
Linear Logic

Frank Pfenning
Carnegie Mellon University

Draft of May 4, 1998

Material for the course Lineare Logik mit Anwendungen, Technische Hochschule
Darmstadt, Sommersemester 1996. Revised for the course Linear Logic at
Carnegie Mellon University, Spring 1998. Material for this course is available at

http://www.cs.cmu.edu/~fp/courses/linear.html.

Please send comments to fp@cs.cmu.edu

This material is in rough draft form and is likely to contain errors. Furthermore,
citations are in no way adequate or complete. Please do not cite or distribute
this document.

This work was supported by NSF Grants CCR-9303383 and CCR-9619684.

Copyright c© 1998, Frank Pfenning

ii

Draft of May 4, 1998

Contents

1 Natural Deduction 1
1.1 Intuitionistic Natural Deduction 3
1.2 Classical Logic . 15
1.3 Localizing Hypotheses . 15
1.4 Exercises . 18

2 Intuitionistic Linear Logic 21
2.1 Purely Linear Natural Deduction 22
2.2 Intuitionistic Hypotheses in Linear Logic 28
2.3 Two Examples . 31
2.4 Embedding Intuitionistic Logic 34
2.5 Normal Deductions . 36
2.6 Cut-Free Sequent Calculus . 39
2.7 Another Example: Distributed Systems 42
2.8 Deductions with Lemmas . 44
2.9 Cut Elimination . 46
2.10 Consequences of Cut Elimination 48
2.11 Exercises . 49

3 Proof Search 53
3.1 Bottom-Up Proof Search and Inversion 53
3.2 Unification . 56
3.3 Resource Management . 69
3.4 Inversion for Unrestricted Resources 73
3.5 Another Example: Arithmetic . 75
3.6 Weakly Uniform Derivations . 77

4 Linear λ-Calculus 83
4.1 Proof Terms . 83
4.2 Example: A Small Imperative Language 89
4.3 Term Assignment for the Sequent Calculus 89
4.4 Linear Type Checking . 92
4.5 Pure Linear Functional Programming 97
4.6 Recursive Types . 103

Draft of May 4, 1998

iv CONTENTS

4.7 Termination . 108
4.8 Exercises . 112

5 A Linear Logical Framework 117
5.1 Representation of Meta-Theory 117
5.2 Concrete Syntax of Linear Twelf 132

6 Non-Commutative Linear Logic 135
6.1 The Implicational Fragment . 136
6.2 Other Logical Connectives . 140

Bibliography 144

Draft of May 4, 1998

Chapter 1

Natural Deduction

Ich wollte zunächst einmal einen Formalismus aufstellen, der dem
wirklichen Schließen möglichst nahe kommt. So ergab sich ein
,,Kalkül des natürlichen Schließens“.

— Gerhard Gentzen
Untersuchungen über das logische Schließen [Gen35]

In this chapter we explore ways to define logics, or, which comes to the same
thing, ways to give meaning to logical connectives. Our fundamental notion is
that of a judgment based on evidence. For example, we might make the judg-
ment “It is raining” based on visual evidence. Or we might make the judgment
“‘A implies A’ is true for any proposition A” based on a derivation. The use
of the notion of a judgment as conceptual prior to the notion of proposition
has been advocated by Martin-Löf [ML85a, ML85b]. Certain forms of judg-
ments frequently recur and have therefore been investigated in their own right,
prior to logical considerations. Two that we will use are hypothetical judgments
and parametric jugments (the latter is sometimes called general judgment or
schematic judgment).

A hypothetical judgment has the form “J2 under hypothesis J1”. We con-
sider this judgment evident if we are prepared to make the judgment J2 once
provided with evidence for J1. Formal evidence for a hypothetical judgment is a
hypothetical derivation where we can freely use the hypothesis J1 in the deriva-
tion of J2. Note that hypotheses need not be used, and could be used more
than once. In contrast, derivations of linear hypothetical judgments introduced
later are restricted so the the linear hypotheses must be used exactly once.

A parametric judgment has the form “J for any a” where a is a parameter
which may occur in J . We make this judgment if we are prepared to make the
judgment [O/a]J for arbitrary objects O of the right category. Here [O/a]J is
our notation for substituting the object O for parameter a in the judgment J .
Formal evidence for a parametric judgment J is a parametric derivation with
free occurrences of the parameter a.

Formal evidence for a judgment in form of a derivation is usually written in

Draft of May 4, 1998

2 Natural Deduction

two-dimensional notation:
D
J

ifD is a derivation of J . For the sake of brevity we sometimes use the alternative
notation DofJ . A hypothetical judgment is written as

u
J1

...
J2

where u is a label which identifies the hypothesis J1. We use the labels to
guarantee that hypotheses which are introduced during the reasoning process
are not used outside their scope.

The separation of the notion of judgment and proposition and the corre-
sponding separation of the notion of evidence and proof sheds new light on
various styles that have been used to define logical systems.

An axiomatization in the style of Hilbert [Hil22], for example, arises when
one defines a judgment “A is true” without the use of hypothetical judgments.
Such a definition is highly economical in its use of judgments, which has to
be compensated by a liberal use of implication in the axioms. When we make
proof structure explicit in such an axiomatization, we arrive at combinatory
logic [Cur30].

A categorical logic [LS86] arises when the basic judgment is not truth, but
entailment “A entails B”. Once again, presentations are highly economical
and do not need to seek recourse in complex judgment forms (at least for the
propositional fragment). But derivations often require many hypotheses, which
means that we need to lean rather heavily on conjunction here. Proofs are
realized by morphisms which are an integral part of the machinery of category
theory.

While these are interesting and in many ways useful approaches to logic
specification, neither of them comes particularly close to capturing the practice
of mathematical reasoning. This was Gentzen’s point of departure for the design
of a system of natural deduction [Gen35]. From our point of view, this system is
based on the simple judgment “A is true”, but relies critically on hypothetical
and parametric judgments. In addition to being extremely elegant, it has the
great advantage that one can define all logical connectives without reference to
any other connective. This principle of modularity extends to the meta-theoretic
study of natural deduction and simplifies considering fragments and extension of
logics. Since we will consider many fragments and extension, this orthogonality
of the logical connectives is a critical consideration. There is another advantage
to natural deduction, namely that its proofs are isomorphic to the terms in a λ-
calculus via the so-called Curry-Howard isomorphism [How69], which establishes
many connections to functional programming.

Finally, we arrive at the sequent calculus (also introduced by Gentzen in his
seminal paper [Gen35]) when we split the single judgment of truth into two:

Draft of May 4, 1998

1.1 Intuitionistic Natural Deduction 3

“A is an assumption” and “A is a true conclusion”. While we still employ the
machinery of parametric and hypothetical judgments, we now need an explicit
rule to state that “A is an assumption” is sufficient evidence for “A is a true
conclusion”. The reverse, namely that if “A is a true conclusion” then “A may
be used as an assumption” is the Cut rule which he proved to be redundant in his
Hauptsatz. For Gentzen the sequent calculus was primarily a technical device
to prove consistency of his system of natural deduction, but it exposes many
details of the fine structure of proofs in such a clear manner, that most presen-
tations of linear and related logics employ sequent calculus. The laws governing
the structure of proofs, however, are more complicated than the Curry-Howard
isomorphism for natural deduction might suggest and are still the subject of
study [Her95, Pfe95].

We choose natural deduction as our definitional formalism as the purest
and most widely applicable. Later we justify the sequent calculus as a calculus
of proof search for natural deduction and explicitly relate the two forms of
presentation.

We begin by introducing natural deduction for intuitionistic logic, exhibiting
its basic principles. We then enrich it to capture linear connectives.

1.1 Intuitionistic Natural Deduction

The system of natural deduction we describe below is basically Gentzen’s system
NJ [Gen35] or the system which may be found in Prawitz [Pra65]. The calculus
of natural deduction was devised by Gentzen in the 1930’s out of a dissatis-
faction with axiomatic systems in the Hilbert tradition, which did not seem to
capture mathematical reasoning practices very directly. Instead of a number of
axioms and a small set of inference rules, valid deductions are described through
inference rules only, which at the same time explain the meaning of the logical
quantifiers and connectives in terms of their proof rules.

A language of (first-order) terms is built up from variables x, y, etc., function
symbols f , g, etc., each with a unique arity, and parameters a, b, etc. in the usual
way.

Terms t ::= x | a | f(t1, . . . , tn)

A constant c is simply a function symbol with arity 0 and we write c instead of
c(). Exactly which function symbols are available is left unspecified in the gen-
eral development of predicate logic and only made concrete for specific theories,
such as the theory of natural numbers. However, variables and parameters are
always available. We will use t and s to range over terms.

The language of propositions is built up from predicate symbols P , Q, etc.
and terms in the usual way.

Propositions A ::= P (t1, . . . , tn) | A1 ∧A2 | A1 ⊃A2 | A1 ∨A2 | ¬A
| ⊥ | > | ∀x. A | ∃x. A

A propositional constant P is simply a predicate symbol with no arguments and
we write P instead of P (). We will use A, B, and C to range over propositions.

Draft of May 4, 1998

4 Natural Deduction

Exactly which predicate symbols are available is left unspecified in the general
development of predicate logic and only made concrete for specific theories.

The notions of free and bound variables in terms and propositions are defined
in the usual way: the variable x is bound in propositions of the form ∀x. A and
∃x. A. We use parentheses to disambiguate and assume that ∧ and ∨ bind
more tightly than ⊃. It is convenient to assume that propositions have no free
individual variables; we use parameters instead where necessary. Our notation
for substitution is [t/x]A for the result of substituting the term t for the variable
x in A. Because of the restriction on occurrences of free variables, we can assume
that t is free of individual variables, and thus capturing cannot occur.

The main judgment of natural deduction is “C is true” written as ` C, from
hypotheses ` A1, . . . , ` An. We will model this as a hypothetical judgment.
This means that certain structural properties of derivations are tacitly assumed,
independently of any logical inferences. In essence, these assumptions explain
what hypothetical judgments are.

Hypothesis. If we have a hypothesis ` A than we can conclude ` A.

Weakening. Hypotheses need not be used.

Duplication. Hypotheses can be used more than once.

Exchange. The order in which hypotheses are introduced is irrelevant.

In natural deduction each logical connective and quantifier is characterized
by its introduction rule(s) which specifies how to infer that a conjunction, dis-
junction, etc. is true. The elimination rule for the logical constant tells what
other truths we can deduce from the truth of a conjunction, disjunction, etc.
Introduction and elimination rules must match in a certain way in order to
guarantee that the rules are meaningful and the overall system can be seen as
capturing mathematical reasoning.

The first is a local soundness property: if we introduce a connective and
then immediately eliminate it, we should be able to erase this detour and find
a more direct derivation of the conclusion without using the connective. If this
property fails, the elimination rules are too strong: they allow us to conclude
more than we should be able to know.

The second is a local completeness property: we can eliminate a connective in
a way which retains sufficient information to reconstitute it by an introduction
rule. If this property fails, the elimination rules are too weak: the do not allow
us to conclude everything we should be able to know.

We provide evidence for local soundness and completeness of the rules by
means of local reduction and expansion judgments, which relate proofs of the
same proposition.

One of the important principles of natural deduction is that each connective
should be defined only in terms of inference rules without reference to other
logical connectives or quantifiers. We refer to this as orthogonality of the con-
nectives. It means that we can understand a logical system as a whole by

Draft of May 4, 1998

1.1 Intuitionistic Natural Deduction 5

understanding each connective separately. It also allows us to consider frag-
ments and extensions directly and it means that the investigation of properties
of a logical system can be conducted in a modular way.

We now show the introduction and elimination rules, local reductions and
expansion for each of the logical connectives in turn. The rules are summarized
on page 1.1.

Conjunction. A∧B should be true if both A and B are true. Thus we have
the following introduction rule.

` A ` B
∧I

` A ∧B

If we consider this as a complete definition, we should be able to recover both
A and B if we know A ∧B. We are thus led to two elimination rules.

` A ∧B ∧EL
` A

` A ∧B ∧ER
` B

To check our intuition we consider a deduction which ends in an introduction
followed by an elimination:

D
` A

E
` B

∧I
` A ∧B

∧EL
` A

Clearly, it is unnecessary to first introduce the conjunction and then eliminate it:
a more direct proof of the same conclusion from the same (or fewer) assumptions
would be simply

D
` A

Formulated as a transformation or reduction between derivations we have

D
` A

E
` B

∧I
` A ∧B

∧EL
` A

=⇒R
D
` A

and symmetrically

D
` A

E
` B

∧I
` A ∧B

∧ER
` B

=⇒R
E
` B

Draft of May 4, 1998

6 Natural Deduction

The new judgment
D
` A =⇒R

E
` A

relates derivations with the same conclusion. We say D locally reduces to E .
Since local reductions are possible for both elimination rules for conjunction,
our rules are locally sound. To show that the rules are locally complete we show
how to reintroduce a conjunction from its components in the form of a local
expansion.

D
` A ∧B =⇒E

D
` A ∧B

∧EL
` A

D
` A ∧B

∧ER
` B
∧I

` A ∧B

Implication. To derive ` A ⊃ B we assume ` A and then derive ` B.
Written as a hypothetical judgment:

u
` A
...
` B

⊃Iu

` A⊃ B

We must be careful that the hypothesis ` A is available only in the deriva-
tion above the premiss. We therefore label the inference with the name of the
hypothesis u, which must not be used already as the name for a hypothesis in
the derivation of the premiss. We say that the hypothesis ` A labelled u is
discharged at the inference labelled ⊃Iu. A derivation of ` A ⊃ B describes a
construction by which we can transform a derivation of ` A into a derivation
of ` B: we substitute the derivation of ` A wherever we used the assumption
` A in the hypothetical derivation of ` B. The elimination rule expresses this:
if we have a derivation of ` A ⊃ B and also a derivation of ` A, then we can
obtain a derivation of ` B.

` A⊃ B ` A
⊃E

` B

The local reduction rule carries out the substitution of derivations explained
above.

u
` A
D
` B

⊃Iu

` A⊃ B
E
` A

⊃E
` B

=⇒R

E
u

` A
D
` B

Draft of May 4, 1998

1.1 Intuitionistic Natural Deduction 7

The final derivation depends on all the hypotheses of E and D except u, for
which we have substituted E . An alternative notation for this substitution of
derivations for hypotheses is [E/u]D :: ` B. The local reduction described
above may significantly increase the overall size of the derivation, since the
deduction E is substituted for each occurrence of the assumption labeled u in
D and may thus be replicated many times. The local expansion simply rebuilds
the implication.

D
` A⊃ B =⇒E

D
` A⊃ B

u
` A
⊃E

` B
⊃Iu

` A⊃ B

Disjunction. A∨B should be true if either A is true or B is true. Therefore
we have two introduction rules.

` A ∨IL
` A ∨B

` B ∨IR
` A ∨B

If we have a hypothesis ` A ∨ B, we do not know how it might be inferred.
That is, a proposed elimination rule

` A ∨B
?

` A

would be incorrect, since a deduction of the form

E
` B

∨IR
` A ∨B

?
` A

cannot be reduced. As a consequence, the system would be inconsistent: if we
have at least one theorem (B, in the example) we can prove every formula (A,
in the example). How do we use the assumption A ∨B in informal reasoning?
We often proceed with a proof by cases: we prove a conclusion C under the
assumption A and also show C under the assumption B. We then conclude
C, since either A or B by assumption. Thus the elimination rule employs two
hypothetical judgments.

` A ∨B

u1

` A
...
` C

u2

` B
...
` C

∨Eu1,u2

` C

Draft of May 4, 1998

8 Natural Deduction

Now one can see that the introduction and elimination rules match up in two
reductions. First, the case that the disjunction was inferred by ∨IL.

D
` A

∨IL
` A ∨B

u1

` A
E1
` C

u2

` B
E2
` C

∨Eu1,u2

` C

=⇒R

D
u1

` A
E1
` C

The other reduction is symmetric.

D
` B

∨IR
` A ∨B

u1

` A
E1
` C

u2

` B
E2
` C

∨Eu1,u2

` C

=⇒R

D
u2

` B
E2
` C

As in the reduction for implication, the resulting derivation may be longer than
the original one. The local expansion is more complicated than for the previous
connectives, since we first have to distinguish cases and then reintroduce the
disjunction in each branch.

D
` A ∨B =⇒E

D
` A ∨B

u1

` A
∨IL

` A ∨B

u2

` B
∨IR

` A ∨B
∨Eu1,u2

` A ∨B

Negation. In order to derive ¬A we assume A and try to derive a contra-
diction. Thus it seems that negation requires falsehood, and, indeed, in most
literature on constructive logic, ¬A is seen as an abbreviation of A ⊃ ⊥. In
order to give a self-contained explanation of negation by an introduction rule,
we employ a judgment that is parametric in a propositional parameter p: If we
can derive any p from the hypothesis A we conclude ¬A.

u
` A
...
` p

¬Ip,u

` ¬A
` ¬A ` A

¬E
` C

Draft of May 4, 1998

1.1 Intuitionistic Natural Deduction 9

The elimination rule follows from this view: if we know ` ¬A and ` A then
we can conclude any formula C is true. In the form of a local reduction:

u
` A
D
` p

¬Ip,u
` ¬A

E
` A

¬E
` C

=⇒R

E
u

` A
[C/p]D
` C

The substitution [C/p]D is valid, since D is parametric in p. The local expansion
is similar to the case for implication.

D
` ¬A =⇒E

D
` ¬A

u
` A
¬E

` p
¬Ip,u

` ¬A

Truth. There is only an introduction rule for >:

>I
` >

Since we put no information into the proof of >, we know nothing new if we
have an assumption > and therefore we have no elimination rule and no local
reduction. It may also be helpful to think of > as a 0-ary conjunction: the
introduction rule has 0 premisses instead of 2 and we correspondingly have 0
elimination rules instead of 2. The local expansion allows the replacement of
any derivation of > by >I.

D
` > =⇒E >I

` >

Falsehood. Since we should not be able to derive falsehood, there is no in-
troduction rule for ⊥. Therefore, if we can derive falsehood, we can derive
everything.

` ⊥
⊥E

` C

Note that there is no local reduction rule for ⊥E. It may be helpful to think
of ⊥ as a 0-ary disjunction: we have 0 instead of 2 introduction rules and we
correspondingly have to consider 0 cases instead of 2 in the elimination rule.
Even though we postulated that falsehood should not be derivable, falsehood
could clearly be a consequence of contradictory assumption. For example, `

Draft of May 4, 1998

10 Natural Deduction

A ∧ ¬A⊃⊥ is derivable. While there is no local reduction rule, there still is a
local expansion in analogy to the case for disjunction.

D
` ⊥ =⇒E

D
` ⊥

⊥E
` ⊥

Universal Quantification. Under which circumstances should ` ∀x. A be
true? This clearly depends on the domain of quantification. For example, if we
know that x ranges over the natural numbers, then we can conclude ∀x. A if we
can prove [0/x]A, [1/x]A, etc. Such a rule is not effective, since it has infinitely
many premisses. Thus one usually retreats to rules such as induction. However,
in a general treatment of predicate logic we would like to prove statements
which are true for all domains of quantification. Thus we can only say that
∀x. A should be provable if [a/x]A is provable for a new parameter a about
which we can make no assumption. Conversely, if we know ∀x. A, we know that
[t/x]A for any term t.

` [a/x]A
∀Ia

` ∀x. A
` ∀x. A

∀E
` [t/x]A

The label a on the introduction rule is a reminder the parameter a must be
“new”, that is, it may not occur in any uncancelled assumption in the proof
of [a/x]A or in ∀x. A itself. In other words, the derivation of the premiss
must parametric in a. The local reduction carries out the substitution for the
parameter.

D
` [a/x]A

∀I
` ∀x. A

∀E
` [t/x]A

=⇒R
[t/a]D
` [t/x]A

Here, [t/a]D is our notation for the result of substituting t for the parameter a
throughout the deduction D. For this substitution to preserve the conclusion,
we must know that a does not already occur in A. Similarly, we would change
the hypotheses if a occurred free in any of the undischarged hypotheses of D.
This might render a larger proof incorrect. As an example, consider the formula
∀x. ∀y. P (x)⊃ P (y) which should clearly not be true for all predicates P . The

Draft of May 4, 1998

1.1 Intuitionistic Natural Deduction 11

following is not a deduction of this formula.

u
` P (a)

∀Ia?
` ∀x. P (x)

∀E
` P (b)

⊃Iu

` P (a)⊃ P (b)
∀Ib

` ∀y. P (a)⊃ P (y)
∀Ia

` ∀x. ∀y. P (x)⊃ P (y)

The flaw is at the inference marked with “?,” where a is free in the hypothesis
labelled u. Applying a local proof reduction to the (incorrect) ∀I inference
followed by ∀E leads to the the assumption [b/a]P (a) which is equal to P (b).
The resulting derivation

u
` P (b)

⊃Iu

` P (a)⊃ P (b)
∀Ib

` ∀y. P (a)⊃ P (y)
∀Ia

` ∀x. ∀y. P (x)⊃ P (y)

is once again incorrect since the hypothesis labelled u should read P (a), not
P (b).

The local expansion for universal quantification is much simpler.

D
` ∀x. A =⇒E

D
` ∀x. A

∀E
` [a/x]A

∀Ia
` ∀x. A

Existential Quantification. We conclude that ∃x. A is true when there is a
term t such that [t/x]A is true.

` [t/x]A
∃I

` ∃x. A

When we have an assumption ∃x. A we do not know for which t it is the case
that [t/x]A holds. We can only assume that [a/x]A holds for some parameter
a about which we know nothing else. Thus the elimination rule resembles the

Draft of May 4, 1998

12 Natural Deduction

one for disjunction.

` ∃x. A

u
` [a/x]A

...
` C

∃Ea,u
` C

The restriction is similar to the one for ∀I: the parameter a must be new, that is,
it must not occur in ∃x. A, C, or any assumption employed in the derivation of
the second premiss. In the reduction rule we have to perform two substitutions:
we have to substitute t for the parameter a and we also have to substitute for
the hypothesis labelled u.

D
` [t/x]A

∃I
∃x. A

u
` [a/x]A
E
` C

∃Ea,u
` C

=⇒R

D
u

` [t/x]A
[t/a]E
` C

The proviso on occurrences of a guarantees that the conclusion and hypotheses
of [t/a]E have the correct form. The local expansion for existential quantification
is also similar to the case for disjunction.

D
` ∃x. A =⇒E

D
` ∃x. A

u
` [a/x]A

∃I
` ∃x. A

∃Ea,u
` ∃x. A

Here is a simple example of a natural deduction. We attempt to show the
process by which such a deduction may have been generated, as well as the
final deduction. The three vertical dots indicate a gap in the derivation we are
trying to construct, with hypotheses and their consequences shown above and
the desired conclusion below the gap.

...
` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A⊃ B)

...
` B

⊃Iu

` A ∧ (A⊃ B) ⊃B

Draft of May 4, 1998

1.1 Intuitionistic Natural Deduction 13

;

u
` A ∧ (A ⊃B)

∧EL
` A
...
` B

⊃Iu

` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A ⊃B)

∧EL
` A

u
` A ∧ (A ⊃B)

∧ER
` A⊃ B

...
` B

⊃Iu

` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A⊃ B)

∧ER
` A⊃ B

u
` A ∧ (A ⊃B)

∧EL
` A
⊃E

` B
...
` B

⊃Iu

` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A⊃ B)

∧ER
` A⊃ B

u
` A ∧ (A ⊃B)

∧EL
` A
⊃E

` B
⊃Iu

` A ∧ (A ⊃B) ⊃ B

The symbols A and B in this derivation stand for arbitrary propositions; we
can thus established a judgment parametric in A and B. In other words, every
instance of this derivation (substituting arbitrary propositions for A and B) is
a valid derivation.

Below is a summary of the rules of intuitionistic natural deduction.

Draft of May 4, 1998

14 Natural Deduction

Introduction Rules Elimination Rules

` A ` B
∧I

` A ∧B
` A ∧B ∧EL
` A

` A ∧B ∧ER
` B

` A ∨IL
` A ∨B

` B ∨IR
` A ∨B

` A ∨B

u1

` A
...
` C

u2

` B
...
` C

∨Eu1,u2

` C

u
` A
...
` B

⊃Iu

` A⊃ B
` A⊃ B ` A

⊃E
` B

u
` A
...
` p

¬Ip,u
` ¬A

` A ` ¬A
¬E

` C

>I
` > no > elimination

no ⊥ introduction

` ⊥
⊥E

` C

` [a/x]A
∀Ia

` ∀x. A
` ∀x. A

∀E
` [t/x]A

` [t/x]A
∃I

` ∃x. A

` ∃x. A

u
` [a/x]A

...
` C

∃Ea,u
` C

Draft of May 4, 1998

1.2 Classical Logic 15

1.2 Classical Logic

The inference rules so far only model intuitionistic logic, and some classically
true propositions such as A ∨ ¬A (for an arbitrary A) are not derivable, as we
will see in Section ??. There are three commonly used ways one can construct a
system of classical natural deduction by adding one additional rule of inference.
⊥C is called Proof by Contradiction or Rule of Indirect Proof, ¬¬C is the Double
Negation Rule, and XM is referred to as Excluded Middle.

u
¬A

...
⊥
⊥uC

A

¬¬A ¬¬C
A

XM
A ∨ ¬A

The rule for classical logic (whichever one chooses to adopt) breaks the pattern
of introduction and elimination rules. One can still formulate some reductions
for classical inferences, but natural deduction is at heart an intuitionistic cal-
culus. The symmetries of classical logic are much better exhibited in sequent
formulations of the logic. In Exercise 1.3 we explore the three ways of extending
the intuitionistic proof system and show that they are equivalent.

Another way to obtain a natural deduction system for classical logic is to
allow multiple conclusions (see, for example, Parigot [Par92]).

1.3 Localizing Hypotheses

In the formulation of natural from Section 1.1 correct use of hypotheses and
parameters is a global property of a derivation. We can localize it by annotat-
ing each judgment in a derivation by the available parameters and hypotheses.
Since hypotheses and their restrictions are critical for linear logic, we give here a
formulation of natural deduction for intuitionistic logic with localized hypothe-
ses, but not parameters. For this we need a notation for hypotheses which we
call a context.

Contexts Γ ::= · | Γ, u:A

Here, “·” represents the empty context, and Γ, u:A adds hypothesis ` A labelled
u to Γ. We assume that each label u occurs at most once in a context in order
to avoid ambiguities. The main judgment can then be written as Γ ` A, where

·, u1:A1, . . . , un:An ` A

stands for
u1

` A1 . . .
un

` An
...
` A

Draft of May 4, 1998

16 Natural Deduction

in the notation of Section 1.1.
We use a few important abbreviations in order to make this notation less

cumbersome. First of all, we may omit the leading “·” and write, for example,
u1:A1, u2:A2 instead of ·, u1:A1, u2:A2. Secondly, we denote concatenation of
contexts by overloading the comma operator as follows.

Γ, · = Γ
Γ, (Γ′, u:A) = (Γ,Γ′), u:A

With these additional definitions, the localized version of our rules are as
follows.

Introduction Rules Elimination Rules

Γ ` A Γ ` B
∧I

Γ ` A ∧B
Γ ` A ∧B ∧EL

Γ ` A
Γ ` A ∧B ∧ER

Γ ` B

Γ ` A ∨IL
Γ ` A ∨B

Γ ` B ∨IR
Γ ` A ∨B

Γ ` A ∨B Γ, u1:A ` C Γ, u2:B ` C
∨Eu1,u2

Γ ` C

Γ, u:A ` B
⊃Iu

Γ ` A⊃ B
Γ ` A ⊃B Γ ` A

⊃E
Γ ` B

Γ, u:A ` p
¬Ip,u

Γ ` ¬A
Γ ` A Γ ` ¬A

¬E
Γ ` C

>I
Γ ` > no > elimination

no ⊥ introduction

Γ ` ⊥
⊥E

Γ ` C

Γ ` [a/x]A
∀Ia

Γ ` ∀x. A
Γ ` ∀x. A

∀E
Γ ` [t/x]A

Γ ` [t/x]A
∃I

Γ ` ∃x. A

Γ ` ∃x. A Γ, u:[a/x]A ` C
∃Ea,u

Γ ` C

We also have a new rule for hypotheses which was an implicit property of the
hypothetical judgments before.

u
Γ1, u:A,Γ2 ` A

Other general assumptions about hypotheses, namely that they may be used ar-
bitrarily often in a derivation and that their order does not matter, are indirectly

Draft of May 4, 1998

1.3 Localizing Hypotheses 17

reflected in these rules. Note that if we erase the context Γ from the judgments
throughout a derivation, we obtain a derivation in the original notation.

When we discussed local reductions in order to establish local soundness, we
used the notation

D
u

` A
E
` C

for the result of substituting the derivation D of ` A for all uses of the hy-
pothesis ` A labelled u in E . We would now like to reformulate the property
with localized hypotheses. In order to prove that the (now explicit) hypotheses
behave as expected, we use the principle of structural induction over derivations.
Simply put, we prove a property for all derivations by showing that, whenever
it holds for the premisses of an inference, it holds for the conclusion. Note that
we have to show the property outright when the rule under consideration has
no premisses, which amounts to the base cases forof the induction.

Theorem 1.1 (Structural Properties of Hypotheses) The following prop-
erties hold for intuitionistic natural deduction.

1. (Exchange) If Γ1, u1:A,Γ2, u2:B,Γ2 ` C then Γ1, u2:B,Γ2, u1:A,Γ2 ` C.

2. (Weakening) If Γ1,Γ2 ` C then Γ1, u:A,Γ2 ` C.

3. (Contraction) If Γ1, u1:A,Γ2, u2:A,Γ2 ` C then Γ1, u:A,Γ2,Γ3 ` C.

4. (Substitution) If Γ1, u:A,Γ2 ` C and Γ1 ` A then Γ1,Γ2 ` C.

Proof: The proof is in each case by straightforward induction over the structure
of the first given derivation.

In the case of exchange, we appeal to the inductive assumption on the deriva-
tions of the premisses and construct a new derivation with the same inference
rule. Algorithmically, this means that we exchange the hypotheses labelled u1

and u2 in every judgment in the derivation.
In the case of weakening and contraction, we proceed similarly, either adding

the new hypothesis u:A to every judgment in the derivation (for weakening), or
replacing uses of u1 and u2 by u (for contraction).

For substitution, we apply the inductive assumption to the premisses of the
given derivation D until we reach hypotheses. If the hypothesis is different from
u we can simply erase u:A (which is unused) to obtain the desired derivation.
If the hypothesis is u:A the derivation looks like

D =
u

Γ1, u:A,Γ2 ` A

so C = A in this case. We are also given a derivation E of Γ1 ` A and have
to construct a derivation F of Γ1,Γ2 ` A. But we can just repeatedly apply
weakening to E to obtain F . Algorithmically, this means that, as expected, we

Draft of May 4, 1998

18 Natural Deduction

substitute the derivation E (possibly weakened) for uses of the hypotheses u:A
in D. Note that in our original notation, this weakening has no impact, since
unused hypotheses are not apparent in a derivation. 2

It is also possible to localize the derivations themselves, using proof terms.
As we will see in Chapter 4, these proof terms form a λ-calculus closely related
to functional programming. When parameters, hypotheses, and proof terms
are all localized our main judgment becomes decidable. In the terminology of
Martin-Löf [ML94], the main judgment is then analytic rather than synthetic.
We no longer need to go outside the judgment itself in order to collect evidence
for it: An analytic judgment encapsulates its own evidence.

1.4 Exercises

Exercise 1.1 Prove the following by natural deduction using only intuitionistic
rules when possible. We use the convention that ⊃, ∧, and ∨ associate to the
right, that is, A⊃B⊃C stands for A⊃(B⊃C). A ≡ B is a syntactic abbreviation
for (A ⊃ B) ∧ (B ⊃ A). Also, we assume that ∧ and ∨ bind more tightly than
⊃, that is, A∧B⊃C stands for (A∧B)⊃C. The scope of a quantifier extends
as far to the right as consistent with the present parentheses. For example,
(∀x. P (x)⊃ C) ∧ ¬C would be disambiguated to (∀x. (P (x)⊃C)) ∧ (¬C).

1. ` A⊃ B ⊃ A.

2. ` A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C).

3. (Peirce’s Law). ` ((A⊃ B) ⊃A) ⊃A.

4. ` A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C).

5. ` A⊃ (A ∧B) ∨ (A ∧ ¬B).

6. ` (A⊃ ∃x. P (x)) ≡ ∃x. (A ⊃ P (x)).

7. ` ((∀x. P (x))⊃C) ≡ ∃x. (P (x)⊃C).

8. ` ∃x. ∀y. (P (x)⊃ P (y)).

Exercise 1.2 We write A ` B if B follows from hypothesis A and A a` B
for A ` B and B ` A. Which of the following eight parametric judgments are
derivable intuitionistically?

1. (∃x. A) ⊃B a` ∀x. (A⊃ B)

2. A ⊃ (∃x. B) a` ∃x. (A⊃ B)

3. (∀x. A) ⊃B a` ∃x. (A⊃ B)

4. A ⊃ (∀x. B) a` ∀x. (A⊃ B)

Draft of May 4, 1998

1.4 Exercises 19

Provide natural deductions for the valid judgments. You may assume that the
bound variable x does not occur in B (items 1 and 3) or A (items 2 and 4).

Exercise 1.3 Show that the three ways of extending the intuitionistic proof
system are equivalent, that is, the same formulas are deducible in all three
systems.

Exercise 1.4 Assume we had omitted disjunction and existential quantification
and their introduction and elimination rules from the list of logical primitives.
In the classical system, give a definition of disjunction and existential quantifi-
cation (in terms of other logical constants) and show that the introduction and
elimination rules now become admissible rules of inference. A rule of inference is
admissible if any deduction using the rule can be transformed into one without
using the rule.

Exercise 1.5 Assume we would like to design a system of natural deduction
for a simple temporal logic. The main judgment is now “A is true at time t”
written as

`t A.

1. Explain how to modify the given rules for natural deduction to this more
general judgment and show the rules for implication and universal quan-
tification.

2. Write out introduction and elimination rules for the temporal operator
©A which should be true if A is true at the next point in time. Denote
the “next time after t” by t + 1.

3. Show the local reductions and expansions which show the local soundness
and completness of your rules.

4. Write out introduction and elimination rules for the temporal operator
2A which should be true if A is true at all times.

5. Show the local reductions and expansions.

Exercise 1.6 Design introduction and elimination rules for the connectives

1. A ≡ B, usually defined as (A ⊃B) ∧ (B ⊃ A),

2. A | B (exclusive or), usually defined as (A ∧¬B) ∨ (¬A ∧B),

without recourse to other logical constants or operators. Also show the corre-
sponding local reductions and expansions.

Draft of May 4, 1998

20 Natural Deduction

Draft of May 4, 1998

Chapter 2

Intuitionistic Linear Logic

Linear logic, in its original formulation by Girard [Gir87] and many subsequent
investigations was presented as a refinement of classical logic. This calculus of
classical linear logic can be cleanly related to classical logic and exhibits many
pleasant symmetries. On the other hand, a number of applications in logic and
functional programming can be treated most directly using the intuitionistic
version. In this chapter we present the basic system of natural deduction defin-
ing intuitionistic linear logic. Further surveys and introductions to linear logic
can be found in [Lin92, Sce93, Tro92]. A historical introduction [Dos̆93] and
context for linear and other substructural logics outside computer science can
be found in [SHD93].

We introduce linear logic by enriching our judgment forms by a linear hy-
pothetical judgment. A linear hypothetical judgment has the form “J2 provided
resource J1”. We consider this judgment evident if we are prepared to make
judgment J2 when provided with the resource J1. A resource or linear hypoth-
esis behaves like an ordinary hypothesis except that it must be used exactly
once.

As an example, consider the basic judgment “I own X” for objects X. We
would be prepared to make the linear hypothetical judgment

“I own book b provided I own $5”

if we know that book b costs five dollars and that it is available. If we ever
actually had $5, we could then achieve a situation in which we owned the book.
Obviously, we would no longer own the five dollars, since they would have been
consumed in the process of obtaining the book. It is clear that we would not
be prepared to make the judgment above if the book costs ten dollars due to
insufficient resources. But we would reject the judgment even if the book cost
only one dollar, since we would not use all the given resources.

