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INTRODUCTION

Algebreic topology could perhaps be characterized as the
study of those functors from the category of topological spaces to
that of groups which are invariants of homotopy type. From this
point of view, the category of topological spaces which are of the
homotopy type of a CW-complex is equivalent to the category of
simplicial sets (in the literature: complete semi-simplicial com-
plexes) which satisfy the extension condition.

The object of these notes is an investigation of the cate-
gory of simplicial sets. There are various technical advantages to
this category. These mainly arise from the fact that, for every
n > 1 and Abelian group =, there exists an explicit canonical sim-
plicial Abelian group K (7, n) which satisfies 7 (K(mn)) = o
and 7 (K(mn)) = 0, i £ n. These objects are fundamental to
the construction of Postnikov systems and to the study of cohomo-
logy operations.

We will first develop the definitions and elementary proper-
ties of simplicial objects and then begin the study of simplicial
fiber spaces and Postnikov systems. After demonstrating the
‘‘equivalence of categories’’ described above, we will study fiber
spaces and fiber bundles in some detail, making use of the concept
of “twisted Cartesian product.”’

We will then study K(»,n)’s and introduce the k-invariants
of Postnikov systems. This will be done by studying simplicial
fibre bundles with fibre a K(r, n) rather than by use of obstruction
theory. We will conclude by developing the Serre spectral sequence
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by means of Brown’s theorem comparing twisted Cartesian products

and twisted tensor products.
_ Most of the material here is scattered through the literature.

Ablb liographical note at the end of each chapter will give refer-

ences., -
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CHAPTER 1
SIMPLICIAL OBJECTS AND HOMOTOPY

§1. Definitions and examples
We introduce the concept of simplicial set and give several

examples here. A categorical definition will be given in the next
section.

DEFINITIONS 1.1: A simplicial set K is a graded set indexed on
the non-negative integers together with maps J; K _» K q—1 @nd
$;i Kq - Kq+1, 0 <1 < g, which satisfy the following identi~
ties: )
(i) 6‘i6j = 61_16‘1. if i<j, ¢

0 s =

(iii) 8:.sj = sj_lc?’. if 1<y,

ajsj = identity = 6}.

s, if #<j,

+15j7

an‘isJ]T = sja,._l if 1> j+1
The elements of Kq are called ¢-simplices. The d; and s, are
called face and degeneracy operators. A simplex x is degenerate
if x = s,y for some simplex y and degeneracy operator s;
otherwise x is non-degenerate.

DEFINITION 1.2: A simplicial map f: K » L is a map of degree
zero of graded sets which commutes with the face and degeneracy
operators; that is, f consists of {q: Kq - Lq and

fg0; = 0,y 1,

fq s = s:.fq_l.

1
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CHAPTER 1
SIMPLICIAL OBJECTS AND HOMOTOPY

§1. Definitions and examples
We introduce the concept of simplicial set and give several

examples here. A categorical definition will be given in the next
section.

DEFINITIONS 1.1: A simplicial set K is a graded set indexed on
the non-negative integers together with maps J;; K ¢ K q—1 and
s; Kq - I(q+ 1 0 £1i< g, which satisfy the following identi-
ties: ’

) aiaj = aj_la,. if i<j, ¢
(ii) S8 = 8,8, if 1 <j,
Qi) 9,5, = s, _,9, if i<,

3,-8; = identity = 6j+lsj,

al.sj = s}.a,._l if i>j+1
The elements of Kq are called ¢-simplices. The d; and s; are

called face and degeneracy operators. A simplex x is degenerate

if x = s,y for some simplex y and degeneracy operator s
otherwise x is non-degenerate.

i

DEFINITION 1.2: A simplicial map f: K - L is a map of degree
zero of graded sets which commutes with the face and degeneracy
operators; that is, f consists of fq: Kq - Lq and

fq = Of\ 1

fq s = s’.fq__l.

1
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2 SIMPLICIAL OBJECTS IN ALGEBRAIC TOPOLOGY

DEFINITION 1.3: A simplicial set K is said to satisfy the exten-

sion condition if for every collection of a + 1 n-simplices xg, x|,
X _qr Xgy 170 X, 1 Which satisfy the compatibility condi-

tion c?ij = 6}._1xi, i<j i#k j+# k there exists an (a+1)-

simplex x such that d,x = x, for i # &

EXAMPLE 1.4: We recall that a simplicial complex K is a set of
finite subsets, called simplices, of a given set K subject to the
condition that every non-empty subset of an element of K is itself
an element of K. A simplicial set K arises from K in the follow-
ing manner. An n-simplex of Kis a sequence (ao,... a ) of ele-
ments of K such that the set iao,..., an! is an m—simplex of K for
some m < n. The face and degeneracy operators of K are defined
by: 6“.(a0,...,an) = (ag,e, @, 1y 8, e 8y

and

s; (ao,..., an) = (ao,..., By @p @y qreees a) .
If the elements of K are ordered and we require K to consist of
those sequences (a,,..., 4, ) such that a, < e < <ay and
{a sa } is an m-simplex of K for some m<a, then there will
be exactly one non-degenerate n-simplex of K for every n-simplex

of K.

EXAMPLE 15: Let A = {(¢;,...,t )]0 <¢t, <1, ¢, =1} C
R™"t1 K X is atopological space, a singular n-simplex of X is
a continuous function f: A - X. The graded set 5(X), where
S_(X) is the set of singular n-simplices of X, is called the total
singular complex of X, S(X) becomes a simplicial set if we de-
fine face and degeneracy operators by:

(3. Ntgpeer ty _ 1) = fltgreens by _ 10ty €4
and

(s, Mty b, () = f(to,

)

2
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The followmg elementary fact will later be used to show

that S(X) determines the homotopy groups of X.
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LEMMA 1.5: S(X) satisfies the extension condition.

Proof: Since the union of any n+1 faces of An+ ; 182
retract of ﬁn +1 any continuous function defined on such a union
can be extended to An +1

CONVENTIONS 1.6 The word ‘““‘complex’ (unmodified) will always
mean simplicial set. A complex which satisfies the extension con-
dition will be called a Kan complex.

§ 2. Simplicial objects in categories; homology

Recall that a categoty € is a class of objects together
with a family of disjoint sets Hom(A4, B), one for each pair of ob-
jects, a function Hom(RB, C) x Hom(A, B) » Hom(4, C), axf8 » a8,
and an element 1, ¢ Hom(4, 4), all subject to the conditions
a(By) = (aBly whenever either is defined and al a = a=1lga
a ¢ Hom(A, B). The elements of Hom(4, B) are morphisms with
domain A and range B. The opposite category C* ofa category
(‘Z* has en object A* for each object A of € and a morphism
a ¢ Hom(B *, A*) for each morphism a ¢ Hom{A4, B); a*B* is
defined and equal to (Ba)* whenever Ba is defined.

A covariant (resp., contravariant) functor F: € » 9
correspondence which assigns to each object 4 ¢ € an object
F(A) ¢ D and to each morphism a ¢ Hom(4, B) a morphism
F (a) € Hom(F (A), F (B)) (resp., F(a) ¢ Hom(F (B), F(A)) subject
to the conditions F(1,) = lp4y A € C, and F(aB) =
F(a) F(B) (resp., F(aB) = F(B)F(a)) whenever af is defined in
C. I T: € € isdefinedby T(4) = A* and T(@D = o,
then T is a contravariant functor; any contravariant functor
F: €. 9 may be considered as the covariant functor TF: C &
D" or FT: C* . D. Xf F and G are covariant (tesp., contra-
variant) functors € » D, a natural transformation A: F » G is
a function which assigns to each object A of C a morphism
MA) ¢ Hom(F (A), G(A)) subject to the condition that if
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4 SIMPLICIAL OBJECTS IN ALGEBRAIC TOPOLOGY

a ¢ Hom(4, B), then G(a}XA) = MB)F(a) (resp., G{a}MB) =
MAYF(a).
Now we define a category A* as follows. The objects

An of A* are sequences of integers, An = (0,1,...,n), n > 0.
The morphisms of ﬁ* are the monotonic maps p: An > Am, that
is, the maps pu such that p(i) < plj) if i < j. Define morphisms
8 A, _,»A andos AL, +A,0<ig<n, by

1) ﬁi(j) = jif j <3 31(1')

3] oGy = jaf j <5 o, ()

j+1if j > i,

i-lif j>i.

Let 4 ¢ Hom(A ,A ), p not an ideatity. Suppose flpeen ig i
reverse order, are the elements of A_ not in p(An) and jy,e.ojp
in order, are the elements of A such that p(j) = u(j+1}. Then:

3) p = ait...aiaai “"Tj" where 0 < iy <o < iy <m,

I
0<j <e<jy<n, andn—-t+s = m.

Further, the factorization of g in the form (3) is unique. Having

defined A", we can formulate

DEFINITIONS 2.1: A simplicial object in a category C is a con-
travariant functor F: A* - C. Such functors form the objects of
a category C%, the morphisms of which are all natural transforma-
tions of such functors. If F ¢ C%, the elements of F(A,) are
called n-simplices, and the maps d;, = F(Si) and s, = F(cr:.)
satisfy (i)—(iii) of Definitions 1.1. Any simplicial set K deter
mines a contravariant functor F: A* > e, where € is the cat-
egory of sets, by the rules F(A ) = K and

F( = S}:msj1 3‘.8... 6’.1 ,

where p is a morphism of A* expressed in the form (3). Thus a
simplicial set may be uniquely identified with a simplicial object
in the category of sets, Analogously, we will speak of simplicial
groups, simplicial modules, and so forth, depending on the choice
of the category C.
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REMARKS 2.2: Let A = A™ denote the opposite category of 6*,
T: AY 5 A the contravariant functor defined above, The category
€ could equally well be defined as that of covariant functors from
A to C.

Now suppose that F: € - D is e covariant functor. By
composition, F induces a covariant functor F5: C¢ , 95, 1,
particular, suppose that C is the category of sets, D that of Abel-
ian groups, and for 4 ¢ , F(4) is the free Abelian group gener-
ated by A. Then if K ¢ C°, FS(K) may be given a structure of
chain complex with differential d defined on F(K), = FS(K ) by

n
d= 2 (-1,
i=0
We denote this chain complex by C(K). If G is an Abelian group,
we define the homology and cohomology of K with coefficients in
G by

H(K;G) = HIC(K) ® G) and H*(K; G) = H(Hom(C(K), G)) .

In case K = S(X), these are, of course, the singular homology and
cohomology groups of the space X.

§3. Homotopy of Kan complexes.

DEFINITION 3.1: Let K be a complex. Two n-simplices x and
x* of K are homotopic, written x ~x’, if d,x = d;x’, 0<i <n,
and. there exists a simplex y ¢ K ., suchthat 6ny = X,

6n+1y = x° and dy = S,_10,x = s,_10;x50<i<n,
The simplex y is called a homotopy from x to x’.

PROPOSITION 3.2: If K is a Kan complex, then ~ is an equive-
lence relation on the n-simplices of K, n > 0,

Proof: The relation ~ is reflexive since
6‘nsnx =X = 6n+lsnx
and d;s x = s, ,dx, 0<i<n Suppose x ~ x’ and x ~mx’’

J,-" [+ SN
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We must prove x”" ~ x”. Let y~” satisfy

an”::x’ an+1y,=x" and aiy"=“sn—l'ﬂi’(,’ i <n

Let y” satisfy

,y" =x 08, ¥ '=x7and dy=s _dx, i<n.

Then the n+2 (n+1)-simplices

-, rd 4 ey
6‘Osnsnx yeeer O _ 15,5, X5 Y5y

are seen to satisfy the compatibility condition. Therefore there
exists an (n+2)-simplex z suchthat d.z = 95 s.x, 0 <i<n,

Inhn
L

0,2 =y, and 9, ,z = y”. It follows that

00,402 = Sy_19;%x5 0<i<n

. o , rr
3n3n+zz - X, and an+lan-|-2z = x°, hence x " ~ x7",

DEFINITION 3.3: Let L be a subcomplex of K. Two n-simplices
x and x,, n > 0, are homotopic relative to L, written

x ~x“rel L, if d,x = d,x, 1 <i<n if dgx ~3dgx” in L,
and if there exists a homotopy y from dyx to dyx” in L and a
simplex w ¢ Kn+l such that Bow =y c?nw = X, 6n+1w = x°,
and ,w = s, _y d;x = s, _,0,x, 1<i<n Thesimplex w
is called a relative homotopy from x to x°

PrROPOSITION 3.4: If L is a sub Kan complex of the Kan com-
plex K, then ~ el L is an equivalence relation on the n-simplices
of K, n> 1.

Proof: The relation ~rel L is reflexive since if 50x e L,
then s, _,d,x is a homotopy in L from 50x to djx, and if
w = s x then d,w = s, _,d,x, 0 <i<n, and

6‘nw = X = 6‘n+1W.

Suppose x ~ x"rel L and x ~ x""rel L. We must prove that
x" e~ x”rel L. Let y” and y”" be homotopies in L from -dgx to
dox” and from dox to d,x”, and suppose w’ and w’’ are rela-
tive homotopies from x to x” end from x to x* which satisfy

SIMPLICIAL OBJECTS AND HOMOTOPY 7

r

aow’ = y’ and aow’ = y". As in the proof of Proposition 3.2,
we may choose z ¢ L.,y such that

9,z = d;s, ;8. 109%x; 0<i<a-1,

Ll

0, _1z=y and 3 2z=y
Then y = 6n+1z is a homotopy in L from 6‘0::' to dyx .

Now it is easy to see that the n+2 (n+1)-simplices

4 . ¥ r
z, d, 8,8,%5..,08, (5.8, X,w,w

satisfy the compatibility condition so that there exists v ¢ K. o
such that d,v = d;s s x, 1<i<n, v = 2, I, v = w)
and 4, v = w'. Let w = 9,,,v- Then d,w = Sn—la;'""

4

1<i<a dywa=ay, d,w = x’, and 6n+lw= x”.

NOTATIONS 3.5: Let K be a complex, ¢ ¢ K,. ¢ generates a
subcomplex of K which hes exactly one simplex 8, _ 1 Sp¢ in
each dimension n. We will ebuse notation by letting ¢ denote am-
biguously either this subcomplex or any of its simplices. We call
(K,¢) aKanpairif K is a Kan complex. Wecall (K, L, ¢) =
Kan triple if ¢ ¢ L, and L is a sub Kan complex of the Kan com-

plex K. Simplicial maps of pairs and triples are defined in the ob-
vious manner.

DEFINITIONS 3.6: Let (K, ¢) be a Kan pair. Let K, n>0,
denote the set of all x ¢ K which satisfy d,x = ¢, 0 < i< n
Then we define 7z (K, ¢) = K /(~). 7 (K, ¢) is called the set of
path components of K. K is comnnected if 7oK, ¢) = ¢ (where
we are letting ¢ denote its equivalence class). K is n-connected
# 7K ¢) = ¢, 0<i<n, Let (K, L,$) be aKan triple. Let
K(L)n;ﬁ}: 2 1, denote the set of all x ¢ K which satisfy

dox e L _, and d,x = ¢, 1< i< n Then we define
7o (K, L, @) = K(L) /l~relL).
Note that #, (K, ¢, ¢) = 7 (K,¢), n> 1. Finally, we define

9: 7, (K,L,@) »m, _,(L,$), n>1, by dlx] = [0, x], where
[x] denotes the homotopy class of x.
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THEOREM 3.7: Let (K, L, ) be a Kan triple. Then the sequence

a . .
v KLY Sa @ o K@ Taom (KL -
of sets with distinguished element ¢ is exact, where the maps i and j
are induced by inclusion.

Proof: (i) id = ¢: Consider i[9,x] = idlx], x € K(L)n+1'

The n+ 2 (n+ D-simplices -, $,..-, ¢,x are compatible,
hence we may choose z ¢ K, , suchthat 9,z = ¢, 1 <i< n+l,
Fny22 = X. Then 39527 =23,3,,72 = ¢, 0<ignel,and
6‘n+1 601 = Jgx, sothat dyx ~¢ in K. B

(ii) Image O = Kemel i: Let iyl = ¢, y ¢ L_. Then
y~¢ in K, say 9,z = ¢, 0<i<n, d,,,2=y. The
n+ 2 (n+1)-simplices z, ¢,...,¢ are compatible, hence there
exists w e K, , with dyw = 2, d,w = ¢, 1 <ig a+l.
0,0,,2% = ¢, 1<i<n+l, and 9,9  ,w = y, sothat
ala, . ,wl = [yl N
(iii) 9j = ¢: djlx] = ¢ since dyx = ¢, x e K.
. (iv) Image j = Kemel d: Let d[x] = [aox] = ¢,
x ¢ K{L}) . There exists z ¢ L suchthat d,z = ¢,
0<ign, 9,z = dyx. The n+l n-simplices z,¢,..., ¢, -, x
(where — means k = n in the compatibility condition) are com-
patible, say dyy = z, d,y = ¢ L<i<n-1, 9, (¥ = x.
Thus x ~d,_ y rel L. Since 9,0,y = ¢, 0 <i<n,

(] = jlo, 5] .

(v) ji = ¢: Consider jilyl, y ¢ I:n. The n+1 n-sim-
plices —, ¢,..., ¢, ¥ are compatible in L, say z ¢ Ln+l satis-
fies d;z = ¢, 1 <i<n d,,,2z =y 9,05z = ¢,0<i<n,
hence d,z is @ homotopy between ¢ and ¢ = dyy, so z isa
relative homotopy between ¢ and y.

(vi) Image i = Kemel j: Let jlx] = P, X ¢ f(n.
such that o, w = ¢, 1 <i<n d

n+1
n —simplices z, ¢,-.-, ¢, -

Choose w ¢ K w = X,

nt1l,
and 60w = z sLn. The n+ 1
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are compatible in L, say dw = zand dw =¢, 1<i<n. Then + 2
(n + 1)-simplices 5,12, ¢, . . ., ¢, v, w, — are compatible in K, say
0l =Sz, Bl=¢, 1<i<n—1 o= 9, Onpal = w. Then

Onief is 2 homotopy dn44p ~ x, hence [x] = [n4ar].

