TOPOLOGICAL QUANTUM FIELD THEORIES &
HOMOTOPY COBORDISMS

arxXiv:2208.14504

Fiona Torzewska
06/12/23

University of Bristol






AIM: To study particle statistics in topological phases.



AIM: To study particle statistics in topological phases.







- Particle trajectories modelled by motion groupoids, mapping class
groupoids, (generalised) tangle categories, defect cobordism categories,
embedded cobordism categories...



- Particle trajectories modelled by motion groupoids, mapping class
groupoids, (generalised) tangle categories, defect cobordism categories,
embedded cobordism categories...

- Here we are interested in representations of the above categories which
are invariant up to a notion of homotopy equivalence of the
complement of the particle trajectory (Yetter, Kitaev, Dijkgraaf-Witten,
Quinn, knot group, Artin rep of braids). Notice such complements are
generally not compact manifolds.



- Particle trajectories modelled by motion groupoids, mapping class
groupoids, (generalised) tangle categories, defect cobordism categories,
embedded cobordism categories...

- Here we are interested in representations of the above categories which
are invariant up to a notion of homotopy equivalence of the
complement of the particle trajectory (Yetter, Kitaev, Dijkgraaf-Witten,
Quinn, knot group, Artin rep of braids). Notice such complements are
generally not compact manifolds.

- Such functors may factor through other categories that may be easier to
work with - | will give a construction of a category of cofibrant cospans
of topological spaces. Functors into this category are obtained roughly
by taking the complement of particle trajectories.



- Particle trajectories modelled by motion groupoids, mapping class
groupoids, (generalised) tangle categories, defect cobordism categories,
embedded cobordism categories...

- Here we are interested in representations of the above categories which
are invariant up to a notion of homotopy equivalence of the
complement of the particle trajectory (Yetter, Kitaev, Dijkgraaf-Witten,
Quinn, knot group, Artin rep of braids). Notice such complements are
generally not compact manifolds.

- Such functors may factor through other categories that may be easier to
work with - | will give a construction of a category of cofibrant cospans
of topological spaces. Functors into this category are obtained roughly
by taking the complement of particle trajectories.

- | will also show that Yetter's TQFTs associated to finite groups generalise
to explicitly calculable functors from this category.
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2. Functor from the motion groupoid of a manifold to HomCob
3. Family of functors Zg: HomCob — Vectc



COFIBRANT COSPANS AND
HOMOTOPY COBORDISMS



Definition _ .
Let X, Y and M be spaces. A cofibrant cospan from X to Y is a diagram

:X > M <« Y:jsuch that {i,j):XuY - Mis a closed cofibration.
For spaces X,Y € Top, we define the set of all cofibrant cospans

X Y
CofCos(X,Y) = { N
i M j

(i,j) is a closed coﬁbration}.



Definition _ _
Let A and X be spaces. A map i:A - X has the homotopy extension property,

with respect to the space Y, if for any pair of a homotopy h:AxI — Y and a
map f:X — Y satisfying (foi)(a) = h(a,0), there exists a homotopy
H:XxI—Y, extending h, with H(x,0) = f(x) and H(i(a),t) = h(a,t). This is
illustrated by the following diagram.

f

S5

xI-2yy

\ ixiV
%

AxI h

(Where for any space X, t§: X - X x Iis the map x + (x,0).)
We say that i:A — X is a cofibration if i satisfies the homotopy extension
property for all spaces Y.









Example ‘
Let X be a space. The cospan idy:X — X < X :idy is not a cofibrant cospan,

unless X = @.



Proposition
For X a topological space, the cospan ¢§:X - X x I «< X /5 is a cofibrant cospan

(where f:X - X x Tis the map x ~ (x,a)).

Proof sketch

Suppose there exists a homotopy h: (XuX) xI - K, and a map f:Xx I - K,
such that h((x,0),0) =f(x,0) and h((x,1),0) = f(x,1). Composition with
below retraction gives homotopy H: (X xT) x T - K.
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Proposition . .
A concrete cobordism canonically defines a cofibrant cospan.