We can already see that evidence for a judgment of this form is a derivation
in which we have to keep track of resources. Implicit here is a notion of state
and change of state which is not present in traditional mathematical logic. For
this reason, linear logic is often referred to as a “logic of state”.

Draft of May 4, 1998

22 Intuitionistic Linear Logic

In the following section we develop the logical connectives of linear logic,
based on the notion of linear hypothetical judgment.

2.1 Purely Linear Natural Deduction

The main judgment of purely linear natural deduction is “A is true assuming
linear hypotheses A1, . . . , An”. Later we also admit unrestricted hypotheses,
but we postpone this complication. We refer to A1, . . .An as resources and A as
the goal to be achieved. As for hypotheses in Section 1.3 we localize resources
into a context ∆ and write

∆ ` A.

Just as for ordinary hypotheses, we can substitute concrete evidence for a linear
hypothesis for its use in a derivation. The corresponding substitution principle
is the following:

If ∆1, w:A,∆2 ` C and ∆ ` A then ∆1,∆,∆2 ` C.

Intuitively, it states that if we have a derivation of ` C from resources ∆1, ∆2

and the additional resource ` A labelled w, and if we have a derivation of ` A
requiring resources ∆, then we can obtain a derivation of ` C from resources
∆1, ∆, and ∆2.

Resources also satisfy the principle of exchange, since their order is irrelevant.

If ∆1, w1:A,∆2, w2:B,∆3 ` C then ∆1, w2:B,∆2, w1:A,∆3 ` C.

Note that unlike unrestricted hypotheses, resources cannot be weakened or
contracted since they must be used exactly once. Weakening would allow re-
sources to remain unused, while contraction would allow resources to be used
more than once.

Finally, the use of a resource is restricted (when compared to hypotheses in
the intuitionistic case) so that there are no other resources remaining.

w
·, w:A ` A

We now examine, connective by connective, the introduction and elimination
rules of linear logic and check their local soundness and completeness. In the
local reductions and expansion we will have to carefully check the preservation
of resources.

Simultaneous Conjunction. Assume we have some resources ∆ and we
want to achieve goals A and B. We then need to split our resources ∆ into
∆1 and ∆2 and show that with resources ∆1 we can achieve A and with ∆2

we can achieve B. The introduction rule for the corresponding connective of
simultaneous conjunction, written A⊗B and read “A tensor B”, then requires a

Draft of May 4, 1998

2.1 Purely Linear Natural Deduction 23

notation for splitting resources (when viewed bottom-up) or merging resources
(when viewed top-down). We merge ∆1 ×∆2 according to the following rules.

· × · = ·
∆1 × (∆2, u:A) = (∆1 ×∆2), u:A
(∆1, u:A) ×∆2 = (∆1 ×∆2), u:A

Note that this is a non-deterministic operation, since the last two rules might
both be applicable. We use the convention that any way to merge two contexts
in an inference rules yields a valid inference. With this preparation we can now
state the introduction rule for simultaneous conjunction.

∆1 ` A ∆2 ` B
⊗I

∆1 ×∆2 ` A⊗ B

The elimination rule should capture what we can achieve if we know that
we can achieve both A and B simultaneously from some hypothetical resources
∆. We reason as follows: If with A, B, and additional resources ∆′ we could
achieve goal C, then we could achieve C from resources ∆ and ∆′.

∆ ` A⊗ B ∆′, w1:A,w2:B ` C
⊗Ew1,w2

∆′ ×∆ ` C

The way we achieve C is to commit resources ∆ to achieving A and B by the
derivation of the left premiss and then using the remaining resources ∆′ together
with A and B to achieve C.

As before, we should check that the rules above are locally sound and com-
plete. First, the local reduction

D1

∆1 ` A
D2

∆2 ` B
⊗I

∆1 ×∆2 ` A ⊗B
E

∆′, w1:A,w2:B ` C
⊗Ew1,w2

∆′ ×∆1 ×∆2 ` C

=⇒R
[D1/w1][D2/w2]E

∆′ ×∆1 ×∆2 ` C

which requires two substitutions for linear hypotheses and the application of
the substitution principle. We have also used exchange implicitly on the right
hand side: if ∆′,∆1,∆2 ` C then ∆′ × ∆1 × ∆2 ` C due to the principle of
exchange. We will use exchange tacitly from now on together with the substitu-
tion principle. The derivation on the right shows that the elimination rules are
not too strong: we cannot obtain more judgments than we used to introduce
the simultaneous conjunction.

For local completeness we have the following expansion.

D
∆ ` A⊗B =⇒E

D
∆ ` A⊗B

w1

·, w1:A ` A
w2

·, w2:B ` B
⊗I

·, w1:A,w2:B ` A⊗B
⊗Ew1,w2

∆ ` A ⊗B

Draft of May 4, 1998

24 Intuitionistic Linear Logic

The derivation on the right verifies that the elimination rules are strong enough
so that the simultaneous conjunction can be reconstituted from the parts we
obtain from the elimination rule.

Alternative Conjunction. Assume there are two books b1 and b2, each of
which costs five dollars. If we had five dollars, we could by each one, but not
both at the same time. It is our choice which one we buy and it therefore is
a form of conjunction. We call it alternative conjunction ANB and pronounce
it “A with B”. It is sometimes also called internal choice. In its introduction
rule, the resources are made available in both premisses, since we have to make
a choice which among A and B we want to achieve.

∆ ` A ∆ ` B
NI

∆ ` ANB

Consquently, if we have a resource ANB, we can recover either A or B, but not
both simultaneously. Therefore we have two elimination rules.

∆ ` ANB
NEL

∆ ` A
∆ ` ANB

NER
∆ ` B

The local reductions formalize the reasoning above.

D1

∆ ` A
D2

∆ ` B
NI

∆ ` ANB
NEL

∆ ` A

=⇒R
D1

∆ ` A

D1

∆ ` A
D2

∆ ` B
NI

∆ ` ANB
NER

∆ ` B

=⇒R
D2

∆ ` B

We recognize these rules from intuitionistic natural deduction, where the
context Γ is also made available in both premisses. The embedding of intu-
itionistic in linear logic will therefore map intuitionistic conjunction A ∧ B to
alternative conjunction ANB. The expansion is also already familiar.

D
∆ ` ANB =⇒E

D
∆ ` ANB

NEL
∆ ` A

D
∆ ` ANB

NER
∆ ` B

NI
∆ ` ANB

Draft of May 4, 1998

2.1 Purely Linear Natural Deduction 25

Linear Implication. The linear implication or resource implication internal-
izes the linear hypothetical judgment at the level of propositions. We say A(B
for the goal of achieving B with resource A.

∆, w:A ` B
(Iw

∆ ` A(B

If we know A(B we can obtain B from a derivation of A.

∆ ` A(B ∆′ ` A
(E

∆×∆′ ` B
As in the case for simultaneous conjunction, we have to split the resources,
devoting ∆ to achieving A(B and ∆′ to achieving A.

The local reduction carries out the expected substitution for the linear hy-
pothesis.

D
∆, w:A ` B

(Iw
∆ ` A(B

E
∆′ ` A

(E
∆×∆′ ` B

=⇒R
[E/w]D

∆×∆′ ` B

The rules are also locally complete, as witnessed by the local expansion.

D
∆ ` A(B

=⇒E

D
∆ ` A(B

w
·, w:A ` A

(E
∆, w:A ` B

(Iw
∆ ` A(B

Unit. The trivial goal which requires no resources is written as 1.

1I
· ` 1

If we can achieve 1 from some resources ∆ we know that we can consume all
those resources.

∆ ` 1 ∆′ ` C
1E

∆′ ×∆ ` C
The rules above and the local reduction and expansion can be seen as a case of 0-
ary simultaneous conjunction. In particular, we will see that 1⊗A is equivalent
to A.

1I
· ` 1

E
∆′ ` C

1E
∆′ ` C

=⇒R
E

∆′ ` C

D
∆ ` 1

=⇒E

D
∆ ` 1

1I
· ` 1

1E
∆ ` 1

Draft of May 4, 1998

26 Intuitionistic Linear Logic

Top. There is also a goal which consumes all resources. It is the unit of
alternative conjunction and follows the laws of intuitionistic truth.

>I
∆ ` >

There is no elimination rule for > and consequently no local reduction (it is
trivially locally sound). The local expansion replaces an arbitrary derivation by
the rule above.

D
∆ ` > =⇒E >I

∆ ` >

Disjunction. The disjunction A ⊕ B (also called external choice) is charac-
terized by two introduction rules.

∆ ` A ⊕IL
∆ ` A ⊕B

∆ ` B ⊕IR
∆ ` A⊕B

As in the case for intuitionistic disjunction, we therefore have to distinguish two
cases when we know that we can achieve A⊕ B.

∆ ` A ⊕B ∆′, w1:A ` C ∆′, w2:B ` C
⊕Ew1,w2

∆′ ×∆ ` C

Note that resources ∆′ appear in both branches, since only one of those two
derivations will actually be used to achieve C, depending on the derivation of
A⊕B. This can be seen from the local reductions.

D
∆ ` A

⊕IL
∆ ` A ⊕B

E1
∆′, w1:A ` C

E2
∆′, w2:B ` C

⊕Ew1,w2

∆′ ×∆ ` C

=⇒R
[D/w1]E1

∆′ ×∆ ` C

D
∆ ` B

⊕IL
∆ ` A ⊕B

E1
∆′, w1:A ` C

E2
∆′, w2:B ` C

⊕Ew1,w2

∆′ ×∆ ` C

=⇒R
[D/w2]E2

∆′ ×∆ ` C

The local expansion is also familiar from intuitionistic disjunction.

D
∆ ` A ⊕B =⇒E

D
∆ ` A⊕ B

w1

·, w1:A ` A
∨IL

·, w1:A ` A⊕ B

w2

·, w2:B ` B
∨IR

·, w2:B ` A⊕ B
∨Ew1,w2

∆ ` A⊕ B

Draft of May 4, 1998

2.1 Purely Linear Natural Deduction 27

Impossibility. The impossibility 0 is the case of a disjunction between zero
alternatives and the unit of ⊕. There is no introduction rule. In the elimination
rule we have to consider no branches.

∆ ` 0
0E

∆′ ×∆ ` C

There is no local reduction, since there is no introduction rule. However, as in
the case of falsehood in intuitionistic logic, we have a local expansion.

D
∆ ` 0

=⇒E

D
∆ ` 0

0E
∆ ` 0

Universal Quantification. Quantifiers do not interact much with linearity,
since we make no restrictions on occurrences of the parameter. They are in-
cluded here for reference, but we omit the local reductions and expansion which
are given in Section 1.1.

∆ ` [a/x]A
∀Ia

∆ ` ∀x. A
∆ ` ∀x. A

∀E
∆ ` [t/x]A

Existential Quantification. The idea remains the same as in the intuition-
istic case, except that we have to split resources among the premisses of the
elimination rule.

∆ ` [t/x]A
∃I

∆ ` ∃x. A

∆ ` ∃x. A ∆′, w:[a/x]A ` C
∃Ea,w

∆′ ×∆ ` C

We omit the local reduction and expansion, which are trivial modification of
the rules in Section 1.1.

This concludes the purely linear operators. Negation and another version of
falsehood are postponed to Section ??, since they may be formally definable, but
their interpretation is somewhat questionable in the context we have established
so far.

The connectives we have introduced may be classified as to whether the
resources are split among the premisses or distributed to the premisses. Con-
nectives of the former kind are called multiplicative, the latter additive. For
example, we might refer to simultaneous conjunction also as multiplicative con-
junction and to alternative conjunction as additive conjunction. When we line
up the operators against each other, we notice some gaps. For example, there
seems to be only a multiplicative implication, but no additive implication. Du-
ally, there seems to be only an additive disjunction, but no multiplicative dis-
junction. This is not an accident and is pursued further in Exercise 2.3.

Draft of May 4, 1998

28 Intuitionistic Linear Logic

2.2 Intuitionistic Hypotheses in Linear Logic

So far, the main judgment permits only linear hypotheses. This means that
the logic is too weak to embed intuitionistic logic, and we have failed so far to
design a true extension. We now generalize the main judgment to

Γ; ∆ ` A

which we read as “under unrestricted hypotheses Γ with resources ∆ we can
achieve goal A”. The hypotheses Γ are intended to satisfy all the structural
properties of Section 1.3, that is, exchange, weakening, contraction, and substi-
tution. Substitution is not completely straightforward, since we have to consider
the interaction with linear hypotheses. It now reads as follows:

If (Γ1, u:A,Γ2); ∆ ` C and Γ1; · ` A then (Γ1,Γ2); ∆ ` C.

It is critical to understand why the derivation of ` A may not use any linear
hypotheses. This is because in the construction of the resulting derivation of
` C we substitute the derivation of ` A for any use of the hypothesis u:A in

the given derivation of C. But this hypothesis u:A is unrestricted and my be
used many times. The substitution could therefore replicate any resources used
in the derivation of ` A, violating the basic principle that resources are used
exactly once.

For a similar reason, we can only use an unrestricted hypothesis if there are
no resources (which otherwise would not be used as required).

u
(Γ1, u:A,Γ2); · ` A

All the other rules we presented for pure linear logic are extended by adding
the unrestricted context to premisses and conclusion (see the rule summary on
page 30). We now reflect the unrestricted hypotheses in the language of propo-
sition by reintroducing the corresponding operator of intuitionistic implication.

Intuitionistic Implication. The intuistionistic implication is the familiar
one, where we have to be careful in the elimination rule to capture the restriction
on the substitution property.

(Γ, u:A); ∆ ` B
⊃Iu

Γ; ∆ ` A⊃ B
Γ; ∆ ` A⊃B Γ; · ` A

⊃E
Γ; ∆ ` B

The local reduction uses the substitution principle for unrestricted hypotheses.

D
(Γ, u:A); ∆ ` B

⊃Iu

` A ⊃B
E

Γ; · ` A
⊃E

` B

=⇒R
[D/u]E

Γ; ∆ ` B

Draft of May 4, 1998

2.2 Intuitionistic Hypotheses in Linear Logic 29

In Exercise 2.1 you are asked to show that the rules would be locally unsound
(that is, local reduction is not possible), if the second premiss in the elimination
rule would be allowed to depend on linear hypotheses. The local expansion is
simpler.

D
Γ; ∆ ` A⊃B =⇒E

D
(Γ, u:A); ∆ ` A⊃B

u
(Γ, u:A); · ` A

⊃E
(Γ, u:A); ∆ ` B

⊃Iu

Γ; ∆ ` A⊃B
Notice that we weaken D with the added (and unused) hypothesis u, which does
not affect the structure of the derivation. This is not visible in the formulation
of the local reduction in Section 1.1, since we did not make the hypotheses
explicit.

“Of Course” Modality. Girard [Gir87] observed that there is an even sim-
pler way to connect intuitionistic and linear logic by internalizing the notion
of intuitionistic truth via a modal operator !A he called “of course A” (often
pronounced “bang A)”. A formula is intuitionistically true if it can be derived
without the use of any restricted resources.

Γ; · ` A
!I

Γ; · ` !A

The elimination rule states that if we can derive ` !A than we are allowed to
use A as an unrestricted hypothesis.

Γ; ∆ ` !A (Γ, u:A); ∆′ ` C
!Eu

Γ; (∆′ ×∆) ` C

This pair of rules is locally sound and complete.

D
Γ; · ` A

!I
Γ; · ` !A

E
(Γ, u:A); ∆′ ` C

!Eu

Γ; ∆′ ` C

=⇒R
[D/u]E

Γ; ∆′ ` C

D
Γ; ∆ ` !A

=⇒E

D
Γ; ∆ ` !A

u
(Γ, u:A); · ` A

!I
(Γ, u:A); · ` !A

!Eu
Γ; ∆ ` !A

Using the of course modality, one can define the intuitionstic implication A⊃B
as (!A)(B. It was this observation which gave rise to Girard’s development of
linear logic. Under this interpretation, the introduction and elimination rules
for intuitionistic implication are derived rules of inference (see Exercise 2.2).

Draft of May 4, 1998

30 Intuitionistic Linear Logic

We now summarize the rules of intuitionistic linear logic. A very simi-
lar calculus was developed and analyzed in the categorical context by Bar-
ber [Bar96]. It differs from more traditional treatments by Abramsky [Abr93],
Troelstra [Tro93], Bierman [Bie94] and Albrecht et al. [ABCJ94] in that struc-
tural rules remain completely implicit. The logic we consider here comprises
the following logical operators.

Formulas A ::= P Atoms
| A1(A2 | A1 ⊗ A2 | 1 Multiplicatives

| A1NA2 | > | A1 ⊕A2 | 0 Additives
| ∀x. A | ∃x. A Quantifiers
| A⊃ B | !A Exponentials

It is instructive to compare the rules below with those of intuitionistic natural
deduction on page 13, keeping in mind that hypotheses were left implicit in that
formulation.

Hypotheses.

w
Γ; (·, w:A) ` A

u
(Γ1, u:A,Γ2); · ` A

Multiplicative Connectives.

Γ; ∆1 ` A Γ; ∆2 ` B
⊗I

Γ; (∆1 ×∆2) ` A⊗ B

Γ; ∆ ` A⊗ B Γ; (∆′, w1:A,w2:B) ` C
⊗Ew1,w2

Γ; (∆′ ×∆) ` C

Γ; (∆, w:A) ` B
(Iw

Γ; ∆ ` A(B

Γ; ∆ ` A(B Γ; ∆′ ` A
(E

Γ; (∆×∆′) ` B

1I
Γ; · ` 1

Γ; ∆ ` 1 Γ; ∆′ ` C
1E

Γ; (∆′ ×∆) ` C

Additive Connectives.

Γ; ∆ ` A Γ; ∆ ` B
NI

Γ; ∆ ` ANB

Γ; ∆ ` ANB
NEL

Γ; ∆ ` A

Γ; ∆ ` ANB
NER

Γ; ∆ ` B

>I
Γ; ∆ ` > no > elimination

Draft of May 4, 1998

2.3 Two Examples 31

Γ; ∆ ` A
⊕IL

Γ; ∆ ` A ⊕B

Γ; ∆ ` B
⊕IR

Γ; ∆ ` A⊕B

Γ; ∆ ` A⊕ B Γ; (∆′, w1:A) ` C Γ; (∆′, w2:B) ` C
⊕Ew1,w2

Γ; (∆′ ×∆) ` C

no 0 introduction

Γ; ∆ ` 0
0E

Γ; (∆′ ×∆) ` C

Quantifiers.

Γ; ∆ ` [a/x]A
∀Ia

Γ; ∆ ` ∀x. A
Γ; ∆ ` ∀x. A

∀E
Γ; ∆ ` [t/x]A

Γ; ∆ ` [t/x]A
∃I

Γ; ∆ ` ∃x. A

Γ; ∆ ` ∃x. A Γ; (∆′, w:[a/x]A) ` C
∃Ea,w

Γ; (∆′ ×∆) ` C

Exponentials.

(Γ, u:A); ∆ ` B
⊃Iu

Γ; ∆ ` A⊃ B
Γ; ∆ ` A⊃ B Γ; · ` A

⊃E
Γ; ∆ ` B

Γ; · ` A
!I

Γ; · ` !A

Γ; ∆ ` !A (Γ, u:A); ∆′ ` C
!Eu

Γ; (∆′ ×∆) ` C

2.3 Two Examples

In this section we practice exploiting the connectives of linear logic to express
situations involving resources and state. The first example is a menu consisting
of various courses which can be obtained for 200 french francs.

Draft of May 4, 1998

32 Intuitionistic Linear Logic

Menu A: FF 200 FF(200)(

Onion Soup or Clear Broth ((OSNCB)

Honey-Glazed Duck ⊗HGD

Peas or Red Cabbage ⊗ (P⊕RC)
(according to season)

New Potatoes ⊗NP

Chocolate Mousse ⊗ ((FF(30)(CM)N1)
(FF 30 extra)

Coffee ⊗C
(unlimited refills) ⊗ (!C))

Note the two different informal uses of “or”, one modelled by an alter-
native conjunction and one by a disjunction. The option of ordering choco-
late mousse is also represented by an alternative conjunction: we can choose
(FF(30)(CM)N1 to obtain nothing (1) or pay another 30 francs to obtain the
mousse.

The second is perhaps more typical of uses of linear logic in computer science
applications. We use it to model a planning problem in the so-called blocks world
in which a robot arm can manipulate blocks, trying to achieve some goal.

a

b

c
table

We use the following primitive propositions.

on(x, y) block x is on block y
tb(x) block x is on the table

holds(x) robot arm holds block x
empty robot arm is empty

clear(x) the top of block x is clear

A planning problem is represented as judgment

Γ0; ∆0 ` A0

Draft of May 4, 1998

2.3 Two Examples 33

where Γ0 represent the rules which describe the legal operations, ∆0 is the initial
state represented as a context of the propositions which are true, and A is the
goal to be achieved. For example, the situation in the picture above would be
represented by

∆0 = ·, empty, tb(a), on(b, a), clear(b), tb(c), clear(c)

where we have omitted labels for the sake of brevity. The rules are represented
by unrestricted hypotheses, since they may be used arbitrarily often in the
course of solving a problem. We use the following for rules for picking up or
putting down and object. We use the convention that simultaneous conjunction
⊗ binds more tightly than linear implication(.

Γ0 = ·,
geton : ∀x. ∀y. empty⊗ clear(x) ⊗ on(x, y)(holds(x)⊗ clear(y),
gettb : ∀x. empty⊗ clear(x) ⊗ tb(x)(holds(x),
puton : ∀x. ∀y. holds(x)⊗ clear(y)(empty⊗ on(x, y)⊗ clear(x),
puttb : ∀x. holds(x)(empty⊗ tb(x)⊗ clear(x).

Each of these represents a particular possible action, assuming that it can be
carried out successfully. Matching the left-hand side of one these rules will
consume the corresponding resources so that, for example, the proposition empty
with no longer be available after the geton action has been applied.

The goal that we would like to achieve on(a, b), for example, is represented
with the aid of using >.

A0 = on(a, b)⊗>
Any derivation of the judgment

Γ0; ∆0 ` A0

represents a plan for achieving the goal A0 from the initial situation state ∆0.
We now go through a derivation of the particular example above, omitting

the unrestricted resources Γ0 which do not change throughout the derivation.
Our first goal is to derive

·, empty, tb(a), on(b, a), clear(b), tb(c), clear(c), empty ` on(a, b)⊗>

By using ⊗I twice we can prove

·, empty, on(b, a), clear(b) ` empty⊗ clear(b) ⊗ on(b, a)

Using the intuitionistic hypothesis rule for geton followed by ∀E twice and(E
we obtain

·, empty, clear(b), on(b, a) ` holds(b) ⊗ clear(a)

Now we use ⊗E with the derivation above as our left premiss, to prove our
overall goal, leaving us with the goal to derive

·, tb(a), tb(c), clear(c), holds(b), clear(a) ` on(a, b)⊗>

Draft of May 4, 1998

34 Intuitionistic Linear Logic

as our right premiss. Observe how the original resources ∆0 have been split
between the two premisses, and the results from the left premiss derivation,
holds(b) and clear(a) have been added to the description of the situation. The
new subgoal has exactly the same form as the original goal (in fact, the con-
clusion has not changed), but applying the unrestricted assumption geton has
changed our state.

Proceeding in the same manner, using the rule puttb next leaves us with the
subgoal

·, tb(a), tb(c), clear(c), clear(a), empty, clear(b), tb(b) ` on(a, b)⊗>

We now apply gettb using a for x and proceeding as above which gives us a
derivation of ` holds(a). Instead of ⊗E, we use the substitution principle
yielding the subgoal

·, tb(c), clear(c), clear(b), tb(b), holds(a) ` on(a, b)⊗>

With same technique, this time using puton, we obtain the subgoal

·, tb(c), clear(c), tb(b), empty, on(a, b), clear(a) ` on(a, b)⊗>

Now we can conclude the derivation with the ⊗I rule, distributing resource
on(a, b) to the left premiss, which follows immediately as hypothesis, and dis-
tributing the remaining resources to the right premiss, where > follows by >I,
ignoring all resources.

Note that different derivations of the original judgment represent different
sequences of actions (see Exercise 2.4).

2.4 Embedding Intuitionistic Logic

Our goal in this section is to show that intuitionistic linear logic (ILL) is a
refinement of intuitionistic logic (IL) in the sense that we can translate each
formula of IL into ILL in a way that preserves derivability. Actually, we will
try to achieve more: not only should it be possible to preserve derivability,
but the translation should also preserve the structure of derivations as much as
possible. This will allow us to make stronger statements regarding the connec-
tion between proof search and reduction in the two calculi when we investigate
specific applications.

The guiding principle in the definition of the translation ()+ of IL formulas
into ILL is the idea that the judgment Γ ` A of IL is interpreted as the judgment
Γ+; · ` A+ of ILL. In other words, all intuitionistic assumptions become unre-
stricted hypotheses. We design the translation so that a derivation D :: (Γ ` A)
can be translated directly to a derivation D+ :: (Γ+; · ` A+). We omit negation
here, which is left to Exercise 2.10.

The only real question arises in the cases for conjunction and truth, since
they split into two possible connectives each. We model them here with additive
linear connectives. Another translation is explored in Exercise 2.9. For most

Draft of May 4, 1998

2.4 Embedding Intuitionistic Logic 35

connectives, however, we have little choice. Contexts are translated by simply
translating the formulas occurring in them.

P+ = P
(A ∧B)+ = A+

NB+

(A⊃ B)+ = (!A+)(B+

(A ∨B)+ = (!A+)⊕ (!B+)
(⊥)+ = 0
(>)+ = >

(∀x. A)+ = ∀x. A+

(∃x. A)+ = ∃x. !A+

(·)+ = ·
(Γ, u:A)+ = Γ+, u:A+

To illustrate Girard’s original decomposition of A⊃ B into (!A)(B we do
not use intuitionistic implication in linear logic, even though it would certainly
be reasonable to translate (A⊃ B)+ = A+ ⊃ B+.

Lemma 2.1 (Embedding) If Γ ` A in IL then Γ+; · ` A+ in ILL.

Proof: By induction over the structore of D :: (Γ ` A). The computational
contents of this proof is a compositional translation of derivations D to deriva-
tions D+ :: (Γ+; · ` A+). 2

An attempt to prove the other direction in a similar manner will fail, since a
natural deduction of Γ+; · ` A+ may have many subdeductions with a conclu-
sion which is not of this form. For example, if the deduction ends in (E the
premises contain the new formula A which may not necessarily be the transla-
tion of an intuitionistic formula. In the next section we show a way to prove
the opposite direction based on normal derivations. A simpler way is to trans-
late each linear connective into its intuitionistic counterpart and show that the
resulting judgment is derivable. This reverse translation ()− should have the
property that (A+)− = A

P− = P
(ANB)− = (A ⊗B)− = A− ∧B−

(A(B)− = (A ⊃B)− = A− ⊃ B−
(A ⊕B)− = A− ∨B−

(0)− = ⊥
(>)− = (1)− = >

(∀x. A)− = ∀x. A−
(∃x. A)− = ∃x. A−

(!A)− = A−

(·)− = ·
(Γ, u:A)− = Γ−, u:A−

The last two rules are also used to map a linear context ∆ to the correspond-
ing intuitionistic context ∆−.

Draft of May 4, 1998

36 Intuitionistic Linear Logic

Property 2.2 (A+)− = A

Proof: By induction on the structure of A. 2

Lemma 2.3 (Conservativity) If Γ; ∆ ` A in ILL then Γ−,∆− ` A− in IL.

Proof: By induction on the structure of D :: (Γ; ∆ ` A). 2

Theorem 2.4 (Conservative Embedding) The translation ()+ is a conser-
vative embedding from IL into ILL.

Proof: From Lemmas 2.1 and 2.3 and Property 2.2. 2

2.5 Normal Deductions

An intuitive strategy in constructing natural deductions is to apply introduction
rules backwards to break the conclusion into subgoals and to apply elimination
rules to hypotheses until the two meet. This strategy is in fact complete which
has numerous consequences. One of the most important is consistency of the
logic, that is, not every proposition is true. This is closely related to the local
soundness property we have investigated for each of the connectives.

We call natural deductions which have been constructed with the strategy
sketched above normal. Normalcy is a judgment about derivations, just as truth
is a judgment about propositions. It is awkward to write out and reason about
judgments on derivations, but there are standard techniques to avoid them.
The most commonly used is to reformulate the judgment on derivations as a
judgment on objects, in this case propositions. Instead of judging a derivation
to be normal, the judgment expresses that “A has a normal derivation”.

In our situation one judgment will not be sufficient, since we need to describe
bottom-up reasoning (introduce the main connective of the conclusion) and top-
down reasoning (eliminate the main connective of the hypothesis). Thus we have
two mutually dependent judgments

Γ; ∆ ` A ↑ A has a normal derivation, and
Γ; ∆ ` A ↓ A has an atomic derivation,

where the latter formalizes the top-down reasoning from hypotheses (intu-
itionistic or linear). These judgments are defined by the following inference
rules.

Hypotheses.

w
Γ; (·, w:A) ` A ↓

u
(Γ1, u:A,Γ2); · ` A ↓

Draft of May 4, 1998

2.5 Normal Deductions 37

Multiplicative Connectives.

Γ; ∆1 ` A ↑ Γ; ∆2 ` B ↑
⊗I

Γ; (∆1 ×∆2) ` A ⊗B ↑

Γ; ∆ ` A⊗ B ↓ Γ; (∆′, w1:A,w2:B) ` C ↑
⊗Ew1,w2

Γ; (∆′ ×∆) ` C ↑

Γ; (∆, w:A) ` B ↑
(Iw

Γ; ∆ ` A(B ↑

Γ; ∆ ` A(B ↓ Γ; ∆′ ` A ↑
(E

Γ; ∆×∆′ ` B ↓

1I
Γ; · ` 1 ↑

Γ; ∆ ` 1 ↓ Γ; ∆′ ` C ↑
1E

Γ; (∆′ ×∆) ` C ↑

Additive Connectives.

Γ; ∆ ` A ↑ Γ; ∆ ` B ↑
NI

Γ; ∆ ` ANB ↑

Γ; ∆ ` ANB ↓
NEL

Γ; ∆ ` A ↓

Γ; ∆ ` ANB ↓
NER

Γ; ∆ ` B ↓

>I
Γ; ∆ ` > ↑ No > elimination rule

Γ; ∆ ` A ↑
⊕IL

Γ; ∆ ` A ⊕B ↑

Γ; ∆ ` B ↑
⊕IR

Γ; ∆ ` A⊕B ↑

Γ; ∆ ` A⊕ B ↓ Γ; (∆′, w1:A) ` C ↑ Γ; (∆′, w2:B) ` C ↑
⊕Ew1,w2

Γ; (∆′ ×∆) ` C ↑

No 0 introduction rule

Γ; ∆ ` 0 ↓
0E

Γ; (∆′ ×∆) ` C ↑

Quantifiers.

Γ; ∆ ` [a/x]A ↑
∀Ia

Γ; ∆ ` ∀x. A ↑
Γ; ∆ ` ∀x. A ↓

∀E
Γ; ∆ ` [t/x]A ↓

Γ; ∆ ` [t/x]A ↑
∃I

Γ; ∆ ` ∃x. A ↑

Γ; ∆ ` ∃x. A ↓ Γ; (∆′, w:[a/x]A) ` C ↑
∃Ea,w

Γ; (∆′ ×∆) ` C ↑

Draft of May 4, 1998

38 Intuitionistic Linear Logic

Exponentials.

(Γ, u:A); ∆ ` B ↑
⊃Iu

Γ; ∆ ` A⊃ B ↑

Γ; ∆ ` A⊃ B ↓ Γ; · ` A ↑
⊃E

Γ; ∆ ` B ↓

Γ; · ` A ↑
!I

Γ; · ` !A ↑

Γ; ∆ ` !A ↓ (Γ, u:A); ∆′ ` C ↑
!Eu

Γ; (∆′ ×∆) ` C ↑

Coercion.

Γ; ∆ ` A ↓
↓↑

Γ; ∆ ` A ↑

The coercion ↓↑ states that all atomic derivations should be considered nor-
mal. From the point of view of proof search this means that we can complete the
derivation when forward and backward reasoning arrive at the same proposition.
It easy to see that these judgments just restrict the set of derivations.

Property 2.5 (Soundness of Normal Derivations)

1. If Γ; ∆ ` A ↑ then Γ; ∆ ` A.

2. If Γ; ∆ ` A ↓ then Γ; ∆ ` A.

Proof: By simultaneous induction on the given derivations. The computational
contents of this proof are the obvious structural translation from N :: (Γ; ∆ `
A ↑) to N− :: (Γ; ∆ ` A) and from A :: (Γ; ∆ ` A ↓) to A− :: (Γ; ∆ ` A).
Note that the coercion ↓↑ disappears, since the translation of the premiss and
conclusion are identical. 2

The corresponding completeness theorem, namely that Γ; ∆ ` A implies
Γ; ∆ ` A ↑, also holds, but is quite difficult to prove. This is the subject
of the Normalization Theorem 2.19. Together with the two judgments about
atomic and normal derivations, we have refined substitution principles. Since
hypotheses are atomic, they permit only the substitution of atomic derivations
for hypotheses.

Lemma 2.6 (Substitution Principles for Normal Derivations)

1. If Γ; (∆1, w:A,∆2) ` C ↑ and Γ; ∆ ` A ↓ then Γ; (∆1,∆,∆2) ` C ↑

2. If Γ; (∆1, w:A,∆2) ` C ↓ and Γ; ∆ ` A ↓ then Γ; (∆1,∆,∆2) ` C ↓

3. If (Γ1, u:A,Γ2); ∆ ` C ↑ and Γ1; · ` A ↓ then (Γ1,Γ2); ∆ ` C ↑

4. If (Γ1, u:A,Γ2); ∆ ` C ↓ and Γ1; · ` A ↓ then (Γ1,Γ2); ∆ ` C ↓

Draft of May 4, 1998

2.6 Cut-Free Sequent Calculus 39

Proof: By straightforward inductions over the structure of the first of the given
derivations. 2

A first immediate connection to local reductions is the following.

Property 2.7

1. If N :: (Γ; ∆ ` A ↑) then N− :: (Γ; ∆ ` A) contains no local redex.

2. If A :: (Γ; ∆ ` A ↓) then A− :: (Γ; ∆ ` A) contains no local redex.

Proof: By induction on the structure ofN andA, inspecting the possible forms
of local redices in each case. 2

We can now also give an alternative way to describe the connection be-
tween IL and ILL by showing the normal deductions can be translated in
the opposite directions quite easily. We write !∆ for a context of the form
·, u1:!A1, . . . , un:!An.

Lemma 2.8

1. If Γ+; !∆+ ` A+ ↑ in ILL then Γ,∆ ` A in IL.

2. If Γ+; !∆+ ` !A+ ↑ in ILL then Γ,∆ ` A in IL.

3. If Γ+; !∆+ ` C ↓ in ILL then either C = B+ or C = !B+ for some B
and Γ,∆ ` B in IL.

Proof: By simultaneous induction on the structures of N :: (Γ+; !∆+ ` A+ ↑)
and A :: (Γ+; !∆+ ` C ↓). 2

2.6 Cut-Free Sequent Calculus

The sequent calculus can be seen as a calculus of proof search for natural deduc-
tions. In this section we try to transcribe the process of searching for a normal
natural deduction into an inference system. In the context of sequent calculus,
proof search is seen entirely as the bottom-up construction of a derivation. This
means that elimination rules must be turned “upside-down” so they can also be
applied bottom-up rather than top-down. A sequent has the form Γ; ∆ =⇒ C,
where Γ corresponds to unrestricted hypotheses ∆ to linear hypotheses, and C
to the conclusion.