§4. The group structures.

DEFINITIONS 4.1: Let (K, ¢) be a Ken pair. Write x ¢ a if x
represents a. Suppose a,f8 ¢ 7 (K, ), n> 1, andlet x ¢ q
y ¢ 8. The n+1 n-simplices ¢,...,¢,x,~, y are compatible,
say 0,z = ¢, 0<i<n-1l, d,_,2z = x 3n+12 = y. We
define a8 = [9, z].

LEMMA 4.2: qff is well defined.

Proof: Suppose z’ also satisfies d’.z'= ¢, 0<i<n-],
d,_12'= x, and d,41% = ¥- By the extension condition, there

exists w e K, suchthat d,w = ¢, 0 <i<n-2,

an—l w=5, ar:---l 2 an-l- 1
d,w is then a homotopy from c?nz to 6‘nz'. Suppose y ~ y°,
say 6!.w =¢, 0<i<n, 6‘nw =y, 6‘n+1w = y. Choose z’
such that 6‘n__1 z = x, E)M_'l z"= y,, and 6l.z' =¢, 0<i<n-1
By the extension condition, there exists u ¢ K, ., suchthat
du=¢, 0<i<n-1,

W= Z and an+2W= z’.

d, ,u= s,_1% d,u=z'and 6n+2u =w.
Then anan+1ur = 6‘nz', arl+lan+ 1v= and 6‘:1—1611+1“t = X
so the same choice of z may be taken for the two choices of repre-
sentetives for 8. Similerly a8 is independent of the choice ofthe

representative for a.

PROPOSITION-4.3: With the above multiplication, = (K, ¢} is a
group, n > 1,
Proof: (i) Divisibility: Let x e a, y ¢ B, @ and B in

T, (K, ¢). By the extension condition, there exists z ¢ K

ntl such
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that d,z = ¢, 0<i<nm-1, 9,z =y and d,  ,2z = x.
Then [9, _,zla = B. Right divisibility is proven similarly.

(ii) Associativity: Let x e a, y ¢ B, z ¢ ¥, where a,
B, and y erein 7 (K, ¢). Using the extension condition, choose

W, 1+%ny1 Wnyo Such that 6‘in =¢, 0<i<n-1,

=¥ an--lwn+1 = d,¥

an-—lwn—l = % an-l-lwn—l n'n=1

ad

n+1%ne1 = % an—lwn+2 = 5 and an+1wn+2 =z

Applying the extension condition again, choose v ¢ K, , such
that 6‘.11 =¢, 0<i<n~l and Qu=w, i= n-1,n+l,
n+2. Then d _,0 u=x 9d,,0,uv=2dw, , and

d,u = ¢, 0< i< n~-1 Therefore:

(aBly = [aan_lly = {an—-lwn-l-l]y = [anwn+1]
0,0, = ddw o] = alfy).

n+2
PROPOSITION 4.4: #_(K, @) is Abelian if 2 > 2.

Proof: Let w,x,y,2 ¢ I‘{'ﬂ.

(i) Suppose v, , ¢ Kn-}-l satisfies 6l.vn+1 = ¢,
0<i<n-2 an+1vn+l = & 9 —2%+1 =W
an-—-lvn-l-l
Then yliw] = {x]: Choose v, , ¢ K, _, with faces
v, ,=¢ 0<isn=2 d,v,_, = x and

a

=x and J v L., =7y.

n+1vn-—-l =W,

andlet ¢ = 9, _,v,_,. Let v, = ¢, 0<i<n-2 andlet
Vio_a = S,W, Vo, = s, _,w. The v, satisfy the extension
condition, say d;r = Vi i4n Let v, =d,nr

v, =¢ 0<ig<n=2 0, v, =46 v, =y

n
and ¢, +1% = & Therefore [¢l{¢] = [y]; but by the choice of

Vo1 [Alw] = lx]_, henci_e [y][w] = [x].

(ii) Suppose v, ¢ K'+_'1_ satisfies d,v, = ¢, 0<i< n-2,

n
an—an = ¢ an-Zvn =W anvn = ¥, and an-l-lvn = Z.

SIMPLICIAL OBJECTS AND HOMOTOPY 11

Then [wllyl = [z]: Choose v, | ¢ K, withfaces 9,y , = &,
0gi<n-20, ,v ,=wendd v  =¢= d,
andlet t = anvn_l. Let v, = ®, 0 <i<n-2 andlet

+1%n-1"

vn—-2 =S,.aW Ynt2° Sp 2

The v, satisfy the extension condition, say d,r = v, i £ n+1.

Let v,y = an+1r‘ aivn+1 =¢, 0<i<n-2 an-—lvn+1

8% =y and d, v , = z. Therefore {Alz] = [y]; but by
the choice of v,_, and(®), [dv] = [¢], hence [wlly] ~ (2]

(iii) Suppose v, , ¢ K +q setisfies v, = P,

0<1< n-2, an-2vn+2 = W, an--lv"rn+2 =% anvn+2 =y and

Opi1ara = % Then {wl™1x)(z] = [y]: Choose vo.2 € K

with faces 6ivn_2 = ¢, i# n—2,n+1, 6n+lvn_2 = w; let

=t’

t = 0, oY% _, Choose v . ¢ K ., withfaces dv . = % un-

less i = n—~2, n, or n+1, 6‘n__2vn__1 =t anﬂvn_l = x;let
u=4,v, , Letv = ¢, 0<i<n-2 v =s,y The v, sat-

isfy the extension condition, say dyr = v, £ n+l. Let

Vo1 = Opyq™ By(Gi []] = [w]) and [¢){e] = [x]. v = P
0<i<n-2 9, v 1= 0% =¥ ad d, v,
Therefore [u][z] = [y]l. Combining, we find [wl~}[x]{z] = [y].

= Z.

(iv) Set z = ¢ in(iii). Then [wl~![x] = [y]. But applying
()to v_ , of(iii) in this case, we find [yl = [x){wl~1l. Therefore
for any [x] and [w], Twl™Y{x] = [x)[wl~!, and this implies the re-

sult.

DEFINITION 4.5: Let (K, L, $) be a Kan triple. Suppose
a,B e a (K L), n>2 andlet x ¢ q, ¥y ¢ B. Wehave
[aox][aoy] = [6n_lz], where 61.2 = ¢’, 0 < i < n—3,

-0, 52z = 9y% and d,z = dyy. The n+1 n-simplices

n
z, ¢,..., P, x, -, y are compatible, say d.w = ¢, 1 <i <n-2,

dgw = 2, 4, _ w=x, 0, w=y Wedefine aff = {9, wl
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LEMMA 4.6 af8 is well defined.

PROPOSITION 4.7: With the above multiplication, wn(K, L, & is
a group, n > 2.

PROPOSITION 4.8: # (K, L, ¢) is Abelian if n > 3.

The proofs of the above statements are anslogous to those
for the absolute groups and will be omitted.

Now maps of Kan pairs or triples induce homomorphisms of
homotopy groups in the obvious manner. Further, ¢ is a homomor-

phism of groups by construction. Thus we find:

PROPOSITION 4.9: 7_ is a functor from the category of Kan pairs
(resp., triples) to that of groups, n > 1 (tesp., n > 2), and to the
category of sets, n = 0 (resp., n = 1). & is a natural transforma-
tion of functers, n > 1. In particular, the exact sequence of Theo-
rem 3.7 is functorial and is an exact sequence of groups up to

ﬂ’l(K, o)

§5. Homotopy of simplicial maps.
DEFINITIONS 5.1: Let f and ¢ be simplicial maps from a complex
K to a complex L. Then f is homotopic to g, written f ~ g, if

there exist functions & Kq - L 0 < i < q, which satisfy:

e+l
(i) dghy = f, aqnhq = g
(ii) 5'1111. = hj_laj if 1<j

3j+1"‘;’+1 = 3,:+1bj

aihj. = bjai_l if 1> j+1
(iii) s‘.h,i = bj“ s, if i<

S‘.flj = bjsi—l if 1> j

h is called a homotopy from f to g h: f ~g. If K" and L’ are
subcomplexes of K and L and f and g take K~ into L then

ey T
L RE
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h is a relative homotopy from f to g if A is a homotopy from f to
& if H(K") c L', and if AJK’ is a homotopy from flIK” to g|K". K’
is said to be a deformation retract of K if the identity map of K is
homotopic relative to K” to a map from K onto K’, which extends
the inclusion map K” » K. Two complexes K and L are said tobe
of the same homotopy type if there exist maps £ K » L and

g L - K which satisfy fg ~ 1 and gf ~ 1.

LEMMA 5.2: Let f,f" K~ L and g, 6% L > M. Then:
() f=>f
(i) If h: fo2f’ then goh: gofr gof*
(fii) If h: g g then hof gof g of.
Proof: If h{x) =gf(x), then h: f =~ { (ii)and (iii) are
clear.
We will prove that homotopy is an equivalence relation on
maps from a complex K to a Kan complex L in the next section.
The following proposition implies that homology is an in-

variant of homotopy type on the category of simplicial sets.

PROPOSITION 5.3: Suppose f and g are maps from K into L.
Then if fov g, fy = gat HalK) - Hy(L).
Proof: Let b [ =~ g. Define s: C(K) > C(L) by
< i
s(x) = 2 (-D'hlx),
i=0
Then it is easily verified that ds + sd = C(f) - C(g), which im-

plies the result.

X .
eKq

We now wish to express our definition of homotopy groups in
terms of homotopies of maps. We first define the standard siml;li-

cial n-simplex Aln].
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E} - DEFINITIONS AND NOTATIONS 5.4: For each n > 0, a simpli- 1<i<n 6n+l z, = y. We will prove that if z ¢ Kn+1’ 5iz = ¢
5 B cial set Aln] is given by the contravariant functor T" defined by for i £ 1, r+1, and d,z ¢ IEn, 51,“ ze !"(:n, then d .z ~ 3 1 2
a 3 T™A_ ) = Hom(A_,A ) and T"()(\) = Ax whenever )y is de- - This will prove the result, since it will imply

fined in the category A*. The face and degeneracy operators are x ~dyzy = 9,z ~ 3,2y = d, Zy_ = .2 o~y

of course T™3,) and T%(¢,). Note that 8, and o, 0 < i < m, Thus suppose r < n, and let a = 9,2, b=, ,z, where d,z = ¢
¥

induce simplicial maps
§: Aln-1] - Aln) and o: Aln+1] » Alnl.

Identifying A ¢ Hom(A_,A ) with its image MA_), an m-simplex

- if i £ r, r+ ). By the extension condition, there exists w ¢ K, +

such that d,w=¢ H0<i<r andif r+3 < i< n+2,

2

8r+lw= Sr+1b’ 3r+2w= 2z, and ar+3w = srb. Then

] r ; : Of a[n] isa sequence (a Pty am) of integers ai’ - aj arw = ¢.l i fé r+ 1’ r+ 2’ aﬂd ar-l-l al'

Iterating the process, we find a ~ 5.

| w=a d_ ,dw=bh
0 0<ayg- <a <n and
h

a, (ao,..., am) = (ao,..., a 1> @ 1o am) ,

s a) = (agapa,..,a) . LEMMA 5.6: Let (K,L, 9} be a Kan triple, and suppose

We let A denote (0,1,....,n) ¢ A[n]n. We denote by A[n], A%x], ’ Xy e K(L)n‘

and Al[n] the subcomplexes of Aln) generated by 94,10 <, Then x ~ y rel L if and only if X = ¥ rel (A%n}, Al{n)).

9ol and {3,A |1 < i} respectively. The proof is similar to that of Lemma 5.5 and will be omit-
L . Now suppose K is a complex, x ¢ K . Clearly there is a ted. Lemmas 5.5 and 5.6 imply

hi unique simplicial map ¥: Aln} » K such that ¥ (A } = x. If
x e K_, then T: (Aln], Aln]) » (K, and if L is a subcomplex
of K and x ¢ K(L) , then

PROPOSITION 5.7: Let (K, L, ¢) be a Kan triple. Then:
(i) Homotopy is an equivalence relation on maps
il (Aln), Aln)) - (K, ¢,
i 7: (Aln), A®[a), Al[a)]) - (K, L,¢) . and 7 (K, ¢) may be identified with the set of equiva-

I
2l
-1

A

o

RO

lence classes of such maps.

LEMMA 5.5: Let (K, ¢} be a Kan pair, and suppose x, y ¢ I‘En .

R

(ii) Homotopy is an equivalence relation on maps
(Aln), A%n), AllnD) » (K, L, ¢),
and 7_(K, L, ) may be identified with the set of equiva-
lence classes of such maps.

Then x ~ y if and only if ¥ = ¥ rel Aln].

!ﬁr Proof: Suppose x ~ y, say z ¢ K, satisfies d,z = ¢,
! 0<i<an, 6n2=x, and 3, .,z = ». We must define b: ¥ = ¥
i rel Alnl, and it clearly suffices to define h, on An . We do thisby
! B(A) = s,
1] i h: ¥ >~ §F andlet z, = bi_(&n_), 0 <i<n Then a,.zj = ¢ un-

Together with (iii) of Lemma 5.2, Proposition 5.7 implies:

x, 0 <i<n, and A (A ) = 2. Conversely, suppose

T AR e T

| i less 1= j ori=j+1, and 30 Zy = %, d,z; = 9, z; 4 for PROPOSITION 5.8: If f, g (K,L,¢) - (K ,L¢)and f =g
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rel (L%, ¢7), then f; = gy ﬂn(K, L,¢) - wn(K L% ¢°), and simi-

larly for the absolute groups. In particular, the homotopy groups are

PROPOSITION 6.3: Let f,¢: (K,K") » (L,L"). Then { ~ ¢
‘rel L if and only if there exists F: KxI » L such that F: g =t
invariants of homotopy type on the categories of Kan pairs and of FK 'xD) C L, and F|K’xI: 8K’ ~ fK".

Kan triples.

'DEFINITION 6.4: The function complex L¥ of maps from a complex
.“'Ii{ to a complex L is defined as follows:
@ 5 q = Hom(KxAlgl, L), the set of simplicial maps
F: KxAlg]l > L
(i) 9 = f{1x8) and s,f = f(1x o), whete 1 denotes
the identity map of K.

§6. Function complexes
In this section, we reformulate the definition of homotopy of
maps and show that maps K - L are vertices of a complex LK, the

paths of which are homotopies between maps.

DEFINITION 6.1: The Cartesian product K x L of two complexes

QPG '35 30 NIV . . .
K and L is defined as (KxL)_ = K_xL _ with face and degener- (L, L) ) is similarly defined, with g-simplices the elements
q q”™q

of Hom ((KxAlql, K'x AlgD, (L, L").
Now a homotopy F: { ~ g between maps K - L is just a

s,
it G

acy operators given by

S e

d,(x,y) = {9,%,d,y) and s,(x y) = {s;% 5,7 .

e

LS G

path (1-simplex) of L% which starts at 31 F = { and ends at

NOTATIONS 6.2: Let { = A[l] and I = A[1}-(0) will denote dyF = g. It follows that homotopy is an equivalence relation on

any simplex of AY[1], (1) any simplex of A°[1]. maps K - L whenever LX is a Kan complex, and similarly for
maps of pairs, etc. We will prove that LX is a Kan complex if L

PROPOSITION 6.2: Let f and g be simplicial maps K » L. Then i is. To do this, we need a combinatorial description of g-simplices

f = g if and only if there exists a simplicial map F: Kx/ ~ L of LX similar to that of 1-simplices given by the original definition
such that F(x, (0)) = g(x} and F(x,(1)) = f(x), where x is any of homotopy of maps.
simplex of K.
Proof: Suppose h: f o~ g. For x ¢ K, define F(x, (0)) = :_: DEFINITION 6.5: A (p, g)-shuffle is a permutation # of
g(x), Flx,(1) = £{(x), and " 10,..., p+q—1} which satisfies a{i) < o) f0<i<y <p-1 or
Flx, s  Si1 g 5B = 2, b0, if p<i<j<ptg-l Let p =nli-1), 1 <i<p, andlet
0 < i £ g-1. Then it is easily verified that F is a simplicial map. e 7rp=D, 1<j<q a isdetermined by 4 or v, and we

write 7 = (g, ).
Conversely, given F define e

hi(x) = F(six,sq...sl.“ ‘si-l"‘soAI) ,

If ye Kp is non-degenerate and ; denotes the subcomplex

of K generated by y, then the non-degenerate {p+ @) —simplices of
0<i<q Th tf gl ~

xeK, 0<igq en h: f ~¢g yx Alg} are {(sv ...svly, s spl th)l(,u, v) is a (p, g)-shuffle}.

We will call F a homotopy from g to f, F: g ~ f. Similar- q by
This motivates the introduction of shuffles.
ly we may prove
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Let i ¢ {0,...,p+4q}. We classify (p, g)-shuffles relative to
(1, v) is of type I if
(@) 1< pg,or
(i) i, i-1c¢ lvl....,vq}, or
(iii)
(,u, v} if of type II if
() i<y, eor

i as follows.

I=p+q i-1= Vo

(i) i, 71-1¢ {pl,...,ppl, or
(iii) i=p+q i-1= e
{1, 1) is of type Il otherwise; that is (g, v} is of type Il
p yP m
if
() maxip, v} < i< p+gq and either
(i) i e fpg,..., ,upl and i—1 ¢ {Vl,...,vé}, or
(iii) 1 ¢ lvl.....vq} and i~1] ¢ {pl....,ppl.