Precisely, let X, Y and M be smooth oriented manifolds, and let M be a
concrete cobordism from X to Y. Hence there exists a diffeomorphism

¢:XuY — OM. Define maps i(x) = ¢(x,0) and j(y) = #(y,1). Then, using X, Y
and M to denote the underlying topological spaces, i:X - M« Y:jisa
cofibrant cospan.

Example

Any CW complex together with a pair of disjoint subcomplexes and inclusions
gives a cofibrant cospan.



Lemma
(1) For any spaces X,Y and Z in Ob(Top) there is a composition of cofibrant

cospans
- :CofCos(X, Y) x CofCos(Y,Z) — CofCos(X,2)

X Y Y zZ) X Z
(i& YTRIRY z[)H P K
M N Muy N

1

where i =pyoiandl=pyolare obtained via the following diagram

NN A

M Ly N,
the middle square of which is the pushout of j:M « Y — N:k in Top.

(I Hence there is a magmoid CofCos = (Ob(Top), CofCos(-,-),*). 1



Lemma ] )
For each pair X, Y e Ob(CofCos), we define a relation on CofCos(X,Y) by

if there exists a commuting diagram

M
i j
X/ w\Y

Nty

MI

where 1) is @ homotopy equivalence. For each pair X, Y € Top the relations
(CofCos(X, Y),CJ?) are a congruence on CofCos.






Proof uses classical theorem (E.g. Brown06, Thm7.2.8):
X Y X Y

If ;. N ¥, arecospans such that (i,j):XuY - M and
N
(I",)"):XuY — N are cofibrations, then the set of homotopy equivalences ¢

such that
M

i j
X/ w\ Y

Nl

MI

commutes, is in bijective correspondence with the set of )’ such that there
exists ¢: N — M with 1" o ¢ and ¢ o 1)’ homotopic to identity through maps
commuting with cospans.

14



Theorem (T.)
The quadruple

X X
CofCos = (Ob(Top), CofCos(X, )/ <, -, l S ] )
ch

is a category.



There is a functor ®:Top” - CofCos which sends a homeomorphism f:X - Y
X Y

to the cospan , W o

voof YxI &

Theorem (T.) _ _

There is a symmetric monoidal category (CofCos, ®, &, ax.v.7, Ax; px, Bx,v)

where
W X Y V4
NS ®| N ¥,
M i N

Wwuy XuZ
h iUk MU N jul h

All other maps are the images of the corresponding maps in (Top,u).
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Definition
A space X is called homotopically 1-finitely generated if w(X,A) is finitely

generated for all finite sets of basepoints A.
Let ¥ denote the class of all homotopically 1-finitely generated spaces.

Theorem (T.)
There is a (symmetric monoidal) subcategory of CofCos

X X
HomCob = (x,HomCob(X, Y), -, l N K i l )
ch

o XxI "



MOTION GROUPOIDS




Definition
Fix a manifold, submanifold pair M = (M,A). A flow in M is a map

feTop(I, TOPI (M, M)) with fo = idy. Define,

Flowy = {feTop (I, TOP}(M,M)) |fo = idm}.
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Definition
Fix a manifold, submanifold pair M = (M,A). A flow in M is a map

feTop(I, TOPI (M, M)) with fo = idy. Define,

Flowy = {feTop (I, TOP}(M,M)) |fo = idm}.

Example 4 _ _
For any manifold M the path f; = idy for all ¢, is a flow. We will denote this

flow Idy.

Example
For M = S (the unit circle) we may parameterise by § e R/2r in the usual way.

Consider the functions 74 : S" = S' (¢ € R) given by 8 = 6 + ¢, and note that
these are homeomorphisms. Then consider the path f; = 7 (‘half-twist’). This
is a flow.