In terms of judgments we interpret a sequent via a splitting of the judgment
“A is true” into two judgments: “A is a resource” and “A is a true conclusion”.
Ignoring unrestricted hypothesis for the moment, the main judgment

(·, w1:A1, . . . , wn:An) =⇒ C

expresses

Draft of May 4, 1998

40 Intuitionistic Linear Logic

Under the linear hypothesis that we have resources A1, . . . , An we
judge C to be a true conclusion.

Adding unrestricted hypotheses, the judgment

(·, u1:B1, . . . , um:Bm); (·, w1:A1, . . . , wn:An) =⇒ C

expresses

Under the unrestricted hypotheses that we have resources B1, . . . , Bm
and linear hyptheses that we have resources A1, . . . , An, we judge C
to be a true conclusion.

This interpretation means that we now have an explicit inference rule which
relates the judgment “A is a resource” to the judgment “A is a true conclusion”.
We call the resulting sequent an initial sequent and write I.

I(w)
Γ; (·, w:A) =⇒ A

The remaining rules are divided into right and left rules, which correspond
to the introduction and elimination rules of natural deduction, respectively. The
right rules apply to the conclusion, while the left rules apply to resources. Since
resources may be either linear or unrestricted, our notation would require two
versions of each left rule. Instead we add one more hypothesis rule which allows
us to copy an unrestricted to a linear hypothesis. This rule is labelled DL for
dereliction.

(Γ1, u:A,Γ2); (∆, w:A) =⇒ C
DLw(u)

(Γ1, u:A,Γ2); ∆ =⇒ C

In the following, we adhere to common practice and omit labels on hypothe-
ses and consequently also on the justifications of the inference rules. The reader
should keep in mind, however, that this is just a short-hand, and that there are,
for example, two different derivations of (·, A, A); · =⇒ A, one using the first
copy of A and one using the second.

Finally, we permit implicit uses of exchange in the conclusion in order to
move the principal proposition of a rule to the right-most position. In other
words, we write ∆, A instead of ∆1, w:A,∆2. We repeat the rules from above
in their abbreviated form and the give the remaining left and right rules.

Hypotheses.

I
Γ;A =⇒ A

(Γ, A); (∆, A) =⇒ C
DL

(Γ, A); ∆ =⇒ C

Draft of May 4, 1998

2.6 Cut-Free Sequent Calculus 41

Multiplicative Connectives.

Γ; ∆, A =⇒ B
(R

Γ; ∆ =⇒ A(B

Γ; ∆1 =⇒ A Γ; ∆2, B =⇒ C
(L

Γ; ∆1 ×∆2, A(B =⇒ C

Γ; ∆1 =⇒ A Γ; ∆2 =⇒ B
⊗R

Γ; ∆1 ×∆2 =⇒ A⊗ B
Γ; ∆, A, B =⇒ C

⊗L
Γ; ∆, A⊗ B =⇒ C

1R
Γ; · =⇒ 1

Γ; ∆ =⇒ C
1L

Γ; ∆, 1 =⇒ C

Additive Connectives.

Γ; ∆ =⇒ A Γ; ∆ =⇒ B
NR

Γ; ∆ =⇒ ANB

Γ; ∆, A =⇒ C
NL1

Γ; ∆, ANB =⇒ C

Γ; ∆, B =⇒ C
NL2

Γ; ∆, ANB =⇒ C

>R
Γ; ∆ =⇒ > No > left rule

Γ; ∆ =⇒ A
⊕R1

Γ; ∆ =⇒ A ⊕B

Γ; ∆ =⇒ B
⊕R2

Γ; ∆ =⇒ A ⊕B

Γ; ∆, A =⇒ C Γ; ∆, B =⇒ C
⊕L

Γ; ∆, A⊕ B =⇒ C

No 0 right rule
0L

Γ; ∆, 0 =⇒ C

Quantifiers.

Γ; ∆ =⇒ [a/x]A
∀Ra

Γ; ∆ =⇒ ∀x. A

Γ; ∆, [t/x]A=⇒ C
∀L

Γ; ∆, ∀x. A =⇒ C

Γ; ∆ =⇒ [t/x]A
∃R

Γ; ∆ =⇒ ∃x. A

Γ; ∆, [a/x]A=⇒ C
∃La

Γ; ∆, ∃x. A =⇒ C

Draft of May 4, 1998

42 Intuitionistic Linear Logic

Exponentials.

(Γ, A); ∆ =⇒ B
⊃R

Γ; ∆ =⇒ A ⊃B
Γ; · =⇒ A Γ; ∆, B =⇒ C

⊃L
Γ; ∆, A⊃B =⇒ C

Γ; · =⇒ A
!R

Γ; · =⇒ !A

(Γ, A); ∆ =⇒ C
!L

Γ; ∆, !A =⇒ C

We have the following theorems relating normal natural deductions and se-
quent derivations.

Theorem 2.9 (Soundness of Sequent Derivations)
If Γ; ∆ =⇒ A then Γ; ∆ ` A ↑.

Proof: By induction on the structure of the derivation of Γ; ∆ =⇒ A. Initial
sequents are translated to the ↓↑ coercion, and use of an unrestricted hypothesis
follows by a substitution principle (Lemma 2.6). For right rules we apply the
corresponding introduction rules. For left rules we either directly construct a
derivation of the conclusion after an appeal to the induction hypothesis (⊗L,
1L, ⊗L, 0L, ∃L, !L) or we appeal to a substitution principle of atomic natural
deductions for hypotheses ((L, NL1, NL2, ∀L, ⊃L). 2

Theorem 2.10 (Completeness of Sequent Derivations)

1. If Γ; ∆ ` A ↑ then there is a sequent derivation of Γ; ∆ =⇒ A, and

2. if Γ; ∆ ` A ↓ then for any formula C and derivation of Γ; ∆′, A =⇒ C
there is a derivation of Γ; (∆′ ×∆) =⇒ C.

Proof: By simultaneous induction on the structure of the derivations of Γ; ∆ `
A ↑ and Γ; ∆ ` A ↓. 2

2.7 Another Example: Distributed Systems

Another class of examples for linear logic is the description of concurrent sys-
tems. Linear logic can be used to represent whole classes of concurrent systems,
such as Petri Nets [MOM91] or Milner’s π-calculus [MPP92]. At present we are
concerned only with the basic principles. We also now employ sequent deriva-
tions instead of natural deductions to model computations.

Unlike the planning example, in distributed computation there is no overall
goal, just an evolution of state. Thus the right-hand side of the judgment
should be “empty”, which we model by 0, the impossible goal. Thus the basic
representation of a distributed system is

Γ0; ∆ =⇒ 0

Draft of May 4, 1998

2.7 Another Example: Distributed Systems 43

where Γ0 are the rules of computation and ∆ is the state (including the pro-
cesses, messages, etc.). A partial derivation

Γ0; ∆1 =⇒ 0
...

Γ0; ∆0 =⇒ 0

represents a computation from ∆0 to ∆1.
We consider a simple example with the following atomic propositions.

send(x, y,m) x is sending the message m to y
message(x, y,m) message m from x to y is in transit
listen(y) y is listening for messages addressed to y
received(y, x,m) y has received message m from x

The computation rules are linear implications, available as unrestricted hypothe-
ses.

sendMsg : ∀x. ∀y. ∀m. send(x, y,m)(message(x, y,m)
receiveMsg : ∀x. ∀y. ∀m. message(x, y,m)⊗ listen(y)

(listen(y) ⊗ received(y, x,m)

Here, y continues to listen after it has received and stored a message. However,
the receiver cannot distinguish the order in which messages were sent or received.
This can be modelled by explicitly adding time stamps to the predicates above,
or by using non-commutative linear logic (see Chapter ??). Protocols for com-
munication which require acknowledgments and other complex exchanges can
be modelled based on the simple ideas above. For example, to express that a
message may be lost, we can add the following rule.

loseMsg : message(x, y,m)(1

Here and below we omit universal quantifiers for the sake of brevity: all free
variables in a rule are implicitly universally quantified on the outside.

Other connectives also have interesting computational interpretations. For
example, a global abort message from x can be implemented using 0.

abortSys : abort(x)⊗ authorized(x)(0

If x is authorized and aborts, we obtain 0 as part of the state from which we can
prove anything and terminate the computation. However, there is nothing in the
reading of derivations as deductions which would force this to be “immediate”:
other computations could still proceed.

Alternative conjunction represents non-deterministic choice. Since we intend
that any derivation represents a legal computation, this means a resource ANB
could evolve to either A or B. For example, if storing a message might fail in
the sense that it simply disappears, we can specify:

receiveMsg′ : message(x, y,m) ⊗ listen(y)(listen(y) ⊗ (received(y, x,m)N1)

Draft of May 4, 1998

44 Intuitionistic Linear Logic

Quantifiers can also be used to advantage. For example, we can send a
message to anyone.

sendMsgAny : sendany(x,m)((∀y. message(x, y,m))

However, this message can only ever be seen by one recipient. If we want to
publish a message so everyone can see it, and see it as often as they like without
storing it locally, we can specify:

publishMsg : publish(x,m)(!(∀y. message(x, y,m))

Some protocols establish “new connections”, and some security protocols
require the sender to generate a “fresh” message which has never been seen
before. We can model both of these with an existential quantifier, since its left
rule will introduce a new parameter, which may not occur in the present state.

sendFresh : fresh(x, y)(∃m. message(x, y,m)

The reader is invited to verify how sequent derivations, constructed in a
bottom-up fashion, model computations. In each case we match the left-hand
side of a linear implication in Γ0 against components of the state, and then add
the components of the right-hand side.

2.8 Deductions with Lemmas

One common way to find or formulate a proof is to introduce a lemma. In the
sequent calculus, the introduction and use of a lemma during proof search is
modelled by the rules of cut, Cut for lemmas used as linear hypotheses, and
Cut! for lemmas used unrestrictedly. The corresponding rule for intuitionistic

logic is due to Gentzen [Gen35]. We write Γ; ∆
+

=⇒ A for the judgment that A
can be derived with the rules from before, plus one of the two cut rules below.

Γ; ∆
+

=⇒ A Γ; (∆′, A)
+

=⇒ C
Cut

Γ; ∆′ ×∆
+

=⇒ C

Γ; · +
=⇒ A (Γ, A); ∆′

+
=⇒ C

Cut !
Γ; ∆′

+
=⇒ C

Note that the linear context in the left premiss of the Cut! rule must be empty,
because the new hypothesis A in the right premiss is unrestricted in its use.

On the side of natural deduction, these rules correspond to substitution
principles. They can be related to normal and atomic derivations only if we allow
an additional coercion from normal to atomic derivations. This is because the
left premiss corresponds to a derivation of Γ; ∆ ` A ↑ which can be substituted
into a derivation of Γ; ∆′, A ` C ↑ only have the additional coercion has been
applied. Of course, the resulting deductions are no longer normal in the sense
we defined before, so we write Γ; ∆ `+ A ↓ and Γ; ∆ `+ A ↑. These judgments
are defined with the same rules as Γ; ∆ ` A ↑ and Γ; ∆ ` A ↓, plus the following
coercion.

Draft of May 4, 1998

2.8 Deductions with Lemmas 45

Γ; ∆ `+ A ↑
↑↓

Γ; ∆ `+ A ↓

It is now easy to prove that arbitrary natural deductions can be annotated
with ↑ and ↓, since we can arbitrarily coerce back and forth between the two
judgments.

Theorem 2.11 If Γ; ∆ ` A then Γ; ∆ `+ A ↑ and Γ; ∆ `+ A ↓

Proof: By induction on the structure of D :: (Γ; ∆ ` A). 2

Theorem 2.12

1. If Γ; ∆ `+ A ↑ then Γ; ∆ ` A.

2. If Γ; ∆ `+ A ↓ then Γ; ∆ ` A.

Proof: My mutual induction on N :: (Γ; ∆ `+ A ↑) and A :: (Γ; ∆ `+ A ↓). 2

It is also easy to relate the Cut rules to the new coercions (and thereby to
natural deductions), plus four substitution principles.

Property 2.13

1. If Γ; (∆′, w:A) `+ C ↑ and Γ; ∆ `+ A ↓ then Γ; (∆′ ×∆) `+ C ↑.

2. If Γ; (∆′, w:A) `+ C ↓ and Γ; ∆ `+ A ↓ then Γ; (∆′ ×∆) `+ C ↓.

3. If (Γ, u:A); ∆′ `+ C ↑ and Γ; · `+ A ↓ then Γ; ∆′ `+ C ↑.

4. If (Γ, u:A); ∆′ `+ C ↓ and Γ; · `+ A ↓ then Γ; ∆′ `+ C ↓.

Proof: By mutual induction on the structure of the given derivations. 2

We can now extend Theorems 2.9 and 2.10 to relate sequent derivations with
Cut to natural deductions with explicit lemmas.

Theorem 2.14 (Soundness of Sequent Derivations with Cut)

If Γ; ∆
+

=⇒ A then Γ; ∆ `+ A ↑.

Proof: As in Theorem 2.9 by induction on the structure of the derivation of

Γ; ∆
+

=⇒ A. An inference with one of the new rules Cut or Cut ! is translated into
an application of the ↑↓ coercion followed by an appeal to one of the substitution
principles in Property 2.13. 2

Theorem 2.15 (Completeness of Sequent Derivations with Cut)

1. If Γ; ∆ `+ A ↑ then there is a sequent derivation of Γ; ∆
+

=⇒ A, and

Draft of May 4, 1998

46 Intuitionistic Linear Logic

2. if Γ; ∆ `+ A ↓ then for any formula C and derivation of Γ; (∆′, A)
+

=⇒ C

there is a derivation of Γ; (∆′ ×∆)
+

=⇒ C.

Proof: As in the proof of Theorem 2.10 by induction on the structure of the
given derivations. In the new case of the ↑↓ coercion, we use the rule of Cut .
The other new rule, Cut !, is not needed for this proof, but is necessary for the
proof of admissibility of cut in the next section. 2

2.9 Cut Elimination

We viewed the sequent calculus as a calculus of proof search for natural de-
duction. The proofs of the soundness theorems 2.10 and 2.15 provide ways
to translate cut-free sequent derivations into normal natural deductions, and
sequent derivations with cut into arbitrary natural deductions.

This section is devoted to showing that the two rules of cut are redundant
in the sense that any derivation in the sequent calculus which makes use of the
rules of cut can be translated to one that does not. Taken together with the
soundness and completeness theorems for the sequent calculi with and without
cut, this has many important consequences.

First of all, a proof search procedure which looks only for cut-free sequent
derivations will be complete: any derivable proposition can be proven this way.
When the cut rule

Γ; ∆
+

=⇒ A Γ; ∆′, A
+

=⇒ C
Cut

Γ; ∆′ ×∆
+

=⇒ C

is viewed in the bottom-up direction the way it would be used during proof
search, it introduces a new and arbitrary proposition A. Clearly, this introduces
a great amount of non-determinism into the search. The cut elimination theorem
now tells us that we never need to use this rule. All the remaining rules have
the property that the premisses contain only instances of propositions in the
conclusion, or parts thereof. This latter property is often called the subformula
property.

Secondly, it is easy to see that the logic is consistent, that is, not every
proposition is provable. In particular, the sequent ·; · =⇒ 0 does not have a
cut-free derivation, because there is simply no rule which could be applied to
infer it! This property clearly fails in the presence of cut: it is prima facie quite

possible that the sequent ·; · +
=⇒ 0 is the conclusion of the cut rule.

Along the same lines, we can show that a number of propositions are not
derivable in the sequent calculus and therefore not true as defined by the natural
deduction rules. Examples of this kind are given at the end of this section.

We prove cut elimination by showing that the two cut rules are admissible
rules of inference in the sequent calculus without cut. An inference rule is
admissible if whenever we can find derivations for its premisses we can find a
derivation of its conclusion. This should be distinguished from a derived rule of

Draft of May 4, 1998

2.9 Cut Elimination 47

inference which requires a direct derivation of the conclusion from the premisses.
We can also think of a derived rule as an evident hypothetical judgment where
the premisses are (unrestricted) hypotheses.

Derived rules of inference have the important property that they remain
evident under any extension of the logic. An admissible rule, on the other hand,
represents a global property of the deductive system under consideration and
may well fail when the system is extended. Of course, every derived rule is also
admissible.

Theorem 2.16 (Admissibility of Cut)

1. If Γ; ∆ =⇒ A and Γ; (∆′, A) =⇒ C then Γ; ∆′ ×∆ =⇒ C.

2. If Γ; · =⇒ A and (Γ, A); ∆′ =⇒ C then Γ; ∆′ =⇒ C.

Proof: By nested inductions on the structure of the cut formula A and the
given derivations, where induction hypothesis (1) has priority over (2). To state
this more precisely, we refer to the given derivations as D :: (Γ; ∆ =⇒ A),
D′ :: (Γ; · =⇒ A), E :: (Γ; (∆, A) =⇒ C), and E ′ :: ((Γ, A); ∆′ ` C). Then we
may appeal to the induction hypothesis whenever

a. the cut formula A is strictly smaller, or

b. the cut formulaA remains the same, but we appeal to induction hypothesis
(1) in the proof of (2) (but when we appeal to (2) in the proof of (1) the
cut formula must be strictly smaller), or

c. the cut formulaA and the derivation E remain the same, but the derivation
D becomes smaller, or

d. the cut formula A and the derivation D remain the same, but the deriva-
tion E or E ′ becomes smaller.

Here, we consider a formula smaller it is an immediate subformula, where [t/x]A
is considered a subformula of ∀x. A, since it contains fewer quantifiers and logical
connectives. A derivation is smaller if it is an immediate subderivation, where
we allow weakening by additional unrestricted hypothesis in one case (which
does not affect the structure of the derivation).

The cases we have to consider fall into 5 classes:

Initial Cuts: One of the two premisses is an initial sequent. In these cases the
cut can be eliminated directly.

Principal Cuts: The cut formula A was just inferred by a right rule in D and
by a left rule in E . In these cases we appeal to the induction hypothesis
(possibly several times) on smaller cut formulas (item (a) above).

Dereliction Cut: The cases for the Cut ! rule are treated as right commutative
cuts (see below), except for the rule of dereliction which requires an appeal
to induction hypothesis (1) with the same cut formula (item (b) above).

Draft of May 4, 1998

48 Intuitionistic Linear Logic

Left Commutative Cuts: The cut formula A is a side formula of the last
inference in D. In these cases we may appeal to the induction hypotheses
with the same cut formula, but smaller derivation D (item (c) above).

Right Commutative Cuts: The cut formula A is a side formula of the last
inference in E . In these cases we may appeal to the induction hypotheses
with the same cut formula, but smaller derivation E or E ′ (item (d) above).

[Some cases to be filled in later.]

2

Using the admissibility of cut, the cut elimination theorem follows by a
simple structural induction.

Theorem 2.17 (Cut Elimination)

If Γ; ∆
+

=⇒ C then Γ; ∆ =⇒ C.

Proof: By induction on the structure of D :: (Γ; ∆
+

=⇒ C). In each case except
Cut or Cut! we simply appeal to the induction hypothesis on the derivations of
the premisses and use the corresponding rule in the cut-free sequent calculus.
For the Cut and Cut! rules we appeal to the induction hypothesis and then
admissibility of cut (Theorem 2.16) on the resulting derivations. 2

2.10 Consequences of Cut Elimination

As a first consequence, we see that linear logic is consistent : not every proposi-
tion can be proved. A proof of consistency for both intuitionistic and classical
logic was Gentzen’s original motivation for the development of the sequent cal-
culus and his proof of cut elimination.

Theorem 2.18 (Consistency of Intuitionistic Linear Logic)
·; · ` 0 is not derivable.

Proof: If the judgment were derivable, by Theorems 2.11, 2.15, and 2.17, there
must be a cut-free sequent derivation of ·; · =⇒ 0. But there is no rule with
which we could infer this sequent (there is no right rule for 0), and so it cannot
be derivable. 2

A second consequence is that every natural deduction can be translated to a
normal natural deduction. The necessary construction is implicit in the proofs
of the soundness and completeness theorems for sequent calculi and the proofs
of admissibility of cut and cut elimination. In Chapter 4 we will see a much
more direct, but in other respects more complicated proof.

Theorem 2.19 (Normalization for Natural Deductions)
If Γ; ∆ ` A then Γ; ∆ ` A ↑.

Draft of May 4, 1998

2.11 Exercises 49

Proof: Directly, using theorems from this chapter. Assume Γ; ∆ ` A. Then

Γ; ∆ `+ A by Theorem 2.11,

Γ; ∆
+

=⇒ A by completeness of sequent derivations with cut (Theorem 2.15),
Γ; ∆ =⇒ A by cut elimination (Theorem 2.17), and
Γ; ∆ ` A ↑ by soundness of cut-free sequent derivations (Theorem 2.9).

2

2.11 Exercises

Exercise 2.1 Give a counterexample which shows that the elimination ⊃E
would be locally unsound if its second premiss were allowed to depend on linear
hypotheses.

Exercise 2.2 If we define intuitionistic implication A⊃B in linear logic as an
abbreviation for (!A)(B, then the given introduction and elimination rules
become derived rules of inference. Prove this by giving a derivation for the con-
clusion of the ⊃E rule from its premisses under the interpretation, and similarly
for the ⊃I rule.

For the other direction, show how !A could be defined from intuitionistic
implication or speculate why this might not be possible.

Exercise 2.3 [To be filled in: an exercise exploring the “missing
connectives” of multiplicative disjunction and additive implication.
]

Exercise 2.4 In the blocks world example from Section 2.3, sketch the deriva-
tion for the same goal A0 and initial situation ∆0 in which block b is put on
block c, rather than the table.

Exercise 2.5 Model the Towers of Hanoi in linear logic in analogy with our
modelling of the blocks world.

1. Define the necessary atomic propositions and their meaning.

2. Describe the legal moves in Towers of Hanoi as unrestricted hypotheses
Γ0 independently from the number of towers or disks.

3. Represent the initial situation of three towers, where two are empty and
one contains two disks in a legal configuration.

4. Represent the goal of legally stacking the two disks on some arbitrary
other tower.

5. Sketch the proof for the obvious 3-move solution as in Section 2.3.

Exercise 2.6 Consider if ⊗ and N can be distributed over ⊕ or vice versa.
There are four different possible equivalences based on eight possible entail-
ments. Give natural deductions for the entailments which hold.

Draft of May 4, 1998

50 Intuitionistic Linear Logic

Exercise 2.7 In this exercise we explore distributive and related interaction
laws for linear implication. In intuitionistic logic, for example, we have the
following (A ∧B)⊃C a` A⊃ (B ⊃C) and A⊃ (B ∧C) a` (A⊃B) ∧ (A⊃C),
where a` is mutual entailment as in Exercise 1.2.

In linear logic, we now write A a` A′ for linear mutual entailment, that
is, A′ follows from linear hypothesis A and vice versa. Write out appropriate
interaction laws or indicate none exists, for each of the following propositions.

1. A((B ⊗ C)

2. (A ⊗B)(C)

3. A(1

4. 1(A

5. A((BNC)

6. (ANB)(C

7. A(>

8. >(A

9. A((B ⊕ C)

10. (A ⊕B)(C

11. A(0

12. 0(A

13. A((B(C)

14. (A(B)(C

Note that an interaction law exists only if there is a mutual linear entailment—
we are not interested if one direction holds, but not the other.

Give the derivations in both directions for one of the interaction laws of a
binary connective ⊗, N, ⊕, or(, and for one of the interaction laws of a logical
constant 1, >, or 0.

Exercise 2.8 Extend the interaction laws from Exercise 2.7 by laws showing
how linear implication interacts with existential and universal quantification.

Exercise 2.9 Design an alternative translation ()∗ from formulas and natural
deductions in intuitionistic logic to intuitionistic linear logic in which conjunc-
tion (∧) and truth (>) are mapped to simultaneous conjunction (⊗) and its
unit (1) instead of the additive connectives as in ()+. Prove the correctness of
the embedding and discuss the relative merits of the two translations.

Draft of May 4, 1998

2.11 Exercises 51

Exercise 2.10 Extend the embedding from from Section 2.4 to encompass in-
tuitionistic propositions ¬A without adding any connectives to the linear logic.
Modify the statements and proofs of embedding and conservativity (if necessary)
and show the proof cases concerned with negation.

Exercise 2.11 Find a derivation D :: (Γ; ∆ ` A) which contains no local redex,
but which is not normal in the sense that there is no derivationN :: (Γ; ∆ ` A ↑)
such that N− = D.

Exercise 2.12 Internalize the notion of mutual linear entailment from Exer-
cise 2.7 as a new linear connective A ◦(A′.

1. Give introduction and elimination rules. Your rules should be orthogonal
to all other connectives and not mention, for example, linear implication.

2. Are your rules locally sound and complete? Give the local reduction and
expansions, if they exist.

3. Annotate your rules, extending the definitions of normal and atomic deriva-
tions.

4. Give right and left sequent rules corresponding to the introduction and
elimination rules, respectively.

5. Show the new cases in the proofs of soundness and completeness of the
sequent calculus with respect to natural deduction (Theorems 2.9 and
2.10).

6. Show a new principal case in the proof of admissibility of cut (Theo-
rem 2.16).

7. Would you classify the new connective as multiplicative, additive, or ex-
ponential? Can it be defined from the linear connectives introduced in
Sections 2.1 and 2.2 in such a way that your introduction and elimination
rules become derived rules of inference? If so, give the definition, if not
explain informally why it is not possible.

Draft of May 4, 1998

52 Intuitionistic Linear Logic

Draft of May 4, 1998

Chapter 3

Proof Search

Linear logic as introduced by Girard and presented in the previous chapter is a
rich system for the formalization of reasoning involving state. It conservatively
extends intuitionistic logic and can therefore also serve as the logical basis for
general constructive mathematics. Searching for proofs in such an expressive
logic is difficult, and one should not expect silver bullets.

Depending on the problem, proof search in linear logic can have a variety of
applications. In the domain of planning problems (see Section 2.3) searching for
a proof means searching for a plan. In the domain of concurrent computation
(see Section 2.7) searching for a proof means searching for possible computa-
tions. In the domain of logic programming (which we investigate in detail in
Chapter ??), searching for a proof according to a fixed strategy is the basic
paradigm of computation. In the domain of functional programming and type
theory (which we investigate in Chapter 4), searching for a proof means search-
ing for a program satisfying a given specification.

Each application imposes different requirements on proof search, but there
are underlying basic techniques which recur frequently. In this chapter we take
a look at some basic techniques, to be exploited in subsequent chapters.

3.1 Bottom-Up Proof Search and Inversion

The literature is not in agreement on the terminology, but we refer to the process
of creating a derivation from the desired judgment on upward as bottom-up proof
search. A snap-shot of a bottom-up search is a partial derivation, with undecided
judgments at the top. Our goal is to derive all remaining judgments, thereby
completing a proof.

We proceed by selecting a judgment which remains to be derived and an
inference rule with which it might be inferred. We also may need to determine
exactly how the conclusion of the rule matches the judgment. For example,
in the ⊗R rule we need to decide how to split the linear hypotheses between
the two premisses. After these choices have been made, we reduce the goal of

Draft of May 4, 1998

54 Proof Search

deriving the judgment to a number of subgoals, one for each premiss of the
selected rule. If there are no premisses, the subgoal is solved. If there are no
subgoals left, we have derived the original judgment.

Using this simple intuition, the cut elimination theorem (Theorem 2.17)
directly implies decidability of pure propositional linear logic as defined in Sec-
tion 2.1, that is, linear logic without unrestricted resources and without the
exponential connectives of course “!A” and intuitionistic implication “A⊃ B”.

Theorem 3.1 (Decidability of Propositional Pure Linear Logic)
Pure linear logic with connectives (, ⊗, 1, N, >, ⊕, and 0 is decidable.

Proof: We know by cut elimination and other results from Chapter 2.2 that
·; ∆ ` A iff ·; ∆ =⇒ A. Every premiss of every sequent rule in the pure fragment
of linear logic without cut contains fewer connectives and quantifiers than the
conclusion. Every branch must therefore be finite. Furthermore, there are only
finitely many different inference rules which can be used to infer any given
conclusion, and every rule has at most two premisses. Therefore, the space of
possible cut-free sequent derivations of a purely linear judgment is finite and
derivability is decidable. 2

After Section 3.2 we see that this theorem still holds even if we admit quan-
tifiers, but that it fails if we allow unrestricted hypotheses (even without quan-
tifiers).

The second observation about bottom-up proof search is that some rules
are invertible, that is, the premisses are derivable whenever the conclusion is
derivable. The usual direction states that the conclusion is evident whenver the
premisses are. Invertible rules can safely be applied whenever possible without
losing completeness, although some care must be taken to retain a terminating
procedure in the presence of unrestricted hypotheses. We also separate weakly
invertible rules, which only apply when there are no linear hypotheses (besides
possibly the principal proposition of the inference rule). For example, we cannot
apply the 1R whenever the judgment is Γ; ∆ ` 1, although it is safe to do
so when there are no linear hypotheses. Similarly, we cannot use the initial
sequent rule to infer Γ; ∆, A =⇒ A unless ∆ = ·. Strongly invertible rules apply
regardless of any other hypotheses.

Theorem 3.2 (Inversion Lemmas) The following table lists invertible, weakly
invertible, and non-invertible rule in intuitionistic linear logic.

Strongly Invertible Weakly Invertible Not Invertible
(R (L
⊗L, 1L 1R ⊗R
NR,>R NL1,NL2

⊕L, 0L ⊕R1,⊕R2

∀R, ∃L ∀L, ∃R
⊃R, !L !R ⊃L

I DL

Draft of May 4, 1998

3.1 Bottom-Up Proof Search and Inversion 55

Proof: For invertible rule we prove that each premiss follows from the conclu-
sion. For non-invertible rules we give a counterexample. The two sample case
below are representative: for invertible rules we apply admissibility of cut, for
non-invertible rules we consider a sequent with the same proposition on the left
and right.

Case: (R is invertible. We have to show that Γ; (∆, A) =⇒ B is derivable
whenver Γ; ∆ =⇒ A(B is derivable, so we assume Γ; ∆ =⇒ A(B. We
also have Γ; (·, A, A(B) =⇒ B, which follows by one(L rule from two
initial sequents. From the admissibility of cut (Theorem 2.16) we then
obtain directly Γ; (∆, A) =⇒ B.

Case: (L is not invertible. Consider ·; (·, A(B) =⇒ A(B for parameters
A and B. There is only one way to use (L to infer this, which leads to
·; · =⇒ A and ·; (·, B) =⇒ A(B, neither of which is derivable. Therefore
(L is not invertible in general.

2

As a final, general property for bottom-up proof search we show that we can
restrict ourselved to initial sequents of the form Γ; (·, P) =⇒ P , where P is an

atomic proposition. We write Γ; ∆
−

=⇒ A for the restricted judgment whose
rules are as for Γ; ∆ =⇒ A, except that initial sequents are restricted to atomic

propositions. Obviously, if Γ; ∆
−

=⇒ A then Γ; ∆ =⇒ A.

Theorem 3.3 (Completeness of Atomic Initial Sequents) If Γ; ∆ =⇒ A

then Γ; ∆
−

=⇒ A.

Proof: By induction on the the structure of D :: (Γ; ∆ =⇒ A). In each case
except initial sequents, we appeal directly to the induction hypothesis and infer

Γ; ∆
−

=⇒ A from the results. For initial sequents, we use an auxiliary induction
on the structure of the formulaA. We show only one case—the others are similar
in that they follow the local expansions, translated from natural deduction to
the setting of the sequent calculus. If local completeness did not hold for a
connective, then atomic initial sequents would be incomplete as well.

Case: D = I
Γ; (·, A1⊗ A2) =⇒ A1 ⊗ A2

, where A = A1 ⊗ A2. Then we con-

struct
D′1

Γ; (·, A1)
−

=⇒ A1

D′2
Γ; (·, A2)

−
=⇒ A2

⊗R
Γ; (·, A1, A2)

−
=⇒ A1 ⊗ A2

⊗L
Γ; (·, A1⊗ A2)

−
=⇒ A1 ⊗ A2

where D′1 and D′2 exist by induction hypothesis on A1 and A2.

2

Draft of May 4, 1998

56 Proof Search

The theorems in this section lead to a search procedure with the following
general outline:

1. Pick a subgoal to solve.

2. Decide to apply a right rule to the consequent or a left rule to a hypothesis.

3. Determine the remaining parameters (either how to split the hypotheses,
or on the terms which may be required).

4. Apply the rule in the backward direction, reducing the goal to possibly
several subgoals.

A lot of choices remain in this procedure. They can be classified according to
the type of choice which must be made. This classification will guide us in
the remainder of this chapter, as we discuss how to reduce the inherent non-
determinism in the procedure above.

• Conjunctive choices. We know all subgoals have to be solved, but the order
in which we attempt to solve them is not determined. In the simplest case,
this is a form of don’t-care non-determinism, since all subgoals have to be
solved. In practice, it is not that simple since subgoals may interact once
other choices have been made more deterministic. Success is a special case
of conjunctive choice with no conjuncts.

• Disjunctive choices. We don’t know which left or right rule to apply.
Invertible rules are always safe, but once they all have been applied, many
possibilities may remain. This is a form of don’t-know non-determinism,
since a sequence of correct guesses will lead to a derivation if there is one.
In practice, this may be solved via backtracking, for example. Failure is a
special case of a disjunctive choice with zero alternatives.

• Universal choices. In the ∀R and ∃L rules we have to choose a new pa-
rameter. Fortunately, this is a trivial choice, since any new parameter will
work, and its name is not important. Hence this is a form of don’t-care
non-determinism.

• Existential choices. In the ∃R and ∀L rules we have to choose a term t
to substitute for the bound variable. Since there are potentially infinitely
many terms (depending on the domain of quantification), this is a form
of don’t-know non-determinism. In practice, this is solved by unification,
discussed in the next section.

3.2 Unification

When proving a proposition of the form ∃x. A by its right rule in the sequent
calculus, we must supply a term t and then prove [t/x]A. The domain of quan-
tification may include infinitely many terms (such as the natural numbers), so

Draft of May 4, 1998

3.2 Unification 57

this choice cannot be resolved simply by trying all possible terms t. Similarly,
when we use a hypothesis of the form ∀x. A we must supply a term t to substi-
tute for x.

Fortunately, there is a better technique called unification which is sound and
complete for syntactic equality between terms. The basic idea is quite simple: we
postpone the choice of t and instead substitute a new existential variable (often
called meta-variable or logic variable) X for x and continue with the bottom-up
construction of a derivation. When we reach initial sequents we check if there is
a substitution for the existential variables such that the hypothesis matches the
conclusion. If so, we apply this instantiation globally to the partial derivation
and continue to search for proofs of other subgoals. Finding an instantiation
for existential variables under which two propositions or terms match is called
unification. It is decidable if a unifying substitution or unifier exists, and if so,
we can effectively compute it in linear time. Moreover, we can do so with a
minimal commitment and we do not need to choose between various possible
unifiers.

Because of its central importance, unification has been thoroughly investi-
gated. Herbrand [Her30] is given credit for the first description of a unification
algorithm in a footnote of his thesis, but it was not until 1965 that it was
introduced into automated deduction through the seminal work by Alan Robin-
son [Rob65, Rob71]. The first algorithms were exponential, and later almost
linear [Hue76, MM82] and linear algorithms [MM76, PW78] were discovered. In
the practice of theorem proving, generally variants of Robinson’s algorithm are
still used, due to its low constant overhead on the kind of problems encountered
in practice. For further discussion and a survey of unification, see [Kni89]. We
describe a variant of Robinson’s algorithm.

Before we describe the unification algorithm itself, we relate it to the problem
of proof search. For this we use a general method of residuation. We enrich the

judgment Γ; ∆
−

=⇒ A by a residual proposition F such that

1. if Γ; ∆
−

=⇒ A then Γ; ∆
−

=⇒ A \ F and F is true, and

2. if Γ; ∆
−

=⇒ A \ F and F is true then Γ; ∆
−

=⇒ A.

Generally, we cannot prove such properties directly by induction, but we need
to generalize them, exhibiting the close relationship between the derivations of
the sequents and residual formulas F .