To each shuffle (,u, v} and each I we associate a new
shuffle (i, 7) and an index r as follows: If (g, ) is of type I,
(,v) is a (p, g—1)-shuffle. Let & be that integer such that
i =y, incases (i) and (ii) and let k = ¢ in case (iii). Let
7=y for j < k and let 17,;_= A for k < j < g—1. This
defines (i,7), and r is that integer such that i, = y, for j <r
and FT] =P’j"1 for r < j<p.
If (4,0) isof typeIl, (f,7) is a (p—1, q)-shuffle. Let
k be that integer such that i = . in cases (i) and (ii) and let

k = p in case (iii). Let ;‘Ii = B for j < k and let F_‘j = f‘i+1_1
for k < j < p~1. This defines (i, 7), and r is that integer such

that v, = v

If (u,v) is of type I, (f, %) is a (p, g)-shuffle. In case

for j <r and Djzvj—l forr<j<aq.

(ii), let i = p, i~1 = p_ and define ﬁ} = g for j#r p =i-1

In case (iii), let i =y, i~]1l= p, and define 'ﬁ}. =1 for j £ 1,

B,o= 1
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Next, to each shuffle (u,1) and each i we associate a

(p+ 1, ¢) -shuffle (fi, 7"} and a second index ¢ as follows. If s is

7 the largest integer such that #; < 1 for j < s, then 'ﬁi o for
j< & fg =1, and ;'i}. = pj_1+1 for j > s. t is defined as
tﬁe number of v, such that 7 > v

II_?_EFINITION 6.6: Let F: KxAlgql » L be a simplicial map. If
(i,v) is 2 (p, @) -shuffle, define

h(p.v): Koo Lpg

by
h(#’p) () = F(qu... S, ¥ SFP o8y Aq) )

If () is a (p, g~ 1)-shuffle and i ¢ 10,..., g}, define

i
h(pm)' K, - Loyg-1

by

8 S L R N A S ST T I 1T T SR

i —
b = Fls, .., ¥, Sy, 2089

If g=1 and we let h, = b(#'p) where 1y = i, then the
i proof of Proposition 6.2 states that kb is a homotopy and that given

a homotopy h we can construct amap F. A tedious verification
proves the following generalization.

PROPOSITION 6.7: Let F: KxAlg} - L be a simplicial map.
* Then
£ al.b(p'p) = b:ﬁ,ri') if (g, is (p, g)-shuffle
of type I and index r with respect to f;
(ii) al.b(#’v) = h(Emai_r if (4, 1) is a (p, g} -shuffle
of type II and index r with respect to i;
(iii) 9.h = ajh(ﬁ-'m if (g, v) is a(p, ¢) -shuffle of

iT(y)
type 1II with respect to i;
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Gv) s, h(,u vy = b(ﬁ.ﬁ) s;_, if (V) is a(p, 9)-shuffle

and ¢ is the second index of {y,») with respect to i,

- L

P+ q
(p, @ -shuffles and satisfying (ii)- (iv) determines a unique simpli-
cial map F: KxAlgl - L by the first formula of Definition 6.6.

We will need one simple lemma to prove that LX is a Kan

Conversely, a set {b(u'v)} of functions Kp

complex if L is,

LEMMA 6.8: Let L be a Kan complex. Suppose given r+ 1

q-simplices x, ,..., i of L, where r < ¢ and

0 < iy <

Then there exists x ¢ L suchthat ¢, x = x;, , 0 < s <r.
g+ 1 i ig -

<i < q+1 and suppose 6!.8 X;, = 3”_1 x; ., s <t

Proof: Y r= q, the statement is true by the extension con-

dition, and therefore the statement is true for g=0. Assume g > 0 :

and the result holds for ¢° < ¢ and assume r < ¢ and the result
Let v e {0,..., q+1}, v ¢ liy,...,i} and let u
< v,

holds for r* > r.

be maximal such that i1 Define j, = i, if i <,

Jyg1 = Vo and jo= i, if u+l < s < r+1. We wish to find

X, = X such that X!
then an application of the induction hypothesis on r gives the de-
v=1%i, and avxl.a,

u+ 1 < s < r, satisfy the hypothesis, hence induction on g gives

v X, satisfy the hypothesis, for
fr+ 1

sired x. But the (g— 1)-simplices @ , s<u

the desired X,

THEOREM 6.9: If K is a complex and L is a Kan complex, then

LK is a Kan complex.
Proof: Let F,...,F_,, Fk+1’
(g- 1) -simplices of LX, and let lh( )

on the (p, g—1)-shuffles determined by the F,,

. F, be compatible
! be the functions indexed
1 £ k. We will de-

fine functions h indexed on the {p, ¢)-shuffles and satisfying

(1)

indexed onthe

Now suppose that h

. tive to 1, hence 6ih(# )
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(i)- (iv) of Proposition 6.7. It will follow that the corresponding
map F has d,F = F,, i # k. We order all (p, g)-shuffles (q fixed)
by letting an (r, g)-shuffle precede a (p, g)-shuffle if ¢ < p and by
letting & (p, @)-shuffle (4, v) precede a {(p, q)-shuffle (i’ v") if

p; = w; for i < j end #; < ;. We proceed by induction on the
(p, g} -shuffles. The first such shuffle is the unique (o, ¢)~-shufile.

lfyeKo,choosech suchthat&z_h P4k

(0,0-1)7"
This is possible by the extension condition. Define h(o @

is defined for (4’ v") < {y,v).

y=z

(F,’ vl)

Case 1: {y,v) is the first (p, g) -shuffle, so that g = i-1,

1<i<p andy =i+p—1, 1 <1< q (nv) is of type I with

respect to p, and (y,») < (5, %), since #; =i-1 for i < p and

d b(,u V)
all other faces have been except d

y has not yet been defined, but

otk (FV) if k> 1.
degenerate, we may apply the lemma to define &

ﬁp = p. Thusifycf(
If y is non-
(y). ¥ yis
{y).

()
degenerate, we may use (iv) of Proposition 6.7 to define h(# )
s € 11,..., ql.

(5,1} < (1, 1), where (1, 7) is the associated (p, g)-shuffle rela-

Case 2. p = i-1 and v =i, re{l,.,pl,
has not been defined and we may proceed

as in case 1.

Case 3: (u,v) is the last (p, g)-shuffle, so that p, = i+gq-1,
1<i<poandy = i-1, 1 <i< q Soppose alsothat k < gq.
Now d, b, .y = "'(Ifi ), Where (i, 7) is associated with {y, v)
relative to %, and h@. 5
ceed as in the previous cases,

has not been defined. Thus we may pro-

Case 4: Cases 1, 2,3 complete the proof except when k = q. In
this case, we simply reverse the ordering of the (p, g)-shuffles, p

fixed, and proceed exactly as above starting with case 3, continuing
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with case 2 where now g, =1 and v = -1 for some i,r, and s,

and finishing with case 1 where now ap+ qh(p.v)

been defined. Similarly we can prove

will not have

THEOREM 6.10: If L’ is a sub Kan complex of a Kan complex L,
then (L, L)% X’} js a Kan complex.

As we noticed before, these results imply
COROLLARY 6.11: Homotopy is an equivalence relation on maps
into Kan complexes or Kan pairs.

We remark that LX is a functor, covariant in L and contra-
variant in K. The following two properties of this functor will be

needed later.

LEMMA 6.12: Let K, L, and M be complexes. Then we have a
natural transformation of functors p: L¥ x % MX defined by

u(f, @x, v} = glflx, ), ), x e K, ueAln), fe LK, geub.

In particular, KX isa simplicial monoid which operates on LK

from the left and on KT from the right.

LEMMA 6.13: Let K, L, and M be complexes. Then thete exists
a natural equivalence of functors ¢ MEXL . (yK)L

Proof: Given £ KxLxAl[n] » M, we define

Xy, viix, u) = flx, Ty, v),
where
X € Kp, y € Lq, u € A[q]p, v A[n}q
and where
T is the contravariant functor on A* which defines L x Aln].

Thus we are regarding v as an element of Hom(A-‘-,, A q)_— in the cat-

egory A¥ sothat T(u): L xAlnl_ - L x Mn]p. Next, given
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g LxAln} » MX, we define

b B

Hghx, y,v) = gly, vnA), xeK, ye Lo ve A[n]q
It is easy to see that ¢ and ¢ are simplicial maps and are inverse
jsomorphisms.
In particular, ] MEXLy gives an isomorphism of sets
gt Hom(KxL, M) » Hom(L, M¥). Taking L = M, we find that
¢O(f), where £ KxL » L is the projection, is an injection L » LK.

‘Explicitly,
!ﬁo(f)(y)(x, W = §Fla), ye L., xeK, ueAln] .

TR TR AR T e e
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BIBLIOGRAPHICAL NOTES ON CHAPTER |

Simplicial sets were first defined by Eilenberg and Zilber
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[15), who called them complete semi-simplicial complexes. The 4

categorical definition of simplicial objects is due to Kan [33], and CHAPTER II
is also used by Cartan [6). Kan [25] first recognized the possibil-

o FIBRATIONS, POSTNIKOV S
ity of defining the absolute homotopy groups of complexes satisfy- i ’ (TS,

) AND MINIMAL COMPLEXES
ing the extension condition using only the simplicial structure. Our %

definition follows Kan {30]. A slightly different formulation is gwen §7. Kan fibrations

in Moore [52]. The proof that 7 (K, ¢) is Abelian, n > 2, is dueto DEFINITION 7.1: Let p: E 5 B be a simplicial map. p is saidto
Moore [S2]. The treatment of homotopy between maps and the proof be a Kan fibration if for every collection of n+ 1 n-simplices

that LX is a Kan complex if L is, are both essentially as given Xgrerer X Xgep1roor Xy Of E which satisfy the comp a tibility
in Moore [52]. Alternative proofs of the latter fact may be found in ;i  condition d,x, = _1%Xp 1<J, i £k j#k and for every

Cartan [6], Gugenheim [18], and MacLane [41]. Note that this theo- q (n+1)-simplex y of B such that 9,7 = plx), i # k, there exists
rem is the simplicial analog of Milnor’s result [SO0} that if X hasthe, an (n+1)-simplex x of E such that dx = x,, i £k and

homotopy type of a CW-complex and ¥ is compact, then XY has | p(x) = y. E is called the total complex, B the base complex, and
the homotopy type of a CW-complex. In the literature, LX is often & = (E,p, B) is called a fibre space. If % denotes the complex gener-
denoted by Hom (K, L), emphasizing the analogy with category theo-_f;‘% ated by a vertex of B, F = p~X¢) is called the fibre over &,

ry rather than that with topology. If ¢ is the complex generated by a vertex of F, then the sequence

(F,¥) L (E,¢) 2 (B, $)

is called a fibre sequence.

REMARK 7.2: Let E be a complex, # the complex generated by
a point. Then the unique simplicial map E > ¢ is a Kan fibration

if and only if E is a Kan complex.

PROPOSITION 7.3: Let p: E » B be a Kan fibration. Then F is
a Kan complex.

Proof: Suppose Xgreoss Xy 10 Xy prees X, 1 @T€ Compatible

25




24 SIMPLICIAL OBJECTS IN ALGEBRAIC TOPOLOGY

BIBLIOGRAPHICAL NOTES ON CHAPTER [

Simplicial sets were first defined by Eilenberg and Zilber

[15], who called them complete semi-simplicial complexes. The i
categorical definition of simplicial objects is due to Kan [33], and
is also used by Cartan [6]. Kan [25] first recognized the possibil-
ity of defining the absolute homotopy groups of complexes satisfy- 3
ing the extension condition using only the simplicial structure. Our
definition follows Kan [30]. A slightly different formulation is gwen
in Moore [S2]). The proof that 7 (K, ¢) is Abelian, n > 2, is dueto v‘
Moore [52]. The treatment of homotopy between maps and the proof ‘
that LX is a Kan complex if L is, are both essentially as given
in Moore [52]. Alternative proofs of the latter fact may be found in ,4
Cartan [6], Gugenheim [18], and MacLane [41]. Note that this theo-
rem is the simplicial analog of Milnor’s result [50] that if X hasthe:
homotopy type of a CW-complex and Y is compact, then X ¥ has
the homotopy type of a CW-complex. In the literature, LX is often
denoted by Hom (K, L), emphasizing the analogy with category theo—?_:;%_
ry rather than that with topology.

CHAPTER 11

FIBRATIONS, POSTNIKOV SYSTEMS,
AND MINIMAL COMPLEXES

§7. Kan fibrations

DEFINITION 7.1: Let p; E > B be a simplicial map. p is saidto
be a Kan fibration if for every collection of n+1 n-simplices
Xgresr X 19 Xpyqre-vs Xy ©f E which satisfy the comp a tibility
condition a,.xj = diq%p i<, i#k j#k and for every

(n+ D -simplex y of B such that 3,y = plx), i 4 k, there exists
an (n+1)-simplex x of E such that d,x = x;, 14k and

p(x) = y. E is called the total complex, B the base complex, and
(E, p, B) is called a fibre space. If ¢ denotes the complex gener-
ated by a vertex of B, F = p~Y(¢) is called the fibre over Pb.

If ¢ is the complex generated by a vertex of F, then the sequence
F, ) — (E,p) - (B, ¢)

is called a fibre sequence.

REMARK 7.2: Let E be a complex, ¢ the complex generated by

a point. Then the unique simplicial map E - ¢ is a Ken fibration

if and only if E is a Kan complex.

PROPOSITION 7.3: Let p: E » B be a Kan fibration. Then F is
a Kan complex,

Proof: Suppose Xgyroeos Xge_ 10 Xpy 1ree» X, | @re compatible

25
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n-simplices of F. Using our convention that ¢ denotes ambiéudus-
ly any simplex of ¢ C B, plx) = ¢, and, since p is a Kan fibra-
tion, there exists x ¢ E such that d,x = x, i £ &k and

plx) = ¢. Butthen x ¢ F_, |, since by definition F = p~ L)

LEMMA 7.4: ULet p: E » B be a Kan fibration and assume p is

onto. Suppose given r+ 1 g¢-simplices i X of E, where

r

r<gand 0<ig<--<i <q+1 and suppose

i Xi, = d; —1%i, s<t.
Assume further that y ¢ B satisfies d, y = p(x ), 0<s<r,
g+ 1 ig i,
Then there exists x ¢ E such that @, x = ,0<s<,
g+ 1 ig -

and ply) =
The proof of the lemma is identical with that of Lemma 6.8,

of which it is a generalization.

PROPOSITION 7.5: Let p: E - B be a Kan fibration.
(i) If E is 2 Kan complex and p is onto, then B is a
Kan complex.

(ii) If B is a Kan complex, then E is a Kan complex.
Proof: (i) Suppose E is a Kan complex, and let

yovu’ yk—l’ .Vk_,_  ELERE yq+1
be g-simplices of B such that

3l.yj = 6j_ly‘., i<j itk jtk.

Using the lemma, choose x, ¢ E such that plx)) = y, choose
x; € E such that p(x,) = y, and d5x, = Jdyxq and s0 forth,
until Xgoo Xp 10 X g X have been chosen satisfying
p(x) = ¥, i #k and 6ix,, =0 g%, i<j itk jék

Then we-choose x ¢ E such that 6‘l.x = x,;, i £k andwe

q+1
let y = p(x). Obviously 9,y = y,, i# k.

I
-k
<
A
4

i
hrLE A

R

E R L RTTRARY

[k

R it

r e

PGSR LR,

T

FIBRATIONS, POSTNIKOV SYSTEMS, ETC. 27

(ii) Suppose B is a Kan complex, and let
Xgreeos K10 Xpp poeer Xy g
be g-simplices of E such that 6‘I.xj = ai_lxi, 1<j, i&k
j# k Choose y ¢ B, suchthat 9,y = plx), i £ k. Then

we may choose x ¢ E_ , suchthat plx) = y and d,x = x,,

ik

Now let (F,) '+ (E, y) -5 (B, ) be a fibre sequence
of Kan pairs. Regarding p as amap (E,F,y} > (B, ¢, ¢), p in
duces py: ﬂn(E, F,¢) » ﬂn(B, $), Let y e én, n > 1. Since p
X ¥,
1<i<n and pla) = y. dgx ¢ F _,, since pldyx) = 3,y = ¢.
Define ¢ 7 (B, ¢) > 7 (E,F,¢) and dy: 7 (B, ¢}~ #,_(F. )
by qly] = [x] and 3,(y} = [3,x]. It is easily verified that ¢

is a Kan fibration, there exists x ¢ E ., Such that ajx

It

and d, are well defined and are homomorphisms if n > 2. Further

pga=1 apy =1, and the following diagram is commutative:
o T E B ) S o (Fog) s n (B, ) Lo 2 (B, F, )~
|Pa ) l Py
oo, 1(B @) ——#--*rr (F, l,lf)—»fr (E, (fl)'-—" 7 (B, @) »-
Thus we have proven
THEOREM 7.6: Let (F, () » (E, ¢} » (B, ¢) be a fibre sequence

of Kan pairs. Then py ﬂn(E, F,¢) » wn(B, ¢) is an isomorphism

and the following is an exact sequence:
> 7, (B, P2, n (F, )L o (E, ¢) %

Next we define maps and homotopies of maps of fibre spaces.

7,(B, ) +oee

DEFINITION 7.7: Let (E,p, B) and (E’, p’, B”) be fibre spaces.
Amap (f,): (E, p,B)~(E;p’,B’) is acommutative diagram
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E_-—f ,E°

p‘ lp'
B——f ., p’

of simplicial complexes. A homotopy (l-“, F): (f,f) o (é, g) isa

commutative diagram

Exi—% L E’
lpxl ‘|'P'
BxI—E B’

of simplicial complexes, where F: f ~ g and F: f~g. (E pB)
is said to be the same homotopy type as (E’, p’, B") if there exist
(f,)%: (E,p,B) + (E"p,B") and (4,8): (E\p"B") + (Ep,B)
such that (f, f)(g, ¢ =1 and (g, 8)f, £) = 1. A sub-fibre space
(E,p, B) of (E% p% B’) is said to be a deformation retract of

(E% p’, B") if the identity of (E’, p, B”) is homotopic relative to
(E, p, B) toamapof (E,p,B’) onto (E, p, B) which extends the
inclusion map (E,p,B) - (E,p’ B").