Definition S _ o
Fixa M= (M,A). Amotion in M is a triple f: N < N consisting of a flow

f e Flowy, a subset N ¢ M and the image of N at the endpoint of f, fi(N) = N'.

19



" (11, M) O

(N,N)

(b
TOP" (M, M)
20
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Theorem (T, Faria Martins, Martin) _ _
Let M = (M,A) where M is a manifold and A c M a subset. There is a groupoid

Moty = (PM, Mtu(N,N")/ %, %, [Iduln, [fln = [Fl)-

where

23
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Theorem (T, Faria Martins, Martin) _ _
Let M = (M,A) where M is a manifold and A c M a subset. There is a groupoid

Moty = (PM, Mtu(N,N")/ %, %, [Iduln, [fln = [Fl)-

where
(1) objects are subsets of M;

(Il) composition of representative morphisms is given by
gG:N N *fiN N =g=fiN <N
where

fot 0<t<1/2,

(g * e ={
Ga—1yy ofi 1/2<t<;

23



(1) the inverse for each morphism [f: N <« N’], is the motion-equivalence
class of f:N" <« N where f; = f1_py o f7.

24



(I1) the inverse for each morphism [f: N < N'], is the motion-equivalence
class of f:N" <« N where f; = f1_py o f7.

(IV) morphisms between subsets N, N’ are motion-equivalence classes
[f:N < N'], of motions; explicitly

NN D g:N N if g=fRh;

where h¢(N) = N for all t
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(I1) the inverse for each morphism [f: N < N'], is the motion-equivalence
class of f:N" <« N where f; = f1_py o f7.

(IV) morphisms between subsets N, N’ are motion-equivalence classes
[f:N < N'], of motions; explicitly

fiN N 2 g:N - N if g+ f2 h;

where h¢(N) = N for all t

(V) the identity at each object N is the motion-equivalence class of
Id,:N <= N, (Idy):(m) = m for all m e M.

24



- The motion subgroupoid of a configuration of n points in the disk is
isomorphic to the n strand Artin braid group.

25



- The motion subgroupoid of a configuration of n unknotted unlinked
loops in the 3-ball is isomorphic to the loop braid group with n loops.

26



Definition . _ 4 _
The worldline of a motion f:N < N’ in a manifold M is

W(EN SN = U fi(N) x {t} <ML

te[0,1]

Let W (f:N<=N)=(MxT)~ (W(f:N=N)).
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Definition . _ 4 _
The worldline of a motion f:N < N’ in a manifold M is

W(EN SN = U fi(N) x {t} <ML

te[0,1]

Let W (f:N<=N)=(MxT)~ (W(f:N=N)).

Homotopy finite version of Moty
Let M be a homotopy finite space. Let hfMoty be the full subgroupoid of

Moty such that the complement of each object is a homotopy finite space.

27



Theorem (T.)
Let M be a manifold. There is a well-defined functor

MOT y:hfMoty — HomCob

which sends an object N € Ob(hfMoty) to M\ N, and which sends a morphism
[f:N < N'], to the cospan homotopy equivalence class of

M~ N M~ N
l,fo\) (qu
WY (F:N e )

where M\ fr(N) = W/ (f:N < N"), m = (m, ).

28



Zs:HomCob — Vectce




Definition
Let x be the set of pairs (X,Xp) such that X is in x and X, is a finite

representative subset.
Let (X,Xo), (Y,Yo) and (M, Mo) be in x.

29



Definition
Let x be the set of pairs (X,Xp) such that X is in x and X, is a finite

representative subset.
Let (X, Xo), (Y,Yo) and (M, Mo) be in x. A based homotopy cobordism from
(X, Xo) to (Y, Yp) is a diagram i: (X, Xo) = (M, Mg) < (Y, Yy) :j such that:

1. :X—> M - Y:jis a homotopy cobordism.

2. iandj are maps of pairs.

