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Deformation Quantization and Operator Algebras

MARC A. RIEFFEL

Although no one seems yet to have formulated a satisfactory definition
of what is meant by a noncommutative differentiable manifold, a number
of classes of examples are now known which will undoubtedly be inciuded
when such a definition is finally given. In the meantime, it is interesting to
develop further classes of examples. Intuitively, one natural way to try to do
this is to take ordinary differentiable manifolds and then to try to “deform”
them in some way. Suppose for the moment that the manifold M is com-
pact. Then we can take the algebra 4 = C*°(M) of smooth complex-valued
functions with pointwise multiplication, and, for a deformation parameter 4
running over some open interval I of real numbers with 0 as center, we can
try to deform the product to obtain new associative products *5 on A, which
need not be commutative, but which vary smoothly in some sense, and are
such that #¢ is the usual pointwise product. We can also try to deform the
complex-conjugation involution to a family x of involutions, and to deform
the supremum norm to a family || ||5 of C*-norms. Then it would be natural
to expect that under favorable circumstances the completed C*-algebras, A,
should be examples of noncommutative differentiable manifolds.

Since we want the deformed product to have some smoothness, we should
be able to express it as

fang=fg+hP(f,g)+EH)

as h goes to 0, where P is a bilinear map from 4 x 4 to A. One then checks
easily that the requirement that x; be associative forces P to be a Hochschild
2-cocycle.

In the usual setting for deformation quantization one assumes that P is
actually a special kind of 2-cocycle, namely, essentially a Poisson bracket.
The reason for this is that in the application to quantum mechanics [BFF]

1980 Mathematics Subject Classification (1985 Revision). Primary 46L60; Secondary 81D07.
This work was supported in part by National Science Foundation grant DMS-8601900.

This paper is in final form and no version of it will be submitted for publication elsewhere.
@© 1990 American Mathematical Society
0082-0717/90 $1.00 + $.25 per page

411



412 M. A. RIEFFEL

M will be the phase space of a classical mechanical system (so, noncom-
pact), equipped with its usual symplectic structure and corresponding Pois-
son bracket. As a generalization, one then also considers Poisson brackets,
{, }, which need not come from symplectic structures. Thus one only as-
sumes that { , } is a Lie algebra structure on A giving derivations for the
pointwise product, that is,

{f.gh} ={f.gth+g{f, 1}

for f, g,h,€ A. Since Poisson brackets are skew-symmetric, we will assume
the same of P. Now because we are assuming the presence of involutions,
we must have
(f*n &)™ = g™ *n f™".

This implies that P(f, g)** = P(g**, f**). Suppose that for all A the involu-
tion ** is just complex conjugation (which often, but not always, will be the
case). Then for f, g real we find that P(f, g)~ = P(g, f) = —~P(/f, g), so that
P(f, g) is pure imaginary. Thus it is natural to take P to be a pure imaginary
multiple of the Poisson bracket. The usual convention is

P(f,8) = (i/2){f. g}

Then
f*ng—g*n f=hi{f,g} +O(?),

so that
,lli_r_rg)(f*n g—-g*n f)]ih={f, g}

This is the property characterizing how a deformation quantization is related
to a given Poisson bracket. Notice that it is only an infinitesimal condition at
h = 0, so one does not expect deformations for a given Poisson bracket to be
unique. Also, we will need to be more precise about what kind of convergence
is involved in the limit above.

Most of the extensive literature on deformation quantization is concerned
with formal deformations, in which f *; g is not actually a function on
M, but rather a formal power series in % whose coefficients are functions.
Investigation of this aspect was launched about a decade ago by Vey and
Flato, Fronsdal, and Lichernowicz. (See [BL, Mr] and the references they
contain.) However, as indicated above, here we are interested in the case in
which f*; g is a function, and in which matters can be placed in a C*-algebra
framework. This aspect has been investigated very little so far, in part because
it is difficult to construct many classes of examples. Also, it seems likely
that several definitions with decreasingly tight requirements will probably
prove useful (see our Example 8). What we will do here is to state what
will probably prove to be the definition with the tightest useful requirements
and then to describe a series of examples, giving references to the papers
containing the proofs. (I would like to express here my appreciation to Alan
Weinstein for having brought the subject of deformation quantization to
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my attention by suggesting that the noncommutative tori which I had been
studying should be examples (see Example 2), and for stimulating discussions
and many references to the literature.)