Using Lemma 7.4 and the machinery developed to prove
Theorem 6.9, we can prove the following generalization of that
theorem.

THEOREM 7.8: If p: E - B is a Kan fibration, then so is

pK: EX . BK, where K is any complex. If F is the fibre over
é C B, then FX is the fibre over ¢ =¢ .

COROLLARY 7.9: Let (E,p, B} and (E,,p,, B,) be fibre spaces
and suppose that B, is a Kan complex. Then homotepy is an
equivalence relation on maps (E, p, B) - (El' Py Bl).

Proot: Given (f,f), define F(x,2z) = f(x) and

Fly,2) = £(y), x ¢ E,yeB, z¢ fn.

el
&

=

PRI

i s el i b

FIBRATIONS, POSTNIKOV SYSTEMS, ETC. 20
Then (F,F): (£, 1) & (f, ). Now suppose (%, F): (7,f) o (g, )
and (G,G) (f,f) ~ (h K). We must prove (é, 8) = (h, h). BlBis
a Kan complex, hence there exists U ¢ (313)2 such that 6‘1 U=06G
and d,U = F. Let H = doU. Then H: g o~ h. Since
a Kan fibration, there exists V ¢ ('El‘r‘ﬁ2 such that 31 V=036
V-= F_, and plE(V) = Uolpx1). Let H < doV. Then
g=h and p, o H = pIE(H) = Ho(px1) as desired.

To prove the next corollary, we must first tectify a small
omission, '

15

d
H:

DEFINITION 7.10: Two vertices x and ¥ of a complex B are in
the same path component of B, written x ~ ¥, if there exist
1-simplices Zy,..,, 2, such that x is a face of z,, y is aface of
z,, and z, has a face in common with Z;, p Y <I<n,
an equivalence relation on vertices of B, and we define
ﬂo(B) = BO/(N)'
If B is a Kan complex, then obviously 74(B) = wo(B, ¢), where
¢ is any vertex of B.

~ is

COROLLARY 7.11: Let p: E » B be a Kan fibration and let F
and F'/f be the fibres over two vertices ¢ and  of B. Then if
¢ and i are in the same path component of B, Fy and Fy, are of
the same homotopy type.

Proof: p'é: ET% | B™$ is aKan fibration. As shown
in Remarks 6.10, there is an injection B - BF¢, and if we let
K = (pFﬁf’)"I(B) and ¢ = pF¢|K, then g: K - B is a Kan fi-
bration. An element x ¢ K, isamap F¢) x Aln} » E for which

there exists a commutative diagram F(:b x Aln}] 5 E.

L

A[n] ——— B
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In particular, an element of KO is a map from FqS into ancther fi-
bte. Now we may assume that there exists z ¢ B, such that

= ¢ and 95z = ¢. If x € K, is the inclusion FqS » E, then
there exists y ¢ K, such that ¢(y) = z and d;y = x. It follows
that d;, y is a map FqS - ng Similarly, let K" = (p ;/;)"1(8)
q FﬁblK K - B If x% F')b -+ E is the inclusion there ex-
ists y’ ¢ K,” such that q(y") = 2z, 95y’ = x7 and 9,y is a
map sz ~ Fy. Since g: K » B is a Kan fibration, there exists

w ¢ K, such that dyw =y, dyw= ye{dyyx1), and q(w) =

1t follows that q(d,w) = ¢, d,0,w = x, and 3,0,w = 9, y"°d,y.

Since d w(FQSxI] CFy, dyw: 9,57°0d,y =
we may prove that dyy° d, y = 1in F‘:b' and therefore FqS and
F"b are of the same homotopy type.

COROLLARY 7.12: {(Covering Homotopy Property). Let p: E » B
be a Kan fibration and let K be any complex. Let f: K+ E and
f= pOf K - B. Suppose F: KxI » B satisfies 0, F = f.

Then thete exists F: Kx1 - E suchthat po F -

A proof similar to that of Theorem 6.9 also gives

THEOREM 7.13: Let i: K » L be an inclusion of complexes and
let E be a Kan complex. Then E:: EL , EE is a Kan fibration.

COROLLARY 7.14: (Homotopy Extension Theorem). Let K be a
subcomplex of the complex L and let E be a Kan complex. Let
f: L E andlet f = ?|K K » E. Suppose F: KxI » E sat-
isfies d, F = f. Then there exists F: Lx1I - E such that
FIK x! = F and 9, F=1.

Theorems 7.8 and 7.13 are both special cases of a more gen-

eral result, which we now state. -~ —~

1 in FqS Similarly,

Fanda F=f.
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DEFINITION 7.15: A commutative diagram of complexes and maps

is said to be a fibre square if for any ¢+ 1 compatible g-simplices
Xgrooor X 10 Xpeq 17001 ¥ g1 of A and for any y ¢ Bq
z ¢ C,, , suchthat d;y = elx) and &,z = fx), i# k and
g(y) = h(2), there exists x ¢ A 41 suchthat e(x) = y, fx) =

and al.x=x!., i#k

+1 and

THEOREM 7.16: Let p: E » B be a Kan fibration and let i: K » L

be an inclusion of complexes. Then

L
E L P BL
Ef B!
K
EK e BK

is a fibre square,

COROLLARY 7.17: (Covering homotopy extension theorem). Sup-
pose given (f,f}: (L, g,L") » (E, p, B), where g is any map of

complexes and p is 2 Kan fibration. Let K* C L” and
K=gUKkncL

(here K” may be empty). Further, let G: KxI > E and

F: L°x I~ B be given satisfying d,F =1, ¢,G = f|K and

g‘)'OG FO(g|K)K )Then there exists F: Lx 1 - E such that
FIKx!I = G, p°F = Fol(gx1), and 61F - i

§8. Postnikov systems

In this section we define the natural Postnikov systems
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associated with Kan complexes and fibre spaces. The definition of
the k-invariants will be given later, after the concept of twisted

Cartesian product has been developed.

DEFINITIONS 8.1: Let Alg]? denote the n-skeleton of Alg), that
is, the subcomplex generated by all simplices of dimension < n.
Define an equivalence relation £ on g-simplices of a complex K
by x2y if x|Alg}” = 7|Alg)" (where i(&q) = x, )"(Aq) = y).
Noting that x%y implies 0,x%d;y and s,x2s;y, we can define a
complex K by K(;) - Kq/('-'-], where the face and degeneracy
operators are induced from those of K. Note that K(;) = Kq if
n > g, and define K{* = K. Let p denote the natural map of

K™ onto K™, m < n < oo,

—_ —

We will usually write p for g .

PROPOSITION 8.2: Let K be a Kan complex. Then
(@) K is a Kan complex;

(i) pp: K™ L K™ s a Kan fibration.

Proof: (i) follows from Proposition 7.5 and the case n = o
of (i1). Let xg,c0y X, 1s Xy, yreens Xg+1 be compatible g-simplices
of K™ and suppése y ¢ K(q":_)l satisfies 9,y = p(x!.], ik If

(m} _ ; (n)
g < m K;’ = K sothatif z ¢ KOl
i#k Thenifwelet x =2 9,x = x, i# k and p(x) = y.

represents y, 0,z = X,

Thus assume g > m. Suppose first that n = «, Then there exists

ch‘”l

mension < m is also a face of some X x2z if z represents y

such that al.x = x, i # k. Since any face of x of di-

and therefore p(x) = y. Now if n < =, we know that K™ isa
Kan complex, and the same argument applies.

DEFINITION 8.3: Let (K, ) be a Kan pair. Define E_(K, ) to
be a fibre over ¢ of p: K » K1) Thus E (K, ¢) is the sub-

complex of K consisting of those simplices of K all of whose faces

2
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-of dimension less than n are at ¢. E (K, $) is called the nth

“Eilenberg subcomplex of K based at $.

I.%'-"I;HEOREM 8.4: Let (K,¢) be a Kan pair. Then

@ pa: 7 KD, ¢) =, 5 JK™, 8) for q < m;

(i) ﬂq(K(m), $) = 0 for g> m;
Gif) i n (E, (KD, ), )= 7 (K™, ) for g > m;
(V) n (B, (K™, $),¢) = 0 for g < m and for q > n.

Proof: E_ 1(.'{("), cﬁ)q = ¢ if ¢ < m. This proves part

“of (iv) and the homotopy exact sequence of the fibze space

&KW, p, K™) then gives (i). Suppose x ¢ a ¢ nrq(K('“), #), g> m
By definition, d.x = ¢ for all i and, again by definition, this im-
plies that ¢ is a representative for x. Therefore a = 0, and (ii) is
proven. Using the homotopy exact sequence, (ii) implies (iii). The
last part of (iv) now follows.

The special cases n = ~ and n = m+1 are of particular
importance.

DEFINITION 8.5: If K is a Kan complex, let X” denote

p, K™). The sequence of fibre spaces X = (X0,.. X7 )
is called the natural Postnikov system of K. We let F(n+ (X)) de-
note the fibre E, | K+, ) of the fibre space X™.

DEFINITION 8.6: If (K,d) is a connected Kén pair such that for
some n > 0, frn(K,¢>] =7 and rrq(K,qS] =0 if g#£ n, then K is
said to be an Eilenberg-MacLane complex of type (z, o).

The fundamental property of the natural Postnikov system

is given by the following corollary of Theorem 8.4.

COROLLARY 8.7: Let (K, ¢) be aKan pair, X its natural Postnje
kov system. Then FUXX) is an Eilenberg-MacLane complex of
type (v (K, ¢),n), n > L.
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Now we generalize the constructions above to fibre sequen- " COROLLARY 8.11: Fia)e) - F(")(X), where X is the natural

' ' i i, P, .
ces. For the remainder of this section, (F, ) (E, y) (B, ¢) " postnikov system of the fibre F, and therefore F(X€) is an

. - : . . . . ,‘
will be a fibre sequence of connected Kan pairs. We will define the * Eilenberg-MacLane complex of type (”n(F’ 9, ), n 5 1.

natuzal Postnikov system of the fibre space (E, p, B). :
. REMARK 8.12: The important part of the homotopy exact sequence
n

DEFINITIONS 8.8: Define an equivalence relation = on q-simplice; of €™ is the following:
of E by x 2 y if ¥|Alg]" = 7 |Algl” and p(x) = p(y). Define a

o

§ 0~ Ta g BT 9) o 7oy 2 EY) - Ty 1 FOTINE), )
complex E(™ by E(;) = E q'/('3), where the face and degeneracy

£

;

N (n+1
operators are induced from those of E, and let E¢*) = E. Let P LAY ) - ”n+1(E(n)' ¥) - 0.

denote the natural map of E() onto E™, m < a < =, and write p . This is essentially just the exact sequence

for p". Note that if E, = v, then E® = B, since x 2y if £
m 0 g 0~ Pg(ffn_i_z(E:\b‘))-’ﬂn+2(B,¢)*ﬂn+l(F,¢)-‘)ﬂn*_l(E’s[;)

(E,y)) » 0.

e

p{x) = p(yh

> el g

PropPosiTION 8.8: Under the above hypotheses

T A L PR T

(i) E™ is a Kan complex;
(i) p: EY 5 B is a Kan fibration;
(iii) pt: E™ - E(™ is a Kan fibration.

§9. Minimal complexes

QEFINITION 9.1: A Kan complex K is said to be minimal if

d;x = aiy, i £ k, implies akx = aky'
THEOREM 8.9: Under the above hypotheses

(i) the fibre over ¢ of p: E(M 5 B is F™, the nth

total space in the natural Postnikov system for the

LEMMA 9.2: A Kan complex K is minimal if and only if x ~ y

implies x = y,

fibre F; _ Proof: (i) Suppose K is minimal and x ~ y, x,y ¢ K,
(ii) the fibre over ¢ of pr;l: E® , pm) o Then there exists z ¢ KQ+1 such that 6‘.2 = sq_la,. x, i <gq
Em+1(F(n)"’(’)" 9,z =x and 94,12 = y. Now d;5,% = $,19;% i<gq and

(iii) pe: ﬂq(E("), W= B @) for g > n+;
(iv) ps: ﬂrq(E("), l,!r)-g-—b nq(E(m), ¥) for g < m and for

qg>n+l.

6‘qsqx = x. By assumption, this implies aqHz = Ogy Sq%
thatis, y = x.

(ii) Suppose x ~ y implies x = y. Let d;x = 9,3,

T R e R SR NS AN B R T R M e P AT T AT

Hitk x,yeK_ .. Wemustprove d,x = & d it suffi
R s 1 ¥, and it suffices
DEFINITION 8.10: Let E" denote (E™*1), p, E®™). The sequence] o k k

. _ [} n . 4 ;;’.
of fibre spaces £ = (g”,...,€",...) is called the natural Postmkovg; exists 7 ¢ K sich the d,z = s % i<q idk
system of (E, p, B). Let F(n+ 1)) denote the fibre of £7. b1 -

to prove 6kx ~ 6k ¥, By the extension condition, if k¥ < g there

5 6q+12 = x, and 6Q+2z = y. Then 9, z: akxn'&ky. If k=g,

X
£
k3
ki
1
i
iy
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there exists z ¢ K such that d.z = sq_lal. x, 1 <gq,

q+2

. dpholx) = x and 3,k (x) « Mo, and let Ao{x) = spx if x « H,.
aqz = x, and aq_._lz = y. Then 6Q+2z. dQ+1x Naq_'_ly.

(ii) Assume h, has been defined on K, 0<g°<gq, and

LEMMA 9.3: Let K be a complex. Suppose x,y ¢ Kq satisfy let X € KQ‘ If x is degenerate, say x = $¥ define _

9;x = d;y, all ,and x = s 2z y=s w. Then x = y. hx) = thi—l(y) if j<i-1and h;(x)=3j+1f?;(y) ifj>i-1,

Proof: f m=n, z=0,x=8,y=w and x=y As i checking that if x = s, z is also true, the two resulting definitions
sume m<n z=9d_x=4d_s,w=s,_,0 w hence 3 agree. If x ¢ Mq, let bi(x) = s,%. Otherwise, let hy(x) be a
x=ss _,0.w==ss 0 w. § (g+1)-simplex satisfying dy By (x) = x and 9, hy(x) = hold, , x) if

Thus Sp, 6mw = 6nx = any = w, and, finally, x = s, W = ¥ : i > 1. There exists such a simplex by the extension condition.

Now if K is a Kan complex, we define a minimal subcomple
(iii) Assume h, has been defined on Ky 0<i<j<yg,

of K as follows. Choose a vertex in each component of K. These w
% andlet x ¢ Kq be non-degenerate, x ¢ M. By the extension con-

vertices are the elements of M, Suppose M_- has been defined, 3 .
q %  dition, we can choose h}.(x) satisfying 9,4 (x) = h,_1(0;%) for

te - nd 1

i<j, 9;hix) = 9;h,_,(x), and aihj(x) =h9,_ %) for i> j+l.

(iv) It remazins to define hq(x], where x ¢ K, is non-

0 < ¢’ < q@. Consider the homotopy classes of g-simplices all of
whose faces are in Mq_l, and choose one ¢-simplex in each such

class, choosing a degenerate representative whenever possible.
degenerate and x ¢ M . Choose y ¢ K q+1 Such that

These ¢-simplices are the elements of Mq. By Lemma 9.3, M is a
subcomplex of K. We will prove thet ¥ is a retract of K, and sinc afy = hq~1(ar‘ x), i<g,

any retract of a Kan complex is clearly a Kan complex, it will follo and

9, y=09 b (.

from Lemma 9.2 that M is a minimal complex. g g-1

Now if i < g, 6i6q+1y= a1

008 . .y = Oghg 10 ) e M,

d_h (aix)fM ,+ and
DEFINITION 9.4: A deformation retract K of a complex L is said -

to be a strong deformation retractof L if some homotopy F: L x [ - I q q+1
defining K as a deformation retract satisfies F(x,y) = x, x ¢ Kq, - Therefore there exists a unique z ¢ Mq such that z ~ 6Q+ 1¥- By
all q. . the extension condition, there exists w ¢ Kq+2 . such that
THEOREM 9.5: M is a strong deformation retract of K. - d,w = SQ+13,-}', 0<i<yqg,

Proof: We will define h, satisfying the conditions of Defini-:. and
tion 5.1, with 9 ho(x) = x, and @, b (x) € M_ for x ¢ K and Oge1W = Sgpp2

Wlth hi(X) = SI.X fOI' X ¢ Mq- Define hq(X) = aq+2 w, lt fOllOWS that ajbq(X) = ai)’, 0 S. l' S. q
() X x ¢ K, let hy(x) be a 1-simplex satisfying and 3q+1bq(x) = Z¢ Mq as desired.
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LEMMA 9.6: Let f~ g L » M, where M is a minimal complex.
If f is an isomorphism, then so is g.
Proof: Let h: L » M be the given homotopy.

(i) Suppose g(x) = g(y), x,¥y ¢ L,. We must prove that
qr 1) = 8x) = g3 = dgp 1B . 1 g=0,
then by the minimality of M  f{x) = 9 ho(x) = dy bo(y) = £y},
hence x = y, Assume the result for ¢°< g, ¢ > 0. Then
a,.x = 6!.y. If i < q,

a,.bq(x) = hq_l(a]. x)=h_

= y. Now @

9,9 = 8,.hq{y).

By the minimality of M, &k (x) = d.h (y). Now

athq_l( x) = alflq_l( ); i# g-1,

hence

6q_l bq_l(x) = 0

Iterating, we find f(x) = 9,k (x) = J,hy(y) = £(y), and therefore

1 NS/

X=%Y.
(ii) Let y ¢ M,. We must find x ¢ L such that &x) = y.

If g = 0, there exists z ¢ M, suchthat d,z = y. Let x satisfy
f(x) = dygz. Iyhy(x) = f(x) = -

&(x) = 9, hy(x) =3,z =y.