3. Mgni(X) =i(Xo) and Mg nj(Y) =j(Yo).

29



<> 2

SN Y 5',5%)
.
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Let G be a group.
For a pair (X,Xp) € x, define

Z5(X,Xo) = C(Grpd (7 (X, X0), 6)) -

31



(X, X0) 2 (Z *Z)u{*} u{x*}. Maps from = (X,X,) to G are determined by pairs
in G x G, whose elements respectively denote the images of the equivalence
classes of the loops marked x; and x; in the figure, so we have

Zt(X, Xo) 2 C(G % G).

32



Let i: (X, Xo) = (M, Mg) < (Y, Yo) :j be a based homotopy cobordism, we define
a matrix

L[ (XX0) (YYo
2'6( S ) Z6(X,Xo) = Zg(Y, Yo)

as follows. Let fe Zi.(X, Xo) and g € ZL(Y, Yo) be basis elements, then

(s

(X, Xo) m(Y,Yo)

N o

(M, Mo)

1 [ (XX0) (YVo)
zG( P )’f) h:m(M,My) > G

33



Lemma
The map Z, preserves composition, extended in the obvious way to a

composition of based cospans.

W(X,Xo) T&'(Y,Yo) W(Z,Zo)

TN,

W(M,Mo)

o~

7T(M Ly N,Mo |_Iy0 No)

|

G

0

Proof
Thm.91.2, Topology and Groupoids, Brown gives that middle square is a push

out.
34



Lemma
Let X be a topological space, G a group, Xy € X a finite representative subset

and y e X a point with with y ¢ Xo. There is a non-canonical bijection of sets

©,:Grpd(7(X,Xo), G) x G - Grpd(m (X, Xo U {¥}), G)
(f,9) = F

where ~ is a choice of a path from some x € X, to y and F is the extension
along v and g.

35



Consider a concrete homotopy cobordism, I (X, Xg) = (M, Mg) < (Y,Yo) :j. It
follows

Z6(M, Mo u {m}) =G| Z5(M, Mo).
It follows that for all M and Mg, we can write
Z5(M, Mg U Mo) = |G| (MouMel=1D 74, (M, Mo)

and
Z5(M, My L Mg) = |G| MotMol-MeDZE (M, M)

which together imply
G701z (M, Mo) = |6 61z (M, MG)

and that
|G|~ (Mol-PaD 7L (M, M) = |G- Mool ZL (M, M).

36



Lemma
We redefine the linear map we assign to a concrete based homotopy

cobordisms as

Zg <X~Xo)’\) ((lyv‘/o) :|G|—(\/\/Io\—|)<g\)z!6 (X,Xo)’\) ((IY,Yo) )
(M, Mo) (M, Mo)

The map Z!G’ does not depend on the choice of subset My ¢ M, and this
preserves composition. When the relevant cospan is clear, we will refer to
this as Zg(M,XO, Yo) to highlight the dependence on X, and Yp.

37



Lemma )
There is a contravariant functor

Vy : FinSet™(X) — Set

constructed as follows. Let X,, X3 € Ob(FinSet* (X)) with Xz ¢ X,. Let
Vi(Xo) = Grpd(7 (X, X,),G). For any v, € Vx(X,) we have a commuting triangle

(X, Xg) —2 (X, Xa)
VaOlga SS
G

A

Now let Vx(tga:Xs = Xao) = Pap Where ¢os : Vx(Xa) = Vx(X3), Vo = Va © tag.

38



Definition
For X € x define

Z6(X) = colim(Vy) = C(colim(Vx))
where Vy = Fy. o Vx and Vx: FinSet* (X) — Set.

39



Let i:X — M <« Y:j be a concrete homotopy cobordism. Fix a choice of Y, Y
such that (Y, Yar) € x. For each pair Xo, Xg € X such that (X,X,), (X,X3) € x we
have the following diagram

X

Fhp
7L (X, Xo) ——2—— 7L (X, X5)
Z6(X)
Zg(MXa,Yor) o i Zg(MXp,Yar) )
ZE(Y, Yor)

;25\\\$ Zs(Y).