Residual formulas F are amenable to specialized procedures such as unifi-
cation, since they are drawn from a simpler logic or deductive system than the
general propositions A. In practice they are often solved incrementally rather
than collected throughout a derivation and only solved at the end. This is
important for the early detection of failures during proof search. Incremental
solution of residual formulas is the topic of Exercise ??.

What do we need in the residual propositions so that existential choices and
equalities between atomic propositions can be expressed? The basic proposition
is one of equality between atomic propositions, P1

.
= P2. We also have conjunc-

tion F1 ∧ F2, since equalities may be collected from several subgoals, and > if

Draft of May 4, 1998

58 Proof Search

there are no residual propositions to be proven. Finally, we need the existen-
tial quantifier ∃x. F to express the scope of existential variables, and ∀x. F to
express the scope of parameters introduced in a derivation. We add equality
between terms, since it is required to describe the unification algorithm itself.
We refer to the logic with these connectives as unification logic, defined via a
deductive system.

Formulas F ::= P1
.
= P2 | t1

.
= t2 | F1 ∧ F2 | > | ∃x. F | ∀x. F

The main judgment “F is valid”, written |= F , is defined by the following
rules, which are consistent with, but more specialized than the rules for these
connectives in intuitionistic natural deduction (see Exercise ??).

.
= I

|= P
.
= P

.
= I′

|= t
.
= t

|= F1 |= F2
∧I

|= F1 ∧ F2

>I
|= >

|= [t/x]F
∃I

|= ∃x. F

|= [a/x]F
∀Ia

|= ∀x. F

The ∀Ia rule is subject to the usual proviso that a is a new parameter not
occurring in ∀x. F . There are no elimination rules, since we do not need to
consider hypotheses of the form |= F , which is the primary reason for the
simplicity of theorem proving in the unification logic.

We enrich the sequent calculus with residual formulas from the unification
logic, postponing all existential choices. Recall that in practice we merge resid-
uation and solution in order to discover unprovable residual formulas as soon as
possible. This merging of the phases is not represented in our system.

Hypotheses. Initial sequents residuate an equality between its principal propo-
sitions. Any solution to the equation will unify P ′ and P , which means that this
will translate to a correct application of the initial sequent rule in the original
system.

I
Γ;P ′

−
=⇒ P \ P ′ .= P

(Γ, A); (∆, A)
−

=⇒ C \ F
DL

(Γ, A); ∆
−

=⇒ C \ F

Propositional Connectives. We just give a few sample rules for the con-
nectives which do not involve quantifiers, since all of them simply propagate or
combine unification formulas, regardless whether they are additive, multiplica-
tive, or exponential.

Γ; ∆, A
−

=⇒ B \ F
(R

Γ; ∆
−

=⇒ A(B \ F

Γ; ∆1
−

=⇒ A \ F1 Γ; ∆2, B
−

=⇒ C \ F2
(L

Γ; ∆1 ×∆2, A(B
−

=⇒ C \ F1 ∧ F2

Draft of May 4, 1998

3.2 Unification 59

1R
Γ; · −=⇒ 1 \ >

Γ; ∆
−

=⇒ C \ F
1L

Γ; ∆, 1
−

=⇒ C \ F

Quantifiers. These are the critical rules. Since we residuate the existential
choices entirely, the ∃R and ∀L rules instantiate a quantifier by a new parameter,
which is existentially quantified in the residual formula in both cases. Similarly,
the ∀R and ∃L rule introduce a parameter which is universally quantified in the
residual formula.

Γ; ∆
−

=⇒ [a/x]A \ [a/x]F
∀Ra

Γ; ∆
−

=⇒ ∀x. A \ ∀x. F

Γ; ∆, [a/x]A
−

=⇒ C \ [a/x]F
∀La

Γ; ∆, ∀x. A −
=⇒ C \ ∃x. F

Γ; ∆
−

=⇒ [a/x]A \ [a/x]F
∃Ra

Γ; ∆
−

=⇒ ∃x. A \ ∃x. F

Γ; ∆, [a/x]A
−

=⇒ C \ [a/x]F
∃La

Γ; ∆, ∃x. A −
=⇒ C \ ∀x. A

The soundness of residuating equalities and existential choices in this manner
is straightforward.

Theorem 3.4 (Soundness of Equality Residuation) If Γ; ∆
−

=⇒ A \ F
and |= F then Γ; ∆

−
=⇒ A.

Proof: By induction on the structure of R :: (Γ; ∆
−

=⇒ A \ F). We show the
critical cases. Note how in the case of the ∃R rule the proof of |= ∃x. F provides
the essential witness term t.

Case: R = I.
Γ;P ′

−
=⇒ P \ P ′ .= P

We know by assumption that |= F which reads |= P ′
.
= P . By inver-

sion therefore P ′ = P (since
.
= I is the only rule which applies to this

judgment), and Γ;P ′
−

=⇒ P is a valid initial sequent.

Case: R =

R1

Γ; ∆
−

=⇒ [a/x]A1 \ [a/x]F1

∃Ra.
Γ; ∆

−
=⇒ ∃x. A1 \ ∃x. F1

By assumption, we have |= ∃x. F1. By inversion, |= [t/x]F1 for some t. By
the proviso on the ∃Ra rule, R1 is parametric in a, so we can substitute

t for a in this derivation an obtain [t/a]R1 :: (Γ; ∆
−

=⇒ [t/x]A1 \ [t/x]F1).
Applying the induction hypothesis to [t/a]R1 yields a D1 and we construct

D1

Γ; ∆
−

=⇒ [t/x]A1

∃R
Γ; ∆

−
=⇒ ∃x. A1

Draft of May 4, 1998

60 Proof Search

Case: R =

R1

Γ; ∆
−

=⇒ [a/x]A1 \ [a/x]F1

∀Ra

Γ; ∆
−

=⇒ ∀x. A1 \ ∀x. F1

.

By assumption, we have |= ∀x. F1. By inversion, |= [b/x]F1 for a new
parameter b, and therefore also |= [a/x]F1 by substitution. Hence we can
apply the induction hypothesis to obtain a D1 and construct

D1

Γ; ∆
−

=⇒ [a/x]A1

∀Ra

Γ; ∆
−

=⇒ ∀x. A1

2

The opposite direction is more difficult. The desired theorem:

If Γ; ∆
−

=⇒ A then Γ; ∆
−

=⇒ A \ F for some F with |= F

cannot be proved directly by induction, since the premisses of the two deriva-
tions are different in the ∃R and ∀L rules. However, one can be obtained from
the other by substituting terms for parameters. Since this must be done simul-
taneously, we introduce a new notation.

Parameter Substitution ρ ::= · | ρ, t/a

We assume all the parameters a substituted for by ρ are distinct to avoid ambi-
guity. We write [ρ]A, [ρ]F , and [ρ]Γ, for the result of applying the substitution
ρ to a proposition, formula, or context, respectively.

Lemma 3.5 If Γ; ∆
−

=⇒ A and [ρ]A′ = A, [ρ]∆′ = ∆, and [ρ]Γ′ = Γ, then

Γ′; ∆′
−

=⇒ A′ \ F for some F and |= [ρ]F .

Proof: The proof proceeds by induction on the structure of D :: (Γ; ∆
−

=⇒ A).
We show only three cases, the second of which required the generalization of
the induction hypothesis.

Case: D = I
Γ; (·, P)

−
=⇒ P

and [ρ]Γ′ = Γ, [ρ]∆′ = (·, P), and [ρ]A′ = P . Therefore ∆′ = (·, P ′′) with
[ρ]P ′′ = P and A′ = P ′ with [ρ]P ′ = P and we construct

I
Γ′; (·, P ′′) −

=⇒ P ′ \ P ′′ .= P ′ and

.
= I

|= [ρ]P ′′
.
= [ρ]P ′

Case: D =

D1

Γ; ∆
−

=⇒ [t/x]A1

∃R.
Γ; ∆

−
=⇒ ∃x. A1

Draft of May 4, 1998

3.2 Unification 61

We assumed [ρ]A′ = ∃x. A1, so A′ = ∃x. A′1 and [ρ, t/a]([a/x]A′1) =
[t/x]A1 for a new parameter a. Since a is new, [ρ, t/a]Γ′ = [ρ]Γ′ and
similarly for ∆′, so we can apply the induction hypothesis to D1 to obtain
R1 and U1 and construct

R1

Γ′; ∆′
−

=⇒ [a/x]A′1 \ [a/x]F1

∃Ra

Γ′; ∆′
−

=⇒ ∃x. A′1 \ ∃x. F1 and

U1

|= [ρ, t/a]([a/x]F1)
∃I.

|= [ρ]∃x. F1

Case: D =

D1

Γ; ∆
−

=⇒ [a/x]A1

∀Ra.
Γ; ∆

−
=⇒ ∀x. A1

We assume [ρ]A′ = ∀x. A1, so A′ = ∀x. A′1 and [ρ, a/a′]([a′/x]A′1) =
[a/x]A1 for an a′ new in Γ′, ∆′ and ∀x. A′1. We can then appeal to the
induction hypothesis on D1 to obtain R1 and U1 and construct

R1

Γ′; ∆′
−

=⇒ [a′/x]A′1 \ [a′/x]F1

∀Ia′
Γ′; ∆′

−
=⇒ ∀x. A′1 \ ∀x. F1 and

U1

|= [ρ, a/a′]([a′/x]F1)
∀Ia.

|= [ρ]∀x. F1

2

Theorem 3.6 (Completeness of Equality Residuation) If Γ; ∆
−

=⇒ A then

Γ; ∆
−

=⇒ A \ F for some F and |= F .

Proof: From Lemma 3.5 with A′ = A, ∆′ = ∆, Γ′ = Γ, and ρ the identity
substitution on the parameters in Γ, ∆, and A. 2

Next we describe an algorithm for proving residuated formulas, that is, an
algorithm for unification. We do this in two steps: first we solve the problem in
the fragment without parameters and universal quantifiers and then we extend
the solution to the general case.

There are numerous ways for describing unification algorithms in the liter-
ature. We describe the computation of the algorithm as the bottom-up search
for the derivation of a judgment. We restrict the inference rules such that they
are essentially deterministic, and the inference rules themselves can be seen as
describing an algorithm. This algorithm is in fact quite close to the implemen-
tation of it in ML which is available together with these notes.1

In order to describe the algorithm in this manner, we need to introduce
existential variables (often called meta-variables or logic variables) which are
place-holders for the terms to be determined by unification. We use X to stand
for existential variables.

1http://www.cs.cmu.edu/˜fp/courses/linear/code/unif.tar.gz

Draft of May 4, 1998

62 Proof Search

The second concept we need is a continuation, which arises from the in-
troduction rule for conjunction. This rule has two premisses, which leaves the
choice on how which premiss to prove first when we work in a bottom-up fash-
ion. Our algorithm commits to do the first conjunct first, but it has remember
that the second conjunct remains to be proved. Equational formulas which
have been postponed in this way are accumulated in the continuation, which is
activated when there are no further equations to be solved. For now, a contin-
uation is simply another formula denoted by S. Initially, we use > for S. Thus
our main judgment describing the algorithm has the form “F is satisfiable with
continuation S”, written as |= F / S.

Continuations. The following rules introduce and manage the continuations.

|= F1 / F2 ∧ S
∧I

|= F1 ∧ F2 / S
>I>

|= > / >

|= F / S
>I∧

|= > / F ∧ S

Existential Quantification. Existential variables are introduced for existen-
tial quantifiers. They must be new not only in F but also in S.

|= [X/x]F / S X not in F or S
∃I

|= ∃x. F / S

Despite the requirement on X to be new, the derivation of the premiss is not
parametric in X. That is, we cannot substitute an arbitrary term t for X in
a derivation of the permiss and obtain a valid derivations, since the vr, rv, vv,
and vv′ rules below require one or both sides of the equation to be an existential
variable. Substituting for such a variables invalidates the application of these
rules.

Predicate and Function Constants. An equation between the same func-
tion constant applied to arguments is decomposed into equations between the
arguments. Unification fails if different function symbols are compared, but this
is only indirectly reflected by an absence of an appropriate rule. Failure can also
be explicitly incorporated in the algorithm (see Exercise ??).

|= t1
.
= s1 ∧ · · · ∧ tn

.
= sn / S

pp
|= p(t1, . . . , tn)

.
= p(s1, . . . , sn) / S

|= t1
.
= s1 ∧ · · · ∧ tn

.
= sn / S

rr
|= f(t1, . . . , tn)

.
= f(s1, . . . , sn) / S

These rules violate orthogonality by relying on conjunction in the premisses for
the sake of conciseness of the presentation. When f or p have no arguments,
the empty conjunction in the premiss should be read as >.

Existential Variables. There are three rules for variables. We write r for
terms of the form f(t1, . . . , tn). Existential variables always range over terms

Draft of May 4, 1998

3.2 Unification 63

(and not propositions), so we do not need rules for equations of the formX
.
= P

or P
.
= X.

|= > / [r/X]S X not in r
vr

|= X
.
= r / S

|= > / [r/X]S X not in r
rv

|= r
.
= X / S

These two rules come with the proviso that the existential variable X does
not occur in the term t. This is necessary to ensure termination of these rules
(when viewed as an algorithm) and to recognize formulas such as ∃x. x .

= f(x)
as unprovable. This leaves equations of the form X

.
= Y with to existential

variables. We write two rules for this case to simplify the analysis.

|= > / [Y/X]S
vv

|= X
.
= Y / S

|= > / S
vv′

|= X
.
= X / S

We now analyze these rules when viewed as an algorithm specification. First
we observe that all rules have either no or one premiss. Furthermore, for any
judgment |= F / S at most one rule is applicable, and in only one way (the
choice of the new existential variable name X is irrelevant). Therefore these
rules, when viewed as instructions for construction a derivation of a judgment
|= F / > are deterministic, but may fail, in which case the formula is not
provable.

Furthermore, the bottom-up search for a derivation of |= F / S in this
system will always terminate. The termination ordering involves five measures,
ordered lexicographically as follows:

1. the number of free and quantified existential variables,

2. the number of predicate and function symbols,

3. the total number of logical symbols ∧, >, ∃ in F and S,

4. the number of logical symbols in F ,

5. the number of equations.

This measure decreases in each rule:

∧I does not change (1)–(3) and decreases (4),

>I> completes the search,

>I∧ does not change (1)–(2) and decreases (3),

∃I does not change (1)–(2) and decreases (3),

pp does not change (1) and decreases (2),

rr does not change (1) and decreases (2),

Draft of May 4, 1998

64 Proof Search

vr decreases (1) since X does not occur in r,

rv decreases (1) since X does not occur in r,

vv decreases (1), and

vv′ does not change (1)–(4) and decreases (5).

In some of these cases it is also possible that a measure of higher priority de-
creases (but never increases), preserving the strict decrease along the lexico-
graphic ordering.

We also note that the continuation S is not completely general, but follows
the grammar below.

Continuations S ::= > | F ∧ S

In other words, it may be viewed as a stack of formulas. In the ML implemen-
tation, this stack is not represented explicitly. Instead we use the call stack of
ML itself.

The desired soundness and completess theorems for this algorithm requires
some generalizations based on substitutions for existential variables.

Ground Substitutions θ ::= · | θ, t/X

We always assume that the terms t we assign to variables in substitutions do not
contain existential variables. This assumption is reasonable, since we only use
substitutions here to connect derivations for |= F (which contains to existential
variables) with derivations of |= F ′ / S′ (which contains existential variables).

Lemma 3.7 (Soundness Lemma for Unification) If |= F / S then there
exists a ground substitution for the existential variables in F and S such that
|= [θ]F and |= [θ]S.

Proof: By induction on the structure of F :: (|= F / S). 2

The soundness theorem follows easily from this lemma.

Theorem 3.8 (Soundness of Unification) If |= F / > and F contains no
existential variables, then |= F .

Proof: From Lemma 3.7 for S = > and θ = ·. 2

Lemma 3.9 (Completeness Lemma for Unification) If |= F and |= S,
then for any formulas F ′, continuations S′ and substitutions θ for the existential
variables in F ′ and S′ such that F = [θ]F ′ and S = [θ]S′ we have |= F / S.

Proof: By nested inductions on F :: (|= F) and S :: (|= S). This means that
when we appeal to the induction hypothesis on a subderivation of F , S may be
larger. We distinguish cases for F .

Draft of May 4, 1998

3.2 Unification 65

Case: F = >I
|= >

.

The we distinguish two subcases for S. If S is >I, the result is trivial by
>I>. Otherwise

S =

F1

|= F1

S2

|= S2

∧I
|= F1 ∧ S2

where S = F1 ∧ S2 for some F1 and S2. Then

F ′1 :: (|= F1 / S2) By ind. hyp. on F1 and S2

F ′ :: (|= > / F1 ∧ S2) By >I∧

Case: F =

F1

|= F1

F2

|= F2

∧I.
|= F1 ∧ F2

F ′2 :: (|= F ′2 / S
′) By ind. hyp. on F2 and S

S2 :: (|= F2 ∧ S) By ∧I from F2 and S
F ′1 :: (|= F ′1 / F

′
2 ∧ S′) By ind. hyp. on F1 and S2

F ′ :: (|= F ′1 ∧ F ′2 / S′) By ∧I from F ′1.

Case: F =

F1

|= [t/x]F1

∃I.
|= ∃x. F1

F ′ = ∃x. F ′1 and [θ](∃x. F ′1) = ∃x. F1 By assumption
[θ, t/X]([X/x]F ′1) = [t/x]F1 for X not in F ′ or S′

[θ, t/X]S′ = S Since X is new
F ′1 :: (|= [X/x]F ′1 / S

′) By ind. hyp. on F1 and S
F :: (|= ∃x. F ′1 / S′) By ∃I

Case: F = .
= I.

|= t
.
= t

Here we proceed by an auxiliary induction on the structure of t. By
assumption [θ]F ′ = (t

.
= t), so we have t′ and t′′ such that [θ]t′ = [θ]t′′ = t.

We distinguish cases on t′ and t′′, showing three. The remaining ones are
similar.

Subcase: t′ = f(t′1, . . . , t
′
n) and t′′ = f(t′′1 , . . . , t

′′
n), so also t = f(t1, . . . , tn).

|= t′n
.
= t′′n / S

′ By ind. hyp. on tn and S
Sn :: (|= tn

.
= tn ∧ S) By ∧I from

.
= I and S

|= t′n−1
.
= t′′n−1 / t

′
n
.
= t′′n ∧ S′ By ind. hyp. on tn−1 and Sn.

|= t′1
.
= t′′1 / t

′
2
.
= t′′2 ∧ · · · ∧ t′n

.
= t′′n ∧ S′ As above

|= t′1
.
= t′′1 ∧ t′2

.
= t′′2 ∧ · · · ∧ t′n

.
= t′′n / S

′ by ∧I
|= f(t′1, . . . , t

′
n)

.
= f(t′′1 , . . . , t

′′
n) / S′ by rr.

Draft of May 4, 1998

66 Proof Search

Subcase: t′ = X and t′′ = r but contains X. This is impossible, since
we assumed [θ]t′ = [θ]t′′ = t.

Subcase: t′ = X and t′′ = r does not contain X. Then [θ]([r/X]S′) =
[θ]S′ = S since [θ]r = [θ]X = t and θ is a ground substitution. By
distinguishing cases for S as for F = > above, we conclude

|= > / [r/X]S′

|= X
.
= r / S′ By rule vr

2

The completeness theorem follows easily from this lemma.

Theorem 3.10 (Completeness of Unification) If |= F (where F contains
no existential variables) then |= F / >.

Proof: From Lemma 3.9 with S = >, S′ = >, F ′ = F and θ = ·. 2

The generalization of the algorithm above to account for universal quanti-
fiers and parameters is not completely straightforward. The difficulty is that
∀x. ∃y. y .

= x is valid, while ∃y. ∀x. y .
= x is not. We show an attempt to derive

the latter which must be ruled out somehow.

>I>
|= > / [a/Y]>

vr
|= Y

.
= a / >

∀Ia
|= ∀x. Y .

= x / >
∃I

|= ∃y. ∀x. y .
= x / >

In this derivation, the application of >I> is correct since [a/Y]> = >. The
problem lies in the fact a is new in the application of the ∀Ia rule, but only
because we have not instantiated Y with a yet, which is necessary to complete
the derivation.

There are two ways to solve this problem. More or less standard in theorem
proving is Skolemization which we pursue in Exercise ??. The dual solution
notes for each existential variable which parameters may occur in its substitution
term. In the example above, Y was introduced at a point where a did not yet
occur, so the substitution of a for Y should be rejected.

In order to describe this concisely, we add a parameter context Ψ to the
judgment which lists distinct parameters.

Parameter Context Ψ ::= · | Ψ, a

This step is analogous to the localization of the hypotheses and should be con-
sidered merely a change in notation, not an essential change in the judgment
itself. We annotate each judgment with the parameter context and introduce

Draft of May 4, 1998

3.2 Unification 67

the new judmgnet “t is closed with respect to Ψ”, written as Ψ |= t term. It is
defined by the following rules.

parm
Ψ1, a,Ψ2 ` a term

Ψ ` t1 term · · · Ψ ` tn term
root

Ψ ` f(t1, . . . , tn) term

We modify the validity judgment for unification formulas to guarantee this con-
dition.

Ψ ` t term Ψ |= [t/x]F
∃I

Ψ |= ∃x. F

Ψ, a |= [a/x]F
∀Ia

Ψ |= ∀x. F
When an existential variable X is introduced during the search for a deriva-

tion of a unification formula, we annotate it with the parameter context so we
keep track of the admissible substitutions for X.

Ψ |= [XΨ/x]F / S XΨ not in F or S
∃I

Ψ |= ∃x. F / S

Parameters are introduced in the rule for universal quantifiers as before.

Ψ, a |= [a/x]F / S
∀Ia

Ψ |= ∀x. F / S

An equation XΨ
.
= t could now be solved immediately, if all parameters of

t are contained in Ψ and X does not occur in t. However, there is one tricky
case. Consider the judgment

a |= X·
.
= f(Ya) ∧ Ya

.
= a / >

where X cannot depend on any parameters and Y can depend on a. This
should have no solution, since X· would have to be equal to f(a), which is not
permissible. On the other hand,

a |= X·
.
= f(Ya) ∧ Ya .

= c / >

for a constant c has a solution where Ya is c and X· is f(c). So when we process
an equation XΨ = t we need to restrict any variable in t so it can depend only
on the parameters in Ψ. In the example above, we would substitute Y ′· for Ya.

In order to describe the algorithm, we internalize the judgment Ψ ` t term
as a new formula, written as t |Ψ. We define it as follows.

Ψ′ |= > / S if a in Ψ
| a

Ψ′ |= a |Ψ/ S

Ψ′ |= t1 |Ψ ∧ · · · ∧ tn |Ψ/ S
| f

Ψ′ |= f(t1, . . . , tn) |Ψ/ S

Ψ′ |= > / [YΨ2∩Ψ1/YΨ2]S
| v

Ψ′ |= YΨ2 |Ψ1/ S

Draft of May 4, 1998

68 Proof Search

Here, Ψ1 ∩ Ψ2 denotes the intersection of the two contexts. In the rules for
variables, this is invoked as follows.

Ψ′ |= r |Ψ/ [r/XΨ]S where XΨ not in r
vr

Ψ′ |= XΨ
.
= r / S

Ψ′ |= r |Ψ/ [r/XΨ]S where XΨ not in r
vr

Ψ′ |= r
.
= XΨ / S

where r stands for a term f(t1, . . . , tn) or a parameter a. The variable rules are
modified similarly.

Ψ′ |= YΨ2 |Ψ1/ [YΨ2/XΨ1]S
vv

Ψ′ |= XΨ1

.
= YΨ2 / S

Ψ′ |= > / S
vv′

Ψ′x |= XΨ
.
= XΨ / S

The use of continuations introduces on final complication. Consider the case
of (∀x. F1) ∧ F2. Since we linearize bottom-up search the parameter context
Ψ will contain the parameter introduced for x when F2 is finally considered
after F1 has been solved. This introduces spurious dependencies. To prohibit
those, we build closures consisting of a formula and its parameter context on
the continuation stack.

Continuations S ::= > | {Ψ, F}∧ S

The rules for continuations are modified as follows.

Ψ |= F1 / {Ψ, F2} ∧ S
∧I

Ψ |= F1 ∧ F2 / S
>I>

Ψ |= > / >

Ψ |= F / S
>I∧

Ψ′ |= > / {Ψ, F} ∧ S

The termination argument is only slightly more difficult, since the restriction
operation is a structural recursion over the term r and does not increase the
number of variables or equations.

The soundness and completeness theorems from above extend to the problem
with parameters, but become more difficult. The principal new notion we need
is an admissible substitution θ which has the property that for every existential
variable XΨ, Ψ ` [θ]XΨ term (see Exercise ??).

The ML implementation takes advantage of the fact that whenever a vari-
able must be restricted, one of the two contexts is a prefix of the other. This
is because every equation in a formula F lies beneath a path of possibly al-
ternating quantifiers, a so-called mixed quantifier prefix. When we apply the
rules above algorithmically, we instantiate each existentially quantified variable
with a new free existential variable which depends on all parameters which were
introduced for the universally quantified variables to its left. Clearly, then, for
any two variables in the same equation, one context is a prefix of the other. Our
ML implementation does take advantage of this observation by simplifying the
intersection operation.

Draft of May 4, 1998

3.3 Resource Management 69

We can take this optimization a step further and only record with an integer
(a kind of time stamp), which parameters an existential variable may depend on.
This improves the efficiency of the algorithm even further, since we only need
to calculate the minimum of two integers instead of intersecting two contexts
during restriction. In the ML code for this class, we did not optimize to this
extent.

3.3 Resource Management

A form of choice unique to linear logic proof search is resource management :
in the bottom-up application of the left rule for implication and right rule for
tensor, we have to split the linear hypotheses and distribute them to the pre-
misses. We would like to postpone this choice until the further structure of the
derivation provides hints which resources might be needed in which subgoals.

To resolve this non-determinism, we use a technique inspired by unifica-
tion. We pass the complete list of hypotheses to both premisses and maintain
constraints which express that each hypothesis must be used in one of the two
subderivations, but not both. If one is ever used in one branch, we can propagate
this information to the other branch by constraint simplification. This mirrors
the way unification propagates substitutions for existential variables between
incomplete proof branches.

We annotate each hypothesis with an occurrence label b.

Occurrence Labels b ::= > | ⊥ | o

Here, > labels a hypothesis which is definitely present and must therefore be
consumed (in the bottom-up search), ⊥ labels a hypothesis which is definitely
not present and can therefore not be used, and an occurrence variable o labels
a hypothesis which may or may not be used, subject to some global constraints.
Constraints which arise all have the following forms.

Occurrence Constraints c ::= b1
.
= b2 | b1 + b2

.
= b3 | c1 ∧ c2 | tt

The validity judgment for constraints, |= c, is defined by the following rules.

.
= >

|= > .
= >

.
= ⊥

|= ⊥ .
= ⊥

+>⊥
|= >+⊥ .

= >
+⊥>

|= ⊥+> .
= >

no +>> rule
+⊥⊥

|= ⊥+⊥ .
= ⊥

|= c1 |= c2
∧i

|= c1 ∧ c2
tti

|= tt

Draft of May 4, 1998

70 Proof Search

We say a constraint c with occurrence variables is satisfiable if there is an assign-
ment of > and ⊥ to the occurrence variables such that the resulting constraint
is valid.

Linear hypotheses, annotated with occurrence labels, have the form

Annotated Contexts ∆ ::= · | ∆, wb:A

It is convenient to abbreviate wb:A as Ab and ·, wb11 :A1, . . . , w
bn
n :An as ∆

~b. The

basic sequent now reads Γ; ∆
~b =⇒ C \ c, where c are the residual constraints.

The intuition should be that any satisfying assignment to the occurrence vari-
ables in c leads to a valid derivation of Γ; ∆∗ =⇒ C, where ∆∗ retains hypotheses
of the form w>:A and erases hypotheses of the form w⊥:A. We now go through
the rules, removing resource non-determinism in favor of occurrence constraints.
In practice, these constraint should be checked for satisfiability in each step for
early detection of failure. To give a more compact presentation of the rules, we
further write

~b
.
= ⊥ for b1

.
= ⊥∧ · · · ∧ bn .

= ⊥ and
~o′ + ~o′′

.
= ~b for o′1 + o′′1 = b1 ∧ · · · ∧ o′n + o′′n

.
= bn.

Hypotheses. Initial sequents change form, since the particular hypothesis we
use must be constraint to be present, while all others have to be constrained
to be absent. This leaves some residual non-determinism if several available
hypotheses match the conclusion.

I
Γ; (∆

~b, Ad) =⇒ A \ d .
= >∧~b .= ⊥

(Γ, A); (∆, A>) =⇒ C
DL

(Γ, A); ∆ =⇒ C

Multiplicative Connectives. Multiplicative connectives have to generate
constraints as discussed above. New linear hypothesis must be used somewhere,
so their initial annotation is >.

Γ; ∆
~b, A> =⇒ B \ c

(R
Γ; ∆

~b =⇒ A(B \ c

Whenever a left rule is applied to a hypothesis, its occurrence label is constrained
to the >. In addition, since linear implication is multiplicative, we generate new
occurrence variables ~o′ and ~o′′ and constrain them.

Γ; ∆
~o′ =⇒ A \ c′ Γ; ∆

~o′′ , B =⇒ C \ c′′
(L

Γ; ∆
~b, (A(B)d =⇒ C \ d .

= > ∧ c′ ∧ c′′ ∧ ~o′ + ~o′′
.
= ~b

The tensor rules are similar. Here, too, the occurrence variables ~o′ and ~o′′ must
be new.

Γ; ∆
~o′ =⇒ A \ c′ Γ; ∆

~o′′ =⇒ B \ c′′
⊗R

Γ; ∆
~b =⇒ A⊗B \ c′ ∧ c′′ ∧ ~o′ + ~o′′

.
= ~b

Draft of May 4, 1998

3.3 Resource Management 71

Γ; ∆
~b, A>, B> =⇒ C \ c

⊗L
Γ; ∆

~b, (A⊗ B)d =⇒ C \ d .
= > ∧ c

The 1R rule permits no linear hypotheses, so all of them are constrained to be
absent.

1R
Γ; ∆

~b =⇒ 1 \ ~b .= ⊥

Γ; ∆
~b =⇒ C \ c

1L
Γ; ∆

~b, 1d =⇒ C \ d .
= >∧ c

Additive Connectives. The additive connective are much simpler and do
not affect the occurrence constraints, except that the principal proposition of a
left rule must be constrained to be present.

Γ; ∆
~b =⇒ A \ c′ Γ; ∆

~b =⇒ B \ c′′
NR

Γ; ∆
~b =⇒ ANB \ c′ ∧ c′′

Γ; ∆
~b, A> =⇒ C \ c

NL1

Γ; ∆
~b, (ANB)d =⇒ C \ d .

= >∧ c

Γ; ∆
~b, B> =⇒ C \ c

NL2

Γ; ∆
~b, (ANB)d =⇒ C \ d .

= > ∧ c

>R
Γ; ∆

~b =⇒ > \ tt No > left rule

Γ; ∆
~b =⇒ A \ c

⊕R1

Γ; ∆
~b =⇒ A ⊕B \ c

Γ; ∆
~b =⇒ B \ c

⊕R2

Γ; ∆
~b =⇒ A⊕B \ c

Γ; ∆
~b, A> =⇒ C \ c′ Γ; ∆

~b, B> =⇒ C \ c′′
⊕L

Γ; ∆
~b, (A⊕B)d =⇒ C \ d .

= >∧ c′ ∧ c′′

No 0 right rule
0L

Γ; ∆
~b, (0)d =⇒ C \ d .

= >

Quantifiers. The interaction of the quantifiers with resource management is
benign, and limited requiring the principal propositions of left rules to occur.

Γ; ∆
~b =⇒ [a/x]A \ c

∀Ra

Γ; ∆
~b =⇒ ∀x. A \ c

Γ; ∆
~b, ([t/x]A)> =⇒ C \ c

∀L
Γ; ∆

~b, (∀x. A)d =⇒ C \ d .
= > ∧ c

Γ; ∆
~b =⇒ [t/x]A \ c

∃R
Γ; ∆

~b =⇒ ∃x. A \ c

Γ; ∆
~b, ([a/x]A)> =⇒ C \ c

∃La
Γ; ∆

~b, (∃x. A)d =⇒ C \ d .
= >∧ c

Draft of May 4, 1998

72 Proof Search

Exponentials. There are two natural formulations of the ⊃L and !R rules: we
either do not pass any linear hypotheses to the relevant premiss as shown below,
or we pass all linear hypotheses but constrain them not to be used. Depending
on the design of the implementation, one or the other might be preferable.

(Γ, A); ∆
~b =⇒ B \ c

⊃R
Γ; ∆

~b =⇒ A⊃ B \ c

Γ; · =⇒ A \ c′ Γ; ∆
~b, B> =⇒ C \ c′′

⊃L
Γ; ∆

~b, (A⊃B)d =⇒ C \ d .
= >∧ c′ ∧ c′′

Γ; · =⇒ A \ c
!R

Γ; ∆
~b =⇒ !A \ ~b .= ⊥∧ c

(Γ, A); ∆
~b =⇒ C \ c

!L
Γ; ∆

~b, (!A)d =⇒ C \ d .
= > ∧ c

We write Θ for an assignment of> or⊥ to all occurrence variables. Applying
such an assignment to an annotated context of linear hypotheses is defined as

[Θ]· = ·,
[Θ](∆, wb:A) = [Θ]∆, w:A if [Θ]b = >, and
[Θ](∆, wb:A) = [Θ]∆ if [Θ]b = ⊥.

Applying an assignment of a derivation simply applies it to every sequent in the
derivation and erases the occurrence constraints.

We should then have the following soundness and completeness theorems.2

Theorem 3.11 (Soundness of Occurrence Constraints) If D :: (Γ; ∆
~b =⇒

C \ c) and |= [Θ]c then [Θ]D :: (Γ; [Θ]∆
~b =⇒ C).

Theorem 3.12 (Completeness of Occurrence Constraints) If D :: (Γ; ∆ =⇒
C) then D′ :: (Γ; ∆

~> =⇒ C \ c) and there is an assignment Θ such that |= [Θ]c
and D = [Θ]D′.

One or both of these “theorems” may have to be generalized before they can
be proved by induction.

How do we check constraints for satisfiability? We have not fully investigated
this issue to date. One possibility (suggested by Harland and Pym [?]) is to map
them to Boolean constraints, which would make them amenable to standard
Boolean constraint solving techniques. It seems, however, that this would lead
to an unnecessarily complex procedure. We sketch here a set of of rules which
may be used to simplify constraints put them into a normal form which should
always have solutions. The rules may be incomplete (and certainly would require
additional invariants, as we remark below). The apply to any conjunct of the
global constraint c.

2[Warning: at present I have not proven these.]

Draft of May 4, 1998

3.4 Inversion for Unrestricted Resources 73

> .
= > −→ tt

⊥ .
= ⊥ −→ tt

> .
= ⊥ unsatisfiable

⊥ .
= > unsatisfiable
o
.
= b −→ tt and substitute b for o everywhere

>+⊥ .
= b −→ b

.
= >

⊥+> .
= b −→ b

.
= >

>+> .
= b unsatisfiable

⊥+⊥ .
= b −→ b

.
= ⊥

o+> .
= b −→ o

.
= ⊥∧ b .= >

>+ o
.
= b −→ o

.
= ⊥∧ b .= >

o+⊥ .
= b −→ o

.
= b

⊥+ o
.
= b −→ o

.
= b

o1 + o2
.
= ⊥ −→ o1

.
= ⊥ ∧ o2

.
= ⊥

o1 + o2
.
= > in normal form

o1 + o2
.
= o3 in normal form

The last two cases of normal forms do not imply satisfiability. For example,
o + o

.
= > is not satisfiable. Similarly, o + o′

.
= o′ entails that o

.
= ⊥, which

might be inconsistent with other constraints. However, I believe that there
is a natural ordering on occurrence variables (and an induced ordering among
atomic constraints) which can guarantee that certain cases of this form can not
arise, or arise only in a limited number of circumstances which can be checked
easily.