60 z, hence

Assume the result for ¢" < g, ¢ > 0. Let x, ¢ .‘[.q_1 be the unique

element satisfying g(xl.) = 31. ¥. Choose Zg€ MQ+1 such that

_1{x), i < q. By induction on g—j,

6‘Q+lzq-—- y and a.z = h
we may choose z; ¢ M +1 such that 9,z 1__1(3:1.) if F < j,
6'“_12j = a“l 41 and a,.zj. = bj(x‘._l if 1> j+1. Nowlet

x ¢ L satisfy Hx) = dyz,. U 1> 0,

£3,x) = 3,8,2, = ¥, 120 = Ighylx) = £x),

and f(aox) = 850,25 = 059,2; = 9,9,2, = Boho(xo) = !(xo).
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' Therefore d,x = x, for all i, Now g, ho(x) = a‘z , 1 # 1, hence

9 %) = 9, 2. Similarly, we find 9;h(x) = 9,z forall i and

j
6q+ 1hq(x) = 6%1 q= )f’ as desired.

‘PROPOSITION 9.7: Let £ M » M’ be a homotopy equivalence,

‘where M and M’ are minimal complexes. Then f is an isomor-

phism.
Proof: Let g M’ » M satisfy {§ o~

1 and ¢f ~1. By

the lemma, f¢ and gf are isomorphisms, hence so are & and f (al-
':-,:though £ need not be £~1),

.:_;'THEOREM 9.8: Any two minimal complexes which are deformation

_:_Z"-=i§etracts of 2 Kan complex K ate isomorphic.

Proof: Let M and M’ be two such complexes with retrac-

itions r: K » M and t% K > M” andlet #+ M K and i% M'CK.

Since it =~ 1 and it~ 1 on K, (r?ed) >~ ¢%5" = 1 on M’ and

AriNe’D = ri = 1 on M, hence the result follows from the proposi-

ztion.

CONVENTION 9.9: From now on, when we speak of a minimal sub-

“domplex of a Kan complex K, we mean one which is a strong defor-

‘mation retract of K.

We now discuss briefly a more general concept than that of

minimal complex which applies to the relative case.

ijFINITIONS 5.10: A sub Kan complex M of a Kan complex K is
said to be admissible if for every x ¢ K such that @, x ¢ M -1
for all i, there exists y ¢ M such that x~y H(KL, @) is a
Kan triple, an admissible subcomplex M of K is said to be rela-

tively admissible if (;S C M and M N L s an admxssxble subcom-

' plex of L.



40 SIMPLICIAL OBJECTS IN ALGEBRAIC TOPOLOGY FIBRATIONS, POSTNIKOV SYSTEMS, ETC. 41

DEFINITION 10.4: Let p: E 5 B be a map. If x,y ¢ E , we say
) H : q

.-that x is p-homotopic to y, written x (,.{’_,) ¥, if x ~ y and there
‘exists z ¢ E_, | such that 20 x ~ y and plz) = s gPO).

THEOREM 9.11: Let (K, L, ¢) be a Kan triple and let M be a rela-
tively admissible subcomplex of K. Then (M,M N L, ¢) is astrong
deformation retract of (K, L, ).

The proof is essentially the same as that of Theotem 9.5. LEMMA 10.5: If p: E 5 B is a Kan fibration, then (‘f‘) is an

‘equivalence relation on the g-simplices of E.

REMARKS 9.12: A Kan triple (K, L, ¢) is said to be n-connected if

=rri(,{{, L, QS) = 0, 1 < i < n The nth relative Eilenberg subcomplex ‘r,g LEMMA 10.6: A Xan fibration p: E 5 B is minimal if and only if
E (K,L,$) of K is defined by x ¢ E_(K, L, ¢>]q if and only if ’% . ¥ ® y implies x = y.

7|Alql® = $1AlQ)° and Image(X|Alg)"~Y) C L. If (K, L, ) is 3 Now if p: E » B is a Kan fibration, we can define a sub-

n-connected, then E__ (K,L, &) is relatively admissible. ?@ complex E’ of E by a procedure precisely parallel to the construc-

tion of a minimal subcomplex of a Kan complex, the only difference

§10. Minimal fibrations ‘being that the relation of p-homotopy rather than that of homotopy

In this section, we outline the construction of minimal sub is used.

fibrations of Kan fibrations. % __LEMM A10.7: p E’> B is a Kan fibation,
DEFINITIONS 10.1: A Kan fibration p: E » B is said to be mini- ‘5 | It follows immediately from Lemma 10.6 that p: E"> B is
mal if p(x) = p(y) and 3 x = 9,5, i # k implies g x = J y. If é‘minimal fibration.
p is minimal and B is a minimal complex, then (E, p, B) is said to } _DEFINITION 10.8: A deformation retract (E’, p, B*) of a fibre space
be a minimal fibre space. (E, p, B) is said to be a strong deformation retract if some homotopy
LEMMA 10.2: Let p: E » B be a Kan fibration. Then if p is min- ! ‘(F F) defining (E", p, B’} as a deformation retract satisfies
imal, each fibre of p is a minimal complex. , ' -
Flx, D =x, xe¢ E* ¥ € Iq’ all g,

LEMMA 10.3: Let (E, p, B} be a fibre space. Then if E is a mini- % and
mal complex and p is onto, {E, p, B) is a minimal fibre space.

Proof: Clearly p iz a minimal fibration. We must prove that Floy) = % x ¢ Bq” yel, allg.
B is a minimal complex, Suppose x,¥ ¢ Bq and z: x ~y, Let THEOREM 10.9: (E", p,B) isa strong deformation retract of

= p(w). Since p is a Kan fibration, there exists u ¢ E_ _, such (E, p, B).

that d,u = S g d,w, i<gq, aqu = w, and plu) = z. Now More generally, we can prove
u; 6‘ o ~8q+ L 4 hence since E is minimal, 6 u=4d 1 . THEOREM 10.10: Let p: E 5 B be 2 Kan fibration and let B” be
p(é‘q s1W =95, ,z=y and pld u) = plw) = x, and therefore a strong deformation retzact of B. Then there exists E’ ¢ p-1(8")

X =y - Suchthat p” E”~ B’ is a minimal fibration, and (E’, p’, B*) isa
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strong deformation retract of {(E, p, B).

COROLLARY 10.11: Let (E, p, B) be a fibre space of Kan com-
plexes. Then there exists a minimal fibre space (E’, p’, B”) which

is a strong deformation retract of (E, p, B).

LEMMA 10.12: Suppose given a strong homotopy
(f,1) ~(g,1: (E,p,B) » (E,p, B),

where p is 2 minimal fibration. Then if { is an isomorphism, so
is &.

PROPOSITION 10.13: Let (f, D: (E%p,B) » (E,p,B) bea
strong homotopy equivalence, where p and p’ are minimal fibra-

tions. Then f is an isomorphism.

THEOREM 10.14: Any two minimal fibrations with base complex B
which are stsong deformation retzacts of a given fibre space (E, p, B)
are strongly isomorphic (in the sense that the isomorphism on B is

the identity).

.,F.;"Eé?i"‘

e

LEMMA 10.15: Let (f,f) =~ ~ (g,8): (E,p,B") - (E, p, B), where

(E, p, B) is @ minimal fibre space. Then if (f,f) is an 1somorphxsm
50 is (g, 8).
PROPOSITION 10.16: Let (f,f): (E%p’ B") » (E, p, B) be a ho-

motopy equivalence, where (E’, p’, B*) and (E, p, B) are minimal

T R (TR T

fibre spaces. Then (f,f) is an isomorphism.

THEOREM 10.17: Any two minimal fibsre spaces which are deforma- & &

tion retzacts of a given fibre space of Kan complexes are 1somorph1c;§
L

5
b

CONVENTIONS 10.12: By a minimal sub fibration p: E"» B of a
Kan fibration p: E » B we will understand one such that (E’, p, B) %

is a strong deformation retract of (E, p, B). Similarly, a minimal sub;

Gl S
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fibre space (E’, p’, B") of a fibte space (E, p, B) of Kan complexes

will mean one which is a strong deformation retract.

. §11. Fibre products and fibre bundles

In this section we define fibre products and begin the study

fibre bundles. In particular, we will prove that every minimal fi-
jon is a fibre bundle,

*INITION 11.1: Let p: E > B and £ A 5 B be maps. De-

Ef = {(e,a)|ple) = fla)} C ExA and let p': Ef 5 A and

tative diagram
.
Js
A

1% called the fibre product of p and f.

p’ is called the map in-
dilced from p by f.

The following lemma results immediately from the definition.

LEMMA 11.2: i p is a Kan fibration, so is p'r If p is 2 minimal
ﬁhratxon, S0 is p .

If p is 2 Kan fibration, then (E/ p’, 4) is called the fibre
: space induced from (E, p, B) by f. Fibre products satisfy the fol-

lowing universal property.

PROPOSITION 11.3: Let

E‘f.__ &

|

BI

I

! B

2 be a commutative diagram. Then there exists a unique map
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h: E*» Ef suchthat ¢ = fo k and p" = pf o h.

Proof: 'The result is obvious: we must define

hle”) = (ge),p(e)).

PROPOSITION 11.4: Let (g, f: (E%,p,B") » (E, p, B) be a map
of fibre spaces. Suppose that p” is onto and that for 5" ¢ B’
élp ~1{p°) is a one-to-one correspondenCe onto p~ 5. The

the map h: E’ » Ef such that &=

isomorphism.

Proof: Define j: Ef -+ E’ as follows. Suppose (e, b”) ¢ EF.;.-;

such that p’{x) = " Then

pg(x) = £(b") = ple).
By assumption, there exists a unique ¢” ¢ E ‘;
and p(e”) = p(x) = " Define jle,b") = &".
and hoj= 1

Next we show that homotopic maps induce fibre spaces of

Choose any x ¢ Eq

such that gle’) =
Then joh=1

the same homotopy type.

PROPOSITION 11.5: Let p: E - B be a Kan fibration and let
{ ~ 4§ A - B, Then there exists a strong homotopy equivalence
between (Ef, pf, A) and (EE, p&, A).

Proof: Let F: AxI -» B be the given homotopy and let
(E*, p*, Ax1) denote the fibre space induced by F. Identify Ef
with p*~1(4x(0) C E* andlet x: Ef C E*. Uentify E%

with p*_l(A = {1 C E* and let x* E&C E*. For notational sim-

{
plicity, let g: K » L denote the Kan fibration (p*)E : (E*)Ef» (Ax I)l_-

and form g% K-> L’ using E® instead of E!, Now pfx1 e L,

and al(pfx 1) = ¢(x), hence there exists y ¢ K, such that.

gly) =

larly, there exists y” ¢ K] such that §(y) = péx 1 and

fibration, there exists z ¢ K, such that g(z)

' ‘gontained in E! and pfowle k) = ple),

foh and p’=pl oh is an

_. Smce FxB = E/ and El =

pfx1 and d,y = x. Then d,y is amap Ef 5 E&. Simi-
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#

303" = x". d,y isamap E% - Ef, Again, since ¢ is a Kan

= So(pfx D, dz=y
and Blz = y'°(60y>< 1). Let w = 622. Then

60w =x and d,w = Bly'O dy¥ .
q(w) = s49,(p'x 1) = $p a{x) and therefore the image of w is
€ € qur k € [q. “us

~w gives a strong homotopy d, y“o dyy =~1 in E!. Similarly, we

may obtain a strong homotopy g,y ° 0,7 =1 in E¥, and this

-implies the result. .

COROLLARY 11.6: Let p: E » B be a minimal fibration and let

“fox g: A > B. Then there exists a strong isomorphism between
(E!, pf, A) and (E%, p% A).
Proof: This follows from Lemma 11.2, Proposition 10.13,

:and the result above.

:_'CbROLLARY 11.7: Let (F,y) » (E, ) » (B, @) be a fibre se-
__._-quence and suppose that B is contractible. Then there is a strong

_.homotopy equivalence {(g,1): (E,p, B) » (FxB, p* B) where
"‘(f b) =

b. If p is minimal, (g, 1) is a strong isomorphism.
Proof: ¥ j: B -+ ¢, then by assumption 1 >~j B -+ B,
E, the result follows.

At this point, we are ready to define fibre bundles.

DEFINITION 11.8: Amap p: E » B is called a fibre bundle if

p_is onto and if for every map ¥: Ala] - B,
b, b :
p’: E® 5 Aln] is strongly isomorphic to p*:

where p*(f, k) =

the induced map

Fxﬂ[ﬂ] d ﬁ[ﬂ]y
k and where F is a given complex called the
fibre of the bundle. If F is a Kan complex, then p: E - B is
called a Kan fibre bundle.
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LEMMA 11.9: A Kan fibre bundle is a Kan fibration,
Proof: Let Xgroons X be g+1 compatible

. Let

k=l Xep 10 Xgen
g-simplices of E and suppose d,b=x,, itk be B‘”1

a(b): F x Alg+1) > EP be a strong isomorphism, say
a(b)(yl., BI.Aq_‘_ g = (x;, 6}6._” 1) .
There exists y ¢ FQ+1 such that d,y = y,;, 1 4 k, and if
a(b)(y,Aq+ 1) = (X,A ) 3

g+l
then p(x) = b and J,x = x;, i £ k.

LEMMA 11.10: A[a] is contractible for all n.
Proof: Define h (A } = s,A h{A_ } = spl,,, and
b‘.(An) =S8 ;" soal 3;..15.,’ Then if

jt Aln) - (0) C Aln), it is easily verified that & 1 = j.

1<r§n.

THEOREM 11.11: Every minimal fibration with a connected base
complex is a Kan fibre bundle.

Proof: Let p: E > B be the given minimal fibration and let
5: Alnl » B. By Lemmas 11.2 and 11.10, p?_’.__ is minimal and Aln)

T =
is contractible, hence by Corollary 11.7 (EP, p®, Alnl) is strongly

isomorphic to a product (F, x Aln], p* Alal). b is homotopic to a
map ¢: Aln) » B,where ¢ is a vertex of B, and thus by Corollary

11.6 (FyxAlnl, p*, Aln]) is strongly isomorphic to (F¢x Alnl, p* A[n
Now FqS is the fibre over ¢ and since, by Corollary 7.11, any two fi-

bres are isomorphic, the result follows.

COROLLARY 11.12: Every Kan fibration with a connected base

complex contains a Kan fibre bundle as a strong deformation retract.

§12. Weak homotopy type

ter to find sufficient conditions for Kan complexes and Kan fibra-

tions to be of the same homotopy type.
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We note first the following corollary of Lemma 10.3.

LEMMA 12.1: If K is a minimal complex, then each (K™ p K(m))

is a minimal fibre space.
Since a connected minimal complex K has only oné vertex
¢, we will denote ﬂq(K, $) by :rrq(K).

LEMMA 12.2: Let K be a connected minimal complex. Comsider
the fibre space (K, p, K{9"1), ¢> 1. I 5 ¢ K(9~D) 1
—_ q r

H, = Ixiplx) = b},

that is, if x ¢ H , then y ¢ H, if and only if dy = d.x for all 1,
Then the homotopy classes of elements of H p @te in one to one
correspondence with the elements of # (K)
Proof: By Lemma 12.1 and Theorem 11.1, p: K » K(=1)
is a Kan fibre bundle . Let ¢ denote the vertex of K{3-1),
fine b and &: Algl » K{%1) in the obvious way. Then
(Eb,p ,Algl) is strongly isomorphic to (E (K)xA[q] p*, Alal).
where E (K) is the g-th Eilenberg subcomplex of K. Therefore
the sets of homotopy classes of elements of

f(x,Aq)|x ¢ H,}cC ED
and of elements of {(y, AJly e H¢l CE (K)xA[q] are in one-to-
one correspondence. Noting that H b = E (K) , the latter set is
’T(E (K)) = {K). Since the former set is that of homotopy classes
of elements of H,

De-

, the result is proven.

DEFINITION 12.3: Amap f: K - L is called a2 weak {or singu-
lar) h i if fu:

ar) homotopy equivalence if f,: 7 (K, $) ~ 7 (L, f(¢)) is an iso-
morphism for all q.

i THE . i
In this section we will use the earlier material of this chap- @ OREM 12.4: Let K and L be connected minimal complexes.

Then-a weak homotopy equivalence f: K - L - is an isomorphism.
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Proof: Let (K1) p K™y and (L 1 p’% L) be
the n-th terms in the natural Postnikov systems for K and L. By

hence by minimality J f("){x) = 6 ¥. Now since e (L& 2 o it
follows from Lemma 12 2 that f(")(x) = y.

A R
Gl e
R e

Lemma 12.1, both of these are minimal fibre spaces. Since

Kq = Ké") if g <am,

it suffices to prove that £ g L L) g an isomorphism for

The following theorem is an immediate corollary. _

"

THEOREM 12.5: Let K and L be connected Kan complexes. Then
;hg following conditions aze equivalent.

A, '( -.‘,_{‘”!éx_»f:ﬁ:: 255
\-; H

all n. £O: KO_=_, L js clear, so assume that (i} K and L have the same homotopy type

fln=1), Ko=-1D_=_, L=~ o> 0. % (i) There exists a weak homotopy equivalence f: K - L.
Consider the commutative diagram aﬁ%; (iif) K and L have isomorphic minimal subcomplexes.
4
K A L z;;:‘ Now we outline the parallel development for Kan fibrations.
r p’ 8 MMA 12.6: Let p: E - B be a minimal fibzation, where E, B,
go=1 f("_l)_._ [ (n=1) the fibre F are connected Kan complexes. Then each of the

m
() Suppose f™Xx) = fMy), x,y ¢ K(q")- We must K_S.m fibrations pt BT > B and p% E® + E is minimal.

prove that x = y. F™=Dp(x) = 0~ p(3), hence p(x) = pl5).

S

Proof: Let u,v ¢ Eq represent X, ¥ ¢ Eg’). Suppose

This implies x = y if g < n~1. Suppose ¢ = n. Then by Lem- d;x =9 o 14k and p(x) = p(y).

ma 12.2, the homotopy classes [x] and [y] can be taken to be ele-
ments of nn(K) = %(K(")), hence by naturality f,[x] = f,[y].