In preparation for the main definition, we remark that in the case of a man-
ifold M which is not compact, it is less clear what algebra of C°-functions
one should employ. It should be a subalgebra of Co.(M), the algebra of
functions vanishing at infinity, and should contain C* (M), the algebra of
smooth functions of compact support. But as we will see, it often is best
to use Schwartz functions if that makes sense, or at least functions which
are Schwartz in certain directions. Thus we will formulate our definition in
terms of any *-subalgebra 4 of Co.(M) which consists of smooth functions,
contains C°(M), and is carried into itself by the Poisson bracket.

DerFINITION 1. Let M be a manifold with Poisson bracket { , }, and let 4
be as just above. By a strict deformation quantization of M in the direction
of {, } we will mean an open interval I of real numbers with 0 as center,
together with, for each % € I, an associative product *5, an involution **,
and a C*-norm || ||s (for #5 and **) on A, which for & = 0 are the original
pointwise product, complex conjugation involution, and supremum norm,
such that

(1) For-every f € A the function & — || f]|» is continuous.
(2) Forevery f,g € A,

I(f*n & — g *n /)/ih—{f, &}n

converges to 0 as & goes to 0.

If we let A, denote the C*-completion of 4 for || ||5, then condition (1)
means exactly that {4} is a continuous field of C*-algebras, as discussed in
[Dx]. A similar definition, but with looser requirements on A4 and concerning
convergence, has been given by Berezin [Br].

In much of the literature on deformation quantization one assumes also
the presence of a Lie group G acting as diffeomorphisms of M preserving the
Poisson bracket, and one seeks deformation quantizations which respect this
action of G. Within our present context the appropriate definition is:

DEerFINITION 2. Let G be a Lie group, and let a be an action of G as a group
of diffecomorphisms of M which preserve the Poisson structure. Assume
further that the corresponding action a of G on C*®(M) carries A into itself.
We will say that a strict deformation quantization of A4, as defined above, is
invariant under the action a if

(1) For every h € I and x € G, the operator a, on A is an isometric
x-automorphism for #5,**, and || ||5.

(2) For every f € A and k € I, the map x ~ ax(f) is a C* function on
G, for the norm || ||5.

(3) There is an action, a, of the Lie algebra L of G on 4 which for each
h € I is by *-derivations of A4 for *; and **, such that for X € L and
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fed J
aX(f) = Z—I. I aexp(tX)(f)

with respect to || ||»-

This definition is appropriate for the examples we discuss here, but there
is evidence in [Ar] and [Pd] that in other circumstances one may have to
weaken it.

The main technique used in constructing the examples described below
is the Fourier transform. (The lack of a good Fourier transform in other
situations is thus an obstacle to generalizing these examples.) For use in the
Fourier transform we will let ¢ denote the function on the real line R defined
by e(r) = e#*r. Our convention for the Fourier transform will then be that

Fr) = / 2(rx) f(x) dx,

and similarly on other Abelian groups.

ExAMPLE 1 (The Moyal Product). This example, essentially going back to
Moyal [Ml] in 1949, has been the original inspiration for the study of defor-
mation quantization. The setting is R?" with its standard Poisson structure
given by

n
{f,8} =) _(8f/0x:)(08/0Xnsic) = (0.S/0Xnsk)(D8 /D).
k=1
As the algebra 4, one takes the algebra S(R?") of Schwartz functions on R?”,
and as Lie group G we will take R?" acting on itself by translation, though we
could take the affine symplectic group. The Fourier transform carries S(R?")
with pointwise multiplication to S(R2") with convolution, where R2" = R
but we write R2" to emphasize that we are on the dual group. The Fourier
transform also takes the Poisson bracket to the operation

(& w)0) = ~4x* [ S =t - ndr
where 7 is the skew bilinear form on R?" defined by
y(r,s) = Z(rksn+k = FnakSk)

for r,s € R?", This new {, } is a Poisson bracket for convolution on S(R2").
For any % € R we define a skew bicharacter, o5, on R?" by

a';-,(r,s) = e(—nhy(r,s)),

and then we define a product =, on S(R?") by
(6 w)(0) = [ $IW(t = r)an(re = ).