[Extra Credit Assignment: Complete the rules above as needed
to guarantee the satisfiability of normal forms for equations which
arise from proof search and constraint simplification and proof them
correct.]

3.4 Inversion for Unrestricted Resources

Inversion principles as presented in Section 3.1 reduce don’t-know non-deterministic
choices by giving us license to always apply strongly invertible rules in the
bottom-up search for a derivation. But there is a gap in the analysis in that the
dereliction rule is always applicable when we have any unrestricted hypotheses,
but is not invertible. However, there are a number of cases where we can write
out derived or admissible rules that operate directly on unrestricted hypothe-
ses, and which are invertible. We can then limit the use of dereliction to the
remaining cases.

The following rules are all admissible and strongly invertible.

Draft of May 4, 1998

74 Proof Search

(Γ, A1, A2); ∆
−

=⇒ B
NL!

(Γ, A1NA2); ∆
−

=⇒ B

Γ; ∆
−

=⇒ B
>L!

(Γ,>); ∆
−

=⇒ B

Γ; ∆
−

=⇒ B
1L!

(Γ, 1); ∆
−

=⇒ B
0L!

(Γ, 0); ∆
−

=⇒ B

(Γ, A); ∆
−

=⇒ B
!L!

(Γ, !A); ∆
−

=⇒ B

Theorem 3.13 (Invertibility of Admissible Left! Rules) The rules NL!,
>L!, 0L! and !L! are admissible and invertible. A system with these rules
and dereliction restricted to a principal propositions which is of the form P ,
A1(A2, ∀x. A, A1 ⊃ A2, A1 ⊗A2, A1 ⊕A2, or ∃x. A is sound and complete.

Proof: Admissibility and invertibility follows direct calculation in each direc-
tion, using the admissibility of Cut! (Theorem ??) in some cases. Soundness
follows easily from admissibility, completeness from invertibility. 2

There is also one derivable, weakly invertible rule.

I!
(Γ, P); · −=⇒ P

None of the remaining connectives admit invertible rules of the kind above
(see Exercise ??). If we want a complete system of rules to replace dereliction
DL altogether, we would have to add some non-invertible ones. Here is a possible
set of rules.

(Γ, A1(A2); ∆1
−

=⇒ A1 (Γ, A1(A2); (∆2, A2)
−

=⇒ B
(L!

(Γ, A1(A2); ∆1 ×∆2
−

=⇒ B

(Γ, A1 ⊃ A2); · −=⇒ A1 (Γ, A2); ∆
−

=⇒ B
(L!

(Γ, A1(A2); ∆
−

=⇒ B

(Γ, ∀x. A); (∆, [t/x]A)
−

=⇒ B
∀L!

(Γ, ∀x. A); ∆
−

=⇒ B

(Γ, ∃x. A); (∆, [a/x]A)
−

=⇒ B
∃L!

(Γ, ∃x. A); ∆
−

=⇒ B

(Γ, A1 ⊗A2); (∆, A1, A2)
−

=⇒ B
⊗L!

(Γ, A1 ⊗ A2); ∆
−

=⇒ B

Draft of May 4, 1998

3.5 Another Example: Arithmetic 75

(Γ, A1 ⊕A2); (∆, A1)
−

=⇒ B (Γ, A1 ⊕ A2); (∆, A2)
−

=⇒ B
⊕L!

(Γ, A1 ⊕ A2); ∆
−

=⇒ B

In some cases there are other admissible rules, but they are rarely useful.
For example, the rule

(Γ, ∀x. A, [t/x]A); ∆
−

=⇒ B
∀L!′

(Γ, ∀x. A); ∆
−

=⇒ B

is certainly admissible and even invertible, but it cannot be applied eagerly,
since it would lead to non-termination. Instead, we can simply reuse ∀x. A if
we need another copy of [t/x]A.

3.5 Another Example: Arithmetic

Because linear hypotheses must be used exactly once, we can encode arithmetic
problems as propositions in linear logic. We map a set of linear equations over
the natural numbers into a proposition of linear logic, such that any proof of
the proposition corresponds to a solution to the set of equations. When the
proposition has not proof, the linear equations have no solutions.

We first represent natural numbers using a new (uninterpreted) atomic
proposition p.

p0q = 1
pn+ 1q = p⊗ pnq

Since p ⊗ 1 a` p we omit the trailing 1 in the examples, and also sometimes
abbreviate pnq as pn.

Addition is then easily represented by the multiplicative conjunction, and
equality by linear implication. We use e to range over arithmetic expressions
(which are not yet completely defined).

pe1 + e2q = pe1q⊗ pe2q
pe1 = e2q = pe1q(pe2q

For example, the equation 3 + 2 = 1 + 4 would be represented as

(p ⊗ p⊗ p⊗ 1) ⊗ (p⊗ p⊗ 1)((p⊗ 1) ⊗ (p⊗ p⊗ p⊗ p⊗ 1)

which is clearly true. It is also easy to see that an equation between different
numbers will be an unprovable linear implication.

For every variable x in the left-hand side of an equation we have a hypothesis
!p. If the variable x is instantiated by a number n, the corresponding derivation
will use this hypothesis n times, creating a linear copy of p each time. For
example (omitting 1s):

px+ y + 1 = 3q = !p ⊗ !p⊗ p(p⊗ p⊗ p

Draft of May 4, 1998

76 Proof Search

If a variable x occurs more than once, or multiplied by a constant, we collect
common terms and think of kx = x + x+ · · ·+ x. So the representation of 3x
is !(p⊗ p⊗ p). For example,

p3x+ 2y = 7q = !(p3)⊗ !(p2)(p7

Representing several simultaneous equations is a bit more difficult, because
we must make sure that a variable is instantiated to the same number in all
equations. We achieve this by using a different representation of the natural
numbers in each equation (say pi for equation number i), and let each variable
generate the appropriate number of pi’s for equation i. The right-hand sides of
the equations are then combined with ⊗. For example,

px+ y + 1 = 4 ∧ 2x+ 3y = 6q =
!(p1 ⊗ p2

2) x and 2x
⊗!(p1 ⊗ p3

2) y and 3y
(
(p1(p4

1) (x+ y) + 1 = 4
⊗p6

2 and (2x+ 3y) = 6

The multiplicative conjunction in the conclusion forces all hypotheses re-
garding p1 to the first conjunct, and all hypothesis regarding p2 to the second
conjunct. Since the exponential ! operator is outside the tensor for the variables
in the different equations, the number of uses of this unrestricted assumption
determines the instantiation for the variable.

Note that this example requires only a very small fragment, the so-called
multiplicative exponential linear logic.

Multiplicative Exponential M ::= P |M1 ⊗M2 | 1 |M1(M2 | !M

Actually, in the propositions above a linear implication never appears on the
left-hand side of a linear implication, and an exponential never appears on the
right-hand side of a linear implication, which is a significant further restriction.3

One can add negative numbers and stay within the multiplicative exponential
fragment although it seems one left-nested implication is now necessary. For
each equation i we add a new propositional constant qi representing −1, and
the hypothesis

!((pi ⊗ qi)(1)

expressing that 1 + (−1) = 0. An occurrence of a variable on the right-hand
side of an equation is implemented as a negative occurrence on the left. For

3[add a note on what is known about the complexity of these two fragments]

Draft of May 4, 1998

3.6 Weakly Uniform Derivations 77

example,

px+ 1 = 2y ∧ 2x+ y − 2 = 3q =
!(p1 ⊗ q1(1) 1+(-1)=0
⊗!(p2 ⊗ q2(1) 1+(-1)=0
⊗!(p1 ⊗ p2

2) x and 2x
⊗!(q2

1 ⊗ p2) −2y and y
(
(p1(1) (x− 2y) + 1 = 0
⊗(q2

2(p3
2) and (2x+ y) − 2 = 3

3.6 Weakly Uniform Derivations

In the preceding sections we have dealt with universal, existential, and resource
non-determinism. The inversion principles in Sections 3.1 and 3.4 reduced dis-
junctive non-determinism, since invertible rules can always be applied eagerly
in the bottom-up search for a derivation without losing completeness. In this
section we extend this analysis in order to reduce disjunctive non-determinism
even when rules are not necessarily invertible, resulting in a notion of weakly
uniform derivations.

[Warning: The material in this section is highly speculative. While
the soundness of the procedure is clear, its completeness has not yet
been proven and quite possibly fails.]

As in the section for unification, we describe the search procedure as a de-
ductive system. We do not explicitly deal with universal, existential, or resource
non-determinism, which can easily be incorporated in the system following the
ideas in the previous two sections. Unlike unification, however, there remains
some residual disjunctive non-determinism which reflects the remaining diffi-
cult choices. This can be treated, for example, by backtracking in an iterative
deepening implementation.

The basic structure of sequents in the procedure is

Γ; ∆ −→ A

where Γ contains only propositions whose corresponding unrestricted left rule is
not invertible and ∆ contains only propositions whose corresponding left rules
are not invertible. If a right rule is invertible in this situation, we apply it, until
we are in a situation where neither the left rules for the principal connectives
on the hypotheses, nor the right rule for the conclusion is invertible. Then we
have to make a choice and pick one of the hypotheses or the conclusion.

The surprising4 observation is that we can now focus on this hypothesis or
conclusion and break it down, applying a sequence of left or right rules as long
as the corresponding rules for the principal connective are not invertible. We

4[and perhaps false]

Draft of May 4, 1998

78 Proof Search

call the structure of the resulting derivation weakly focussed. In the strongly
focussed case which is relevant to logic programming, we can always reduce a
focussed hypothesis or conclusion to an atomic proposition; here we may have
to stop when we encounter other propositions.

We now go through various classes of inference rules. We omit the cases for
intuitionistic implication (which is left to Exercise ??), since it is easily defined
by A1 ⊃ A2 = (!A1)(A2.

Invertible Right Rules. Whenever the right rule for the principal connective
of the succedent is applicable, we must apply it.

Γ; ∆ −→ A1 Γ; ∆ −→ A2
NR

Γ; ∆ −→ A1NA2

>R
Γ; ∆ −→ >

The right rule for linear implication is invertible, but it requires a new auxiliary
judgment. When applying the right rule to A1(A2 we cannot add A1 directly
to ∆, since its principal connective may have an invertible left rule, violating our
invariant. Instead, we employ an auxiliary judgment Γ; (∆ | ∆′) −→ A. Inter-
preted algorithmically, it will apply all the invertible left rules to the propositions
in ∆′ and merge the remaining ones into ∆

Γ; (∆ | A1) −→ A2
(R

Γ; ∆ =⇒ A1(A2

Γ; ∆ −→ [a/x]A
∀Ra

Γ; ∆ −→ ∀x. A

Invertible Left Rules. The invertible left rules require yet another additional
judgment to merge unrestricted hypotheses into Γ in a way that eliminates all
unrestricted invertible rules, written as (Γ | Γ′); (∆ | ∆′) −→ B.

Γ; (∆ | A1, A2,∆
′) −→ B

⊗L
Γ; (∆ | A1 ⊗A2,∆

′) −→ B

Γ; (∆ | ∆′) −→ B
1L

Γ; (∆ | 1,∆′) −→ B

Γ; (∆ | A1,∆
′) −→ B Γ; (∆ | A2,∆

′) −→ B
⊕L

Γ; (∆ | A1 ⊕A2,∆
′) −→ B

0L
Γ; (∆ | 0,∆′) −→ B

(Γ | A); (∆ | ∆′) −→ B
!L

Γ; (∆ | !A,∆′) −→ B

Γ; (∆ | [a/x]A,∆′) −→ B
∃La

Γ; (∆ | ∃x. A,∆′)

There is also one rule which allows us to merge remaining propositions into ∆,
and one rule which allows us to go back to work on the succedent when all
hypotheses have been decomposed and merged into ∆.

Γ; (∆, D | ∆′) −→ B
md

Γ; (∆ | D,∆′) −→ B

Γ; ∆ −→ B
me

Γ; (∆ | ·) −→ B

Draft of May 4, 1998

3.6 Weakly Uniform Derivations 79

In the md rule, we use D to stand for a proposition whose left rule is non-
invertible. We we call them left-critical propositions.

Left-Critical Propositions D ::= P | A1NA2 | > | A1(A2 | ∀x. A

Invertible Unrestricted Left Rules. Next we show the rules which eagerly
apply invertible left rules to unrestricted hypotheses.

(Γ | A1, A2,Γ
′); (∆ | ∆′) −→ B

NL!
(Γ | A1NA2,Γ

′); (∆ | ∆′) −→ B

(Γ | Γ′); (∆ | ∆′) −→ B
>L!

(Γ | >,Γ′); (∆ | ∆′) −→ B

(Γ | Γ′); (∆ | ∆′) −→ B
1L!

(Γ | 1,Γ′); (∆ | ∆′) −→ B
0L!

(Γ | 0,Γ′); (∆ | ∆′) −→ B

(Γ | A,Γ′); (∆ | ∆′) −→ B
!L!

(Γ | !A,Γ′); (∆ | ∆′) −→ B

(Γ, E | Γ′); (∆ | ∆′) −→ B
md!

(Γ | E,Γ′); (∆ | ∆′) −→ B

Γ; (∆ | ∆′) −→ B
me!

(Γ | ·); (∆ | ∆′) −→ B

In the md! rule we use E to stand for those propositions whose principal con-
nective is not invertible when it appears among the unrestricted resources.

Left!-Critical Propositions E ::= P | A1(A2 | ∀x. A
| A1 ⊗A2 | A1 ⊕A2 | ∃x. A

Focussing Rules. With the rules above we arrive at a situation where Γ
consists entirely of left!-critical propositions, ∆ of left-critical propositions, and
the succedent is a right-critical proposition C, defined as a proposition whose
principal connective does not have an invertible right rule.

Right-Critical Propositions C ::= P | A1 ⊗A2 | 1 | A1 ⊕A2 | 0 | !A | ∃x. A

We also use C∗ to stand for a non-atomic right-critical proposition. The idea
of focussing is to pick either the succedent of the sequent or one of the linear or
unrestricted hypothesis and apply a sequence of either left or right rules to this
one distinguished proposition. Thus we have two judgments,

Γ; ∆ −→� A A has a right-focussed derivation, and
Γ; ∆ −→ A� C C has a derivation left-focussed on A.

They arise in a derivation when a sequent consists entirely of critical proposi-
tions.

Γ; ∆ −→� C∗

� R
Γ; ∆ −→ C∗

Draft of May 4, 1998

80 Proof Search

Γ; ∆ −→ D� C
� L

Γ; (∆, D) −→ C

(Γ, E); ∆ −→ E � C
� L!

(Γ, E); ∆ −→ C

Here, we restrict the � R rule to non-atomic critical propositions C∗. Note
that these three rules represent a don’t-know non-deterministic choice. In the
presence of resource non-determinism, some of the hypotheses may only be po-
tentially available—choosing them forces them to occur, possibly compromising
other pending subgoals. This is also why, for example, the 1R rule below is
not trivial: in practice it constitutes a commitment that none of the potential
hypotheses are used in this branch of the derivation.

The rules for right-focussed sequents and immediate entailment are once
again just the right and left rules, until the focus proposition is no longer critical,
at which point a new critical sequent may arise.

Γ; ∆1 −→� A1 Γ; ∆2 −→� A2
⊗R

Γ; ∆1 ×∆2 −→� A1 ⊗ A2

1R
Γ; · −→� 1

Γ; ∆ −→� A1 ⊕R1
Γ; ∆ −→� A1 ⊕A2

Γ; ∆ −→� A2 ⊕R2
Γ; ∆ −→� A1 ⊕ A2

No right rule for 0

Γ; · −→� A
!R

Γ; · −→� !A

Γ; ∆ −→� [t/x]A
∃R

Γ; ∆ −→� ∃x. A

Γ; ∆ −→ C∗
ur

Γ; ∆ −→� C∗

In the last rule C∗ is a proposition which is either atomic or not right critical.

Γ; ∆ −→ A1 � C
NL1

Γ; ∆ −→ A1NA2 � C

Γ; ∆ −→ A2 � C
NL2

Γ; ∆ −→ A1NA2 � C

No left rule for >
Γ; ∆2 −→ A2 � C Γ; ∆1 −→ A1

(L
Γ; ∆1 ×∆2 −→ A1(A2 � C

Γ; ∆ −→ [t/x]A� C
∀L

Γ; ∆ −→ ∀x. A� C
I

Γ; · −→ P � P

Γ; (∆ | D) −→ C
ul

Γ; ∆ −→ D� C

Note that the premisses of the (L rule are another immediate entailment
and a general, weakly uniform derivation of the antecedent of the linear impli-
cation.

Draft of May 4, 1998

3.6 Weakly Uniform Derivations 81

The soundness of this inference system can be seen rather easily by induction,
but we must generalize the statement to include all auxiliary judgments.

Theorem 3.14 (Soundness of Weakly Uniform Derivations)

1. If Γ; ∆ −→ A then Γ; ∆
−

=⇒ A.

2. If Γ; (∆ | ∆′) −→ A then Γ; (∆,∆′)
−

=⇒ A.

3. If (Γ | Γ′); (∆ | ∆′) −→ A then (Γ,Γ′); (∆,∆′)
−

=⇒ A.

4. If Γ; ∆ −→� A then Γ; ∆
−

=⇒ A.

5. If Γ; ∆ −→ A� C then Γ; (∆, A)
−

=⇒ A.

Proof: By a straightforward simultaneous induction on the given derivations.
Each left and right rule in the weakly uniform derivation corresponds directly to
a left and right rule on the sequent calculus. For the rules NL!, >L!, 1L!, 0L!, !L!
we use their admissibility (Theorem 3.13). The remaining rules disappear in the
translation, since the premiss and conclusion sequent are intpreted identically.
2

The completeness is open at present. One appropriate proof technique would
be to use the permutability of inference rules to show explicitly how to transform

a derivation of Γ; ∆
−

=⇒ A into a weakly uniform one. The only difficult in this
proof is the explosive number of cases which must be checked.

Draft of May 4, 1998

82 Proof Search

Draft of May 4, 1998

Chapter 4

Linear λ-Calculus

In intuitionistic logic, proofs are related to functional programs via the Curry-
Howard isomorphism [CF58, How69]. Howard observed that there is a bijective
correspondence between proofs in intuitionistic propositional natural deduction
and simply-typed λ-terms. A related observation on proof in combinatory logic
had been made previously by Curry.

A generalization of this observation to include quantifiers later gives rise to
the rich field of type theory, which we will analyze in Chapter ??. Here we
study the basic correspondence, extended to the case of linear logic.

A linear λ-calculus of proof terms will be useful for us in various circum-
stances. First of all, it gives a compact and faithful representation of proofs as
terms. Proof checking is reduced to type-checking in a λ-calculus. For example,
if we do not trust the implementation of our theorem prover, we can instru-
ment it to generate proof terms which can be verified independently. Secondly,
the terms in the λ-calculus provide the core of a functional language with an
expressive type system, in which statements such as “this function will use its
argument exactly once” can be formally expressed and checked. Thirdly, lin-
ear λ-terms can serve as an expressive representation language within a logical
framework, a general meta-language for the formalization of deductive systems.

4.1 Proof Terms

We now assign proof terms to the system of linear natural deduction. Our main
criterion for the design of the proof term language is that the proof terms should
reflect the structure of the deduction as closely as possible. Moreover, we would
like every valid proof term to uniquely determine a natural deduction. Because
of the presence of >, this strong property will fail, but a slightly weaker and,
from the practical point of view, sufficient property holds. Under the Curry-
Howard isomorphism, a proposition corresponds to a type in the proof term
calculus. We will there call a proof term well-typed if it represents a deduction.

The proof term assignment is defined via the judgment Γ; ∆ `M : A, where

Draft of May 4, 1998

84 Linear λ-Calculus

each formula in Γ and ∆ is labelled. We also use M −→β M ′ for the local
reduction and M : A −→η M

′ for the local expansion, both expressed on proof
terms. The type on the left-hand side of the expansion reminds is a reminder
that this rule only applies to term of the given type (contexts are elided here).

Hypotheses. We use the label of the hypotheses as the name for a variable
in the proof terms. There are no reductions or expansions specific to variables,
although variables of non-atomic type may be expanded by the later rules.

w
Γ; (·, w:A) ` w : A

u
(Γ1, u:A,Γ2); · ` u : A

Multiplicative Connectives. Linear implication corresponds to a linear func-
tion types with corresponding linear abstraction and application. We distinguish
them from unrestricted abstraction and application by a “hat”. In certain cir-
cumstances, this may be unnecessary, but here we want to reflect the proof
structure as directly as possible.

Γ; (∆, w:A) `M : B
(Iw

Γ; ∆ ` λ̂w:A. M : A(B

Γ; ∆ `M : A(B Γ; ∆′ ` N : A
(E

Γ; (∆×∆′) `MˆN : B

(λ̂w:A. M)ˆN −→β [N/w]M

M : A(B −→η λ̂w:A. Mˆw

In the rules for the simultaneous conjunction, the proof term for the elimination
inference is a let form which deconstructs a pair, naming the components. The
linearity of the two new hypotheses means that the variables must both be used
in M .

Γ; ∆1 `M : A Γ; ∆2 ` N : B
⊗I

Γ; (∆1 ×∆2) `M ⊗N : A⊗B

Γ; ∆ `M : A ⊗B Γ; (∆′, w1:A,w2:B) ` N : C
⊗Ew1,w2

Γ; (∆′ ×∆) ` let w1 ⊗ w2 = M in N : C

The reduction and expansion mirror the local reduction and expansion for de-
duction as the level of proof terms. We do not reiterate them here, but simply
give the proof term reduction.

let w1 ⊗ w2 = M1 ⊗M2 in N −→β [M1/w1,M2/w2]N
M : A⊗ B −→η let w1 ⊗w2 = M in w1 ⊗w2

Draft of May 4, 1998

4.1 Proof Terms 85

The unit type allows us to consume linear hypotheses without introducing new
linear ones.

1I
Γ; · ` ? : 1

Γ; ∆ `M : 1 Γ; ∆′ ` N : C
1E

Γ; (∆′ ×∆) ` let ? = M in N : C

let ? = M in N −→β N
M : ? −→η let ? = M in ?

Additive Connectives. As we have seen from the embedding of intuition-
istic in linear logic, the simultaneous conjunction represents products from the
simply-typed λ-calculus.

Γ; ∆ `M : A Γ; ∆ ` N : B
NI

Γ; ∆ ` 〈M,N〉 : ANB

Γ; ∆ `M : ANB
NEL

Γ; ∆ ` fstM : A

Γ; ∆ `M : ANB
NER

Γ; ∆ ` sndM : B

The local reduction are also the familiar ones.

fst 〈M1,M2〉 −→β M1

snd 〈M1,M2〉 −→β M2

M : ANB −→η 〈fstM, sndM〉

The additive unit corresponds to a unit type with no operations on it.

>I
Γ; ∆ ` 〈 〉 : > No > elimination

The additive unit has no elimination and therefore no reduction. However, it
still admits an expansion, which witnesses the local completeness of the rules.

M : > −→η 〈 〉

The disjunction (or disjoint sum when viewed as a type) uses injection and case
as constructor and destructor forms, respectively. We annotated the injections
with a type to preserve the property that any well-typed term has a unique
type.

Γ; ∆ `M : A
⊕IL

Γ; ∆ ` inlB : A ⊕B

Γ; ∆ `M : B
⊕IR

Γ; ∆ ` inrA : A ⊕B

Γ; ∆ `M : A⊕ B Γ; (∆′, w1:A) ` N1 : C Γ; (∆′, w2:B) ` N2 : C
⊕Ew1,w2

Γ; (∆′ ×∆) ` case M of inlw1⇒ N1 | inrw2 ⇒ N2 : C

Draft of May 4, 1998

86 Linear λ-Calculus

The reductions are just like the ones for disjoint sums in the simply-typed λ-
caclulus.

case inlBM of inlw1 ⇒ N1 | inrw2 ⇒ N2 −→β [M/w1]N1

case inrAM of inlw1 ⇒ N1 | inrw2 ⇒ N2 −→β [M/w2]N2

M : A⊕ B −→η case M of inlw1 ⇒ inlB w1 | inrw2⇒ inrAw2

For the additive falsehood, there is no introduction rule. It corresponds to a
void type without any values. Consequently, there is no reduction. Once again
we annotate the abort constructor in order to guarantee uniqueness of types.

No 0 introduction

Γ; ∆ `M : 0
0E

Γ; (∆′ ×∆) ` abortCM : C

M : 0 −→η abort0M

Exponentials. Unrestricted implication corresponds to the usual function
type from the simply-typed λ-calculus. For consistency, we will still write A⊃B
instead of A→ B, which is more common in λ-calculus. Note that the argument
of an unrestricted application may not mention any linear variables.

(Γ, u:A); ∆ `M : B
⊃Iu

Γ; ∆ ` λu:A. M : A⊃ B

Γ; ∆ `M : A⊃ B Γ; · ` N : A
⊃E

Γ; ∆ `M N : B

The reduction and expansion are the origin of the β and η rules names due to
Church [Chu41].

(λu:A. M)N −→β [N/u]M
M : A ⊃B −→η λu:A. M u

The rules for the of course operator allow us to name term of type !A and use
it freely in further computation.

Γ; · `M : A
!I

Γ; · ` !M : !A

Γ; ∆ `M : !A (Γ, u:A); ∆′ ` N : C
!Eu

Γ; (∆′ ×∆) ` let !u = M in N : C

let !u = !M in N −→β [M/u]N
M : !A −→η let !u = M in !u

Draft of May 4, 1998

4.1 Proof Terms 87

Below is a summary of the linear λ-calculus with the β-reduction and η-
expansion rules.

M ::= w Linear Variables

| λ̂w:A. M |M1
ˆM2 A(B

|M1 ⊗M2 | let w1 ⊗ w2 = M in M ′ A ⊗B
| ? | let ? = M in M ′ 1
| 〈M1,M2〉 | fstM1 | sndM2 ANB
| 〈 〉 >
| inlBM | inrAM A ⊕B
| (caseM of inlw1 ⇒M1 | inrw2 ⇒M2)

| abortCM 0
| u Unrestricted Variables
| λu:A. M |M1 M2 A ⊃B
| !M | let u = M in M ′ !A

Below is a summary of the β-reduction rules, which correspond to local
reductions of natural deductions.

(λ̂w:A. M)ˆN −→β [N/w]M A(B
let w1 ⊗w2 = M1 ⊗M2 in N −→β [M1/w1,M2/w2]N A⊗ B

let ? = M in N −→β N 1
fst 〈M1,M2〉 −→β M1 ANB

snd 〈M1,M2〉 −→β M2

No > reduction

case inlBM of inlw1⇒ N1 | inrw2 ⇒ N2 −→β [M/w1]N1 A⊕ B
case inrAM of inlw1⇒ N1 | inrw2 ⇒ N2 −→β [M/w1]N2

No 0 reduction
(λu:A. M)N −→β [N/u]M A⊃ B

let !u = !M in N −→β [M/u]N !A

The substitution [M/w]N and [M/u]N assumes that there are no free variables
in M which would be captured by a variables binding in N . We nonethless
consider it a total function, since the capturing variable can always be renamed
to avoid a conflict (see Exercise 4.3).

Next is a summary of the η-expansion rules, which correspond to local ex-
pansions of natural deductions.

M : A(B −→η λ̂w:A. Mˆw
M : A⊗ B −→η let w1 ⊗w2 = M in w1 ⊗w2

M : ? −→η let ? = M in ?
M : ANB −→η 〈fstM, sndM〉

M : > −→η 〈 〉
M : A⊕ B −→η case M of inlw1⇒ inlB w1 | inrw2 ⇒ inrAw2

M : 0 −→η abort0M
M : A⊃ B −→η λu:A. M u

M : !A −→η let !u = M in !u

Draft of May 4, 1998

88 Linear λ-Calculus

Note that there is an implicit assumption that the variables w and u in the cases
for A(B and A ⊃B do not already occur in M : they are chosen to be new.

We have the following fundamental properties. Uniqueness, where claimed,
holds only up to renaming of bound variables.

Theorem 4.1 (Properties of Proof Terms)

1. If Γ; ∆ ` A then Γ; ∆ `M : A for a unique M .

2. If Γ; ∆ `M : A then Γ; ∆ ` A.

Proof: By straightforward inductions over the given derivations. 2

Types are also unique for well-typed terms (see Exercise 4.1). Uniqueness of
derivations fails, that is, a proof term does not uniquely determine its derivation,
even under identical contexts. A simple counterexample is provided by the
following two derivations (with the empty unrestricted context elided).

>I
w:> ` 〈 〉 : >

>I
· ` 〈 〉 : >

⊗I
w:> ` 〈 〉 ⊗ 〈 〉 : >⊗>

>I
· ` 〈 〉 : >

>I
w:> ` 〈 〉 : >

⊗I
w:> ` 〈 〉 ⊗ 〈 〉 : >⊗>

It can be shown that linear hypotheses which are absorbed by >I are the
only source of only ambiguity in the derivation. A similar ambiguity already
exists in the sense that any proof term remains valid under weakening in the
intuitionistic context: whenever Γ; ∆ ` M : A then (Γ,Γ′); ∆ ` M : A. So
this phenomenon is not new to the linear λ-calculus, and is in fact a useful
identification of derivations which differ in “irrelevant” details, that is, unused
or absorbed hypotheses.

The substitution principles on natural deductions can be expressed on proof
terms. This is because the translations from natural deductions to proof terms
and vice versa are compositional : uses of a hypothesis labelled w in natural
deduction corresponds to an occurrence of a variable w in the proof term.

Lemma 4.2 (Substitution on Proof Terms)

1. If Γ; (∆, w:A) ` N :C and Γ; ∆′ `M : A, then Γ; (∆×∆′) ` [M/w]N : C.

2. If (Γ, u:A); ∆ ` N :C and Γ; · `M : A, then Γ; ∆ ` [M/u]N : C.

Proof: By induction on the structure of the first given derivation, using the
property of exchange. 2

We also have the property of weakening for unrestricted hypotheses. The
substitution properties are the critical ingredient for the important subject re-
duction properties, which guarantee that the result of β-reducing a well-typed
term will again be well-typed. The expansion rules also preserve types when
invoked properly.

Draft of May 4, 1998

4.2 Example: A Small Imperative Language 89

Theorem 4.3 (Subject Reduction and Expansion)

1. If Γ; ∆ `M : A and M −→β M
′ then Γ; ∆ `M ′ : A.

2. If Γ; ∆ `M : A and M : A −→η M
′ then Γ; ∆ `M ′ : A.

Proof: For subject reduction we examine each possible reduction rule, applying
inversion to obtain the shape of the typing derivation. From this we either
directly construct the typing derivation of M ′ or we appeal to the substitution
lemma.

For subject expansion we directly construct the typing derivation for M ′

from the typing derivation of M . 2

Note that the opposite of subject reduction does not hold: there are well-
typed terms M ′ such that M −→β M ′ and M is not well-typed (see Exer-
cise 4.4).

4.2 Example: A Small Imperative Language

[to be filled in]

4.3 Term Assignment for the Sequent Calculus

Writing an efficient theorem prover is an arduous and error-prone task, since one
must carefully optimize at low and high levels of abstraction. This means that
it is difficult to trust the correctness of a theorem prover. In order to alleviate
this problem, we can follow two strategies. The first goes back to the design
ML [GMW79] where we use the strong typing and the data abstraction mech-
anisms of the implementation language to reduce the correctness of a larger
implementation to the correctness of a small core. Unfortunately, having to
always go through primitive rules of inference during search is a severe practi-
cal restriction and prohibits many efficient implementation techniques (see, for
example, a discussion in [?]). Another is to require the prover to be able to
generate proof terms. If the proof is written in a simple and concise language,
we can write an external (and hopefully much simpler) checker, which we may
trust much more readily than a complicated prover manipulating constraints,
unification, using indexing schemes for fast retrieval of logical assumptions, etc.
Unless we can find a way to include admissible and derived rules of inference, we
still have to go through primitive inference rules, but we now have an external
manifestation of the deduction.

For linear logic, the proof term calculus developed in Section 4.1 is an ideal
candidate. Its definition is relatively simple, directly translating the rules of nat-
ural deduction. Compare this to the complexity of unification with parameters
and manipulating occurrence constraints. In the next section we will also see
that type-checking proof terms is certainly decidable and actually not a difficult
task.

Draft of May 4, 1998

90 Linear λ-Calculus

What remains is to bridge the gap between the rules of the sequent calculus
and proof terms for natural deduction. Actually, we have already established the
connection between sequent calculus and natural deduction in both directions.
Of interest here is soundness, since the constructive soundness proof gives an
explicit method for translating a sequent derivation into a natural deduction
(see Theorem 2.9). We now need to make this construction explicit. This can
be done by defining a judgment which relates a sequent derivation to a proof
term, or perhaps to a natural deduction which includes a proof term. Such
higher-level judgments which relate derivations quickly become unmanageable,
so we write out one judgment which may be thought of as a sequent derivation
annotated by a proof term, written as Γ; ∆ =⇒ M : A. We are writing it in
such a way that, if Γ; ∆ =⇒ A then there is an annotation Γ; ∆ =⇒ M : A and
Γ; ∆ `M : A.

Since variable occurrences in proof terms are critical, we now make the
hypothesis labels explicit. However, we will still allow implicit exchange, so
that ∆, w:A matches any hypotheses of the form ∆1, w:A,∆2.

Hypotheses. The use of a hypothesis is just translated into the corresponding
variable. The dereliction rule requires a substitution.

I
Γ;w:A =⇒ w : A

(Γ, u:A); (∆, w:A) =⇒M : C
DL

(Γ, u:A); ∆ =⇒ [u/w]M : C

Why is the substitution in the dereliction rule valid? In the correctness proof
of the proof term assignment we need to show that (Γ, u:A); ∆ ` [u/w]M : C,
given that (Γ, u:A); (∆, w:A) ` M : C. But this follows from the substitution
property for proof terms (Lemma 4.2), since (Γ, u:A); · ` u : A. Many other
cases follow a similar pattern.

Multiplicative Connectives. In general, the right rules of the sequent cal-
culus match the introduction rules of natural deduction. Therefore, the proof
term assignment for the left rules is quite straightforward. On the other side,
the left rules decompose a proposition in bottom-up search, while the elimina-
tion rules work top-down. We therefore substitute a small piece of a derivation
which applies the corresponding elimination for the hypothesis in the premiss.

Γ; ∆, w:A =⇒M : B
(R

Γ; ∆ =⇒ λ̂w:A. M : A(B

Γ; ∆1 =⇒M : A Γ; ∆2, w2:B =⇒ N : C
(L

Γ; ∆2 ×∆1, w:A(B =⇒ [(wˆM)/w2]N : C

Draft of May 4, 1998

4.3 Term Assignment for the Sequent Calculus 91

Γ; ∆1 =⇒ M1 : A Γ; ∆2 =⇒ M2 : B
⊗R

Γ; ∆1 ×∆2 =⇒M1 ⊗M2 : A⊗B

Γ; ∆, w1:A,w2:B =⇒ N : C
⊗L

Γ; ∆, w:A⊗ B =⇒ let w1 ⊗ w2 = w in N : C

1R
Γ; · =⇒ ? : 1

Γ; ∆ =⇒ N : C
1L

Γ; ∆, w:1 =⇒ let ? = w in N : C

Additive Connectives. The additive connectives do not introduce any com-
plications.

Γ; ∆ =⇒ M : A Γ; ∆ =⇒ N : B
NR

Γ; ∆ =⇒ 〈M,N〉ANB

Γ; ∆, w1:A =⇒ N : C
NL1

Γ; ∆, w:ANB =⇒ [(fstw)/w1]N : C

Γ; ∆, w2:B =⇒ N : C
NL2

Γ; ∆, w:ANB =⇒ [(sndw)/w1]N : C

>R
Γ; ∆ =⇒ 〈 〉> No > left rule

Γ; ∆ =⇒ M : A
⊕R1

Γ; ∆ =⇒ inlBM : A⊕B

Γ; ∆ =⇒M : B
⊕R2

Γ; ∆ =⇒ inrAM : A ⊕B

Γ; ∆, w1:A =⇒ N1 : C Γ; ∆, w2:B =⇒ N1 : C
⊕L

Γ; ∆, w:A⊕ B =⇒ case w of inlw1 ⇒ N1 | inrw2 ⇒ N2 : C

No 0 right rule
0L

Γ; ∆, w:0 =⇒ abortC w : C

Exponentials. Surprisingly, we do not need any explicit substitution for un-
restricted variables, since the !L rule introduces a let -expression.

