was discovered by Greenberger, Horne, and Zeilinger (see [GHSZ90] and [Me90b, eq. (6)]) and,
simultaneously, by Palatnik (see [KT92, eq. (1.7)]; appeared in preprint version of [KT92] in 1990). From
the geometric point of view it means that Xg contains a g-face (of some dimension ¢) intersecting Xqg, but
not Xupg. It leads to “Bell’s theorem without inequalities” [GHSZ90].

All general notions used in previous sections for two subsystems — behavior schemes, behaviors of
various kinds (X, Xpgr, Xups, XqB), correlation matrices of corresponding kinds (Mg, Mps, Mupg,
Mgqg), quantum bounds and implementations — can readily be generalized to three and more subsystems.
However, no generalization is known for the Schmidt decomposition (3.12)** and the Clifford singlet state
(3.4). Theorem 2.19 cannot be generalized, because quantum bounds for three-point correlations, unlike
two-point ones, are not of quadratic nature [Ts85, Prop. 5.2 with Remark].

4.5. Problem. Is there an absolute constant K3 < oo such that
yeMS) = (K3 lve My

for any three-point behavior scheme? Here Mg}% and M}(I‘%B are three-point counterparts of Mqgp and

Mupg; that is, v € Mg]% when Vg, = TI‘(AkBlCmW), see (2.15*2.16), and v € MIEI%B when Yeim =

* For notation see (2.18).
** We may write ¥ = > A\;jp; ® 0; ® (4, but it is not a general form for a vector of H1 ® Ha ® Hs.
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J Ap(w)Bi(w)Ci (w) P(dw), see (2.24-2.25). If such K3 exists, then its exact (minimal) value may be called
the triple Grothendieck-type constant.

4.6. Problem. Find a generalization of Theorem 3.5 for triple correlations.
4.7. Problem. Find a generalization of Theorem 3.8 for triple correlations.

4.8. Problem. Is there a sequence {¥;} of vectors from H; ® Ha ® Hs such that any quantum behavior
(over any three-point behavior scheme) admits an implementation with {¥;}? (Cf. Theorem 3.19).

As to the vacuum state of a quantum field: Landau [La87] showed that some non-hidden-deterministic
behavior can be implemented with the vacuum state by an appropriate choice of observables localized in
three given space-like separated domains (even if the domains are small and distant).

A study of a large number of subsystems was pioneered by Mermin [Me90a]. He gave the following
generalization of (4.3) for the behavior scheme (2 4+ 2) x ... x (24 2) = (24 2)” with v subsystems:

~

v factors

(Im denotes the imaginary part) and found that (in our terms)

v/2
{ 2 , fOI' even v, max F,,(p) — 21/—1; max Fy(p) — 21}—1‘ (410)

F, < .
max B (p) 2v=1/2 " for odd v; pEXqQB PEXB

PEXuDB

So, the quantum/classical ratio grows exponentially with the number of subsystems, in contrast to the case
of many observables but two subsystems (2.32).

A method to prepare an entangled state of v spin-1/2 particles (in fact, atoms) can be found in [Ha91].

A definition of classical and quantum behaviors for multi-time behavior schemes was discussed [Ts80,
KT85, KT92, VT92] on the basis of the standard description of local measurements [HK64, Sch68, HK70]
(see also [Di91]). Predictions of local observables can be in contradiction [Pi91b]. Another kind of problem
arises from nonlocal measurements, see [AA80]; Schmidt coefficients appear in this connection [AAVS6].
Unexpectedly, measurements over non-correlated particles can also lead to nontrivial problems [PW91].
We have no reason to doubt that only quantum behaviors are feasible. Nevertheless, some mathematical
mechanisms producing non-quantum behaviors (but respecting locality) were considered [La92, VT92].
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