Cyclic sets as a classifying topos
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This note is an exercise in the theory of classifying topoi. We define the notion of an
“abstract circle” and prove the result that Connes’ category of cyclic sets [C] is a classifying
topos for abstract circles. This result is analogous to the wellknown fact that the category of
simplicial sets is a classifying topos for abstract intervals (i.e., linear orders with two distinct
end points), see e.g. [J] or [MM, §VIIL.8]. These two results are in fact closely related, since
the category of abstract circles with base point will turn out to be equivalent to that of
abstract intervals.

§1. Cyclic sets. We recall the definition of the category A introduced by A. Connes [C]:
The objects of A are the natural numbers 0,1,.... An arrow n — m is a pair (o, u) where
o € Cpyr is a cyclic permutation of {0,...,n} and v : n — m is a non-decreasing function
{0,...,n} = {0,...,m}. Composition in A is defined by using the fact that for o as above
and any non-decreasing function v : k — n, the composition oov can be factored in a unique
way as v’ 0 0’ where o' = v*(0) € Ciy1 is monotone on fibers of v and v’ = o.(v) : k - n is
non-decreasing. Then the composition of (o,u): n — m and (7,v) : k — nis (¢’ oT,u0?’).
Notice that A contains the simplicial category A as the subcategory of those arrows (o, u)
where o = 1 (we denote the cyclic group C,4; multiplicatively).

An (abstract) interval is a linearly ordered set (L, <) with distinct smallest and largest
elements b and t. The intervals form a category with as arrows those functions which pre-
serve <, b, and ?. Recall [MM, p. 453] that the opposite category A is equivalent to the
category of finite intervals nt = (0 <1< ... <n+1).

The category A is equivalent to its dual A°?, which can conveniently be viewed as follows:
The object n* of A% (corresponding to n in A) is the circle S = {z € C: [z|] = 1} with the
cyclic group (roots of unity) C,+1 € S? as a set of marked points. An arrow m* — n* is a
homotopy class of degree 1 maps f : S' — S! which sends marked points to marked points.
One can think of the marked points {0,...,n} = C,4; € S as the linear order {0,...,n+1}
with 0 and n + 1 identified. Then any map of intervals v : m* — n* determines a unique
arrow @ : m* — n”, with the additional property that it preserves the marked point 0. For
an arbitrary arrow f: m* — n* in A%, let ¢ € C,; be the rotation of S! so that oo f
preserves the marked point 0. Thus f = 67! o @ for a map of intervals u. In this way, and
dual to the description of A above, any arrow f : m* — n* is decomposed as o~ ! o & where
o0 € Cpyy and u is an arrow in A%,

§2. Abstract circles. An abstract circle C is a structure
C = (P, 5 dy,,0,1,%,U).

Here P and S are sets, the elements of which will be called points and segments respectively.
Furthermore, &, : S — P and 0,1 : P — S are functions, * : § — S is an involution, and
U:S5 xS — Sisa partial function. (One can also think of U as a ternary relation R, by



R(a,b,c)iff aUb=c.) Elements of P are denoted T,Y,%,...and elements of S are denoted
a,b,c,.... The axioms are the following.

1. (non-triviality) P contains at least one point, and for any two x,y € P there is at least
one a € S with dpa = z and 01a = y. For any = € P, the segments 0(z) = 0, and 1,
are distinct.

2. (equational axioms) a** = a, do(a*) = 8(a), 0(0:) = z = 0¢(0;) ; 0% = 1,; if
doa = Oya =z then a = 0, or a = 1,,.

3. (axioms for concatenation)

(1) aU b exists only if dia = dpb, and in that case Ah(aUb) = 0dib, do(aU b) = Doa.
(i) aUb=rciff " Ua = b~
(iii) if aUb and (aUb)Uc exist then so do bUc and aU(bUc), and (aUb)Uc = aU(bUc).
(iv) aUb=0, = a=0,.

(v) if Joa = z then 0, Ua = a.
(vi) if Ora = Oob then at least one of a U b and b U a* exists.

A homomorphism f : C — C' of abstract circles consists of two function f:+ P — P and
f 5 — 5" which commute with all the operations Jy, 91,0, 1,* and U. (For U, this means
that if a Ub € S is defined then so is f(a) U f(b) and the latter equals f(a Ub).)

It is easy to prove various elementary properties of abstract circles, such as the following
(a,b,c,... denote segments, as before):

(i) If Ooa = Opb and Hya = b then a = b or a = b*.

(ii) Define a C bif Ju,v € S : uUaUv = b. If Jya = dob = z, it then follows that
u = 0,. Furthermore, the subset L, = {a € S : dpa = x)} is linearly ordered by
C, with smallest and largest elements 0, and 1,. This construction (C,z) — L, in
fact defines an equivalence of categories between abstract circles with basepoint and
abstract intervals.

(iii) (“Refinement”) If @ C bUc then a Cbora C ¢, or Ju,v € S (v Cband v C ¢ and
a=uUuv).

Example. Let 5" = {z € C: |z| = 1} be the “concrete” circle, and let P C S! be any set
of points. Let S be the set of all positively oriented closed segments on .S with endpoints
i P. Then (S5, P) is an abstract circle, with structure maps defined as follows: gy and 9,
are the endpoints, a* = S' — Int(a), 0, = {z} and 1, = S, while @ U b is the union of the
segments a and b, defined only if d1a = dpb and a, b have no interior point in common. We
denote this abstract circle by C'(P).