(Γ, u:A); ∆ =⇒ M : B
⊃R

Γ; ∆ =⇒ λu:A. M : A ⊃B

Γ; · =⇒ M : A Γ; ∆, w2:B =⇒ N : C
⊃L

Γ; ∆, w:A ⊃B =⇒ [(wM)/w2]N : C

Γ; · =⇒M : A
!R

Γ; · =⇒ !M : !A

(Γ, u:A); ∆ =⇒ N : C
!L

Γ; ∆, w:!A =⇒ let !u = w in N : C

Draft of May 4, 1998

92 Linear λ-Calculus

Cut. It is easy to check that the proof terms assigned with this system have the
right type. Moreover, the resulting natural deduction terms are always normal.
As can be expected from Theorem 2.14, this term assignment can be extended
to derivations with cut, except that the result may no longer be normal. The

assignment for the judgment Γ; ∆
+

=⇒ M : A is as above, with the following two
additional rules.

Γ; ∆
+

=⇒M : A Γ; (∆′, w:A)
+

=⇒ N : C
Cut

Γ; ∆′ ×∆
+

=⇒ [M/w]N : C

Γ; · +
=⇒M : A (Γ, u:A); ∆′

+
=⇒ N : C

Cut!
Γ; ∆′

+
=⇒ [M/u]N : C

The following theorem summarizes the main properties of the term assignment
system.

Theorem 4.4 (Term Assignment for Sequent Calculus)

1. If Γ; ∆ =⇒ A then Γ; ∆ =⇒M : A for a unique M .

2. If Γ; ∆ =⇒ M : A then Γ; ∆ `M : A ↑.

3. If Γ; ∆
+

=⇒ A then Γ; ∆
+

=⇒M : A for a unique M .

4. If Γ; ∆
+

=⇒ M : A then Γ; ∆ `M : A.

Proof: All by straightforward inductions over the structure of the given deriva-
tions, appealing to the substitution lemma 4.2 when necessary. 2

Our proof term assignment was purposely designed to generate proof terms
for the natural deduction system. This means the proof terms do not faithfully
record the structure of the derivation and we cannot uniquely reconstruct a
sequent derivation from a proof term. It is also possible to write out a proof
term assignment which is faithful and then relate them to natural deduction
proof terms (see Exercise 4.5).

4.4 Linear Type Checking

The typing rules for the linear λ-calculus are syntax-directed in that the principal
term constructor determines the typing rule which must be used. Nonetheless,
the typing rules are not immediately suitable for an efficient type-checking al-
gorithm since we would have to guess how the linear hypotheses are to be split
between the hypothesis in a number of rules.

The occurrence constraints introduced in Section 3.3 would be sufficient to
avoid this choice, but they are rather complex, jeopardizing our goal of designing

Draft of May 4, 1998

4.4 Linear Type Checking 93

a simple procedure which is easy to trust. Fortunately, we have significantly
more information here, since the proof term is given to us. This determines the
amount of work we have to do in each branch of a derivation, and we can resolve
the don’t-care non-determinism directly.

Instead of guessing a split of the linear hypotheses between two premisses of a
rule, we pass all linear variables to the first premiss. Checking the corresponding
subterm will consume some of these variables, and we pass the remaining ones
one to check the second subterms. This idea requires a judgment

Γ; ∆I \ ∆O `M : A

where ∆I represents the available linear hypotheses and ∆O ⊆ ∆I the linear hy-
potheses not used in M . For example, the rules for the simultaneous conjunction
and unit would be

Γ; ∆I \ ∆′ `M : A Γ; ∆′ \ ∆O ` N : B
⊗I

Γ; ∆I \ ∆O `M ⊗N : A⊗B

1I.
Γ; ∆I \ ∆I ` ? : A

Unfortunately, this idea breaks down when we encounter the additive unit (and
only then!). Since we do not know which of the linear hypotheses might be used
in a different branch of the derivation, it would have to read

∆I ⊇ ∆O
>I

Γ; ∆I \ ∆O ` 〈 〉 : >

which introduces undesirable non-determinism if we were to guess which subset
of ∆I to return. In order to cirumvent this problem we return all of ∆I , but flag
it to indicate that it may not be exact, but that some of these linear hypotheses
may be absorbed if necessary. In other words, in the judgment

Γ; ∆I \ ∆O `1 M : A

any of the remaining hypotheses in ∆O need not be consumed in the other
branches of the typing derivation. On the other hand, the judgment

Γ; ∆I \ ∆O `0 M : A

indicates the M uses exactly the variables in ∆I −∆O.
When we think of the judgment Γ; ∆I \ ∆O `i M : A as describing an

algorithm, we think of Γ, ∆I and M as given, and ∆O and the slack indicator
i as part of the result of the computation. The type A may or may not be
given—in one case it is synthesized, in the other case checked. This refines
our view as computation being described as the bottom-up construction of a
derivation to include parts of the judgment in different roles (as input, output,

Draft of May 4, 1998

94 Linear λ-Calculus

or bidirectional components). In logic programming, which is based on the
notion of computation-as-proof-search, these roles of the syntactic constituents
of a judgment are called modes. When writing a deductive system to describe an
algorithm, we have to be careful to respect the modes. We discuss this further
when we come to the individual rules.

Hypotheses. The two variable rules leave no slack, since besides the hypoth-
esis itself, no assumptions are consumed.

w
Γ; (∆I, w:A) \ ∆I `0 w : A

u
(Γ, u:A); ∆I \ ∆I `0 u : A

Multiplicative Connectives. For linear implication, we must make sure that
the hypothesis introduced by (I actually was used and is not part of the
residual hypothesis ∆O. If there is slack, we can simply erase it.

Γ; (∆I, w:A) \ ∆O `i M : B where i = 1 or w not in ∆O
(Iw

Γ; ∆I \ (∆O − w:A) `i λ̂w:A. M : A(B

Γ; ∆I \ ∆′ `i M : A(B Γ; ∆′ \ ∆O `k N : A
(E

Γ; (∆I \ ∆O) `i∨k MˆN : B

Here i ∨ k = 1 if i = 1 or k = 1, and i ∨ k = 0 otherwise. This means we have
slack in the result, if either of the two premisses permits slack.

Γ; ∆I \ ∆′ `i M : A Γ; ∆′ \ ∆O `k N : B
⊗I

Γ; ∆I \ ∆O `i∨k M ⊗N : A ⊗B

Γ; ∆I \ ∆′ `i M : A ⊗B
Γ; (∆′, w1:A,w2:B) \ ∆O `k N : C

where k = 1 or w1 and w2 not in ∆O

⊗Ew1,w2

Γ; ∆I \ (∆O −w1:A− w2:B) `i∨k let w1 ⊗w2 = M in N : C

In the ⊗E rule we stack the premisses on top of each other since they are too
long to fit on one line. The unit type permits no slack.

1I
Γ; ∆I \ ∆I `0 ? : 1

Γ; ∆I \ ∆′ `i M : 1 Γ; ∆′ \ ∆O `k N : C
1E

Γ; ∆I \ ∆O `i∨k let ? = M in N : C

Draft of May 4, 1998

4.4 Linear Type Checking 95

Additive Connectives. The mechanism of passing and consuming resources
was designed to eliminate unwanted non-determinism in the multiplicative con-
nectives. This introduces complications in the additives, since we have to force
premisses to consume exactly the same resources. We write out four version of
the NI rule.

Γ; ∆I \ ∆′O `0 M : A Γ; ∆I \ ∆′′O `0 N : B ∆′O = ∆′′O
NI00

Γ; ∆I \ (∆′O ∩∆′′O) `0 〈M,N〉 : ANB

Γ; ∆I \ ∆′O `0 M : A Γ; ∆I \ ∆′′O `1 N : B ∆′O ⊆ ∆′′O
NI10

Γ; ∆I \ (∆′O ∩∆′′O) `0 〈M,N〉 : ANB

Γ; ∆I \ ∆′O `1 M : A Γ; ∆I \ ∆′′O `0 N : B ∆′O ⊇ ∆′′O
NI01

Γ; ∆I \ (∆′O ∩∆′′O) `0 〈M,N〉 : ANB

Γ; ∆I \ ∆′O `1 M : A Γ; ∆I \ ∆′′O `1 N : B
NI11

Γ; ∆I \ (∆′O ∩∆′′O) `1 〈M,N〉 : ANB

Note that in NI00, ∆′O ∩ ∆′′O = ∆′O = ∆′′O by the condition in the premiss.
Similarly for the other rules. We chose to present the rules in a uniform way
despite this redundancy to highlight the similarities. Only if both premisses
permit slack do we have slack overall.

Γ; ∆ \ ∆O `i M : ANB
NEL

Γ; ∆I \ ∆O `i fstM : A

Γ; ∆I \ ∆O `i M : ANB
NER

Γ; ∆I \ ∆O `i sndM : B

Finally, we come to the reason for the slack indicator.

>I
Γ; ∆I \ ∆I `1 〈 〉 : > No > elimination

The introduction rules for disjunction are direct.

Γ; ∆I \ ∆O `i M : A
⊕IL

Γ; ∆I \ ∆O `i inlB : A ⊕B

Γ; ∆I \ ∆O `i M : B
⊕IR

Γ; ∆I \ ∆O `i inrA : A⊕ B

The elimination rule for disjunction combines resource propagation (as for mul-
tiplicatives) introduction of hypothesis, and resource coordination (as for addi-
tives) and is therefore somewhat tedious. It is left to Exercise 4.6. The 0E rule
permits slack, no matter whether the derivation of the premiss permits slack.

No 0 introduction

Γ; ∆I \ ∆O `i M : 0
0E

Γ; ∆I \ ∆O `1 abortCM : C

Draft of May 4, 1998

96 Linear λ-Calculus

Exponentials. Here we can enforce the emptiness of the linear context di-
rectly.

(Γ, u:A); ∆I \ ∆O `i M : B
⊃Iu

Γ; ∆I \ ∆O `i λu:A. M : A⊃B

Γ; ∆I \ ∆O `i M : A⊃ B Γ; · \ ∆∗ `k N : A
⊃E

Γ; ∆I \ ∆O `i M N : B

Here ∆∗ will always have to be · (since it must be a subset of ·) and k is
irrelevant. The same is true in the next rule.

Γ; · \ ∆∗ `i M : A
!I

Γ; ∆I \ ∆I `0 !M : !A

Γ; ∆I \ ∆′ `i M : !A (Γ, u:A); ∆′ \ ∆O `k N : C
!Eu

Γ; ∆I \ ∆O `i∨j let !u = M in N : C

The desired soundness and completeness theorem for the algorithmic typing
judgment must first be generalized before it can be proved by induction. For this
generalization, the mode (input and output) of the constituents of the judgment
is a useful guide. For example, in the completness direction (3), we can expect
to distinguish cases based on the slack indicator which might be returned when
we ask the question if there are ∆O and i such that Γ; ∆ \ ∆O `i M : A for the
given Γ, ∆, M and A.

Lemma 4.5 (Properties of Algorithmic Type Checking)

1. If Γ; ∆I \ ∆O `0 M : A then ∆I ⊇ ∆O and Γ; ∆I −∆O `M : A.

2. If Γ; ∆I \ ∆O `1 M : A then ∆I ⊇ ∆O and for any ∆ such that ∆I ⊇
∆ ⊇ ∆I −∆O we have Γ; ∆ `M : A.

3. If Γ; ∆ `M : A then either

(a) Γ; (∆′ ×∆) \ ∆′ `0 M : A for any ∆′, or

(b) Γ; (∆′ ×∆) \ (∆′ ×∆O) `1 M : A for all ∆′ and some ∆O ⊆ ∆.

Proof: By inductions on the structure of the given derivations.1 Items (1) and
(2) must be proven simultaneously. 2

From this lemma, the soundness and completeness of algorithmic type check-
ing follow directly.

Theorem 4.6 (Algorithmic Type Checking)
Γ; ∆ `M : A if and only if either

1[check]

Draft of May 4, 1998

4.5 Pure Linear Functional Programming 97

1. Γ; ∆ \ · `0 M : A, or

2. Γ; ∆ \ ∆′ `1 M : A for some ∆′.

Proof: Directly from Lemma 4.5 2

4.5 Pure Linear Functional Programming

The linear λ-calculus developed in the preceding sections can serve as the basis
for a programming language. The step from λ-calculus to programming lan-
guage can be rather complex, depending on how realistic one wants to make
the resulting language. The first step is to decide on observable types and a
language of values and then define an evaluation judgment. This is the subject
of this section. Given the purely logical view we have taken, this language still
lacks datatypes and recursion. In order to remedy this, we introduce recursive
types and recursive terms in the next section.

Our operational semantics follows the intuition that we should not evaluate
expressions whose value may not be needed for the result. Expressions whose
value will definitely be used, can be evaluated eagerly. There is a slight mismatch
in that the linear λ-calculus can identifies expressions whose value will be needed
exactly once. However, we can derive other potential benefits from the stronger
restriction at the lower levels of an implementation such as improved garbage
collection or update-in-place. These benefits also have their price, and at this
time the trade-offs are not clear. For the strict λ-calculus which captures the
idea of definite use of the value of an expression, see Exercise 4.2.

We organize the functional language strictly along the types, discussing ob-
servability, values, and evaluation rules for each. We have two main judgments,
M Value (M is a value), and M ↪→ v (M evaluates to v). In general we use v
for terms which are legal values. For both of these we assume that M is closed
and well-typed, that is, ·; · `M : A.

Linear Implication. An important difference between a general λ-calculus
and a functional language is that the structure of functions in a programming
language is not observable. Instead, functions are compiled to code. Their be-
havior can be observed by applying functions to arguments, but their definition
cannot be seen. Thus, strictly speaking, it is incorrect to say that functions
are first-class. This holds equally for so-called lazy functional languages such as
Haskell [?] and eager functional languages such as ML [?]. Thus, any expression

of the form λ̂w:A. M is a possible value.

(val
λ̂w:A. M Value

Evaluation of a λ̂-abstraction returns itself immediately.

(Iv
λ̂w:A. M ↪→ λ̂w:A. M

Draft of May 4, 1998

98 Linear λ-Calculus

Since a linear parameter to a function is definitely used (in fact, used exactly
once), we can evaluate the argument without doing unnecessary work and sub-
stitute it for the bound variable during the evaluation of an application.

M1 ↪→ λ̂w:A2. M
′
1 M2 ↪→ v2 [v2/w]M ′1 ↪→ v

(Ev
M1

ˆM2 ↪→ v

Note that after we substitute the value of argument v2 for the formal parameter
w in the function, we have to evaluate the body of the function.

Simultaneous Pairs. The multiplicative conjunction A ⊗ B corresponds to
the type of pairs where both elements must be used exactly once. Thus we can
evaluate the components (they will be used!) and the pairs are observable. The
elimination form is evaluated by creating the pair and then deconstructing it.

M1 Value M2 Value
⊗val

M1 ⊗M2 Value

M1 ↪→ v1 M2 ↪→ v2
⊗Iv

M1 ⊗M2 ↪→ v1 ⊗ v2

M ↪→ v1 ⊗ v2 [v1/w1, v2/w2]N ↪→ v
⊗Ev

let w1 ⊗ w2 = M in N ↪→ v

Multiplicative Unit. The multiplicative unit 1 is observable and contains
exactly one value ?. Its elimination rule explicitly evaluates a term and ignores
its result (which must be ?).

1val
? Value

1Iv
? ↪→ ?

M ↪→ ? N ↪→ v
1Ev

let ? = M in N ↪→ v

Alternative Pairs. Alternative pairs of type ANB are such that we can only
use one of the two components. Since we may not be able to predict which
one, we should not evaluate the components. Thus pairs 〈M1,M2〉 are lazy, not
observable and any pair of this form is a value. When we extract a component,
we then have to evaluate the corresponding term to obtain a value.

Nval
〈M1,M2〉 Value

NIv
〈M1,M2〉 ↪→ 〈M1,M2〉

M ↪→ 〈M1,M2〉 M1 ↪→ v1
NEv1

fstM ↪→ v1

M ↪→ 〈M1,M2〉 M2 ↪→ v2
NEv2

sndM ↪→ v2

Draft of May 4, 1998

4.5 Pure Linear Functional Programming 99

Additive Unit. By analogy, the additive unit > is not observable. Since
there is no elimination rule, we can never do anything interesting with a value
of this type, except embed it in larger values.

>val
〈 〉 Value

>Iv
〈 〉 ↪→ 〈 〉

This rule does not express the full operational intuition behind >which “garbage
collects” all linear resources. However, we can only fully appreciate this when
we define evaluation under environments (see Section ??).

Disjoint Sum. The values of a disjoint sum type are guaranteed to be used
(no matter whether it is of the form inlBM or inrAM). Thus we can require
values to be built up from injections of values, and the structure of sum values
is observable. There are two rules for evaluation, depending on whether the
subject of a case -expression is a left injection or right injection into the sum
type.

M Value ⊕val1
inlBM Value

M Value ⊕val2
inrAM Value

M ↪→ v ⊕Iv1

inlBM ↪→ inlB v

M ↪→ v ⊕Iv2

inrAM ↪→ inrA v

M ↪→ inlB v1 [v1/w1]N1 ↪→ v
⊕Ev1

case M of inlw1 ⇒ N1 | inrw2⇒ N2 ↪→ v

M ↪→ inrA v2 [v2/w2]N2 ↪→ v
⊕Ev2

case M of inlw1 ⇒ N1 | inrw2⇒ N2 ↪→ v

Void Type. The void type 0 contains no value. In analogy with the disjoint
sum type it is observable, although this is not helpful in practice. There are no
evaluation rules for this type: since there are no introduction rules there are no
constructor rules, and the elimination rule distinguishes between zero possible
cases (in other words, is impossible). We called this abortAM , since it may be
viewed as a global program abort.

Unrestricted Function Type. The unrestricted function type A ⊃ B (also
written as A → B in accordance with the usual practice in functional pro-
gramming) may or may not use its argument. Therefore, the argument is not
evaluated, but simply substituted for the bound variable. This is referred to as
a call-by-name semantics. It is usually implemented by lazy evaluation, which
means that first time the argument is evaluated, this value is memoized to avoid

Draft of May 4, 1998

100 Linear λ-Calculus

re-evaluation. This is not represented at this level of semantic description. Val-
ues of functional type are not observable, as in the linear case.

(val
λu:A. M Value

→ Iv
λu:A. M ↪→ λu:A. M

M1 ↪→ λu:A2. M
′
1 [M2/u]M ′1 ↪→ v

→ Ev
M1 M2 ↪→ v

Modal Type. A linear variable of type !A must be used, but the embedded
expression of type A may not be used since it is unrestricted. Therefore, terms
!M are values and “!” is like a quotation of its argument M , protecting it from
evaluation.

!val
!M Value

!Iv
!M ↪→ !M

M ↪→ !M ′ [M ′/u]N ↪→ v
!Ev

let !u = M in N ↪→ v

We abbreviate the value judgment from above in the form of a grammar.

Values v ::= λ̂w:A. M A(B not observable
| v1 ⊗ v2 A1 ⊗A2 observable
| ? 1 observable
| 〈M1,M2〉 A1NA2 not observable
| 〈 〉 > not observable

| inlB v | inrA v A⊕ B observable
No values 0 observable

| λu:A. M A→ B not observable
| !M !A not observable

In the absence of datatypes, we cannot write many interesting programs. As
a first example we consider the representation of the Booleans with two values,
true and false, and a conditional as an elimination construct.

bool = 1⊕ 1
true = inl1 ?
false = inr1 ?

if M thenN1 elseN2 = case M

of inl1 w1 ⇒ let ? = w1 in N1

| inr1 w2 ⇒ let ? = w2 in N2

The elimination of ? in the definition of the conditional is necessary, because
a branch inl1 w1 ⇒ N1 would not be well-typed: w1 is a linear variable not

Draft of May 4, 1998

4.5 Pure Linear Functional Programming 101

used in its scope. Destructuring a value in several stages is a common idiom
and it is helpful for the examples to introduce some syntactic sugar. We allow
patterns which nest the elimination forms which appear in a let or case . Not
all combination of these are legal, but it is not difficult to describe the legal
pattern and match expressions (see Exercise 4.7).

Patterns p ::= w | p1 ⊗ p2 | ? | inl p | inr p | u | !p
Matches m ::= p⇒M | (m1 | m2) | ·

An extended case expression has the form case M of m.
In the example of Booleans above, we gave a uniform definition for condi-

tionals in terms of case . But can we define a function cond with arguments
M , N1 and N2 which behaves like if M thenN1 elseN2? The first difficulty
is that the type of branches is generic. In order to avoid the complications of
polymorphism, we uniformly define a whole family of functions condC types C.
We go through some candidate types for condC and discuss why they may or
may not be possible.

condC : 1⊕ 1(C(C(C. This type means that both branches of the con-
ditional (second and third argument) would be evaluated before being
substituted in the definition of condC . Moreover, both must be used dur-
ing the evaluation of the body, while intuitively only one branch should
be used.

condC : 1⊕ 1((!C)((!C)(C. This avoids evaluation of the branches, since
they now can have the form !N1 and !N2, which are values. However, N1

and N2 can now no longer use linear variables.

condC : 1⊕ 1(C → C → C. This is equivalent to the previous type and un-
desirable for the same reason.

condC : 1⊕ 1((CNC)(C. This type expresses that the second argument of
type CNC is a pair 〈N1, N2〉 such that exactly one component of this pair
will be used. This expresses precisely the expected behavior and we define

condC : 1⊕ 1((CNC)(C

= λ̂b:1⊕ 1. λ̂n:CNC.
case b

of inl ?⇒ fstn
| inr ?⇒ snd n

which is linearly well-typed: b is used as the subject of the case and n is
used in both branches of the case expression (which is additive).

As a first property of evaluation, we show that it is a strategy for β-reductions.
That is, if M ↪→ v then M reduces to v in some number of β-reduction
steps (possibly none), but not vice versa. For this we need a new judgment
M −→∗β M ′ is the congruent, reflexive, and transitive closure of the M −→β M

′

Draft of May 4, 1998

102 Linear λ-Calculus

relation. In other words, we extend β-reduction so it can be applied to an ar-
bitrary subterm of M and then allow arbitrary sequences of reductions. The
subject reduction property holds for this judgment as well.

Theorem 4.7 (Generalized Subject Reduction) If Γ; ∆ `M : A and M −→∗β
M ′ then Γ; ∆ `M ′ : A.

Proof: See Exercise 4.8 2

Evaluation is related to β-reduction in that an expression reduces to its
value.

Theorem 4.8 If M ↪→ v then M −→∗β v.

Proof: By induction on the structure of the derivation of M ↪→ v. In each case
we directly combine results obtained by appealing to the induction hypothesis
using transitivity and congruence. 2

The opposite is clearly false. For example,

〈(λ̂w:1. w)ˆ?, ?〉 −→∗β 〈?, ?〉,

but
〈(λ̂w:1. w)ˆ?, ?〉 ↪→ 〈(λ̂w:1. w)ˆ?, ?〉

and this is the only evaluation for the pair. However, if we limit the congruence
rules to the components of ⊗, inl, inr, and all elimination constructs, the corre-
spondence is exact (see Exercise 4.9). Type preservation is a simple consequence
of the previous two theorems. See Exercise 4.10 for a direct proof.

Theorem 4.9 (Type Preservation) If ·; · `M : A and M ↪→ v then ·; · ` v :
A.

Proof: By Theorem 4.8, M −→∗β v. Then the result follows by generalized
subject reduction (Theorem 4.7). 2

The final theorem of this section establishes the uniqueness of values.

Theorem 4.10 (Determinacy) If M ↪→ v and M ↪→ v′ then v = v′.

Proof: By straightforward simultaneous induction on the structure of the two
given derivations. For each for of M except case expressions there is exactly
one inference rule which could be applied. For case we use the uniqueness of
the value of the case subject to determine that the same rule must have been
used in both derivations. 2

We can also prove that evaluation of any closed, well-typed term M termi-
nates in this fragment. We postpone the proof of this (Theorem 4.13) until we
have seen further, more realistic, examples.

Draft of May 4, 1998

4.6 Recursive Types 103

4.6 Recursive Types

The language so far lacks basic data types, such as natural numbers, integers,
lists, trees, etc. Moreover, except for finitary ones such as booleans, they are
not definable with the mechanism at our disposal so far. At this point we can
follow two paths: one is to define each new data type in the same way we defined
the logical connectives, that is, by introduction and elimination rules, carefully
checking their local soundness and completeness. The other is to enrich the
language with a general mechanism for defining such new types. Again, this
can be done in different ways, using either inductive types which allow us to
maintain a clean connection between propositions and types, or recursive types
which are more general, but break the correspondence to logic. Since we are
mostly interested in programming here, we chose the latter path.

Recall that we defined the booleans as 1 ⊕ 1. It is easy to show by the
definition of values, that there are exactly two values of this type, to which we
can arbitrarily assign true and false. A finite type with n values can be defined
as the disjoint sum of n observable singleton types, 1 ⊕ · · · ⊕ 1. The natural
numbers would be 1⊕ 1⊕ · · ·, except that this type is infinite. We can express
it finitely as a recursive type µα. 1 ⊕ α. Intuitively, the meaning of this type
should be invariant under unrolling of the recursion. That is,

nat = µα. 1 ⊕ α
∼= [(µα. 1⊕ α)/α]1⊕ α
= 1⊕ µα. 1⊕ α
= 1⊕ nat

which is the expected recursive definition for the type of natural numbers.
In functional languages such as ML or Haskell, recursive type definitions are

not directly available, but the results of elaborating syntactically more pleaseant
definitions. In addition, recursive type definitions are generative, that is, they
generate new constructors and types every time they are invoked. This is of
great practical value, but the underlying type theory can be seen as simple
recursive types combined with a mechanism for generativity. Here, we will only
treat the issue of recursive types.

Even though recursive types do not admit a logical interpretation as propo-
sitions, we can still define a term calculus using introduction and elimination
rules, including local reduction and expansions. In order maintain the property
that a term has a unique type, we annotate the introduction constant fold with
the recursive type itself.

Γ; ∆ `M : [µα. A/α]A
µI

Γ; ∆ ` foldµα. AM : µα. A

Γ; ∆ `M : µα. A
µE

Γ; ∆ ` unfoldM : [µα. A/α]A

The local reduction and expansions, expressed on the terms.

unfold foldµα. AM −→β M

M : µα. A −→η foldµα. A (unfoldM)

Draft of May 4, 1998

104 Linear λ-Calculus

It is easy to see that uniquess of types and subject reduction remain valid
properties (see Exercise 4.11). There are also formulation of recursive types
where the term M in the premiss and conclusion is the same, that is, there
are no explicit constructor and destructors for recursive types. This leads to
more concise programs, but significantly more complicated type-checking (see
Exercise 4.12).

We would like recursive types to represent data types. Therefore the values
of recursive type must be of the form foldµα. A v for values v—otherwise data
values would not be observable.

M Value
µval

foldµα. AM Value

M ↪→ v
µIv

foldµα. AM ↪→ foldµα. A v

M ↪→ foldµα. A v
µEv

unfoldM ↪→ v

In order to write interesting programs simply, it is useful to have a general
recursion operator fixu:A. M at the level of terms. It is not associated with
an type constructor and simply unrolls its definition once when executed. In
the typing rule we have to be careful: since the number on unrollings generally
unpredictable, no linear variables are permitted to occur free in the body of
a recursive definition. Moreover, the recursive function itself may be called
arbitrarily many times—one of the characteristics of recursion. Therefore its
uses are unrestricted.

(Γ, u:A); · `M : A
fix

Γ; · ` fixu:A. M : A

The operator does not introduce any new values, and one new evaluation rules
which unrolls the recursion.

[fixu:A. M/u]M ↪→ v
fixv

fixu:A. M ↪→ v

In order to guarantee subject reduction, the type of whole expression, the body
M of the fixpoint expression, and the bound variable u must all have the same
type A. This is enforced in the typing rules.

We now consider a few examples of recursive types and some example pro-
grams.

Natural Numbers.

nat = µα. 1⊕ α
zero : nat

= foldnat (inlnat ?)
succ : nat(nat

= λ̂x:nat. foldnat (inr1 x)

Draft of May 4, 1998

4.6 Recursive Types 105

With this definition, the addition function for natural numbers is linear in both
argument.

plus : nat(nat(nat
= fix p:nat(nat(nat.

λ̂x:nat. λ̂y:nat. case unfoldx
of inl ?⇒ y

| inrx′ ⇒ succˆ(pˆx′ˆy)

It is easy to ascertain that this definition is well-typed: x occurs as the case
subject, y in both branches, and x′ in the recursive call to p. On the other hand,
the natural definition for multiplication is not linear, since the second argument
is used twice in one branch of the case statement and not at all in the other.

mult : nat(nat→ nat
= fixm:nat(nat→ nat

λ̂x:nat. λy:nat. case unfoldx
of inl ?⇒ zero

| inrx′ ⇒ plusˆ(mˆx′ y)ˆy

Interestingly, there is also a linear definition of mult (see Exercise 4.13), but its
operational behavior is quite different. This is because we can explicitly copy
and delete natural numbers, and even make them available in an unrestricted
way.

copy : nat(nat⊗ nat
= fix c:nat(nat⊗ nat

λ̂x:nat. case unfoldx

of inl ?⇒ zero ⊗ zero

| inrx′ ⇒ let x′1 ⊗ x′2 = cˆx′ in (succˆx′1) ⊗ (succˆx′2)
delete : nat(1

= fix d:nat(1

λ̂x:nat. case unfoldx
of inl ?⇒ 1

| inrx′ ⇒ let ? = dˆx′ in 1
promote : nat(!nat

= fix p:nat(!nat

λ̂x:nat. case unfoldx
of inl ?⇒ !zero

| inrx′ ⇒ let !u′ = pˆx′ in !(succ u′)

Lazy Natural Numbers. Lazy natural numbers are a simple example of lazy
data types which contain unevaluated expressions. Lazy data types are useful
in applications with potentially infinite data such as streams. We encode such

Draft of May 4, 1998

106 Linear λ-Calculus

lazy data types by using the !A type constructor.

lnat = µα. !(1⊕ α)
lzero : lnat

= foldlnat ! (inllnat ?)
lsucc : lnat→ lnat

= λu:lnat. foldlnat ! (inr1 u)

There is also a linear version of successor of type, lnat(lnat, but it is not
as natural since it evaluates its argument just to build another lazy natural
number.

lsucc′ : lnat(lnat

= λ̂x:lnat. let !u = unfoldx in foldlnat (! inr1 (foldlnat (!u)))

The “infinite” number number ω can be defined by using the fixpoint operator.
We can either use lsucc as defined above, or define it directly.

ω : lnat
= fixu:lnat. lsucc u
∼= fixu:lnat. foldlnat ! (inr1 u)

Note that lazy natural numbers are not directly observable (except for the
foldlnat), so we have to decompose and examine the structure of a lazy natural
number successor by successor, or we can convert it to an observable natural
number (which might not terminate).

toNat : lnat(nat
= fix t:lnat(nat

λ̂x:lnat. case unfoldx

of !inllnat ?⇒ zero

| !inr1 x′⇒ succˆ(tˆx′)

Lists. To avoid issues of polymorphism, we define a family of data types listA
for an arbitrary type A.

listA = µα. 1⊕ (A ⊗ α)
nilA : listA

= foldlistA(inllistA ?)
consA : A⊗ listA(listA

= λ̂p:A ⊗ listA. foldlistA(inr1 p)

We can easily program simple functions such as append and reverse which are
linear in their arguments. We show here reverse; for other examples see Exer-
cise 4.14. we define an auxiliary tail-recursive function rev which moves element

Draft of May 4, 1998

4.6 Recursive Types 107

from it first argument to its second.

revA : listA(listA(listA
= fix r:listA(listA(listA

λ̂l:listA. λ̂k:listA.
case unfold l

of inlA⊗listA ?⇒ k

| inr1 (x⊗ l′)⇒ rˆl′ˆ(consA (x⊗ k))
reverseA : listA(listA

= λ̂l:listA. revˆlˆnilA

To make definitions like this a bit easier, we can also define a case for lists, in
analogy with the conditional for booleans. It is a family indexed by the type of
list elements A and the type of the result of the conditional C.

listCaseA,C : listA((CN(A ⊗ listA(C))(C

= λ̂l:listA. λ̂n:CN(A ⊗ listA(C).
case unfoldl

of inlA⊗listA ?⇒ fstn

| inr1 p⇒ (snd n)ˆp

Lazy Lists. There are various forms of lazy lists, depending of which evalua-
tion is postponed.

llist1
A = µα. !(1⊕ (A⊗ α)). This is perhaps the canonical lazy lists, in which

we can observe neither head nor tail.

llist2
A = µα. 1⊕ !(A⊗ α). Here we can observe directly if the list is empty or

not, but not the head or tail which remains unevaluated.

llist3
A = µα. 1⊕ (A⊗ !α). Here we can observe directly if the list is empty or

not, and the head of the list is non-empty. However, we cannot see the
tail.

llist4
A = µα. 1⊕ (!A⊗ α). Here the list is always eager, but the elements are

lazy. This is the same as list!A.

llist5
A = µα. 1⊕ (ANα). Here we can see if the list is empty or not, but we can

access only either the head or tail of list, but not both.

infStreamA = µα. !(A ⊗ α). This is the type of infinite streams, that is, lazy
lists with no nil constructor.

Functions such as append, map, etc. can also be written for lazy lists (see
Exercise 4.15).

Draft of May 4, 1998

108 Linear λ-Calculus

Other types, such as trees of various kinds, are also easily represented using
similar ideas. However, the recursive types (even without the presence of the
fixpoint operator on terms) introduce terms which have no normal form. In the
pure, untyped λ-calculus, the classical examples of a term with no normal form
is (λx. x x) (λx. x x) which β-reduces to itself in one step. In the our typed
λ-calculus (linear or intuitionistic) this cannot be assigned a type, because x is
used as an argument to itself. However, with recursive types (and the fold and
unfold constructors) we can give a type to a version of this term which β-reduces
to itself in two steps.

Ω = µα. α→ α
ω : Ω→ Ω

= λx:Ω. (unfoldx)x

Then
ω (foldΩ ω)

−→β (unfold (foldΩ ω)) (foldΩ ω)

−→β ω (foldΩ ω).

At teach step we applied the only possible β-reduction and therefore the term
can have no normal form. An attempt to evaluate this term will also fail,
resulting in an infinite regression (see Exercise 4.16).

4.7 Termination

As the example at the end of the previous section shows, unrestricted recursive
types destroy the normalization property. This also means it is impossible to
give all recursive types a logical interpretation. When we examine the inference
rules we notice that recursive types are impredicative: the binder µα in µα. A
ranges over the whole type. This means in the introduction rule, the type
in the premiss [µα. A/α]A generally will be larger than the type µα. A in
the conclusion. That alone is not responsible for non-termination: there are
other type disciplines such as the polymorphic λ-calculus which retain a logical
interpretation and termination, yet are impredicative.

In this section we focus on the property that all well-typed terms in the
linear λ-calculus without recursive types and fixpoint operators evaluate to a
value. This is related to the normalization theorem for natural deductions
(Theorem 2.19): if Γ; ∆ ` A then Γ; ∆ ` A ↑. We proved this by a rather
circuitous route: unrestricted natural deductions can be translated to sequent
derivations with cut from which we can eliminate cut and translate the result
cut-free derivation back to a noraml natural deduction.

Here, we prove directly that every term evaluates using the proof technique
of logical relations also called Tait’s method. Because of the importance of this
technique, we spend some time motivating its form. Our ultimate goal is to
prove:

If ·; · `M : A then M ↪→ v for some value v.