The involution we use on S(R?") for all % will be complex conjugation, and

so on S(R?") it is given by ¢*(r) = ¢(—r). For any % we define the norm,
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| lin, on S(R?") to be the operator norm for S(R2") acting on L2(R2") by the
same formula as defines *,. By means of the Fourier transform we carry the
products and norms back to S(R?"), so that, for example,
frng=(f*8)Y

for any f, g € S(R*"), where v denotes the inverse Fourier transform. It is
not difficult to verify directly property 2 of Definition 1 (see the arguments
in [RfS]) while property 1 follows from corollary 2.7 of [Rf4]. Thus we
have a strict deformation quantization. For & # 0 the algebras involved are
closely related to the Heisenberg commutation relations and representations
of the Heisenberg Lie group, and it is well known (see, e.g., [Rf1]) that their
completions, Ay, are isomorphic to the algebra of compact operators. For
k = 0 the completion is, of course, just Coo(R?"). Invariance under G = R?"
is easily verified.

ExaMpPLE 2 (Noncommutative tori). Let 7" be an ordinary n-torus, and
let 8 be a real skew symmetric # x n matrix. Let A = C®(T"). If we view T
as R/Z (where Z denotes the integers), then we can define a Poisson bracket

on A by
| {f,8} =Y 0,x(01/0x,)(08/9x4).

(We could also do this on R?", in slight generalization of the previous exam-
ple.) As Lie group G we will take T”, acting on itself by translation. The
Fourier transform (i.e., taking Fourier series), carries C*(7") onto S(Z")
with convolution, and takes the Poisson bracket to the operation

{¢, y}(p)=—4n2>_(a)¥ (P — 9)7(4.P - 9),
q
where y is the skew bilinear form on Z” defined by

¥(P,9) = Ojibjd-
For any % € R we define a skew bicharacter o5 on Z” by

on(p,q) = e(~nhy(p, q)),
and then define a product *5 on S(Z") by

(@ v)(P) =Y_ @)V (P® - 9)on(a.p - 9).
q

The involution we use on C*°(7™) will be complex conjugation for all %, and
so on S(Z") it is given by ¢*(p) = ¢(~p). For any % we define the norm || ||»
to be the operator norm for S(Z") acting on L2(Z") by the same formula
as defines *;,. By means of the Fourier transform we carry the products
and norms back to C*°(T™). Again it is not difficult to verify property 2 of
Definition 1 (see [RfS] for details), while property 1 follows from corollary
2.7 of [Rf4]. Thus we have a strict deformation quantization. Invariance
under G = T™" is easily verified. The completed algebras Ay are recognized



416 M. A. RIEFFEL

as being exactly the noncommutative tori, as studied in [Rf2] and references
therein. In particular, for many choices of 8 they are simple C*-algebras.
Nevertheless, as seen in [Cnl, Cn2, Cn3, Rf2], there are ample reasons for
viewing them as noncommutative differentiable manifolds.

ExAMPLE 3. The above example admits the following generalization. Let
T",6,and {, } be as above, and let H be a Lie group with a.cocompact sub-
group I". Let 8 be a homomorphism of I" into SL{n, Z), with corresponding
action on 7". Assume that this action preserves { , } (which is easily seen
to mean that § carries I to matrices which are “symplectic” with respect
to 8). Let p be the corresponding diagonal action of I" on H x I, and let
M = (HxT")/p, so that M is a torus bundle over G/T. If we let { , } denote
also the Poisson structure on H x 7" coming from {, } on 7", ignoring the
coordinates of H, then p preserves {, }, so that we obtain a Poisson structure
on M, which we also denote by {, }. Then we can seek a strict deformation
quantization of M in the direction of { , }. We can proceed as follows. By
means of the previous example we construct a strict deformation quantiza-
tion of H x T" for which 4 = C°(H x T"). Thus we take Fourier transform
just in the T variables, and call the corresponding space S.(H x Z"). With
oy, defined as in the previous example, we set

(@ *n W), 0) =Y ¢(u, @)W (4,0 — Q)On (4,0 — q),
q

and similarly for the involution and norm. We then carry these back to
H x T" by the Fourier transform. It is easily seen that the resulting strict
deformation quantization is invariant under the action of the discrete group
I', in the evident sense.