This example is “universal” in the following sense. Consider the axioms for abstract
circles as a first order theory. By the Lowenheim-Skolem theorem, every model has a count-
able elementary submodel. Furthermore, it is not difficult to see that any countable model
is isomorphic to a model of the form C(P) as constructed in the example, for a countable
set P C S'. (One way to prove this is to use the equivalence of categories in (ii) and the fact
that every countable abstract interval can be embedded into [0,1] € R.) This observation
yields:
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Proposition. Let ¢ be a first order formula in the language of abstract circles. Then
¢ is a consequence of the azioms, if ¢ holds in all abstract circles of the form C(P) where
P is a (countable) subset of St.

§3. Cyclic sets classifies abstract circles. We now turn our attention to (models of
the axioms for) abstract circles in topoi - or in other words, sheaves of abstract circles on a
site. For example, for a circle bundle S' C F — X on a paracompact space X, any subsheaf
P C T'(F) defines a sheaf C'(P) of abstract circles on the site C(X) of closed subsets of X
and locally finite covers. (For X a point, this is the example in §2.)

The topos (cysets) of cyclic sets is the topos of presheaves on A (i.e. functors A? —
sets). The result announced in the title is the following.

Theorem. For any topos T, there is an equivalence of categories
Hom(T, (cysets)) = (Abstract circles in T), (1)
natural in T .

Proof. We first check that the equivalence (1) holds for the case where 7 = (sets). In
this case, the proposition asserts that points of the topos (cysets) correspond to abstract
circles (in sets).

It is known (“Diaconescu’s Theorem”, [MM, Ch.VII]) that points (sets) — (cysets) cor-
respond to filtering functors ' : A — (sets). These are functors having the following three
properties:

(i) F(0) # ¢.

(i1) If @ € F(n) and f,¢ : n — m are such that F'(f)(e¢) = F(g)(a) then there are an
h:k —n and b€ F(k) with fh = gh and F(h)(b) = a.

(iii) If @ € F(n) and b € F(m) then there are f : k — n, ¢ : k — m and ¢ € F(k) so that
P(f)(c) = a and F(g)(c) = b

Given an abstract circle C, one constructs such a functor F' = F¢ as follows. Observe first
that the dual category AP (see §1) is exactly the category of finite abstract circles n*. Define
F¢ by Fe(n) = Hom(n*, C'), (where Hom is taken in the category of abstract circles). Thus
F¢(0) = P is the set of points of (', while for n > 0 an element of Fz(n) is the same as a
sequence (dg, ai, ..., a,) of segments so that

apcUaiU...Ua, =1 (where 1 = 15, (aq))-
The conditions (i)-(iii) are easily verified: (i) is clear. For (ii), suppose
/ a
m - 3n - C
g

1s a commutative diagram of abstract circles. Factor a as a surjection h : n* — D and an
injection b : D — (. Then D is a finite abstract circle, hence D = k* for some k£ > 0.
Thus hf = hg in A”? and b = ah. Finally, (ii1) follows by constructing a common refinement
of the “covers” ayU...Ua, and by U ...U b, using repeated application of the refinement
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property in §2.
For the converse construction, of an abstract circle Cr out of a filtering functor F', express
F in the canonical way as a colimit of representables,

F=lim AUG),-),
where I is the dual of the Grothendieck construction 4 F and U : I — A° is the dual of the
projection 7 : [y F© — A. Using again that A" is the category of finite abstract circles, each
U(7) can be viewed as a finite abstract circle, and we define Cr = lim_,_, U(2); this definition
makes sense since the category of abstract circles has filtered (or directed) colimits.

These two constructions are inverse to eachother, and show the equivalence (1) of the
proposition in case T = (sets).

For general 7, the proposition now follows using results of Makkai and Reyes. Indeed,
the theory of abstract circles is a coherent theory, and has a coherent classifying topos, say A.
This means by definition that there is an equivalence like (1) with A for (cysets). We need
to show that A is equivalent to the topos (cysets). Consider for each n the finite abstract
circle n*. This defines a functor C' : A% — (abstract circles), which is in fact an abstract
circle C in the topos (cysets). Let xc : (cysets) — A be its classifying morphism. To prove
that y¢ is an equivalence, it suffices by [MR, Thm. 9.2.9] to prove that composition with xc¢
induces an equivalence between the categories of points of these topoi. But Points(.A) is the
category of abstract circles by definition of A, and the required equivalence Points(cysets)
— Points(A) is exactly the equivalence (1) of the proposition for 7 = (sets), already shown.

Remark. Recall that A contains the simplicial category A as a subcategory. Write
j : A — A for the inclusion functor, and also for the induced morphism of topoi

J : (ssets) — (cysets)

from simplicial sets to cyclic sets. Then j is a local homeomorphism. In fact, there is

~

an equivalence of topoi (cysels)/A(0) = (ssets). Given the proposition, this observation is
equivalence to the fact (§2) that the category of pointed abstract circles is equivalent to the
category of abstract intervals.
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