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Theorem (Joyal and Street)
The graphical calculus for monoidal categories is sound.

For any deformation h : T x [0,1] — [a, b] X [c, d] of diagrams, the
value of h(—,0) equals that of h(—,1).




Theorem (M.)

The graphical calculi for double categories and equipments are
sound.

For any deformation h: T x [0,1] — [a, b] X [c, d] of diagrams, the
value of h(—,0) equals that of h(—,1).
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Theorem (M.)

There is a canonical (Yoneda-style) embedding | - | : £ — £-Cat of
a virtual equipment into the virtual equipment of categories
enriched in it, which is full on arrows and coreflective on proarrows.
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Companions and Conjoints

An arrow B] has a companion if there is a proarrow E together

with two 2-cells E and @ such that

PLE - I

Similarly, [D is said to have a conjoint if there is a proarrow E

together with two 2-cells E and B such that

LB -~ B




Proarrow Equipments

Definition
A proarrow equipment is a double category where every arrow
has a conjoint and a companion.



Proarrow Equipments

Definition
A proarrow equipment is a double category where every arrow
has a conjoint and a companion.

Examples

» Sets, Functions, Relations.

v

Rings, Homomorphisms, Bimodules.

» Categories, Functors, Profunctors.

v

Enriched Categories, Enriched Functors, Enriched Profunctors,
etc.



Spider Lemma

Lemma (Spider Lemma)

In an equipment, we can bend arrows. More formally, there is a
bijective correspondence between diagrams of form of the left, and
diagrams of the form of the right:
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Given arrows D] and B] with an isomorphism
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Enriching in a Virtual Equipment

> Lawvere ('73):
» Not only are the most fundamental structures of mathematics
organized in categories,
» They are in many cases (enriched) categories themselves.



Enriching in a Virtual Equipment

> Lawvere ('73):
» Not only are the most fundamental structures of mathematics

organized in categories,
» They are in many cases (enriched) categories themselves.

» With the graphical calculus, we can show that so long as our
objects form a virtual equipment, then they are enriched
categories of a sort.

Theorem (M.)

There is a Yoneda-style embedding | - | : £ — £-Cat of a virtual
equipment into the virtual equipment of categories enriched in it.
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Enrichment and Virtual Equipments

» Composing proarrows requires taking a colimit in the base
category.
» But what if the base category is not suitably cocomplete?

» Then we use “virtual equipments” instead.




Restrictions

Definition

A cell
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We call
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Restrictions

Definition
A Virtual Equipment is a virtual double category with all
restrictions (and a unit condition).

Lemma (Cruttwell and Shulman)
In a virtual equipment, every restriction is of the form

|
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Examples of Enrichment in a Virtual Equipment

With a single object:
> In Sets and Spans: Categories.
» In Rings and Bimodules: Algebras.
> In Enriched Cats and Profunctors: Arrows.

» Multicategories, Many-sorted Lawvere theories, Virtual double
categories, etc.
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Examples of Enrichment in a Virtual Equipment

With a single object:
> In Sets and Spans: Categories.
» In Rings and Bimodules: Algebras.
> In Enriched Cats and Profunctors: Arrows.

» Multicategories, Many-sorted Lawvere theories, Virtual double
categories, etc.

With many objects:

> In Sets and Spans: Smooth paths in a manifold.
Conjecture (M.)
There is a full and faithful functor

Kleisli(Jet) — Span-Cat.

sending a smooth manifold to its category of smooth paths.



Enriching in a Virtual Equipment

A category C enriched in a virtual equipment £ consists of the
following data:

» A class of objects Cg, with each object A € Cq

associated with an object C(A) = D in & called its
extent.

> For each pair of objects D and D in Cg, a proarrow

e h=Fdine.

» For each object D in Co, a 2-cell idu =| °—

called the identity.

» For each triple of objects D D D a 2-cell
} called composition.




Defining the “Yoneda” Embedding
For an object D of £, we define its representative to be

[ =

» Objects are vertical arrows

, with each object's

extent being its domain.

» Between objects D] and [D a hom-object

> For object D] an identity arrow

-

» For each composable triple, a composition arrow

Y
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Properties of “Yoneda” Embedding

Proposition (M.)
The “Yoneda” embedding | - | : £ — £-Cat

» is full on 2-cells (and therefore faithful on arrows and
proarrows);

> s full on arrows;
> s coreflective on proarrows;
> preserves composition;

> reflects Morita equivalence.

Conjecture (M.)

For a “fibrantly enriched” E-category C, denote by C[A] the full
subcategory of C whose objects have extent A. Then

£-Cat(|A],C) ~ C[A].



Soundness of Graphical Calculi

» Similar to the proof of Joyal and Street for monoidal
categories.

» But using the tile-order machinery of Dawson and Paré to
handle the two sorts of composition.



Take a Diagram,
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Turn it into the usual notation,
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Compose it.
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Tilings are stable under small deformations.




In Conclusion

Equipments are fundamental and useful objects
1. for combining “scalar” arrows and “linear” proarrows, and

2. as a setting for formal (enriched, internal, higher) category
theory.

| hope that the string diagrams can make working with them easier!



References

Acknowledgements: Many thanks to Emily Riehl and Mike
Shulman for reading drafts and giving very helpful comments.

1. D. J. M., String diagrams for double categories and equipments.
arXiv:1612.02762

2. Joyal and Street, Geometry of tensor calculus, I.

3. Dawson and Paré, General associativity and general composition for
double categories

4. Dawson, A forbidden-suborder characterization of
binarily-composable diagrams in double categories.

5. Cruttwell and Shulman, A unified framework for generalized
multicategories

6. Leinster, Generalized enrichment of categories