Since f, is an isomorphism, this implies [x] = [y], thatis, x ~y

e

‘I'hg latter implies p(u) = p{v). If ¢ < n+1, d;x = 9,y implies
diu-= d,v and, by the minimality of p, deu=29.v. f ¢g>n+l,
Jc?kx = g, d, ¥ implies 6‘ u = akv on A[q—l]", hence

5;‘! = aky

i

Then by minimality x = y. Assume the result for ¢" < ¢ ¢ > n. 3
Then d,x = d;y forall i and since nq(K(")) = 0, x = y follows
from Lemma 12.2, Gt
(ii) Let y ¢ L(g)‘ We must find x ¢ K(;‘) such that
FM(x) = y. If ¢ < n—1, the result is obvious. Suppose ¢ = n.

DEFIN!TION 12.7. A map (f £): (E',p,B") > (E, p, B) of fibre

spaces of Kan complexes is called a weak homotopy equivalence if

it induces an isomorphism of the homotopy exact sequence of

(E%,p%, B’) onto that of (E, p, B).

[y] can be taken to be an element of # (L) = nn(L("))- Since f, H ’
[HEOREM 12.8: ini i

is an isomorphism, there exists x ¢ K,, such that filx} = [.V]~ B Let (£ P\ B7) and £ P, B) be minimal fibre

g " spaces of i i
B o ) o honce FO) = 5. Now assume the resalt for ; paces of connected Kan complexes with connected fibres. Then a
© weak homotopy equivalence (f,f): (E” ,p B’ > (E p, B) is an

g <q gq>n. Let f(")(x‘.) = aiy. By the extension condition,
isomorphism.

there exists x ¢ K(") such that é)x =x, i<gq Then
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THEOREM 12.9: Let (E,p’ B") and (E, p, B) be fibre spaces of

‘Let C(K, L) = C(K)/C(L), so that H (C(K,L)) = H (K, L).
connected Kan complexes with connected fibres. Then the follow-

A7) = 0, where ¥ denotes the image of y in C (K, L), and we
.,define h: ﬂ'n(K; L, 15) - HH(K; L) by fl(ﬂ) = 1)’;. The maps A are
. called the Hurewicz homomorphisms. )

ing are equivalent:

L LAy Ly

() (E%p’,B’) and (E,p, B) have the same homotopytype
(ii) There exists a weak homotopy equivalence

s S LEMMA 13.3. The maps h are well-defined and are homomorphi
(f,f)»: (E,p°"B’) > (E,p B) § rphisms

‘ Of:_- groups.
Proof: We give the proof for the absolute case, that for the

(iii) (E’, p, B’) and (E, p, B) have isomorphic minimal

sub-fibre spaces. relatlve case being similar. Suppose x,y ¢ IE and z: x ~ y.

en Kz} = (-1)*x—y), hence b is well-defined. Suppose next
hat.x, ¥ represent a, B ¢ n{K,$) and w e K, , satisfies

é 0<i<an-1, d,_,w=x and d, +1W = ¥ sothat
(6 wl. Hw) = (—1)"+l(x-6nw+y) and therefore

MaB) = Ha) + K(B).

£13. The Hurewicz theorems

In this section, we obtain some of the classical results co :

paring homotopy groups with homology groups. Throughout this sec

tion, homology means homology with integer coefficients. |
PROPOSITION 13.1: Let K be a complex. Then H (K} = F(r (K} n

: PROPOSITION 13.4: The Hurewicz homOmOrphlsmS define natural

the free Abelian group generated by #,(K).
Qtransformations of functors. If (K, L, ) is a Kan triple, then the

Proof: The map K - KO/(~) of sets induces an epimor-

Ly
1
phism CO(K) = ZO(K) = F(K)~ F (‘.‘TO(K)), Clearly if x,y ¢« K, & ﬁl’o .omng is a commutative diagram of exact sequences:

then x ~ y if and only if there exists a 1-chain w such that v, (K L, &) 6‘_’ (L, $) l-’ 7K, $) L, 7K, L, ¢} »--
Xw) = x—y. This implies the result. B ‘h Jb A
From now on, we consider the reduced homology groups 3
- - - | il i - i
H (K) = H (C(K) of apair (K@), Here C(K) = CRV/Clg). §~ B KD “-HW - EK ToHK L s

Clearly ﬁn (K) = H, (K), n> 0, and I}O(K) has one less free gen-%
erator than H(K). %J’roof The result is clear from the definitions, recalling that

g 4 (K, L) -~ H(L) is defined by 3{¥ } = {9(y) Z (K, L
DEFINITIONS 13.2: Let (K, L, $) be a Kan triple. Suppose x “—*é i ’ by e HlL

presents a ¢ 7 (K, ¢), and consider x as a cycle of C (K). De- g“mEOREM 13.5 (Poincaré): Let (K, $) be a connected Kan pair.
fine h: rrn(K, qb) - Hn(K) by h{a) = {x}, where {x} denotes the homolmm‘e" the map A" Wl(K 96)/[”1“( &b}, ﬂ'l(K $)] - H, (K) induced by

&

gy class of x. Similaily, suppose y represents £ ¢’ (K, L, &). §A‘l is an isomorphism.--— - -

E4

Qe
i

i
x
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Proof: We may assume K = E_(K,d). Then
y 1\K, ¢ The hypothesis that f is an inclusion can be eliminated in the

) C,(K) = Z,(K) = FIK, ~¢). é “following result, but some technical work, or use of geometric realiza-
Let j: Z,(K) - 7 (K)/lw (K), 7 (K)] be the natural epimorphism ¥ “tion, is required since the natural simplicial mapping cylinder of a
induced from K, » K, /(~). If x ¢ éz(K), then ma.p of Kan complexes need not itself be a Kan complex,

Hx) = 6‘0x—6'1x+32x

and by definition of the group structure in #,(K), jo{x) = 0. Thus;
j induces j* H](K) > NI(K)/[‘HI(K), wl(K)]. Clearly joh’ = 1 r:‘é

A

and h'ej" = 1, and this completes the proof.

THEOREM 13.6 (Hurewicz): Let (K, ¢} be an (n— 1)-connected K

pair, n > 2. Then H{K} = 0, 0 < i< n~1, and &k wf(K)ﬂ-'H()gé‘t

Proof: We may assume K = E_ (K, ¢). Then K has only one sim- 'ff

EOREM 13.9 (Whitehead): Let f: K — L be an inclusion of 1-con-
ted Kan complexes and let n > 2 be an integer. Then the fol-
Jq':'owing are equivalent:

@) Le nfK, @) > 7L, {($)) is an isomorphism for

1 < n and an epimorphism for i = n.

plex in each dimension < n, hence H (K) =0, 0<ig<n-1 and:f§
C (K) = ZN(K) F(K_-¢). K - K /(~) induces a natural epif"

morphism j: Z-n (K) » 7, (K). As in the proof above, it suffices t

(i) te H(K) -» H(L) is an isomorphism for i < n and

prove jd{x) = 0, x ¢ K If n = 2, this follows immediately

nt+1’

from step (iii) of the proof of Proposition 4.4 on page 11; if n > 2, [ an epimorphism for i = n,

a tedious but essentially similar computation gives the result, Proof: Since we have assumed that f 1s an inclusion, this

follows immediately from the th
COROLLARY 13.7: If K is a 1-connected Kan complex and : d corem above.

H(K) = 0 forall i>0,

then K is contractible.

Similarly, we can prove

THEOREM 13.8: Let (K, L, #) be a Kan triple, where K and L are
l-connected Kan complexes. Then (K, L, ¢) is (n— 1)}-connected if
and only if Hf(K, L)=0, 0< i< n-1, and in that case

b (K, L&) > H (K, L)

is an isomorphism.
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BIBLIOGRAPHICAL NOTES ON CHAPTER I
_ The concept of simplicial fibre space is due to Kan [25],
[30]. Complete proofs of Theorems 7.8, 7.13 and 7.16 may be found
in Cartan (6], in Gugenheim [18], in Kan [33], and in MacLane [41].
The original definition of Postnikov systems is of course CHAPTER 1l

b

that of Postnikov [54]. An alterative semi-simplicial treatment is
that of Heller [21). We have followed Moore [52],[53). The fibre

spaces (X, p, K“) are the simplicial analogs of ‘‘construction I’
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. The realization

of Cartan and Serre [4]. The Eilenberg subcomplexes of the total Throughout this chapter, A, will denote the topological

An = {(tor-"; tﬂ)l 0 S l‘i S ]., 2 t[. = :” C Rn+1_ we de-
Eilenberg-MacLane complexes were introduced and studied in the 3 maps 3'.: A _1° An and a; A o A by:
o Toon f -

singular complex of a space were defined by Eilenberg in [10].

series of papers [13]. & oo bpg) = (e, Oty t ),
The construction of the minimal subcomplex of the total sin- 3 =
Ui(to"' 'n+ 1) = (tO’ ) t +1,

gular complex of a space is due to Eilenberg and Zilber [15). Our i+ tn+1)

treatment is essentially that of Moore [52], [53). The theorem that
every minimal fibration is a Kan fibre bundle is due to Barratt,
3iq ailun__q, where Up_q € A,

Gugenheim, and Moore [1]. The equivalence of weak homotopy type f% ;
i < < i < n

_q is an interior point and

and homotopy type for Kan complexes is of course the analog of a

I

Now let K be a complex. Give K the discrete topology

theorem due to Whitehead [62] on CW-complexes. w
E; and form the disjoint union ¥ = U

n>0 Ky xA ). Define an equiv-

alénce relation =~ in K by:

(a k ;u ) = (k 5,
and o i%n- 1) k" ¢ Kn’ oy ¢ An—l’

(S k un+1) = (k 01"n+1) kn ¢ Kn’ Yae1 € A

The identification space T(K) = K /(=) is called the geometric

reﬁhzatxon of K. The class of (k,» u ) in T(K) will be denoted by
) < qugu |. £ K-S L isa s:mphc;al map, then f induces the con-
: 55
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BIBLIOGRAPHICAL NOTES ON CHAPTER II

The concept of simplicial fibre space is due to Kan [25],
[30]. Complete proofs of Theorems 7.8, 7.13 and 7.16 may be found
in Cartan [6), in Gugenheim [18)], in Kan [33], and in MacLane [41].

The original definition of Postnikov systems is of course _ CHAPTER [II
that of Postnikov [54]. An alternative semi-simplicial treatment is
that of Heller [21]. We have followed Moore [52},153). The fibre
spaces (K, p, K{"?} are the simplicial analogs of “‘construction II’!
of Cartan and Serre [4]. The Eilenberg subcomplexes of the total
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§14, The realization

Throughout this chapter, A » Will denote the topological
_._mplex. A, = l(to,..., t o< £, <L, 3¢t = 1} C R We de-
maps 8 A, > A and o A > A by

singular complex of a space were defined by Eilenberg in [10].
Eilenberg-MacLane complexes were introduced and studied in the

series of papers [13]. 8,(t,,..., thq) = (tgeees t_ 0t t

¥ n-1

) [l
The construction of the minimal subcomplex of the total sin- &

a'i(ro”"’ tn+ 1) = (fo,..., fl- + ¢

gular complex of a space is due to Eilenberg and Zilber [15]. Our i+ 1 tpgy)

treatment is essentially that of Moore [52], [53]. The theorem that

every minimal fibration is a Kan fibre bundle is due to Barratt, e that every u, ¢ A can be uniquely expressed in the form
; w8 Ynq’ where Q€ A

. int of ﬁn iz called interior if n = 0 orif 0 < t; <1 forall i

Gugenheim, and Moore [11. The equivalence of weak homotopy type n—q 1S 80 iatetior point and

and homotopy type for Kan complexes is of course the analog of a < < I s o

Now let K be a complex. Give K the discrete topology

theorem due to Whitehead [62] on CW-complexes. =
g atld form the disjoint union K = U

; and n>0(Knx,An). Define an equiv-
= alénce relation =~ in K by:

0,k 0, _|) = (k,8,u, 1), ke Ko, u €A

o> v n -
% and "~
é (Sl kn’ un+1) =~ (k 19 t"rz-!-.'n) kﬂ ¢ Kn’ Upp € ﬁn

B

& The identification space T(K) = K/(=) is called the geometric
 redlization of K. The class of (k,, 4 } in T(K) will be denoted by
| -4 | If ££ K » L is a.simplicial map, then f induces the con-
55




_egory of simplicial sets to that of topological spaces.

56 SIMPLICIAL OBJECTS IN ALGEBRAIC TOPOLOGY

tinuous map T(f): T(K) » T(L) defined by
Tk, v, ] = |{lk), u,].

It is clear that T thus defined is a covariant functor from the cat- '

We will prove that T(K) is actually a CW-complex. We re-

call the definition. A cell complex X is a Hausdorff space which

is the disjoint union of open cells e” subject to the requirement
that for each cell e?, if 8" denotes the closure of e" and An

the boundary of An, then there exists a map I An - &% such

that fi(A - An) is a homeomorphism onto " and f(An) is con- @

tained in the union of the cells of dimension less than n. A sub-

complex ¥ of X is a union of cells of X such that " C ¥ im-

plies 8" C Y. A cell complex is closure finite if each &" is com;

tained in a finite subcomplex and has the weak topology if a subs
is closed provided its intersection with each " is closed. A cl
sure finite cell complex with the weak topology is called a CW-

complex.

THEOREM 14.1: T(K) is a CW-complex having one a-cell foreac
non-degenerate n-simplex of K,
A point (k, u.) of K is said to be non-degenerate if

n
will follow immediately from the following lemma.

LEMMA 14.2: Every point (k , un) ¢ K is equivalent to a unique .

non-degenerate point.
Proof: By formula (3) on page 4, every k, ¢ K, can be

uniquely expressed in the form k, = s}.p -8 kn_p, where

kn_p ¢ Kn__p is non-degenerate and 0 < j; << ip < n. The ir

dices j which occur are precisely those such that k¢ s; K, _,-

k¢ K  is non-degenerate and u ¢ A, is interior. The theorem

" GEOMETRIC REALIZATION 87

pefine A K » K by

Mé,,u) = (k -
n? Un (n__p,ah....ajpun), k, Sip‘"silkn—p'

| kn_p non-degenerate, 0 < J << jp <n.
';";':Similarly, define p: K + K by
k, = (2,
plk, un) (311...3%&", u, _
4 _q interior, 0<i, <. ¢ fq < n.

The composition Abp carries each point into an equivalent non-
-dégenerate point. Uniqueness follows since x ~ x°
)Lop(x) Aop(x”).

' Next we prove that, under mild hypotheses,
T(KxL) = TK)x T{L) .

Let v KxL - K and #": KxL 5 L be the projections and de-
fme 7 NKxL) > TK) x T(L) by 5 = T x T=").

implies

.;THEOREM 14.3: 90 TKxL) > T(K)x T(L} is one-to-one and op-
::Eo. If T(K)x T(L) is a CW-complex, then n is a homeomorphism.

Proof: If z ¢ T(Kx L) has non-degenerate representative

( %0 W), then T(a)(2) = |k, w,| has non-degenerate represen-
tatwe Mk, w.) and T(az'¥z2) = ¢, w,,| Was non-degenerate repre-
sentative Ml ,w,), where X is as defined in the proof of Lemma

14.2. We define an inverse function 7: T(K)x T(L) » T(KxL) as
follows. Let (x, y} ¢ T(K) x T(L), where x and ¥ have non-degen-
erate representatives (k,, u_) and Epvy) I a =

vy = (5,00 t]), define
m

um = éot! and Vn = E ¢’

or-e ta) al'ld

Let fg << r, = 1 be the sequence obtained by arranging the dis-

tinct elements of {a™} U {v"] in order of magnitude, and define
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t/ = —n_p0sice 1= 0. Clearly 0 < ¢ <1 and
o
ifo t'=1,=1,
hence w, = (tJ7..., ¢/ ) is an interior poiat of A _. Let i, <---<i___

be those integers i such that r, ¢ {u™] and let j;<--<j__, be

those integers j such that r, ¢ tv"}. Then {i } and {jﬂ] are dis

e

joint, u, = 0; w.op W, and v, = 0 0y Ve Define b
&

ﬁ(x, y) = ‘(Sfc_ "Sl"lka) x (sjc_b".sjlkb)’ Wcl . %

Clearly 3
T ) = IMs; oo sy kW)l = ligug) = x i

and T(z")j{x,y) = y, sothat non =L Taking z as above, ’i"
’

Finally, we observe that 7 is continuous on each product cell of ‘{
T(K) x T(L) and, if T(K) x T(L) is a CW-complex, this implies %
that 7 is continuous, hence that  is a homeomorphism. %
ﬂi"

REMARK 14.4: The proof above parallels that for simplicial com- &%
plexes given in [14, p. €8]. The hypothesis that T(K) x T(L) isa &

b
ok

R

CW-complex holds if K and L are both countable [47, p. 272) or if

£

either T(K) or T(L) is locally finite (i.e., every point is an inner %
point of a finite subcomplex) [62, p. 227]. e

¥
COROLLARY 14.5: A simplicial homotopy F: KxI » L induces é
a topological homotopy T(F) o 7j: T(K)xT() » T(L). &
COROLLARY 14.6: If K is a countable simplicial monoid, group, _'g

or Abelian group, then -T(K) is a topological monoid, group, or. Abel-

A5

ian group.

Y A S e
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'$15. Adjoint functors

In this section, we define adjoint functors and develop a
few of their properties.