But because the action of I" on H is proper, it is not difficult to see that
the action of I' on the resulting algebras A using p is proper in the sense
defined in [Rf3]. In particular, there will be a generalized fixed point algebra
By, for each & € R. After taking Fourier transform in the 7" variables, the
elements of By will consist of smooth functions ¢ on H x Z” which satisfy
(1) ®(uk, Bi(p)) = ®(u,p) for each u € H,k € T and p € Z", and (2) for
any polynomial P on Z" and any finite product, X, of elements of the Lie
algebra of H, the function P(p)(X®)(u,p) is uniformly bounded for u in
any fixed compact subset of H and for all p € Z" (all this independently of
k). The product and involution are given by the same formula as for A;,
and the norm is given by the evident representation on L?>(H x Z") which
extends the representation of 4. One obtains in this way the desired strict
deformation quantization. The details of the proof are given in [Rf5]. Since,
aside from keeping track of the smooth structure, the situation is contained
in the setting studied in §2 of [RW], the results of that paper can be used
to obtain information about the structure of the resulting completed C*-
algebras.
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We remark that a useful point of view is to consider the strict deformation
quantization of H x T" to be a noncommutative covering space for the strict
deformation quantization of M, with I as the group of covering transforma-
tions, acting via p. '

EXAMPLE 4 (Semidirect products by R?). Let M be a smooth manifold,
and let a be a smooth action of R? on M. For k = 1,...,d let X; denote
the vector field on M consisting of differentiating via o in the kth direction
of R4, and let 8, denote differentiation on R? by itself in the kth direction.
Then we can define a Poisson structure on M x R? by

d
{f,8} =D _(Xi/)(8c8) — (BS) (X g)-

This is the semi-direct Poisson structure for a, as defined in the appendix
of [Wn2], when M is initially given the zero Poisson structure. We let 4 =
Se(M x R?), the algebra of smooth functions which are of compact support
on M and Schwartz on R?. Taking Fourier transform in the R? variables
carries 4 to S.(M x R?), with the product being pointwise multiplication in
the M variables and convolution in the R? variables. The Poisson bracket is
then carried to the operation on S,(M x R?) defined by

{¢’ W}(ms ry=
211 S [ (K)o, )1k = sOWmar = ) = 51, 5) (X m, 7 = ) ds.
k

Some playing with the formulas (see [Rf5]) leads one to realize that a strict
deformation quantization can then be defined as follows. For any % € R,
define a product *; on S.(M x R?) by

(6 %n w)(m, 1) = / B(@at(s—r) (M), )W (Crans(m), 7 — 5) ds,

and an involution, independent of A, by

d}*(m’ r) = ¢(m9 _r)'
We could also define the C*-norms directly, but it is useful anyway to observe
that the structure just defined is isomorphic to a crossed product algebra
structure [Pd], and then we may as well use this observation to define the
C*-algebra norms. To be specific, for any # let y* be the action of R on M
defined by y* = a_n,, and let J, be the mapping from S.(M, R?) into the
crossed product algebra C*(R?, Coo (M), y") defined by

Jh(¢)(ma r) = ¢(a7zhr(m)’ r)'
Then it is easily verified that Jj is a *-homomorphism (from *) with dense
range. We then set
llolln = IIn(D)N
where the norm on the right is that of the crossed product. With these struc-
tures defined on S.(M, R?), and pulled back to S.(M, R?) by the Fourier
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transform, one can verify, by a slight modification of arguments in [Rf5],
that one obtains a strict deformation quantization. Since the completed C*-
algebras A, will be isomorphic to the crossed product algebras, one can apply
the extensive theory of the structure of crossed product algebras [Pd] to study
the structure of the Ap’s.

ExaMPLE 5. The ideas of the previous example can be used equally well
on M x T4, with ?oisson bracket defined by the same formula. One just has
to replace S.(M, R?) by S.(M,Z%). The details are contained in [Rf5].

ExaMpLE 6 (Heisenberg manifolds). Let G be the Heisenberg Lie group of
upper triangular 3 x 3 matrices with ones on the diagonal. For any positive
integer n we can parametrize G as R? with product given by

ey, 2) (XY, 2= (x+ X,y + ¥, 2+ 2" + nyx').

Let D denote the discrete subgroup of G consisting of elements with integer
entries, and let M, = R3/D for the parametrization using n. This is the
corresponding Heisenberg manifold, on which G acts on the left. For k =
1,2,3 let 8, denote the partial derivative on G = R3 in the kth direction.
Then it is easily checked that the only skew 2-vector fields on G which are
invariant under both left translation by G and right translation by D are of
the form
(ud1 +vd) A &3
for some u,v € R, and that these do define Poisson brackets on G, and so
define G-invariant Poisson brackets on M,. It is easily seen that M, can
be identified with the quotient of R x T2 by the action p of Z defined on
functions by
(Pf)(x,y,2) = f(x +k,y,z + nky),

where T is viewed as R/Z. Fix u and v, not both zero, and let { , } denote
the corresponding Poisson bracket on R x T x R. Then it is of the form
considered in Example 4 for the action o of R on R x T defined by