40



Lemma
The assignment

does not depend on the choice of Y.

Theorem (T.)
Zs is a functor.

41



Lemma ' '
Let X - M < Y :j be a concrete homotopy cobordism,

(X, Xo) = (M;Mg) < (Y,Yo) :j a choice of concrete based homotopy
cobordism, and [f] € Zg(X) and [g] € Zs(Y) be basis elements (so [f], for
example, is an equivalence class in colim(Vy)), then

([911Z6(M)|[]) = |G|~ MeI=PoDS™ | {: 7t (M, Mo) — G| Al xe) = F A Bleqrove) = G}
gy~ ([g])

_ |G|—(\Mo|—\Xo|) Z <Q|Z!6(M,Mo) |f)
gedg'([9])

where ¢§:Z£(Y, Yo) = Z6(Y) is the map into colim(Vy).

42



Lemma ' '
Let X - M < Y :j be a concrete homotopy cobordism,

(X, Xo) = (M;Mg) < (Y,Yo) :j a choice of concrete based homotopy
cobordism, and [f] € Zg(X) and [g] € Zs(Y) be basis elements (so [f], for
example, is an equivalence class in colim(Vy)), then

([911Z6(M)|[]) = |G|~ MeI=PoDS™ | {: 7t (M, Mo) — G| Al xe) = F A Bleqrove) = G}
gy~ ([g])

_ |G|—(\Mo|—\Xo|) Z <Q|Z!6(M,Mo) |f)
gehy " ([9])

where ¢§:Z£(Y, Yo) = Z6(Y) is the map into colim(Vy). Equivalently

{[911Zs(M)I[)=IG|"Me=PeD | {h - (M, Mo) > G Alrcxxp) = FA Bl vo) ~ 9}

42



VO [ 42 V(X)) T V(X)

N
N
3
\\
Soag \ Afx

bo "=---3 colim(V)

Theorem (T.) A
For X a space, the map ¢, is an isomorphism. Hence, for a homotopically
1-finitely generated space X €

ZG(X) = (C((Grpd(ﬂ—(XXO)’ G)/ 2)7

for any choice Xy c X of finite representative subset, where = denotes taking
maps up to natural transformation.
Further,

Z6(X) = C((Grpd(r(X), 6)/ 2).

43



Let X be the complement of the embedding of two circles shown. Letting

Xo ¢ X be the subset shown, Grpd(7(X,Xo),G) = G x G as discussed previously.
Since all objects are mapped to the unique object in G, taking maps up to
natural transformation is means taking maps up to conjugation by elements
of G at each basepoint, hence in this case maps are labelled by pairs of
elements of G, up to simultaneous conjugation, so we have

Z6(X) = C((G x G)/G).

I



X

Basis elements in Zs(X) are given by equivalence classes [(fi,f2)] where
f1,f> € G and [] denotes simultaneous conjugation by the same element of G.
Basis elements in Zs(Y) are given by elements of g taken up to conjugation,
denoted [g4]. We have

([91]1Zs(M)I[(f1.2)]) =16 * {a,b,c,d,ee G| a=fi,b=f>,g1 ~ ebae”"}
={eeG|gs~efifie"}
_ {|G| if g1~ fif2

0 otherwise.



([91,9211ZeMI[f1,£21) = |G {a, b,cla = fi,b = fo, cfic™" ~ g2, of; 'ofaic™" = g1}

i {1 [91,92] = [ "o, f1]

0 otherwise

46



Undercrossing

Overcrossing

(01, G 11ZeMILF o) = {;

(01, G 11ZeMILF o) = {1

0 otherwise

[91792] = [ﬁ1f2ﬁaf1:|

otherwise

[91,9:2] = [f2. 15 fif2]

47
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