DEFINITION 15.1: Let 7: @ > 8 and §: $ + & be covariant
“.f}‘mctors. We say that S and T are adjoint, or that T is an ad-
'joint of $ and § a coadjoint of 7, if there exists a natural equiva-

IFnCe of functors ¢: Homg (4, S(B)) -» Ho:nfB (T (A), B) (where
each side is considered as a functor @ x B €, € the category
of sets).
We notice first the following
LEMMA 15.2; Let S: B+ @ and 7: @ > B be covariant functors.
Then
(i) The correspondence between natural transformations
¢ Hom@ (4, 5(B)) - Homa (T (A), B) and ®: TS - 1@ obtained by
lett_mg ¢ correspond to ¢ if ®(B) = QS(IS(B)) and
#(f) = 4(B) o T(H)
for f e Homp (4, S(B)) is one-to-one.
(ii) The correspondence between natural transformations
128 Homg (T (4), B) » Hom (4, S(B)) and ¥: 13 » ST obtained
by letting i cormrespond to ¥ if W(4) = l,b(l.r(A)) and
Yl(g) = S(g) o W(A)
for g ¢ Homg (T(4), B) is one-to-one.
PROPOSITION 15.3: Let ¢ Homg (4, S(B)) - Homg (7(A), B)
correspond to @: TS » 1g. Let
yr: Homg (T(A), B) + Hom (4, S(B))
COrreSpond to Y 1q » ST. Then -
¥s StD

() yo¢ = 1 if and only if § =" STS 22, § is the
identity natural transformation of $ into §.
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the identity natural transformation of T into T.

TV oT
(ii) poyy =1 ifandonlyif T -+ TST T is

Proof: We prove (i), the proof of (ii) being similar. Let
f ¢ Hom@ (4, S(B)). The following diagram is commutative:
i o pli)
1
T(A) _S.Ls S(B)

I w(a)
A

S(B) Ys(B) ., STS(B)

f l ST(f )
SB(B)

It follows immediately that SP(B) o ¥S(B) = lgg, implies
op(f) = { and, taking f = 1S(B)’ that i o (f) = { implies
SP(B) o ¥S(B) = 1gp,.

THEOREM 15.4: Let S, 5% B+ @ and T, T @ - B beco-
variant functors. Let ¢: Homg (4, S(B)) » Homg (T(A), B) be a

:"‘_"
s
=

natural equivalence with inverse ¢ and let ;

ThE
i

¢ Homz(4,S"(B)) + Homg (T (4), B)

be a natural equivalence with inverse ", Suppose that 7z T"

(resp. o S » §7) is a natural transformation. Then there exists az
r »

unigque natural transformation o: S + S’ (resp. = T’ T) such

that the following is a commutative diagram:
Homg, (T(4), B)—2%— Hom@ (4, S(BY

® lﬂomg (+(4), B) Homg (4, o (B)

Homg (T (4), B) -, Homg (4, $°(B))

If r (resp. o) is a natural equivalence, then so is o (resp. 7).

=
e

éir‘ 1 and
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Proof: Given f ¢ Homa (4, S(B)), the commutativity of the
:-dlagram (*) is seen to imply o(B) ¢ f = ¢ (H(f) 0 7(4)). In particu-

--:"-"E_lar: taking A = S(B) and f = IS(B), we must have

® a(B) = (¢ sgy °7S(B) = ¢ (®(B) o rS(B)).

hus given 7,0 must be defined by (i), It is easily verified that o

defined is a natural transformation. Similarly, for
& ¢ Homq (T (4), B),

the commutativity of the diagram (*) implies

-

gor(d) = ¢’(0(B) oh(g)) .

Taklng B = T(‘A) and § = ]'T(A)’ we must have
Iiﬁ""":(“) (d) = ¢ 0T ogh (11 4 ) = o T(4) o W(A)) .

Gwen o, r must be defined by (ii) and naturality is easily verified.

: 'I‘he last statement follows from the uniqueness: if r hag inverse

, then if ¢~ is induced from 7! , 00 and 0’0 are induced from
~17, hence oo’ and o’c are both indentities.

Note that the previous theorem implies that any two adjointg

-_:;:.of a functor § are naturally equivalent and any two coadjoints of a

"-':_functor T are naturally equivalent.

§16. Comparison of simplicial sets and topological spaces

Let & denote the category of simplicial sets and I that of
topological spaces. We claim that the realization functor T- 8- 7J
is adjoint to the total singular complex functor 8: 5 4 §. Thus de-
fine o: Homg (K, $(X)) » Homg (7' (K), X) and

i Home (T(K), X) - Homg (K, S (X))
by



62 SIMPLICIAL OBJECTS IN ALGEBRAIC TOPOLOGY

(W) ¢k, | = £k Na);
@ @& Na) = glk,,ul.
It is easily verified that ¢ o4y = 1 and y© ¢ = 1. The come-

sponding natural transformations ®: TS 1 and b & 15 - 8T

are given by

@ Wk, v = & (u);

@ PENkNa) = |k, q|.

Note that ¥(K): K » ST(K) is an inclusion of complexes and
®(X): TS(X) » X is a surjection of spaces. By Proposition 15.3,
we find

(5) (SPoTSHX): S(X) » S(X) is the identity map;

(6) (®T o TWNK): T(K) > T(K) is the identity map.

We claim further that ¢. and  preserve homotopies. If

fexg: K » S(X) and if F: KxI > S(X) defines the homotopy, then
by Corollary 14.5, T(F). T(f) = T(g). Since ¢(F)=®S(X) o T(F), ;

we find H(F): &(f) == ¢p{g). Similarly, if f =~ g T(K) -+ X and
F: T(K)x T() > X defines the homotopy, then S(F): S(f) = S(&).
Since ¢ (F) = S(F) o ¥(K), we find @ (F): ¢{f) =y (g). Summa-

rizing, we have the

THEOREM 16.1: The natural equivalences ¢ and i define §
and T as adjoint functors. ¢ and ¢ induce one-to-one corre-
spondences between the homotopy classes of simplicial mapé
K > S(X) and of continuous maps T(K) - X. In particular,
m (X, xg) = 7, (S(X), S(xo)).

Now we consider the maps of the homology and homotopy

gro-ups induced by the natural transformations @ and V.

GEOMETRIC REALIZA TION

PROPOSITION 16.2: Let K be a complex, X a space. Then

@ Yy HoK) » H(STKD) = HUTK)) is an iso.
morphism;

() My HLTSX) - H{X) is an isomorphis;n.

Proof: (i) Let D(K) C C(K) denote the chain subcomplex
. ."_;Eenerated by all the degenerate simplices of K. We will prove
1 lgter that Cp(K) = C(K)/D(K) is chain homotopic to C(K). If K@) ge-
"notes the n-skeleton of K, then the inclusions g(®) C Kk ...
.:i'uce a filtration of Cy K). The resulting spectral sequence
e:rlc:::l;‘}:e;gzséoqZ*(g{)anznd;lahmes E;, q= Hp+q(K(p)’ K=,

, po

T A is the free Abellan group gen-
5 erated by the non-degenerate p-simplices of K. Therefore

2
Ep.

| = B, = BK).
Again, T(K™) = T(RY™, and the inclusions
ST (K@) ¢ sT(k®) ¢ ...

give rise to a spectral sequence {E'} which converges to

o

’i" BT d satisfies F1 ~

| T (K)) and satisfies Ep’ . qu(r(K(p))’ TEE-1)) Now
g the homology of a CW-complex can be computed from the cellular
? structure, that is, from the subcomplex of the total singular com-

plex generated by the attaching maps,

: o1 and it follows that the map
El + E 1

induced by ¥(K) is an isomorphism. Therefore the
- spectral sequences are mapped isomorphically,

- B2
HK) = E S

as was to be proven.

and

—

2
E2 o = BT,

iR SR

(i) Ho(TS(X)) = HSTS(X)) and Hy(X) = H(SX). By
(i), 'El’S(X)* H?_(SX) - _I:'_,,?_(SI‘S(X)) is an isomorphism. Since y
SPcds): S - S{X) is the identity,

the result follows,
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LEMMA 16.3: Let (K, $) be a Kan pair. Then
WK) s 7 (K, $) » 7,(STK), ST(B)) =  {T(K), T())

is an isomorphism.

Proof: We may assume that K is connected and minimal,
Then (K, ¢) is a group with one generator for each non-degener- 4
ate 1-simplex and one relation for each non-degenerate 2-simplex.
T(K) is a CW-complex with one O-cell and therefore ”I(T(K)’ (o))
is a group with one generator for each 1-cell and one relation for 3

each 2-cell. The result follows.

DEFINITIONS 16.4: Let K be a Kan complex having just one ver-
tex ¢, and let 7 = rrl(K, ¢). Define a complex K by Ig,‘ = Knx T

with face and degeneracy operators defined on f(n by i -

{i) 6i(x, a) = (a,.x, a, i<an, %
an(x, a = (an X, [83“1 x]"% a), where 53"1 denotes .
60 iterated n—1 times, and

(ii) sl.(x, a) = (s'. x, a).

v e e

It is easily verified that K is a Kan complex and that the projec-
tion p: K > K is a Kan fibration. The fibre F over ¢ satisfies
n(F,$) =0, n>0 and n(F,$) = m where ¢=(p,¢e), ethe
identity of 7. If x represents a ¢ rrl(K &), then choosing (x, B}
such that 4 (x, B8) = :;b that is, such that [x]™ IB = e, we find that %
Ha) = [d4(x, B)] = U, @] € o (F, QS). Therefore

d: nl(K, é) -+ 7ol\Fs q;)
is an isomorphism. By the homotopy exact sequence, K is

1-connected and satisfies ﬁn(!‘é, J)) £ rrn(K, $é), n> 1 K is

called the universal covering complex of K.

‘and trivially W(F)g: o (F, ) =
¥ induces a map of the homotopy exact sequence of the Kan fibra-
tion p to that of the Kan fibration $T(p). and the result follows.
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REMARKS 16.5: Recall that amap p: X » ¥ of topological

.+ spaces is called a Serre fibration if p has the covering homotopy
; . property for polyhedra and that this is true if and only if p has
K ‘this property for each A,

It is easily seen that p is a Serre fibra-

__{j:'-._txon if and only if §(p) is a Kan fibration. Further, if p: K » L
;s a Kan fibration, then it follows from Corollary 7.12 that T{(p) is
f:}_'é quasi fibration; J. C. Moore (unpublished) has proven that if p is

minimal, then T(p) is a Serre fibration.

;:-:-THEOREM 16.6: Let (K, ¢) be a Kan pair and let X be a topolog-

:_"u:al space with base point X . Then

G) YKy wrn(K, qb) > ﬂn(ST(K),ST(qS)) is anisomorphism
for all n, hence ¥(K) is a homotopy equivalence.

() X} 7 (TSX), TS(xy)) + m (X, x,) is an isomor-
phism for all n, hence ®(X) is a homotopy equive-
lence if X is a CW-complex.

Proof: (i) We may assume that K is connected and minimal,

ib.;Let K be the universal covering complex of K, p: rE + K the pro-
-jection, and F the fibre over ¢. Observe that p is minimal. By

‘Lemma 16.3, Proposition 16.2, and Theorem 13.9

YKy 7 (K, &) = u (STK),ST(F)

7, (ST (F), ST((;E)). By naturality,

(ii) This follows from (i) and the fact that
(S o ¥SHX): S(X) - $(X)

is the identity.

Finally, we extend the definition of homotopy groups to the

category of simplicial sets.
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DEFINITION 16.7: Let (K, $) be a pair. Then we define

n, (K, &) = 7 (ST(K), ST(¢)),

and similarly for the relative groups.

BIBLIOGRAPHICAL NOTES ON CHAPTER III

The construction of the geometrical realization and the deri-
vation of its properties presented here is due to Milnor [48].

The concept of adjoint functor and the results of section 15

are due to Kan [26]. In [28], Kan has developed a procedure for as-

sociating to a complex K a Kan complex E° K in such a manner

that T(EK) has the same homotopy and homology groups as T(K). ;

This gives an alternative, and self-contained, procedure for extend-

ing the definition of homotopy groups to the category of simplicial

sets. Ancther possible definition, also due to Kan, will be present- :

ed in Chapter VI,

The CW-hypothesis in Theorem 14.3 and the countability
hypothesis in Corollary 14.6 can be eliminated by working in the
category of compactly generated spaces.

aE e R

CHAPTER IV

TWISTED CARTESIAN PRODUCTS
AND FIBRE BUNDLES

The concept of twisted Cartesian product will dominaie the
) terial to be presented in the next three chapters. We will intro-
uce this notion after obtaining certain special properties of sim-

_i'icial groups. Then we shall use the notion to study the classifi-
ation of fibre bundles.

17. .Simplicial groups.,

Recall that a simplicial group, or group complex, & is a
ntravariant functor from A* to the category of groups. Thus
ach G, is a group and the face and degeneracy operators are
omomorphisms. We let e, denote the identity of G, and e the

‘complex consisting of all of the e,,.

THEOREM 17.1: Every group complex G is a Kan complex.

Proof: Suppose xg,...,%X4_,, Xpgrs--

s Xgyq € G, satisfy
0ix; =0, _yx;, i<j, i,jZk We must find x ¢ G 41 such that
dix=x;, i £k We first find u ¢ Ga+r such that d,u=x, if
i<k. ¥ k=0, this condition is vacuous. Assume k> 0. We will
find u" suchthat 9, u"=x,;, i<r. Let u’= SoXp; proceeding
inductively, suppose, u*™' has been defined, 0<r < k=1. Let
y = s,((a;u'-'f):'x,_)- ‘and o' = gty A-simple calculation
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DEFINITION 16.7: Let (K, ) be a pair. Then we define

7 (K, ¢) = = (ST(K), ST(#)),

and similarly for the relative groups.

BIBLIOGRAPHICAL NOTES ON CHAPTER Il

The construction of the geometrical realization and the deri- :

vation of its properties presented here is due to Milnor 148].

The concept of adjoint functor and the results of section 15

are due to Kan [26]. In [28], Kan has developed a procedure for as-

sociating to a complex K a Kan complex E° K in such a manner

that T(EK) has the same homotopy and homology groups as T(K). :

This gives an alternative, and self-contained, procedure for extend-
ing the definition of homotopy groups to the category of sicmplicial
sets. Another possible definition, also due to Kan, will be present-
ed in Chapter VL.

The CW-hypothesis in Theorem 14.3 and the countability

hypothesis in Corollary 14.6 can be eliminated by working in the
category of compactly generated spaces.

CHAPTER 1V

TWISTED CARTESIAN PRODUCTS
AND FIBRE BUNDLES

The concept of twisted Cartesian product will dominaie the
terial to be presented in the next three chapters. We will intro-
duce this notion after obtaining certain special properties of sim-

cial groups. Then we shall use the notion to study the classifi-
ion of fibre bundles.

17. _Simplicial groups.

Recall that a simplicial group, or group complex, G is a
. gontravariant functor from A* to the category of groups. Thus
each G, is a group and the face and degeneracy operators are
omomorphisms. We let e, denote the identity of G, and e the

“complex consisting of all of the e,,.
;._THEOREM 17.1: Every group complex G is a Kan complex.

Proof: Suppose xg, cess Xg 15 Xpp1s s

s X gy € G, satisfy
0;X;=0;_1x;, i<j, i,j £k Wemustfind x Gy, such that
d;x =x;, i4k Wefirst find veG,qy suchthat d,u=x; if
i<k If k=0, this condition is vacuous, Assume k> 0. We will
find u" suchthat d,u"=x,, i< r. Let u®=s¢xy; proceeding
inductively, suppose. u"~' has been defined, 0 <r< k—1. Let
¥ =50, H %) and e =Yyt A simple calculation
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1= e, if i <r. It follows that d,u” = x, if i 5_;, (i) Image d,, ;: 6q+1 » anKer % 6q“’ §q—1' ¢>0.

k-1

proves that d, ¥y

as desgired, and we let u = v ", Next we find v' ¢ G 0+ 1 such

(iii) 8Q+1(6q+1) is a normal subgroup of G-q and of G,

that d,v" = x, if i <korif i > g-r+1l. Let v = uor v°=eq1:

Proof: Let x ¢ G__,. Then G041 X = 3,9, = ey

. _ —_ : r—1 i . .
if k = 0. Proceeding inductively, suppose v™~* has been defined 0 < i < g and this proves (i) and (if). Let z ¢ G, and define

r=-1 _ r—1y=1
0<r< q—Icl+1. 1Let z -sq_1r+1((6q_r+2v L PR W= sqz°x'sqz"1‘ dw =e, for i <gq, hence w ¢ §q+1, and
o pl=t e, F=lze if f<korif i> q— - . .
and vi = vi=l 2 Then 9,2 e if i<korif i> g-r+2 W= 23, %2 1. This proves (iii).

r » - a . * -
It follows that d,v" = x, if i < k orif i > g—r+1, as desired. Now G is a (not necessarily Abelian) chain complex with

. . - ya—k+1 : - ; -
Finally, letting x = v , we find d,x = x,, i# k. "' respect to the last face operator. Define w;(G) = Hq(G). Then

If G is a group complex or a Kan monoid complex, we denote:

“ we find
ﬂn(G, e) by ﬂn(G).

PROPOSITION 17.4: n (G) = n{G) for all g.

PROPOSITION 17.2: Let G be a Kan monoid complex and suppose . =
- Proof: Gq = ZqG , hence if x ¢ Gq, X represents an ele-

x,y¢ G, thatis, d,x = e, ;= d,y for all i. Then [xlly]=[xyl. & - ,
) i g—1 i # ' ment of nq(G). If x,y ¢ Gq and z: x ~ y, then sqx‘l-z € G'qﬂ

Proof: Let z = s, (x- sqy. Then g,z = eqp I < G’-lré_ .:;_"' and &Q+1(sqx‘1-z) = x~ly, sothat x and y represent the same

d 12 =% 5qz = xy, and aq+12 = y. The result follows from element of fr;(G). Using Proposition 17.2, it follows that there is
the definition of the group structure. © a natural epimirphism of groups i: # &8 > 72(G). Suppose

PROPOSITION 17.3: Let G be a Kan monoid complex. Then rrq(G £ < i[x] = 0. Then there exists z ¢ €q+15“0h that 9,412 = X, hence

z e, ~x and [x] = 0 in nq(G). This completes the proof.

is Abelian, ¢ > 1.