or(x,y) = (x —ru,y - rv).
Thus we can construct a deformation quantization for (R x T) x T along
the lines indicated in Example 5, where the appropriate algebra of functions,
after Fourier transform in the last variable, is S.(R x T x Z). For each
A € R let Ay denote the corresponding pre-C*-algebra. It is easily seen that
p gives an action by automorphism of each 4. Furthermore, this action can
be seen to be proper in the sense defined in [Rf3], and so we can form the
corresponding generalized fixed-point algebra, Dy, as defined there. Then Dy,
will consist of the collection of C* functions ® on R x T x Z which satisfy
(1) ®(x +k,y,p) =e(ckpy)®(x,y,p) forallk e Z.
(2) For every polynomial P on Z and every partial differential opera-
tor X = 8™+ /8x™dy" on R x T the function P(p)(X®)(x,y,p) is
bounded on X x Z for any compact subset K of R x T.
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The product and involution on Dy, are defined by

(¢ *nr ‘P)(-x’ y,P)
=Y " ®(x — nh(q — p)u,y — nh(g — p)v,q)¥(x — nhqu,y — thqv,p — q),

and

@*(x,y,p) = B(x,y, -p),
while the C*-norm comes from the representation on L*(R x T x Z), for
Lebesgue measure, defined by

(DE)(x,y,p) = Y_ D(x — nh(g — 2p)u,y — nh(g — 2p)v, @)&(X,y,p — ).

The algebras Dy, then provide a strict deformation quantization of C*®(M,)
in the direction of { , }. Verification of property 2 is fairly straightforward
but tedious. The details are given in [Rf5]. On the other hand, verification of
property 1 is somewhat subtle. The details are given in [Rf3] and [RfS]. This
strict deformation quantization is invariant under the action of G, and the
action of G is ergodic on each Dy, in the sense that the only invariant elements
are the scalar multiples of the identity operator. One can show that when
{1, mhu, mhv} is independent over the rationals, Dy, is a simple C*-algebra.
A generalization of this example is contained in [RfS].

ExaMPLE 7 (Nilpotent Lie algebras). Let L be any finite dimensional Lie
algebra over R, and let L* be its dual vector space. It is well known [Wn1]
that the Lie algebra structure on L defines a natural Poisson structure on L*.
These are what are commonly called linear Poisson structures [Wnl]. The
definition is as follows. Given f € C®(L*), its differential, df (u), at u € L*
is a linear functional on the tangent space to L* at u, i.e., on L*, and so df(u)
can be viewed as an element of L. Then the Poisson bracket is defined by

{f, 8}(w) = ([df (n), dg(w)], w),

where [, ] denotes the Lie product in L. This extends in the evident way to
complex-valued functions.

We seek a strict deformation quantization of L* in the direction of { , }.
For L nilpotent this works out quite smoothly, and so we assume from now
on that L is nilpotent. We take as the algebra 4 of functions on L* just
the Schwartz functions, S(L*). The Fourier transform then carries 4 to S(L)
with convolution. It is not difficult to verify that the Poisson bracket is carried
by the Fourier transform to the operation

{¢, y}(X) = 27ti/L¢(Y)([X, Y], (dy)(X -Y))dY.

For & € R let Ly denote L with Lie bracket #[ , ]. For nilpotent Lie
algebras, the exponential map is a bijection with the corresponding simply
connected Lie group G [Br, Vr]. Thus via the exponential map we can identify
L with its simply connected Lie group. For emphasis we will denote the
resulting group law on L by . In the same way, for each /& we identify Ly



420 M. A. RIEFFEL

via the exponential map with its corresponding simply connected Lie group
G, and denote the resulting group law on Ly = L by *5. (The context will
distinguish between this *; and the one for functions.) It is not dlﬂicult to
verify that

X #p Y = h7H((AX) x (RY)),

where for & = 0 we take this to mean X + Y. On L we take the Plancherel
Lebesgue measure from the Fourier transform. It is well known that because
L is nilpotent, this will be a Haar measure for *, and so for all the ;. For each
k € R we let Ay denote S(L) equipped with the corresponding convolution

(6 %n W)(X) = / S )WY~ 4 X)dY,

involution ¢*(X) = #(—X), and norm from the group C*-algebra C*(Gy)
[Pd]. Then one can verify that, pulling this structure back to S(L*) via
the Fourier transform, one obtains a strict deformation quantization in the
direction of {, } (once one puts in a factor of 2z), which is, in fact, invariant
for the coadjoint representation of G on L*. The details of the proof are given
in [Rf6].