Draft of May 4, 1998

4.7 Termination 109

The first natural attempt would be to prove this by induction on the typing
derivation. Surprisingly, case for (I works, even though we cannot apply the
inductive hypothesis, since every linear λ-abstraction immediately evaluates to
itself.

In the case for (E, however, we find that we cannot complete the proof.
Let us examine why.

Case: D =

D1

·; · `M1 : A2(A1

D2

·; · `M2 : A2

(E.
·; · `M1

ˆM2 : A1

We can make the following inferences.

M1 ↪→ v1 for some v1 By ind. hyp. on D1

v1 = λ̂w:A2. M
′
1 By type preservation and inversion

M2 ↪→ v2 for some v2 By ind. hyp. on D2

At this point we cannot proceed: we need a derivation of

[v2/w]M ′1 ↪→ v for some v

to complete the derivation of M1 M2 ↪→ v. Unfortunately, the induction hypoth-
esis does not tell us anything about [v2/w]M ′1. Basically, we need to extend it so

it makes a statement about the result of evaluation (λ̂w:A2. M
′
1, in this case).

Sticking to the case of linear application for the moment, we call a term M
“good” if it evaluates to a “good” value v. A value v is “good” if it is a function
λ̂w:A2. M

′
1 and if substituting a “good” value v2 for w in M ′1 results in a “good”

term. Note that this is not a proper definition, since to see if v is “good” we may
need to substitute any “good” value v2 into it, possibly including v itself. We
can make this definition inductive if we observe that the value v2 will be of type
A2, while the value v we are testing has type A2(A1, and that the resulting
term as type A1. That is, we can fashion a definition which is inductive on the
structure of the type. Instead of saying “good” we say M ∈ ‖A‖ and v ∈ |A|.
Still restricting ourselves to linear implication only, we define:

M ∈ ‖A‖ iff M ↪→ v and v ∈ |A|
M ∈ |A2(A1| iff M = λ̂w:A2. M1 and [v2/w]M1 ∈ ‖A1‖ for any v2 ∈ |A2|

FromM ∈ ‖A‖ we can immediately inferM ↪→ v, so when proving that ·; · `M :
A implies M ∈ ‖A‖ we do indeed have a much stronger induction hypothesis.

While the case for application now goes through, the case for linear λ-
abstraction fails, since we cannot prove the stronger property for the value.

Case: D =

D1

·;w:A2 `M1 : A1

(I.
·; · ` λ̂w:A2. M1 : A2(A1

Then λ̂w:A2. M1 ↪→ λ̂w:A2. M1 and it remains to show that for every
v2 ∈ |A2|, [v2/w]M2 ∈ ‖A1‖.

Draft of May 4, 1998

110 Linear λ-Calculus

This last statement should follow from the induction hypothesis, but presently
it is too weak since it only allows for closed terms. The generalization which
suggests itself from this case (ignoring the unrestricted context for now) is:

If ∆ ` M : A, then for any substitution θ which maps the linear
variables w:A in ∆ to values v ∈ |A|, [θ]M ∈ ‖A‖.

This generalization indeed works after we also account for the unrestricted con-
text. During evaluation we substitute values for linear variables and expressions
for unrestricted variables. Therefore, the substitutions we must consider for the
induction hypothesis have to behave accordingly.

Unrestricted Substitution η ::= · | η,M/u
Linear Substitution θ ::= · | θ, v/w

We write [η; θ]M for the simultaneous application of the substitutions η and
θ to M . For our purposes here, the values and terms in the substitutions are
always closed, but we do not need to postulate this explicitly. Instead, we only
deal with substitution satisfying the property necessary for the generalization
of the induction hypothesis.

θ ∈ |∆| iff [θ]w ∈ |A| for every w:A in ∆
η ∈ ‖Γ‖ iff [η]u ∈ ‖A‖ for every u:A in Γ

We need just one more lemma, namely that values evaluate to themselves.

Lemma 4.11 (Value Evaluation) For any value v, v ↪→ v

Proof: See Exercise 4.18. 2

Now we have all ingredients to state the main lemma in the proof of ter-
mination, the so called logical relations lemma [?]. The “logical relations” are
‖A‖ and |A|, seen as unary relations, that is, predicates, on terms and values,
respectively. They are “logical” since they are defined by induction on the struc-
ture of the type A, which corresponds to a proposition under the Curry-Howard
isomorphism.

Lemma 4.12 (Logical Relations) If Γ; ∆ ` M : A, η ∈ ‖Γ‖ and θ ∈ |∆|
then [η; θ]M ∈ ‖A‖.

Before showing the proof, we extend the definition of the logical relations to

Draft of May 4, 1998

4.7 Termination 111

all the types we have been considering.

M ∈ ‖A‖ iff M ↪→ v and v ∈ |A|
v ∈ |A2(A1| iff v = λ̂w:A2. M1 and [v2/w]M1 ∈ ‖A1‖ for any v2 ∈ |A2|
v ∈ |A1 ⊗A2| iff v = v1 ⊗ v2 where v1 ∈ |A1| and v2 ∈ |A2|

v ∈ |1| iff v = ?
v ∈ |A1NA2| iff v = 〈M1,M2〉 where M1 ∈ ‖A1‖ and M2 ∈ ‖A2‖

v ∈ |>| iff v = 〈 〉
v ∈ |A1NA2| iff either v = inlA2 v1 and v1 ∈ |A1|,

or v = inrA1 v2 and v2 ∈ |A2|
v ∈ |0| never
v ∈ |!A| iff v = !M and M ∈ ‖A‖

v ∈ |A2 → A1| iff v = λu:A2. M1 and [M2/u]M1 ∈ ‖A1‖ for any M2 ∈ ‖A2‖

These definitions are motivated directly from the form of values in the language.
One can easily see that it is indeed inductive on the structure of the type. If
we tried to add recursive types in a similar way, the proof below would still go
through, except that the definition of the logical relation would no longer be
well-founded.

Proof: (of the logical relations lemma 4.12). The proof proceeds by induction
on the structure of the typing derivation D :: (Γ; ∆ ` M : A). We show three
cases—all others are similar.

Case: D =

D1

Γ; ∆ `M1 : A2(A1

D2

Γ; ∆ `M2 : A2

(E.
Γ; ∆ `M1

ˆM2 : A1

η ∈ ‖Γ‖ by assumption
θ ∈ |∆| by assumption
[η; θ]M1 ∈ ‖A2(A1‖ by ind. hyp. on D1

E1 :: ([η; θ]M1 ↪→ v1) and v1 ∈ |A2(A1| by definition of ‖A2(A1‖
v1 = λ̂w:A1. M

′
1 and [v2/w]M ′1 ∈ ‖A1‖ for any v2 ∈ |A2| by definition of |A2(A1|

[η; θ]M2 ∈ ‖A2‖ by ind. hyp. on D2

E2 :: ([η; θ]M2 ↪→ v2) and v2 ∈ |A2| by definition of ‖A2‖
[v2/w]M ′1 ∈ ‖A1‖ since v2 ∈ |A2|
E3 :: ([v2/w]M ′1 ↪→ v) and v ∈ |A1| by definition of ‖A1‖
E :: ([η; θ](M1

ˆM2) ↪→ v) by(Ev from E1, E2, and E3
[η; θ](M1

ˆM2) ∈ ‖A1‖ by definition of ‖A1‖

Case: D =

D1

Γ; (∆, w:A2) `M1 : A1

(I.
Γ; ∆ ` λ̂w:A2. M1 : A2(A1

η ∈ ‖Γ‖ by assumption

Draft of May 4, 1998

112 Linear λ-Calculus

θ ∈ |∆| by assumption

E :: ([η; θ](λ̂w:A2. M1) ↪→ [η; θ](λ̂w:A2. M1)) by (Iv
v2 ∈ |A2| assumption
(θ, v2/w) ∈ |∆, w:A2| by definition of |∆|
[η; (θ, v2/w)]M1 ∈ ‖A1‖ by ind. hyp. on D1

[v2/w]([η; (θ, w/w)]M1) ∈ ‖A1‖ by properties of substitution

(λ̂w:A2. [η; (θ, w/w)]M1) ∈ |A2(A1| by definition of |A2(A1|
[η; θ](λ̂w:A2. M1) ∈ |A2(A1| by properties of substitution

[η; θ](λ̂w:A2. M1) ∈ ‖A2(A1‖ by definition of ‖A2(A1‖

Case: D = w.
Γ; (·, w:A) ` w : A

θ ∈ |·, w:A| by assumption
[θ]w ∈ |A| by definition of |·, w:A|
E :: ([η; θ]w ↪→ [η; θ]w) by Lemma 4.11
[η; θ]w ∈ ‖A‖ by definition of ‖A‖

2

The termination theorem follows directly from the logical relations lemma.
Note that the theorem excludes recursive types and the fixpoint operator by a
general assumption for this section.

Theorem 4.13 (Termination) If ·; · `M : A then M ↪→ v for some v.

Proof: We have · ∈ ‖ · ‖ and · ∈ | · | since the conditions are vacuously satisfied.
Therefore, by the logical relations lemma 4.12, [·; ·]M ∈ ‖A‖. By the definition
of ‖A‖ and the observation that [·; ·]M = M , we conclude that M ↪→ v for some
v. 2

4.8 Exercises

Exercise 4.1 Prove that if Γ; ∆ `M : A and Γ; ∆ `M : A′ then A = A′.

Exercise 4.2 A function in a functional programming language is called strict
if it is guaranteed to use its argument. Strictness is an important concept in the
implementation of lazy functional languages, since a strict function can evaluate
its argument eagerly, avoiding the overhead of postponing its evaluation and
later memoizing its result.

In this exercise we design a λ-calculus suitable as the core of a functional
language which makes strictness explicit at the level of types. Your calculus
should contain an unrestricted function type A → B, a strict function type
A � B, a vacuous function type A 99K B, a full complement of operators
refining product and disjoint sum types as for the linear λ-calculus, and a modal
operator to internalize the notion of closed term as in the linear λ-calculus. Your
calculus should not contain quantifiers.

Draft of May 4, 1998

4.8 Exercises 113

1. Show the introduction and elimination rules for all types, including their
proof terms.

2. Given the reduction and expansions on the proof terms.

3. State (without proof) the valid substitution principles.

4. If possible, give a translation from types and terms in the strict λ-calculus
to types and terms in the linear λ-calculus such that a strict term is well-
typed if and only if its linear translation is well-typed (in an appropriately
translated context).

5. Either sketch the correctness proof for your translation in each direction
by giving the generalization (if necessary) and a few representative cases,
or give an informal argument why such a translation is not possible.

Exercise 4.3 Give an example which shows that the substitution [M/w]N
must be capture-avoiding in order to be meaningful. Variable capture is a sit-
uation where a bound variable w′ in N occurs free in M , and w occurs in the
scope of w′. A similar definition applies to unrestricted variables.

Exercise 4.4 Give a counterexample to the conjecture that if M −→β M
′ and

Γ; ∆ ` M ′ : A then Γ; ∆ ` M : A. Also, either prove or find a counterexample
to the claim that if M −→η M

′ and Γ; ∆ `M ′ : A then Γ; ∆ `M : A.

Exercise 4.5 The proof term assignment for sequent calculus identifies many
distinct derivations, mapping them to the same natural deduction proof terms.
Design an alternative system of proof terms from which the sequent derivation
can be reconstructed uniquely (up to weakening of unrestricted hypotheses and
absorption of linear hypotheses in the >R rule).

1. Write out the term assignment rules for all propositional connectives.

2. Give a calculus of reductions which corresponds to the initial and principal
reductions in the proof of admissibility of cut.

3. Show the reduction rule for the dereliction cut.

4. Show the reduction rules for the left and right commutative cuts.

5. Sketch the proof of the subject reduction properties for your reduction
rules, giving a few critical cases.

6. Write a translation judgment S =⇒ M from faithful sequent calculus
terms to natural deduction terms.

7. Sketch the proof of type preservation for your translation, showing a few
critical cases.

Exercise 4.6 Supply the missing rules for ⊕E in the definition of the judg-
ment Γ; ∆I \ ∆O `i M : A and show the corresponding cases in the proof of
Lemma 4.5.

Draft of May 4, 1998

114 Linear λ-Calculus

Exercise 4.7 In this exercise we explore the syntactic expansion of extended
case expressions of the form case M of m.

1. Define a judgment which checks if an extended case expression is valid.
This is likely to require some auxiliary judgments. You must verify that
the cases are exhaustive, circumscribe the legal patterns, and check that
the overall expression is linearly well-typed.

2. Define a judgment which relates an extended case expression to its ex-
pansion in terms of the primitive let , case , and abort constructs in the
linear λ-calculus.

3. Prove that an extended case expression which is valid according to your
criteria can be expanded to a well-typed linear λ-term.

4. Define an operational semantics directly on extended case expressions.

5. Prove that your direct operational semantics is correct on valid patterns
with respect to the translational semantics from questions 2.

Exercise 4.8 Define the judgment M −→∗β M ′ via inference rules. The rules
should directly express that it is the congruent, reflexive and transitive closure
of the β-reduction judgment M −→β M

′. Then prove the generalized subject
reduction theorem 4.7 for your judgment. You do not need to show all cases,
but you should carefully state your induction hypothesis in sufficient generality
and give a few critical parts of the proof.

Exercise 4.9 Define weak β-reduction as allows simple β-reduction under ⊗,
inl, and inr constructs and in all components of the elimination form. Show
that if M weakly reduces to a value v then M ↪→ v.

Exercise 4.10 Prove type preservation (Theorem 4.9) directly by induction on
the structure of the evaluation derivation, using the substitution lemma 4.2 as
necessary, but without appeal to subject reduction.

Exercise 4.11 Prove the subject reduction and expansion properties for recur-
sive type computation rules.

Exercise 4.12 [An exercise exploring the use of type conversion
rules without explicit term constructors.]

Exercise 4.13 Define a linear multiplication function mult : nat(nat(nat
using the functions copy and delete.

Exercise 4.14 Defined the following functions on lists. Always explicitly state
the type, which should be the most natural type of the function.

1. append to append two lists.

2. concat to append all the lists in a list of lists.

Draft of May 4, 1998

4.8 Exercises 115

3. map to map a function f over the elements of a list. The result of map-
ping f over the list x1, x2, . . . , xn should be the list f(x1), f(x2), . . . f(xn),
where you should decide if the application of f to its argument should be
linear or not.

4. foldr to reduce a list by a function f . The result of folding f over a
list x1, x2, . . . xn should be the list f(x1, f(x2, . . . , f(xn, init))), where init
is an initial value given as argument to foldr. You should decide if the
application of f to its argument should be linear or not.

5. copy, delete, and promote.

Exercise 4.15 For one of the form of lazy lists on Page 107, define the functions
from Exercise 4.14 plus a function toList which converts the lazy to an eager list
(and may therefore not terminate if the given lazy lists is infinite). Make sure
that your functions exhibit the correct amount of laziness. For example, a map
function applied to a lazy list should not carry out any non-trivial computation
until the result is examined.

Further for your choice of lazy list, define the infinite lazy list of eager natural
numbers 0, 1, 2,

Exercise 4.16 Prove that there is no term v such that ω (foldΩ ω) ↪→ v.

Exercise 4.17 [An exercise about the definability of fixpoint oper-
ators at various type.]

Exercise 4.18 Prove Lemma 4.11 which states that all values evaluate to them-
selves.

Draft of May 4, 1998

116 Linear λ-Calculus

Draft of May 4, 1998

Chapter 5

A Linear Logical
Framework

[a lot of stuff omitted here for now which is easily accessible in
published papers]

5.1 Representation of Meta-Theory

The features which make the linear logical framework so suitable for the repre-
sentation of deductive systems with linear or imperative features, also make it
a good candidate to represent proofs of properties of such deductive systems. If
one follows the natural line of development, however, it turns out that proofs of
meta-theorems are representable, but that their validity cannot be guaranteed
by linear type-checking alone. Presently, there exist no good tools to verify the
necessary additional properties, but their development is the subject of ongoing
research.

In this section, we will examine two relatively simple examples of meta-
theoretic properties and their proofs in the context of LLF encodings. We
will pay particular attention to the additional checks required to verify the
proofs, since they must currently be carried out by the user. The examples are
soundness and completeness of sequent derivations (including cut) with respect
to natural deductions. The proofs we give here is somewhat different from the
ones in Chapter 2 since here we are not interested in the fine-grained analysis
which relates cut-free sequent derivations to normal deductions.

We present all the LLF encodings in the concrete syntax of linear Twelf
introduced in prior lectures and documented in [CP97] and Section 5.2. In
particular, we will take full advantage of term reconstruction to recover the types
of all free variables, which are implicitly Π-quantified over each declaration.

We begin with the encoding of the intuitionistic, propositional fragment of
linear logic. Here we omit propositions ⊥, ¬A, and ?A which require a second
judgment of “possible truth”.

Draft of May 4, 1998

118 A Linear Logical Framework

%%% Propositions

o : type. %name o A

%%% Multiplicatives

lolli : o -> o -> o. % A -o B

tensor : o -> o -> o. % A * B

one : o. % 1

%%% Additives

with : o -> o -> o. % A & B

top : o. % T

plus : o -> o -> o. % A + B

zero : o. % 0

%%% Exponentials

imp : o -> o -> o. % A -> B

bang : o -> o. % ! A

We encode the main judgment of linear logic, Γ; ∆ ` A using the standard
encoding technique for hypothetical and linear hypothetical judgments. A nat-
ural deduction D of Γ; ∆ ` A will therefore be represented as a canonical LLF

object M such that pΓq; p∆q `
LF

M : nd pAq where

p·q = ·
pΓ, u:Aq = pΓq, u:nd pAq
p∆, x:Aq = p∆q, x:nd pAq

With this idea it is almost possible to achieve a perfect bijection between
canonical LLF objects of type nd pAq and natural deductions of A.1

nd : o -> type. %name nd D

%%% Multiplicatives

% A -o B

lolliI : (nd A -o nd B) -o nd (lolli A B).

lolliE : nd (lolli A B) -o nd A -o nd B.

% A * B

tensorI : nd A -o nd B -o nd (tensor A B).

tensorE : nd (tensor A B)

-o (nd A -o nd B -o nd C)

-o nd C.

% 1

1For the exception consider the two derivations of A((>⊗>) and their representation.

Draft of May 4, 1998

5.1 Representation of Meta-Theory 119

oneI : nd (one).

oneE : nd (one)

-o nd C

-o nd C.

%%% Additives

% A & B

withI : nd A & nd B -o nd (with A B).

withE1 : nd (with A B) -o nd A.

withE2 : nd (with A B) -o nd B.

% T

topI : <T> -o nd (top).

% no topE

% A + B

plusI1 : nd A -o nd (plus A B).

plusI2 : nd B -o nd (plus A B).

plusE : nd (plus A B)

-o ((nd A -o nd C) & (nd B -o nd C))

-o nd C.

% 0

% no zeroI

zeroE : nd (zero)

-o <T>

-o nd C.

%%% Exponentials

% A -> B

impI : (nd A -> nd B) -o nd (imp A B).

impE : nd (imp A B) -o nd A -> nd B.

% ! A

bangI : nd A -> nd (bang A).

bangE : nd (bang A)

-o (nd A -> nd C)

-o nd C.

Representation of the sequent calculus is discussed in some detail in the
literature [CP97]. Briefly, it arises by considering two basic judgments, “A is a
hypothesis” and “A is the conclusion”. We represent this via two corresponding
type families, left pAq for hypotheses and right pAq for the conclusion. So a
sequent derivation of Γ; ∆ =⇒ A is represented by a canonical LLF object M

Draft of May 4, 1998

120 A Linear Logical Framework

such that pΓq; p∆q `
LF

M : right pAq, where

p·q = ·
pΓ, u:Aq = pΓq, u:left pAq
p∆, x:Aq = p∆q, x:left pAq

Unlike natural deduction, we now need to explicitly connect the left and
right judgments, which is done in two dual ways. Initial sequents allow us to
conclude right pAq from left pAq. The rules of Cut allow us to substitute a
derivation of rightpAq for a hypothesis leftpAq. There are two forms of cut,
since we might replace a linear or unrestricted hypothesis.

left : o -> type. %name left L

right : o -> type. %name right R

%%% Initial sequents

init : (left A -o right A).

%%% Cuts

cut : right A

-o (left A -o right C)

-o right C.

cut! : right A

-> (left A -> right C)

-o right C.

The renaming rules are the left and right rules for each connective, cast into
LLF.

%%% Multiplicatives

% A -o B

lolliR : (left A -o right B) -o right (lolli A B).

lolliL : right A

-o (left B -o right C)

-o (left (lolli A B) -o right C).

% A * B

tensorR : right A -o right B -o right (tensor A B).

tensorL : (left A -o left B -o right C)

-o (left (tensor A B) -o right C).

% 1

oneR : right (one).

oneL : (right C)

-o (left (one) -o right C).

Draft of May 4, 1998

5.1 Representation of Meta-Theory 121

%%% Additives

% A & B

withR : right A & right B -o right (with A B).

withL1 : (left A -o right C)

-o (left (with A B) -o right C).

withL2 : (left B -o right C)

-o (left (with A B) -o right C).

% T

topR : <T> -o right (top).

% no topL

% A + B

plusR1 : right A -o right (plus A B).

plusR2 : right B -o right (plus A B).

plusL : (left A -o right C) & (left B -o right C)

-o (left (plus A B) -o right C).

% 0

% no zeroR

zeroL : <T> -o (left (zero) -o right C).

%%% Exponentials

% A -> B

impR : (left A -> right C) -o right (imp A C).

impL : right A

-> (left B -> right C)

-o (left (imp A B) -o right C).

% ! A

bangR : right A -> right (bang A).

bangL : (left A -> right C)

-o (left (bang A) -o right C).

Note that LLF allows a one-by-one representation of the rules without any
auxiliary judgment forms. It is this directness of encoding which makes it feasi-
ble to write out the proof of soundness and completeness of the sequent calculus
with respect to natural deduction in a similar manner. We begin with the
slightly easier direction of soundness.

Theorem 5.1 (Soundness of Sequent Calculus with Cut)
If Γ; ∆ =⇒ A then Γ; ∆ ` A.

Proof: By induction over the structure of the given sequent derivation. This

Draft of May 4, 1998

122 A Linear Logical Framework

constructive proof contains a method by which a natural deduction D can be
constructed from a sequent derivation R. Under the Curry-Howard isomor-
phism, one might expect this method to be represented as a dependently typed
function

sd : ΠA:o. rightA→ ndA.

Unfortunately, such a function cannot be defined within LLF, since it lacks the
means to define functions recursively, or distinguish cases based on the possible
input derivations.2

Instead, we represent the proof as a higher-level judgment sd relating the
derivations D and R. We do not give the awkward informal presentation of this
relation, only its implementation in linear Twelf. Since hypotheses on the left of
the sequent are represented by a different judgment, we also need to explicitly
relate the hypotheses in the two judgments, using sd′.

sd : right A -> nd A -> type.

sd’ : left A -> nd A -> type.

Each case in the proof corresponds to an inference rule defining this higher-
level judgment.

Case: R = I.
Γ; x:A =⇒ A

Then

x
Γ; x:A ` A

is the corresponding derivation. In the formalization, the labels of the
hypothesis A are different, but related by sd′. Thus we declare:

initSD : sd (init ^ L) X

o- sd’ L X.

where L stands for label of the sequent hypothesis (of type leftpAq) and X
stands for the label of the natural deduction hypothesis (of type nd pAq).

Case: R =

R1

Γ; ∆1 =⇒ A
R2

Γ; ∆2 =⇒ B
⊗R.

Γ; (∆1 ×∆2) =⇒ A⊗ B
Then we reason:

D1 :: (Γ; ∆1 ` A) By i.h. on R1

D2 :: (Γ; ∆2 ` B) By i.h. on R2

D :: (Γ; (∆1 ×∆2) ` A⊗ B) By ⊗I from D1 and D2

2The lack of definition by cases and recursion is essential to obtain adequate encodings
(see [SDP97])

Draft of May 4, 1998

5.1 Representation of Meta-Theory 123

The appeals to the induction hypothesis are implemented by “recursive
calls” in the sd judgment.

tensorRSD : sd (tensorR ^ R1 ^ R2) (tensorI ^ D1 ^ D2)

o- sd R1 D1

o- sd R2 D2.

Case: R =

R1

Γ; (∆1, x1:A, x2:B) =⇒ C
⊗L.

Γ; (∆1, x:A⊗ B) =⇒ C

In this case we reason:

D1 :: (Γ; (∆1, x1:A, x2:B) ` C) By i.h. on R1

X :: (Γ; x:A ⊗B ` A ⊗B) By hypothesis x
D :: (Γ; (∆1, x:A⊗ B) ` C) By ⊗E from X and D1

In the implementation, we have to take care to introduce the new hy-
potheses in the premisses, that is, the parameters x1 and x2. Further, we
need to relate the hypotheses in the two different judgments (as indicated
already in the case for initial sequents above), by using the sd′ judgment.
We label the hypotheses in the sequent calculus with l, l1, and l2.

tensorLSD : sd (tensorL ^ R1 ^ L) (tensorE ^ X ^ D1)

o- ({l1:left A} {l2:left B} {x1:nd A} {x2:nd B}

sd’ l1 x1

-o sd’ l2 x2

-o sd (R1 ^ l1 ^ l2) (D1 ^ x1 ^ x2))

o- sd’ L X.

Case: R =

R1

Γ; ∆ =⇒ A
R2

Γ; ∆ =⇒ B
NR.

Γ; ∆ =⇒ ANB

D1 :: (Γ; ∆ ` A) By i.h. on R1

D2 :: (Γ; ∆ ` B) By i.h. on R2

D :: (Γ; ∆ ` ANB) By NI from D1 and D2

In the formalization of this case, we have to be careful to use the alternative
conjunction at the meta-level as well, since the assumptions about the
connection between hypotheses leftpAq and nd pAq are linear and may be
needed in both branches.

withRSD : sd (withR ^ (R1, R2)) (withI ^ (D1, D2))

o- sd R1 D1 & sd R2 D2.

Draft of May 4, 1998

124 A Linear Logical Framework

Case: R =

R1

Γ; (∆1, x1:A) =⇒ C
NL1.

Γ; (∆1, x:ANB) =⇒ C

This case is slightly more complicated than the previous ones, since we
need to appeal to the substitution lemma.

D1 :: (Γ; ∆1, x1:A ` C) By i.h. on R1

D2 :: (Γ; x:ANB ` A) By NE1 from hypothesis x
D :: (Γ; (∆1, x:ANB) ` C) By the substitution lemma from D1 and D2

The implementation exploits the compositionality of the representation to
model the appeal to the substitution lemma by application in the LLF.
We have (in the LLF representation):

p∆1q `
LF

(λ̂x1:nd pAq. pD1q) : nd pAq(nd pCq
x:nd (with pAq pBq) `

LF

withE1
ˆx : nd pAq

p∆1, x:ANBq `
LF

(λ̂x1:nd pAq. pD1q)ˆ(withE1
ˆx) : nd pCq

p∆1, x:ANBq `
LF

[(withE1
ˆx)/x1]pD1q : nd pCq

In the concrete code, D1 will be bound to (λ̂x1:nd pAq. pD1q), so the
application in the second to the last line is written as D1 ^ (withE1 ^ X).

withL1SD : sd (withL1 ^ R1 ^ L) (D1 ^ (withE1 ^ X))

o- ({l1:left A} {x1:nd A}

sd’ l1 x1 -o sd (R1 ^ l1) (D1 ^ x1))

o- sd’ L X.

Case: R =

R1

Γ; ∆1 =⇒ A
R2

Γ; (∆2, x:A) =⇒ C
Cut.

Γ; (∆1 ×∆2) =⇒ C

D1 :: (Γ; ∆1 ` A) By i.h. on R1

D2 :: (Γ; (∆2, x:A) ` C) By i.h. on R2

D :: (Γ; (∆1 ×∆2) ` C) By the substitution lemma from D1 and D2

The representation uses the same technique of meta-level application as
the case for NR1 above.

cutSD : sd (cut ^ R1 ^ R2) (D2 ^ D1)

o- sd R1 D1

o- ({l:left A} {x:nd A}

sd’ l x -o sd (R2 ^ l) (D2 ^ x)).

2

Draft of May 4, 1998

5.1 Representation of Meta-Theory 125

Among the remaining cases, the exponentials and the cut of an unrestricted
hypothesis require some additional case to make sure the meta-level hypothesis
are also unrestricted. Similarly, in the case for >R, care must be taken so the
linearity of the meta-reasoning is not violated by allowing weakening with the
> of LLF. We leave it to the reader to write out these cases and relate them to
the complete code given below.

sd : right A -> nd A -> type.

sd’ : left A -> nd A -> type.

%%% Initial sequents

initSD : sd (init ^ L) X

o- sd’ L X.

%%% Cuts

cutSD : sd (cut ^ R1 ^ R2) (D2 ^ D1)

o- sd R1 D1

o- ({l:left A} {x:nd A}

sd’ l x -o sd (R2 ^ l) (D2 ^ x)).

cut!SD : sd (cut! R1 ^ R2) (D2 D1)

<- sd R1 D1

o- ({l:left A} {u:nd A}

sd’ l u -> sd (R2 l) (D2 u)).

%%% Multiplicatives

% A -o B

lolliRSD : sd (lolliR ^ R1) (lolliI ^ D1)

o- ({l:left A} {x:nd A}

sd’ l x -o sd (R1 ^ l) (D1 ^ x)).

lolliLSD : sd (lolliL ^ R1 ^ R2 ^ L) (D2 ^ (lolliE ^ X ^ D1))

o- sd R1 D1

o- ({l:left B} {x:nd B}

sd’ l x -o sd (R2 ^ l) (D2 ^ x))

o- sd’ L X.

% A * B

tensorRSD : sd (tensorR ^ R1 ^ R2) (tensorI ^ D1 ^ D2)

o- sd R1 D1

o- sd R2 D2.

tensorLSD : sd (tensorL ^ R1 ^ L) (tensorE ^ X ^ D1)

o- ({l1:left A} {l2:left B} {x1:nd A} {x2:nd B}

sd’ l1 x1

-o sd’ l2 x2

-o sd (R1 ^ l1 ^ l2) (D1 ^ x1 ^ x2))

o- sd’ L X.

Draft of May 4, 1998

126 A Linear Logical Framework

% 1

oneRSD : sd (oneR) (oneI).

oneLSD : sd (oneL ^ R1 ^ L) (oneE ^ X ^ D1)

o- sd R1 D1

o- sd’ L X.

%%% Additives

% A & B

withRSD : sd (withR ^ (R1, R2)) (withI ^ (D1, D2))

o- sd R1 D1 & sd R2 D2.

withL1SD : sd (withL1 ^ R1 ^ L) (D1 ^ (withE1 ^ X))

o- ({l1:left A} {x1:nd A}

sd’ l1 x1 -o sd (R1 ^ l1) (D1 ^ x1))

o- sd’ L X.

withL2SD : sd (withL2 ^ R2 ^ L) (D2 ^ (withE2 ^ X))

o- ({l2:left B} {x2:nd B}

sd’ l2 x2 -o sd (R2 ^ l2) (D2 ^ x2))

o- sd’ L X.

% T

topRSD : sd (topR ^ ()) (topI ^ ())

o- <T>.

% no topL

% A + B

plusR1SD : sd (plusR1 ^ R1) (plusI1 ^ D1)

o- sd R1 D1.

plusR2SD : sd (plusR2 ^ R2) (plusI2 ^ D2)

o- sd R2 D2.

plusLSD : sd (plusL ^ (R1, R2) ^ L) (plusE ^ X ^ (D1, D2))

o- (({l1:left A} {x1:nd A}

sd’ l1 x1 -o sd (R1 ^ l1) (D1 ^ x1))

& ({l2:left B} {x2:nd B}

sd’ l2 x2 -o sd (R2 ^ l2) (D2 ^ x2)))

o- sd’ L X.

% 0

% no zeroR

zeroLSD : sd (zeroL ^ () ^ L) (zeroE ^ X ^ ())

o- <T>

o- sd’ L X.

%%% Exponentials

Draft of May 4, 1998

5.1 Representation of Meta-Theory 127

% A -> B

impRSD : sd (impR ^ R1) (impI ^ D1)

o- ({l:left A} {u:nd A}

sd’ l u -> sd (R1 l) (D1 u)).

impLSD : sd (impL R1 ^ R2 ^ L) (D2 (impE ^ X D1))

<- sd R1 D1

o- ({l:left B} {u:nd B}

sd’ l u -> sd (R2 l) (D2 u))

o- sd’ L X.

% ! A

bangRSD : sd (bangR R1) (bangI D1)

<- sd R1 D1.

bangLSD : sd (bangL ^ R1 ^ L) (bangE ^ X ^ D2)

o- ({l:left A} {u:nd A}

sd’ l u -> sd (R1 l) (D2 u))

o- sd’ L X.

The signature above is type-correct in linear Twelf. But what does this
establish? For example, assume that we had forgotten the last clause—the
signature would still have been correctly typed, but it would no longer represent
a proof, since not all possible cases have been covered. So we need to verify the
following properties in addition to the type correctness in order to be sure that
the signature represents a proof.

1. The signature is well-moded. This means that when we appeal to the
induction hypothesis we have actually constructed an of the appropriate
type, and in the end we have fully constructed the object whose existence
is postulated. In concrete terms, when we make a recursive call, we need to
make sure the input arguments to the type family are fully instantiated,
and before we return the output arguments to the type family are also
fully instantiated.

For example, the first argument of the type family sd is an input argument,
the second an output argument. We then reason as follows:

tensorRSD : sd (tensorR ^ R1 ^ R2) (tensorI ^ D1 ^ D2)

o- sd R1 D1

o- sd R2 D2.

we reason as follows:

When we use this clause, the first argument to sd is given,
so R1 and R2 are ground.

Therefore, the input arguments to both recursive calls are ground.
They yield ground outputs D1 and D2.
Therefore the output (tensorI ^ D1 ^ D2) will be ground.

Draft of May 4, 1998

128 A Linear Logical Framework

Failure of mode-correctness are often simple typographical mistakes which
leave the clause well-typed, such as in the following cases.

tensorRSD : sd (tensorR ^ R1 ^ R2) (tensorI ^ D1 ^ D2)

o- sd R1 D1

o- sd R3 D2.

tensorRSD : sd (tensorR ^ R1 ^ R2) (tensorI ^ D1 ^ D3)

o- sd R1 D1

o- sd R2 D2.

In the first, R3 is not ground, in the second D3 is not ground.

2. The signatures is terminating. This means all recursive calls are carried
out on smaller terms. These will just be proper subterms if the informal
induction argument is over the structure of a derivation. There is one
slight complication in that we must allow instantiation of bound variables
by parameters so that, for example,

tensorLSD : sd (tensorL ^ R1 ^ L) (tensorE ^ X ^ D1)

o- ({l1:left A} {l2:left B}

{x1:nd A} {x2:nd B}

sd’ l1 x1

-o sd’ l2 x2

-o sd (R1 ^ l1 ^ l2) (D1 ^ x1 ^ x2))

o- sd’ L X.

is terminating since (R1 ^ l1 ^ l2) is considered a subterm of the input
argument (tensorL ^ R1 ^ L) because l1 and l2 are parameters.

3. The signature covers all possible cases. This is the most error-prone prop-
erty which must be verified, and failures can be subtle. There are three
principles classes of failures: A case for a constructor has been omitted, a
case for a parameter is missing, or a case is given, but not general enough.
For example, a missing case for a parameter arises if we omit the assump-
tion sd’ l1 x1 from the declaration of tensorLSD above:

tensorLSD : sd (tensorL ^ R1 ^ L) (tensorE ^ X ^ D1)

o- ({l1:left A} {l2:left B}

{x1:nd A} {x2:nd B}

sd’ l2 x2

-o sd (R1 ^ l1 ^ l2) (D1 ^ x1 ^ x2))

o- sd’ L X.

When l1 is encountered in an initial sequence or the principal proposition
of a left rule, it will be impossible to proceed with the translation, since
l1 has not been related to the natural deduction hypothesis x2.