ExaMrLE 8 (General Lie algebras). If L in the above example is not nilpo-
tent, it is not clear to me whether it is possible to construct a strict defor-
mation quantization, and especially one which is invariant for the coadjoint
representation. But if we try to imitate the steps of the above example, we
obtain a setup which can still be considered a deformation quantization, al-
though not a strict one, in the following way. To begin with, when the Lie
group for L is not unimodular, the Fourier transform of the Poisson bracket
has an additional term, becoming

{6, w}(X) = 2mi f S(Y)(IX, Y], dw(X — Y)) - w(X - Y)tr(ady))dY.

The first real obstacle is that the exponential map need no longer be a bijec-
tion. Even when it is (i.e., when one is dealing with exponential solvable Lie
groups [Br]), functions in S(L) will in general not be integrable with respect
to Haar measure. To deal with this latter obstacle, it is natural to restrict
attention to C2°(L) (which corresponds to only a subspace of S(L*), dense
for most topologies, but not containing C.(L*).) Doing this also deals with
the first obstacle, in the following way. Choose an open neighborhood U of 0
in L on which the exponential map is a diffeomorphism into G, and identify
U with its image in G. Let C be a convex open neighborhood of 0 such that
C}CUinGandC=-C(=C~!'inG). Let Uy =h~'U and Cy = h~!C,
with Uy = Cy = L. Note that Cy and Uy, increase to L as % goes to 0. Then,
much as in the previous example, we can define a partial product from Cn
into Uy C L by
X #p Y = B7H((hX) x (RY)).



DEFORMATION QUANTIZATION 421

The left Haar measures on the Gj’s can be chosen in a coherent way so
that their Radon-Nikodym derivatives, wy, on Uy with respect to the fixed
Lebesgue measure of L, converge uniformly on compact subsets of L to the
constant function 1, as % goes to 0. Then for any ¢, ¥ € C*(L), as soon as
# is sufficiently small, the supports of both ¢ and ¥ will be contained in Cj,
and so their convolution

(6 %n W)(X) = / SV (Y #p X)oon(Y)dY

is defined. We equip this situation with the involutions and C*-norms from
the reduced group C*-algebras C}(Gy) [Pd]. Then it makes sense to ask
whether property 2 of the definition of a strict deformation quantization is
true, and this can, in fact, be shown to be the case (once a factor of 2x
is included). With respect to property 1, one can show that at least one
has lower semi-continuity, for those % for which ||¢|i» is defined. This whole
setup can be formalized in what we call a deformation quantization by partial
embeddings, where we have in mind the embeddings of C°(Cy) into C*(Ghr).
See [Rf6] for details.

All the above suggests that in some sense the group C*-algebras of Lie
groups are deformations of S(L*), which provides further support to the well-
known idea that they should be considered noncommutative differentiable
manifolds.

I have some preliminary indications that the above ideas may extend to
give a relation between Poisson Lie groups [Dr1l, LW] and the quantum groups
which have been introduced by Woronowicz [Wrl, Wr2, Wr3, MM1, MM2,
Mg] and which at the infinitesimal level have been studied by Drinfeld [Dr2]
and others as deformation quantizations of universal enveloping algebras of
Lie algebras. (For their interrelations see [Rs}].)

ExAMPLE 9 (The sphere). Let $? denote the ordinary 2-sphere, with its
usual action of SO(3) (and so SU(2)). It is well known that there is a Pois-
son bracket on S? invariant under the action of SO(3). However, one can
show that there is no strict deformation quantization of C*(S?) in the di-
rection of this Poisson bracket which is invariant under the action of SO(3).
This actually has nothing to do with the Poisson bracket, but rather with
the fact that each irreducible representation of SO(3) occurs in C*®(S?) with
multiplicity one, so that the resulting rigidity forces any invariant deforma-
tion to be commutative. (See [Rf5] for details.) That this might happen was
suggested by the much more general results of Wassermann [Ws] showing
that SU(2) does not have any ergodic actions on von Neumann algebras not
of type I. The question of whether S? admits strict deformation quantiza-
tions which are not invariant seems to be open, but it is not clear to me the
precise relationship with the quantum spheres of Podles [Po], coming from
the quantum groups of Woronowicz. Alan Weinstein has speculated to me
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that there may be some connection between the quantum spheres of Podles
and the Bruhat-Poisson structure discussed in [LW].
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