Draft of May 4, 1998

5.1 Representation of Meta-Theory 129

The more subtle case of insufficient generality is exhibited by the follow-
ing two examples, both of which mean that perfectly valid translations
cannot be carried out. The first fails to allow weakening when translating
instances of the >R rule.

topRSD : sd (topR ^ ()) (topI ^ ())

o- <T>.

The second applies only to instances where the conclusion of the ⊗R rule
has the form A⊗A.

tensorRSD : sd (tensorR ^ R1 ^ R2) (tensorI ^ D2 ^ D1)

o- sd R1 D1

o- sd R2 D2.

This fact is only apparent when we look at the reconstructed form of this
clause.

tensorRSD : {A1:o} {R2:right A1} {D2:nd A1} {R1:right A1} {D1:nd A1}

sd R2 D2 -o sd R1 D1

-o sd (tensorR ^ R1 ^ R2) (tensorI ^ D2 ^ D1).

Both R1 and R2 are derivations of sequents with conclusion A1. The re-
construction of the correct clause is

tensorRSD : {A1:o} {R2:right A1} {D2:nd A1} {A2:o}

{R1:right A2} {D1:nd A2}

sd R2 D2 -o sd R1 D1

-o sd (tensorR ^ R1 ^ R2) (tensorI ^ D1 ^ D2).

From the above examples one can see that bugs in proof representations can
be subtle. Some may be caught by running examples, other by inspection, but
the need for a reliable verification procedure should be clear.

The second example is the completeness property: whenever A can be de-
rived by natural deduction, it can also be derived in the sequent calculus. The
proof is very direct, but makes rather heavy use of the cut rule (in contrast to
the proof in Chapter 2).

Theorem 5.2 (Completeness of Sequent Calculus with Cut)
If Γ; ∆ ` A then Γ; ∆ =⇒ A.

Proof: By induction of the structure over the given natural deduction. The
main insight is that all introduction rules can be translated straightforwardly
to right rules, while all elimination rules require one or more uses of the cut rule
in the sequent calculus.3 2

3[show a few cases]

Draft of May 4, 1998

130 A Linear Logical Framework

The representation of this proof is straightforward along the lines of the
soundness proof. This time, we need only one meta-level judgment since we can
relate hypotheses in natural deduction directly to initial sequent derivations.

cp : nd A -> right A -> type.

%%% Multiplicatives

% A -o B

lolliICP : cp (lolliI ^ D1) (lolliR ^ R1)

o- ({x:nd A} {l:left A}

cp x (init ^ l) -o cp (D1 ^ x) (R1 ^ l)).

lolliECP : cp (lolliE ^ D1 ^ D2)

(cut ^ R2

^ ([l^left A] cut ^ R1

^ ([k^left (lolli A B)]

lolliL ^ (init ^ l) ^ ([r^left B] init ^ r) ^ k)))

o- cp D1 R1

o- cp D2 R2.

% A * B

tensorICP : cp (tensorI ^ D1 ^ D2) (tensorR ^ R1 ^ R2)

o- cp D1 R1

o- cp D2 R2.

tensorECP : cp (tensorE ^ D1 ^ D2)

(cut ^ R1

^ [l^left (tensor A B)] tensorL ^ R2 ^ l)

o- cp D1 R1

o- ({x:nd A} {l:left A} {y:nd B} {k:left B}

cp x (init ^ l)

-o cp y (init ^ k)

-o cp (D2 ^ x ^ y) (R2 ^ l ^ k)).

% 1

oneICP : cp (oneI) (oneR).

oneECP : cp (oneE ^ D1 ^ D2) (cut ^ R1 ^ ([l^left (one)] oneL ^ R2 ^ l))

o- cp D1 R1

o- cp D2 R2.

%%% Additives

% A & B

withICP : cp (withI ^ (D1, D2)) (withR ^ (R1, R2))

o- cp D1 R1 & cp D2 R2.

withE1CP : cp (withE1 ^ D1)

(cut ^ R1

Draft of May 4, 1998

5.1 Representation of Meta-Theory 131

^ ([l^left (with A B)] withL1 ^ ([k^left A] init ^ k) ^ l))

o- cp D1 R1.

withE2CP : cp (withE2 ^ D1)

(cut ^ R1

^ ([l^left (with A B)] withL2 ^ ([k^left B] init ^ k) ^ l))

o- cp D1 R1.

% T

topICP : cp (topI ^ ()) (topR ^ ())

o- <T>.

% no topE

% A + B

plusI1CP : cp (plusI1 ^ D1) (plusR1 ^ R1)

o- cp D1 R1.

plusI2CP : cp (plusI2 ^ D2) (plusR2 ^ R2)

o- cp D2 R2.

plusECP : cp (plusE ^ D1 ^ (D2 , D3))

(cut ^ R1

^ ([l^left (plus A B)] plusL ^ (R2, R3) ^ l))

o- cp D1 R1

o- ({x:nd A} {l:left A}

cp x (init ^ l)

-o cp (D2 ^ x) (R2 ^ l))

& ({y:nd B} {k:left B}

cp y (init ^ k)

-o cp (D3 ^ y) (R3 ^ k)).

% 0

% no zeroI

zeroECP : cp (zeroE ^ D1 ^ ())

(cut ^ R1 ^ ([l^left (zero)] zeroL ^ () ^ l))

o- cp D1 R1

o- <T>.

%%% Exponentials

% A -> B

impICP : cp (impI ^ D1) (impR ^ R1)

o- ({u:nd A} {l:left A}

cp u (init ^ l) -> cp (D1 u) (R1 l)).

impECP : cp (impE ^ D1 D2)

(cut! R2

^ ([l:left A] cut ^ R1

^ ([k^left (imp A B)]

Draft of May 4, 1998

132 A Linear Logical Framework

impL (init ^ l) ^ ([r:left B] init ^ r) ^ k)))

o- cp D1 R1

<- cp D2 R2.

% ! A

bangICP : cp (bangI D1) (bangR R1)

<- cp D1 R1.

bangECP : cp (bangE ^ D1 ^ D2)

(cut ^ R1 ^ ([l^left (bang A)] bangL ^ R2 ^ l))

o- cp D1 R1

o- ({u:nd A} {l:left A}

cp u (init ^ l) -o cp (D2 u) (R2 l)).

5.2 Concrete Syntax of Linear Twelf

In this section, we extend the concrete syntax of Elf [Pfe94] to express the linear
operators of LLF . In doing so, we want to fulfill two constraints: first of all,
existing Elf programs should not undergo any syntactic alteration (unless they
declare some of the reserved identifiers that we will introduce) if we were to
execute them in an implementation of LLF relying on the new syntax. In other
words, the extension we propose should be conservative with respect to the syn-
tax of Elf. Second, we want to avoid a proliferation of operators: keeping their
number as small as possible will make future extensions easier to accommodate
if their inclusion appears beneficial.

The set of special characters of Elf consists of % : .) (] [} {. We
extend these with two symbols: , and ^. LLF object and type family constants
are consequently represented as identifiers consisting of any non-empty string
that does not contain spaces or the characters % : .) (] [} { , ^. As in
Elf, identifiers must be separated from each other by whitespace (i.e., blanks,
tabs, and new lines) or special characters. We augment the set of reserved
identifiers of Elf (type, -> and <-) with <T>, &, -o, o-, <fst> and <snd>.
Although not properly an identifier, the symbol () is also reserved; this string
is forbidden in Elf.

The following table associates every λΠ,(,N,> operator to its concrete rep-
resentation. Terms in the λΠ sublanguage of LLF are mapped to the syntax
of Elf. This language offers the convenience of writing -> as <- with the argu-
ments reversed in order to give a more operational reading to a program, when
desired: under this perspective, we read the expression A <- B as “A if B”.
We extend this possibility to linear implication, -o. Clearly, when we use o-,
the arguments should be swapped: A o- B is syntactic sugar for B -o A.

Draft of May 4, 1998

5.2 Concrete Syntax of Linear Twelf 133

Abstract syntax Concrete syntax

Kinds
type type

Πx:A. K {x:A}K A -> K K <- A

P M P M

> <T>

Types ANB A & B

A(B A -o B B o- A

Πx:A. B {x:A}B A -> B B <- A

〈 〉 ()

〈M,N〉 M,N

fstM <fst> M

Objects
sndM <snd> M

λ̂x:A. M [x^A]M

MˆN M ^ N

λx:A. M [x:A]M

MN M N

The next table gives the relative precedence and associativity of these oper-
ators. Parentheses are available to override these behaviors. Note that -o, ->,
o-, and <- all have the same precedence.

Precedence Operator Position

highest <fst> <snd> left prefix

^ left associative

& right associative

-o -> right associative

o- <- left associative

, right associative

: left associative

lowest { : } [:] [^] left prefix

As in Elf, a signature declaration c : A is represented by the program clause:

c : A.

Type family constants are declared similarly. For practical purposes, it is con-
venient to provide a means of declaring linear assumptions. Indeed, whenever
the object formalism we want to represent requires numerous linear hypotheses,
it is simpler to write them as program clauses than to rely on some initialization
routine that assumes them in the context during its execution. To this end, we
permit declarations of the form

c ^ A.

Draft of May 4, 1998

134 A Linear Logical Framework

with the intent that this declaration should be inserted in the context as a linear
assumption.4

We retain from Elf the use of % for comments and interpreter directives.
Delimited comments have the form %{... }%, where embedded delimited com-
ments must be nested properly. We adopt the conventions available in that
language in order to enhance the readability of LLF programs [Pfe91]. In par-
ticular, we permit keeping the type of bound variables implicit whenever they
can be effectively reconstructed by means techniques akin to those currently
implemented in Elf.

We write {x}B, [x]B and [x^]B when maintaining implicit the type A of
the variable x in {x:A}B, [x:A]B and [x^A]B, respectively. Similar conven-
tions apply to dependent kinds. As in Elf, the binders for variables quantified at
the head of a clause can be omitted altogether if we write these variables with
identifiers starting with a capital letter. Moreover, the arguments instantiating
them can be kept implicit when using these declarations.

Finally, we relax the requirement of writing LLF declarations only in η-long
form. With sufficient typing information it is always possible to transform a
signature to that format.

4[currently, this is unimplemented]

Draft of May 4, 1998

Chapter 6

Non-Commutative Linear
Logic

[warning: this chapter is even more tentative some most of the other
material in these lecture notes.]

The goal of this chapter is to develop a system of pure natural deduction
which encompasses the (ordinary) intuitionistic simply-typed λ-calculus, the in-
tuitionistic linear λ-calculus, and new constructs for a non-commutative linear
λ-calculus. It is important that this calculus be conservative over the intuition-
istic and linear fragments, so that we do not lose any expressive power and the
new features can be introduced gently into the intended application domains.

The system has applications in functional languages, logic programming lan-
guages, and logical frameworks. In functional languages, the non-commutative
type system allows us to capture strong stackability properties, thereby, for ex-
ample, giving a logical and general foundation for observations made about
terms in continuation-passing style and monadic style [DP95, ?]. In logic
programming languages, it allows us to remove some uses of cut which arise
from don’t-care non-determinism in languages based on linear logic such as
Lolli [HM94, CHP97]. In logical frameworks, non-commutative connectives al-
low us drastically simplify the representations of problems involving stacks or
languages such as the ones above.

We start with the simplest fragment which fixes the basic concepts and aux-
iliary definitions and then add other connectives and modalities incrementally.

Various formulations of non-commutative linear logic have been considered,
both in their classical [?, Roo92, Abr95] and intuitionistic [BG91, Abr90a,
Abr90b] variants, including various modal operators, analyzed in particular
depth in [?]. Except for a brief mention in [Abr90a], we are not aware of any
systematic study of natural deduction, the Curry-Howard isomorphism, and the
computational consequences of non-commutativity in the λ-calculus. The ma-
terial in this chapter may grow to eventually fill this gap in the literature and

Draft of May 4, 1998

136 Non-Commutative Linear Logic

sketch some applications of non-commutativity in the area of logic program-
ming, logical frameworks, and functional programming, complementing Ruet’s
investigation of concurrent constraint programming from the point of view of
mixed classical non-commutative linear logic [?].

6.1 The Implicational Fragment

In this first section we present the pure implicational fragment, containing only
the intuitionistic implication (→), the linear implication (−◦), ordered right
implication (�) and ordered left implication (�).

We use a formulation of the main judgment using multiple zones: one for
intuitionistic assumptions, one for linear assumptions, and one for ordered as-
sumptions. While this may not be the best formulation for all purposes, it is
the one we found most easy to understand. We will also freely go back and
forth between propositions and types, using the well-known Curry-Howard cor-
respondence.

Types A ::= P atomic types
| A1→A2 intuitionistic implication
| A1 −◦ A2 linear implication
| A1�A2 ordered right implication
| A1� A2 ordered left implication

Objects of the λ-calculus (or proof terms for the underlying logic) are defined
in a straightforward fashion. We do not formally distinguish different kinds of
variables, although we later use the convention that x stands for intuitionistic
assumptions, y for linear assumptions, and z for ordered assumptions.

Objects M ::= x variables
| λx:A. M |M1 M2 intuitionistic functions

| λ̂x:A. M |M1
ˆM2 linear functions

| λ
>

x:A. M |M1
>

M2 right ordered functions

| λ
<

x:A. M |M1
<

M2 left ordered functions

Contexts are simply lists of assumptions x:A with distinct variables x. In a
triple of contexts Γ; ∆; Ω needed for the typing judgment, we also assume that
no variable occurs more than once.

Contexts Γ ::= · | Γ, x:A

We use the convention that Γ stands for an intuitionistic context, ∆ for a
linear context, and Ω for an ordered context. We abbreviate ·, x:A as x:A.

In order to describe the inference rules, we need some auxiliary operations
on contexts, context join Ω,Ω′ and context merge ∆ × ∆′. Context join pre-
serves the order of the assumption, while the non-deterministic merge allows
any interleaving of assumption.

Draft of May 4, 1998

6.1 The Implicational Fragment 137

Context Join Ω, · = Ω
Ω, (Ω′, x:A) = (Ω,Ω′), x:A

Context Merge · × · = ·
(∆, x:A) ×∆′ = (∆×∆′), x:A
∆× (∆′, x:A) = (∆×∆′), x:A

The typing rules below are perhaps most easily understood when reading
them from the conclusion to the premises, as rules for the construction of a
typing derivation for a term. We have designed the language of objects so that
the rules are completely syntax directed, and that every well-typed object has
a unique type (but not necessarily a unique typing derivation).

When viewing a derivation bottom-up, we think of context join Ω1,Ω2 as
ordered context split and context merge ∆1×∆2 as context split . Both of these
are non-deterministic when read in this way, that is, there may be many way to
split a context Ω = Ω1,Ω2 or ∆ = ∆1 ×∆2.

The typing judgment has the form

Γ; ∆; Ω `M : A

where Γ is the context of intuitistic assumptions, ∆ is the context of linear
assumptions, and Ω is the context of ordered assumptions.

Intuitionistic FunctionsA→B.

ivar
(Γ1, x:A,Γ2); ·; · ` x : A

(Γ, x:A); ∆; Ω `M : B
→I

Γ; ∆; Ω ` λx:A. M : A→B

Γ; ∆; Ω `M : A→B Γ; ·; · ` N : A
→E

Γ; ∆; Ω `M N : B

Linear Functions A−◦B.

lvar
Γ; y:A; · ` y : A

Γ; (∆, y:A); Ω `M : B
−◦I

Γ; ∆; Ω ` λ̂y:A. M : A−◦ B
Γ; ∆1; Ω `M : A −◦B Γ; ∆2; · ` N : A

−◦E
Γ; (∆1 ×∆2); Ω `MˆN : B

Draft of May 4, 1998

138 Non-Commutative Linear Logic

Ordered Variables.

ovar
Γ; ·; z:A ` z : A

Right Ordered FunctionsA�B.

Γ; ∆; (Ω, z:A) `M : B
�I

Γ; ∆; Ω ` λ
>

z:A. M : A�B

Γ; ∆1; Ω1 `M : A�B Γ; ∆2; Ω2 ` N : A
�E

Γ; (∆1 ×∆2); (Ω1,Ω2) `M
>

N : B

Left Ordered FunctionsA�B.

Γ; ∆; (z:A,Ω) `M : B
�I

Γ; ∆; Ω ` λ<z:A. M : A� B

Γ; ∆2; Ω2 `M : A�B Γ; ∆1; Ω1 ` N : A
�E

Γ; (∆1 ×∆2); (Ω1,Ω2) `M
<

N : B

These rules enforce linearity and ordering constraints on assumptions through
the restrictions placed upon contexts.

In the three variable rules ivar, lvar, and ovar, the linear and ordered
contexts must either be empty or contain only the subject variable, while the
intuitionistic context is unrestricted. This forces linear and ordered assumptions
made in the −◦I and �I rules to be appear at least once in a term.

In the −◦E and �E rules, the linear context is split into two disjoint parts
(when reading from the bottom up), which means that each assumption can be
used at most once. In the→E rules, all linear assumption propagate to the left
premise. These observations together show that each linear variable is used at
most once. Since it is also used at least once by the observation made about
the variable rules, linear assumptions occur exactly once.

In the �E rules, the ordered context is split in an order-preserving way,
with the leftmost assumptions Ω1 going to the left premise and the rightmost
assumptions Ω2 going to the right premise. In the −◦E and →E rules the
whole ordered context Ω goes to the left premise. These observations, together
with the observation on the variable rules, show that ordered assumptions occur
exactly once and in the order they were made.

As we will see, the emptiness restrictions on the linear and ordered contexts
in the −◦E and →E rules are necessary to guarantee subject reduction. The
reduction rules, of course, are simply β-reduction for all three kinds of functions.
We will later also consider a form of η-expansion.

Draft of May 4, 1998

6.1 The Implicational Fragment 139

Reduction Rules.

(λx. M)N =⇒ [N/x]M

(λ̂x. M)̂ N =⇒ [N/x]M

(λ
>

x. M)
>

N =⇒ [N/x]M

(λ
<

x. M)
<

N =⇒ [N/x]M

In order to prove subject reduction we proceed to establish the expected
structural properties for contexts and then verify the expected substitution lem-
mas.

Lemma 6.1 The following structural properties hold for derivations in the im-
plicational fragment of INCLL.

1. (Intuitionistic Exchange)
If (Γ1, x:A, x′:A′,Γ2); ∆; Ω ` M : B then (Γ1, x

′:A′, x:A,Γ2); ∆; Ω ` M :
B.

2. (Intuitionistic Weakening)
If (Γ1,Γ2); ∆; Ω `M : B then (Γ1, x:A,Γ2); ∆; Ω `M : B.

3. (Intuitionistic Contraction)
If (Γ1, x:A,Γ2, x

′:A,Γ3); ∆; Ω `M : B then (Γ1, x:A,Γ2,Γ3); ∆; Ω ` [x/x′]M :
B.

4. (Linear Exchange)
If Γ; (∆1, y:A, y

′:A′,∆2); ΩM : B then Γ; (∆1, y
′:A′, y:A,∆2); Ω `M : B.

Proof: By straightforward induction on the structure of the given derivations.
2

It is easy to construct counterexamples to the missing properties such as
“linear contraction” or “ordered exchange”. With these properties we can now
establish the critical substitution lemmas.

Lemma 6.2 The following substitution properties hold for the implicational
fragment of INCLL.

1. (Intuitionistic Substitution)
If (Γ1, x:A,Γ2); ∆; Ω ` M : B and Γ1; ·; · ` N : A then (Γ1,Γ2); ∆; Ω `
[N/x]M : B.

2. (Linear Substitution)
If Γ; (∆1, y:A,∆2); Ω `M : B and Γ; ∆′; · ` N : A then Γ; (∆1,∆

′,∆2); Ω `
[N/x]M : B.

3. (Ordered Substitution)
If Γ; ∆; (Ω1, x:A,Ω2) ` M : B and Γ; ∆′; Ω′ ` N : A then Γ; (∆ ×
∆′); (Ω1,Ω

′,Ω2) ` [N/x]M : B.

Draft of May 4, 1998

140 Non-Commutative Linear Logic

Proof: By induction over the structure of the given typing derivation for M in
each case, using Lemma 6.1. 2

Subject reduction now follows immediately.

Theorem 6.3 (Subject Reduction) If M =⇒M ′ and Γ; ∆; Ω `M : A then
Γ; ∆; Ω `M ′ : A.

Proof: For each reduction, we apply inversion to the giving typing derivation
and then use the substitution lemma 6.2 to obtain the typing derivation for the
conclusion. 2

We also have three forms of η-expansion.

Theorem 6.4 (Subject Expansion) The following η-expansion properties hold
for the implication fragment of INCLL.

1. (Intuitionistic Expansion) If Γ; ∆; Ω `M : A→B then Γ; ∆; Ω ` λx:A. M x :
A→B.

2. (Linear Expansion) If Γ; ∆; Ω ` M : A −◦ B then Γ; ∆; Ω ` λ̂y:A. Mˆy :
A −◦B.

3. (Right Ordered Expansion) If Γ; ∆; Ω ` M : A � B then Γ; ∆; Ω `
λ
>

z:A. M
>

z : A�B.

4. (Left Ordered Expansion) If Γ; ∆; Ω `M : A�B then Γ; ∆; Ω ` λ<z:A. M<

z : A� B.

Proof: By a straightforward derivation in each case, using intuitionistic weak-
ening for intuitionistic expansion. 2

We also believe that our calculus satisfies the normalization and Church-
Rosser properties, and that canonical form (that is, long βη-normal forms) exist
for well-typed objects. We have not checked all details for the above formulation,
but it appears that these properties can be established by straightforward logical
relations arguments.

6.2 Other Logical Connectives

Putting off the ordered left implication for the moment, there are other multi-
plicative and additive connectives. However, there is no explosion in the number
of connectives, since the link between linear and ordered hypotheses rules out
certain possibilities. The coupling between the linear and ordered hypotheses
arises from a desire to look at linear hypotheses as a form of intuitionistic hy-
potheses whose use is restricted, and at ordered hypotheses as a form of linear
hypotheses whose use is even further restricted. Extension of our core so far
should therefore preserve the following property of demotion.

Draft of May 4, 1998

6.2 Other Logical Connectives 141

Lemma 6.5 The following structural properties hold for derivations in the right
implicational fragment of INCLL.

1. (Linear Demotion)
If (Γ1,Γ2); (∆1, y:A,∆2); Ω ` M : B then (Γ1, x:A,Γ2); (∆1,∆2); Ω `
[x/y]M : B.

2. (Ordered Demotion)
If Γ; (∆1,∆2); (Ω1, z:A,Ω2) ` M : B then Γ; (∆1, y:A,∆2); (Ω1,Ω2) `
[y/z]M : B.

Proof: In both cases by induction on the structure of the given derivation. 2

Preserving this property means that we cannot have a connective which,
for example, behaves multiplicatively on the linear context and additively on
the ordered context. Some other connectives which we do not show below are
definable through use of the modal operators in a way which even preserves the
structure of proofs.

Tensor A⊗B. This is adjoint to the right ordered implication, that is, (A⊗
B)�C iff A� (B�C). Its rules introduce commutative conversions into the
proof term calculus, and canonical forms no longer exist.

Γ; ∆1; Ω1 `M :A Γ; ∆2; Ω2 ` N :B
⊗I

Γ; (∆1 ×∆2); (Ω1,Ω2) `M ⊗N : A⊗ B

Γ; ∆2; Ω2 `M : A⊗ B Γ; ∆1; (Ω1, z:A, z
′:B,Ω3) ` N : C

⊗E
Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` let z ⊗ z′ = M in N : C

Besides destroying the existence of canonical forms, this connective also compli-
cates the simple functional interpretation of the ordered context Ω as describing
a stack. The problem is foreshadowed in the substitution lemma, where we also
have to allow ordered variables to the left and right of the variable to be sub-
stituted. The new reduction rule is rather straightforward.1

let z ⊗ z′ = M ⊗M ′ in N =⇒ [M/z,M ′/z′]N

Multiplicative Unit 1. The is the right and left unit element for the tensor
connective. We have 1� C iff C off 1� C, and A ⊗ 1 iff A iff 1 ⊗ A. The

1It seems plausible that the restriction of this rule to Ω3 = · is also sound and complete,
and that the general form is admissible in the system with the restricted rule. This would form
a much better basis for functional language applications of this calculus, since the stack-like
nature of accesses to the ordered context is preserved. Similar remarks may hold for the other
elimination rules of a similar shape.

Draft of May 4, 1998

142 Non-Commutative Linear Logic

introduction rule shows why there is only one multiplicative unit.

1I
Γ; ·; · ` ? : 1

Γ; ∆2; Ω2 `M : 1 Γ; ∆1; (Ω1,Ω3) ` N : C
1E

Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` let ? = M in N : C

The reduction rule is straightforward.

let ? = ? in N =⇒ N

Additive Conjunction ANB. This is additive on both the linear an ordered
contexts, in order to preserve demotion.

Γ; ∆; Ω `M : A Γ; ∆; Ω ` N : B
NI

Γ; ∆; Ω ` 〈M,N〉 : ANB

Γ; ∆; Ω `M : ANB
NE1

Γ; ∆; Ω ` fstM : A

Γ; ∆; Ω `M : ANB
NE2

Γ; ∆; Ω ` sndM : B

fst 〈M,N〉 =⇒ M
snd 〈M,N〉 =⇒ N

Additive Unit >. Because it is additive, the left and right units for N coin-
cide.

>I
Γ; ∆; Ω ` 〈 〉 : >

(no >E rule)

Since there is no elimination rule, there are no reduction for the additive unit.

Disjunction ⊕. The disjunction in intuitionistic linear logic and its non-
commutative refinement is additive. Therefore the connective does not split
into left and right disjunction.

Γ; ∆; Ω `M : A
⊕I1

Γ; ∆; Ω ` inlBM : A⊕ B

Γ; ∆; Ω `M : A
⊕I2

Γ; ∆; Ω ` inrAM : A ⊕B

Γ; ∆2; Ω2 `M : A ⊕B Γ; ∆1; (Ω1, z:A,Ω3) ` N : C Γ; ∆1; (Ω1, z
′:B,Ω3) ` N ′ : C

⊕E
Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` caseM of inl z ⇒ N | inr z′ ⇒ N ′ : C

Draft of May 4, 1998

6.2 Other Logical Connectives 143

case inlBM of inl z ⇒ N | inr z′ ⇒ N ′ =⇒ [M/z]N

case inrAM ′ of inl z ⇒ N | inr z′ ⇒ N ′ =⇒ [M ′/z]N ′

Additive Falsehood 0. This is the unit for disjunction. Since it is additive,
it does not split into left and right versions.

(no 0 introduction rule)

Γ; ∆2; Ω2 `M : 0
0E

Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` abortCM : C

Since there is no introduction rule for 0, there are no new reductions.
In analogy with linear logic, we have two modal operators: one allows an

ordered assumption to become mobile (while it must remain linear), another
one allows a linear assumption to become intuitionistic.

Mobility Modal ¡A.

Γ; ∆; · `M : A
¡I

Γ; ∆; · ` ¡M : ¡A

Γ; ∆2; Ω2 `M : ¡A Γ; (∆1, y:A); (Ω1,Ω3) ` N : C
¡E

Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` let ¡y = M in N : C

let ¡y = ¡M in N =⇒ [M/y]N

Linear Exponential !A.

Γ; ·; · `M : A
!I

Γ; ·; · ` !M : !A

Γ; ∆2; Ω2 `M : !A (Γ, x:A); ∆1; (Ω1,Ω3) ` N : C
!E

Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` let !x = M in N : C

let !x = !M in N =⇒ [M/x]N

Draft of May 4, 1998

144 Non-Commutative Linear Logic

Draft of May 4, 1998

Bibliography

[ABCJ94] D. Albrecht, F. Bäuerle, J. N. Crossley, and J. S. Jeavons. Curry-
Howard terms for linear logic. In ??, editor, Logic Colloquium ’94,
pages ??–?? ??, 1994.

[Abr90a] V. M. Abrusci. A comparison between Lambek syntactic calculus and
intuitionistic linear propositional logic. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 36:11–15, 1990.

[Abr90b] V. M. Abrusci. Non-commutative intuitionistic linear propositional
logic. Zeitschrift für Mathematische Logik und Grundlagen der Math-
ematik, 36:297–318, 1990.

[Abr93] Samson Abramsky. Computational interpretations of linear logic.
Theoretical Computer Science, 111:3–57, 1993.

[Abr95] V. M. Abrusci. Non-commutative proof nets. In J.-Y. Girard, Y. La-
font, and L. Regnier, editors, Advances in Linear Logic, pages 271–
296. Cambridge University Press, 1995. Proceedings of the Workshop
on Linear Logic, Ithaca, New York, June 1993.

[Bar96] Andrew Barber. Dual intuitionistic linear logic. Draft manuscript,
March 1996.

[BG91] C. Brown and D. Gurr. Relations and non-commutative linear logic.
Technical Report DAIMI PB-372, Computer Science Department,
Aarhus University, November 1991.

[Bie94] G. Bierman. On intuitionistic linear logic. Technical Report 346,
University of Cambridge, Computer Laboratory, August 1994. Re-
vised version of PhD thesis.

[CF58] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, Ams-
terdam, 1958.

[CHP97] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient
resource management for linear logic proof search. Submitted to a
special issue of TCS on Proof Search in Type-Theoretic Languages.
Revised version of paper in the Proceedings of the 5th International

Draft of May 4, 1998

146 BIBLIOGRAPHY

Workshop on Extensions of Logic Programming, Leipzig, Germany,
March 1996, 1997.

[Chu41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton Uni-
versity Press, Princeton, New Jersey, 1941.

[CP97] Iliano Cervesato and Frank Pfenning. A linear spine calculus. Tech-
nical Report CMU-CS-97-125, Department of Computer Science,
Carnegie Mellon University, April 1997.

[Cur30] H.B. Curry. Grundlagen der kombinatorischen Logik. American
Journal of Mathematics, 52:509–536, 789–834, 1930.

[Dos̆93] Kosta Dos̆en. A historical introduction to substructural logics. In Pe-
ter Schroeder-Heister and Kosta Dos̆en, editors, Substructural Logics,
pages 1–30. Clarendon Press, Oxford, England, 1993.

[DP95] Olivier Danvy and Frank Pfenning. The occurrence of continuation
parameters in CPS terms. Technical Report CMU-CS-95-121, De-
partment of Computer Science, Carnegie Mellon University, February
1995.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210, 405–431, 1935. Translated
under the title Investigations into Logical Deductions in [Sza69].

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[GMW79] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth.
Edinburgh LCF. Springer-Verlag LNCS 78, 1979.

[Her30] Jacques Herbrand. Recherches sur la théorie de la démonstration.
Travaux de la Société des Sciences et de Lettres de Varsovic, 33,
1930.

[Her95] Hugo Herbelin. Séquents qu’on calcule. PhD thesis, Universite Paris
7, January 1995.

[Hil22] David Hilbert. Neubegründung der Mathematik (erste Mitteilung).
In Abhandlungen aus dem mathematischen Seminar der Hamburgis-
chen Universität, pages 157–177, 1922. Reprinted in [Hil35].

[Hil35] David Hilbert. Gesammelte Abhandlungen, volume 3. Springer-
Verlag, Berlin, 1935.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327–
365, 1994. A preliminary version appeared in the Proceedings of the
Sixth Annual IEEE Symposium on Logic in Computer Science, pages
32–42, Amsterdam, The Netherlands, July 1991.

Draft of May 4, 1998

BIBLIOGRAPHY 147

[How69] W. A. Howard. The formulae-as-types notion of construction. Un-
published manuscript, 1969. Reprinted in To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, 1980.

[Hue76] Gérard Huet. Résolution d’équations dans des langages d’ordre
1, 2, . . ., ω. PhD thesis, Université Paris VII, September 1976.

[Kni89] Kevin Knight. Unification: A multi-disciplinary survey. ACM Com-
puting Surveys, 2(1):93–124, March 1989.

[Lin92] P. Lincoln. Linear logic. ACM SIGACT Notices, 23(2):29–37, Spring
1992.

[LS86] Joachim Lambek and Philip J. Scott. Introduction to Higher Order
Categorical Logic. Cambridge University Press, Cambridge, England,
1986.

[ML85a] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Technical Report 2, Scuola di Spe-
cializzazione in Logica Matematica, Dipartimento di Matematica,
Università di Siena, 1985.

[ML85b] Per Martin-Löf. Truth of a proposition, evidence of a judgement,
validity of a proof. Notes to a talk given at the workshop Theory of
Meaning, Centro Fiorentino di Storia e Filosofia della Scienza, June
1985.

[ML94] Per Martin-Löf. Analytic and synthetic judgements in type theory. In
Paolo Parrini, editor, Kant and Contemporary Epistemology, pages
87–99. Kluwer Academic Publishers, 1994.

[MM76] Alberto Martelli and Ugo Montanari. Unification in linear time and
space: A structured presentation. Internal Report B76-16, Ist. di
Elaborazione delle Informazione, Consiglio Nazionale delle Ricerche,
Pisa, Italy, July 1976.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and Systems,
4(2):258–282, April 1982.

[MOM91] N. Mart́ı-Oliet and J. Meseguer. From Petri nets to linear logic
through categories: A survey. Journal on Foundations of Computer
Science, 2(4):297–399, December 1991.

[MPP92] Dale Miller, Gordon Plotkin, and David Pym. A relevant analysis of
natural deduction. Talk given at the workshop on Types for Proofs
and Programs, B̊astad, Sweden, June 1992.

Draft of May 4, 1998

148 BIBLIOGRAPHY

[Par92] Michel Parigot. λµ-calculus: An algorithmic interpretation of clas-
sical natural deduction. In A. Voronkov, editor, Proceedings of the
International Conference on Logic Programming and Automated Rea-
soning, pages 190–201, St. Petersburg, Russia, July 1992. Springer-
Verlag LNCS 624.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework.
In Gérard Huet and Gordon Plotkin, editors, Logical Frameworks,
pages 149–181. Cambridge University Press, 1991.

[Pfe94] Frank Pfenning. Elf: A meta-language for deductive systems. In
A. Bundy, editor, Proceedings of the 12th International Conference
on Automated Deduction, pages 811–815, Nancy, France, June 1994.
Springer-Verlag LNAI 814. System abstract.

[Pfe95] Frank Pfenning. Structural cut elimination. In D. Kozen, editor, Pro-
ceedings of the Tenth Annual Symposium on Logic in Computer Sci-
ence, pages 156–166, San Diego, California, June 1995. IEEE Com-
puter Society Press.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm,
1965.

[PW78] M. S. Paterson and M. N. Wegman. Linear unification. Journal of
Computer and System Sciences, 16(2):158–167, April 1978.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, January 1965.

[Rob71] J. A. Robinson. Computational logic: The unification computation.
Machine Intelligence, 6:63–72, 1971.

[Roo92] D. Roorda. Proof nets for Lambek calculus. Journal of Logic and
Computation, 2:211–231, 1992.

[Sce93] A. Scedrov. A brief guide to linear logic. In G. Rozenberg and A. Salo-
maa, editors, Current Trends in Theoretical Computer Science, pages
377–394. World Scientific Publishing Company, 1993. Also in Bul-
letin of the European Association for Theoretical Computer Science,
volume 41, pages 154–165.

[SDP97] Carsten Schürmann, Jöelle Despeyroux, and Frank Pfenning. Prim-
itive recursion for higher-order abstract syntax. Submitted to TCS.
Revised version of Technical Report CMU-CS-96-172, December
1997.

[SHD93] Peter Schroeder-Heister and Kosta Dos̆en, editors. Substructural Log-
ics. Number 2 in Studies in Logic and Computation. Clarendon Press,
Oxford, England, 1993.

Draft of May 4, 1998

BIBLIOGRAPHY 149

[Sza69] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen.
North-Holland Publishing Co., Amsterdam, 1969.

[Tro92] A. S. Troelstra. Lectures on Linear Logic. CSLI Lecture Notes 29,
Center for the Study of Language and Information, Stanford, Cali-
fornia, 1992.

[Tro93] A. S. Troelstra. Natural deduction for intuitionistic linear logic. Un-
published manuscript, May 1993.

Draft of May 4, 1998