Proof: Let w = SgX S, 1Y KY€ Gq' Then as“' = eq-lfﬁl

1< g-1, 3q_1w =y, 6qw = xy, and 6‘q_|_1w = x. Therefore

PROPOSITION 17.5: A group complex G is minimal if and

. only if (?q+1: Gq+

1™ G'q is zero for all q.
g Proof: Suppose G is minimal and x ¢ 5q+1. Then

[y)[x] = [xyl. Since [xy] = [xl[y] by the previous proposition, the

result follows, .
. o gx = e, =4de, .. i<g
There is a useful alternative definition of the homotopy 1 1 -

and therefore 6‘q_‘_1 X = 8q_|_1 €q+1 = 4- Conversely, suppose

&q“: 5‘“1 - 64; is zero for all g and let x, y ¢ Gq+1 satisfy

groups of a group complex, which we now develop.

PROPOSITION 17.3: Let G be a group complex and define (?!.x = 3y, i# k Oberve that 0‘,(xy"'1) - ey itk X
P Gy = Gy NKerdy N~ NKerd,_, . o k=grl etz < xy™1. I k< g and g—k is even, let
| I Thes . 2 = (g0 3™ Ns o1 9 yx 1) - (s, 8y~ My ).
| (i) 3Q+1(G'q+ 0 c G'q, g>0.
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If k< q and g—k is odd, let
z= (sqak xy"ll(sq_l6kyx'l)'--(skﬁkyx"l)(xy"l) .

q
By assumption, d,, ,z = e , SO that d, x = J y, as wasto be

proven.

- : - -1
In all cases, dz = e, i< q+l, and g 2 = g (xy~").

The result above states that a group complex G is minimal

if and only if the corresponding chain complex G is minimal.

§18. Principal fibrations and twisted Cartesian products.
We will first define principal fibrations and then twisted
Cartesian products. It will turn out that the former concept is a

special case of the latter.

DEFINITIONS 18.1: A group complex G is said to operate from
the left on a complex E if there exists a simplicial map
¢: Gx E » E such that q&(eq,x) = x and

38, ey, ) = Hd 6y .
We will denote (g, x) by gx. G is said to operate effectively if
gx = x forall x ¢ E, implies g = €, G is said to operate
principally if gx = x for any one x ¢ Eq implies g = e, Note
that G operates principally on itself from both the left and the
right. If G operates principally from the right on E, then we de-
fine a quotient complex B of E by identifying x and x£ for all
Xe€ Eq and g ¢ Gq. The map p: E » B is called a principal

fibration with base B and structural group G.

LEMMA 18.2: Any principal fibration is a Kan fibration.
Proof: Let p: E - B be a principal fibration with group

G. Suppose Xopeoos Xy 10 Xpp1roms Xgy1 € Eq satisfy

Lot e S R AR e AR R B DSt e s
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é}l.xj = E’}-IXE' f<j’ f.rf # k:

- and beB satisfies 3, b = plx),

I £ k. Then if

oy = b oy E i1r dy = x,6; for some g;¢G, itk

Ifi<ij i,j#k wehave

-.. (?‘.(xjgj) = 94y =d_ydy= t?j_l(xl,gi) .

_._.'Since 6}1}. = <3j_1xl, and G acts principally, &l.gj = d_,§;

nd therefore there exists g ¢ Gq_‘_1 such that 8 = &, i# k
‘Let x = yg~'. Then dx = x

“gired.

;o Ak and p(x) = b, asde-

> ._i)EFIN'ITIONS 18.3: Let F and B be complexes and G a group
- complex which operates on F from the left. A twisted Cartesian
product, or T C P, with fibre F, base B, and gronp G is a com-
-plex, denoted by either F x, B or E(r), which satisfies

E(r}, = F x B,
and has face and degeneracy operators
) d(6b) = (3L9,b), i>0;
(1) 9yl B = (r(B}-35f, 9y 8), 7(b) ¢ G;
(i) s, (68 = (s, 4 s;B), i>0;

+ G

T: Bq a1

is called the twisting function. The requirement

. that E(r) be a complex is equivalent to the following identities on

r:

9y 7(8) = [r(d, B~ 7(9, b)
3,7(B) = 100, B, i>0
s;7{B) = r{s, B}, i>0
b ¢ Bq.

(M

r(so b) = éq'

- If F = G, then E(r) is called a principal TC P, or PT C P,

The term T C P will also stand for the projection p: E(r) » B,
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PROPOSITION 18.4: Let p: E(s}) » B bea T C P with group G

and suppose the fibre F is a Kan complex. Then:
(i) p is a Kan fibration;
(ii) p is minimal if and only if F is a minimal complex;
(iii)

Proof: (i) Suppose Xg,... Xy_q, Xy, preers Xgyq € E(r)q

if F = G, p is a principal fibration.

satisfy d,x, = i1 %0 F<j fj#k and b B, satisfies
db = plx), i#k If x; = (£,b,), wehave db = b, i+# k.
If & = 0, then the f!. are clearly compatible, and we may choose
fe Fq+1 such that d,f = f,, i #£ 0. If k > 0, then it is easily
and the f,, >0,

verified that [r(»)~11. fy i # k, are com-

-1
patible, and we may choose f ¢ F__, such that dyf = [r(B)~1- £,

and 9 f = f, i>0, i# k Inbothcases x = (f, b) satisfies
dx = x;, i#k and p(x) = b, as desired.

(i) If ¢ is any vertex of B, then f » (£, ¢) defines an
isomorphism of F with the fibre over ¢. Therefore if p is mini-
mal, F is a minimal complex by Lemma 10.2. Conversely, sup-
pose F is minimal and let x = (£, 3) and x’= {7 5b") satisfy
dx = dx, i#k and p(x) = p(x’). Then b= b" and
g1 = df" if i #k hence g .f = g, f" I follows that

6kx = akx "
as desired.

(iii) Since F = G, G operates on the right of E{(r) via
(g,,b)g, = (g, 4,,b). Clearly B may be identified with the quo-
tient complex of E{(r) obtained by identifying x and xg, and the

result follows.

Now we wish to obtain a converse to (iii) of the proposition.

We need a preliminary result.
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DEFINITION 18.5: Let p: E » B be a simplicial map. A pseudo-
cross section of p is a function o: B 5 E satisfying po = 1,
acr = a(?

if i>0, and s;0 =os, if i 0. Ifaooa:o&o,

then @ is called a cross section. Observe that any PT C P has

the canonical pseudo-cross section o defined by o{p) = (e, ),

'b ¢ B . and that o and the twisting function r are related by

90 (B) = 0(3, b)- 7(8).

LEMMA 18.6: Let p: E » B be a Kan fibration, where p is onto,

Let B C B and suppose 0”; B’ > p"l(B ) is a pseudo-cross

section (B” may be empty). Then there exists at least one pseudo-
cross section o: B » E such that o|B’ = ¢,

Proof: If b ¢ By, let o(b) be any element x ¢ E, such

that p(x) = b, choosing o"(h} if b ¢ B;. Now suppose o has

been defined on each Bq_, g<nandn>0. Let b ¢ B . I
be By, define 6(b) = 0’(b). Assume b ¢ B’. If b is degener-
ate, say b = s,y, define a(8) = s;0(). If b = s;z is also true,
hen it is easily verified that s;a(y) = sjar(z). Finally, suppose b
s non-degenerate. There exists x ¢ E
,x = 0(d, b} for i > 0. Let o(b) =
Lo (b) = o(d, b},

TOSS section.

o Suchthat p(x) = § and

x. Clearly po(#) = x and
i > 0, and this procedure does define a pseudo-

Together with the preceding lemma and Lemma 18.2, the fol-
lowing proposition implies that every principal fibration is a PT C P.

PROPOSITION 18.7: A principal fibration p: E » B with group G
- and pseudo-cross section ¢ may be identified with the PT cCP
p: E{r) » B with group G and twisting function determined by the
formula 9,0(b) = o (3, b} 7(b).

Proof: We note first that pa((?o b) =
& T‘
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implies 3,0 (b) = o(3,b)7(b) for some 7(b) ¢ G. Now define a
bijection of graded sets : GxB » E by ¢{g, b) = o(b)g and
give Gx B the structure of complex induced by z/:'l. Then it is
easily verified that ¢~ YE) = G x, B, as desired. Note that

0 = o, where ¢ on the left is the canonical pseudo-cross section

of E(r).

v(é](x, u). = .(ég)-x, where g ¢ G, xc¢ Kq, Ue Q[n]q, and €
that simplicial operator such that v = €A q Clearly

= vig)-x . .

is a monomorphism if and only if G operates effectively. Replac-
y G by G/Ker v, we may assume that operations by groups are

ays effective.

REMARKS 18.8: Clearly a principal fibration (or fibre bundle) in Nowlet p: E » B be a fibre bundle with fibre F (Defi
] 1pre efini-
o

k%’q 11.8). Foreach b ¢ B, choose a strong isomorphism

a(h): Fx Aln] »

g :{b)} is called an atlas of p. If foreach b ¢ B_ we are given

(b) ¢ A(F)_, then @(b) = a(b)g(b) defines another atlas {a(s)].
ersely, if {a(b)} and {@(b}] are atlases of p, then letting

the category of topological spaces passes via the functor S toa
principal fibration in the category of simplicial sets. This gives

one motivation for the study of PT C P’s.

'§19. The group of a fibre bundle.
In this section, we show how to associate a group to a

fibre bundle. The theory here is roughly analogous to that of co- . -
Given an atlas {a(b)}}, let B(b) = B o a(b): FxAlnl » E

ere b: EP 5 E covers b: Alnl - B, b ¢ B . Since
B}t ) = (B(XS, u), v},

ordinate transformations in the topological case. As an easy con- ’

sequence of this theory, we shall find that every fibre bundle may
be regarded asa T C P,
We need some preliminary observations about the operations

of groups on complexes. In Lemma 6. 12, we showed that KK isa :"'
tions from the right by elements of A(F) are defined on elements

{B(b)}, although {B()} need not be closed under these opera-
. i {a(b}l and {a(b)} are atlases related by @(b) = a(b) (b),
B(b) = B(b) g(b).
The atlas {a(#)} is said to be normalized if
Bls, b} = s,B(b)
all i and b. If we choose an b} for each non-degenerate b
_d_ldefme ﬁ(s B) = s, ﬁ(b) for all i and b, we obtain a normaliz-

atlas. The definition is consistent since if s;b = sb, i<}
i

monoid complex if K is a complex. The product is defined by
(fg)(x, o) = f(g(x, w), ), where f, ¢ ¢ (KK)H, X ¢ Kq, and u ¢ Aln]
If E is another complex and f ¢ EK, then the same formula defines
an operation from the right of KX on EK, 1 g ¢ (KK)n, then G
determines g: K x Aln] » K x Aln], where g(x, o) = (g(x, o), u);
 is an isomorphism if and only if g is invertible. We let

A(K) C K¥* denote the set of invertible elements. A(K) is a group
complex. Observe that KX and A(K) operate from the left on K

via f-x = t’(x,An), xeK, fe (KK) . If a group complex G

operates on K, we define a homomorphism v: G - A(K) by » using induction on the dimension of b
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s;Blb") = s;Bls;4,b) = Sisfﬁ(% B = 5,B(s;_19,b) = s, Blb).. G-bundles if for all ¢ B and any G-atlases {a(b)} and ta’(b")}

in the given G-equivalence clagses of atlases,

f- B = BBy, -
where 1 (b) ¢ G. There results a concept of G-equivalence of
waur_:dles. The concept of A(F)-equivalence is identical with
that of isomorphism of fibre buadles with a given fibre,
An atlas {a(b)} of a fibre bundle p: E » B is said to be
___ regularlf 7,(b) = e, , forall i >0 and b ¢ B ., n>1; this
- means that g 8(b) « B(db), i> 0.

From now on, we assume all atlases to be normalized.

The difference between d,8(h) and B(d,b) is more signi
ficant, and we investigate this now. Recall the definition (page M;
of &,: Aln-11 » Alnl. If b ¢ B_, then since :

a(bX1 xSI.): F x Aln-1] - E®
T

is an isomorphism onto Image (1x8) 1x8,: E"i" = Eb there -
exists a strong isomorphism a,(b}: Fx Aln-1] - E i® such

that the following diagram commutes:

Fx Aln] =22, g& P LEMMA 19.2: Let p: E » B be a fibre bundle with fibre F and
\ et G be a subgroup complex of A(F). Then there is a regular
1x8, 1x8, E . .
d G-atlas in every G-equivalence class of G-atlases of p.
FxAln—11——, a,(b) Eai_g G b Proof: let {a(b)} be a G-atlas of p, We will define a

G-equwalent regular G-atlas {G(b)). If b ¢ B, let alb) = alb).
- Suppose @ {(5) has been defined for 5 ¢ B,_,» n21l Let

b e B_. If b is degenerate, d(b) is already defined and has the

esired property. Suppose b is non-degenerate and

algb) ~ o bg,, i>0.
If 0 < i< j, then an application of the induction hypothesis gives
W) 4GP = 4BEH) - g7 (0) = 9B(G8)G8)" - 41, (b
G_1BG0) - Gg)71 - g7 (p)
1 BGLNI_ )3,g)" - ()
915 BBNY,_\r(B~G_, £)0,8)~" 97 (b).

Clearly G operates principally on the G-submodul F
bundle. Observe that p is necessarily an A(F)-bundle. Let : T
ated by {8(b)} and therefore d; e 8) = 9 (817 (b))
p: E > B and p’: E” 5 B’ be G-bundles with the same fibre F. | ol o

! { Choose ¢ ¢ G suchthat g = g='r(b) for i > 0 and le
rl » # z : . - . . t
Amap (f,f: (E,p,B) » (E,p’ B’) is said to be a map of alp) = a(b)éfl . Then: ’ t

By definition, Hzoa(b) = d,8(»). Define r.(b) ¢ A(F),_, by
rf(,) = [a(d, b)]" @ (8): Fx Aln-1] » F x A[ln-1]. Since
a,(b) = ald, s, 20)) a.B(8) = B3, B} r,(b). 1r, (8} is called

the set of transformation elements associated with the atlas {a{b)}}.

DEFINITIONS 19.1: Let p: E » B be a fibre bundle with fibre F
and let G be a subgroup complex of A(F). An atlas {a(b)} of p
is called a G-atlas if all of its transformation elements are in G.
Two G-atlases {a(b)} and la(b)} are said to be G-equivalent if
forall b ¢ B, alb) = alb)g(b), where g(b) ¢ G. p: E > B

together with a G-equivalence class of G-atlases is called a G-

I

]

.. ;:::
;
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_ g-1
@) 6,-3(5) _ 5‘,- ﬁ(b)(a,-é)-l - ﬁ(c’?' b)ri(b)[r'.(b]]-l g, = E(a; 5). t u =g, fo(b) aoé and observe that by (3) and by

g, =0d._,d. g, wehave . G’ i
This completes the proof. 0 mh o i1 ¢ Pt b =
'Now let B: G - G be a homotopy such that A(G*) C G’ and
: b {x) = }1( and aqﬂb (x) ¢ G; if x ¢ Gq. If nis odd, let
k= hylu)™ bl(u)bz(u)‘ ---hn_l(u)'l and if n is even, let
-1 1 -
= ho(a)™" by () b ()3 ~+h,_(u). Define a”’(b) = a’(h) k.

en 9876} = B3, )0k if i >0 and
I BB = B3yB)-u-dk .
By the identities satisfied by &, it follows that
" GB7b) = Bl,bYg;, € <Gl ., i»0.

If G°C G is a sub-group complex and there exists a
G *atlas in the given G-equivalence class of G-atlases of a G-bundle,
then we say that the group of the bundle can be reduced to G,
Note that the resulting G ~bundle need not be uniquely determined.

LEMMA 19.3: Let p: E - B be a G-bundle. Suppose G" C G is
a subgroup complex which is a deformation retract of G. Then the
group of p can be reduced to G".

Proof: Let {a(b}} be a regular G-atlas in the given G-equi-
valence class of G-atlases of p. We will define a G-equivalent
regular G*atlas fa{b}}. Let ad) = a(b} if b ¢ B, and suppose
a(b) has been defined for b ¢ B,_,»n2 1. Let 5 ¢ B_. If b

is degenerate, a(b) is already defined and has the desired proper-

hus 7,°(b) ¢ G,_, forall i and, arguing as in the proof of the
revious lemma, we may replace 8°°(b} by B{(B) such that

' (b) = e, 1 for i> 0 and ?a(b) ¢ G::-l'

From now on, we assume all atleses to be regular and we

ties. Suppose b is nondegenerate and a(d,h) = a(d, b)g;, i20. t 7(b) denote the transformation elements 7o(b) of an atlas
:a(b)! of a G-bundle p: E » B. We call r a twisting function of p.

‘_I'h1s notation is justified by the following result.

Arguing as in (1) of the previous lemma, we find that if 0 < § < j,
then

(1) 3,3, B(b) = d_,8,B86)0,_,8)9,e)"
Similarly we find, for 0 < j < n,
(2) 340, B(6)
= G_18, BBING._, (0113, _, 60f7,_,(d, 1 74(8,8)9, g

’}‘.HEOREM 19.4;: Let p: E + B be a G-bundle with fibre F and
!ét {a(b)] be a G-atlas of p. Then the transformation elements
7(b) define a twisting function r and (E, p, B) is 1somorph1c: to
(F x, B, p, B).

Proof: Define ¢: F‘1 x B, » E_ by £, B = B(BNY, Aﬂ).
¢ is clearly an isomorphism of sets and:

i

It follows that 3{.31. = a.j_lgi, 0 <i<j and

3) ?}_1(30'5)-1?0(‘%1’) _ (aj_lgo)-—l 1708358, 0 <j<m Iy &6 B) = £G(B) I, 8, dg B} ,
Choose g ¢ G_ suchthat 4,8 = g;, 7> 0, and let a’(b) = a(b)g . 9, ‘ﬂﬁ b} = f(é‘l,!,aib) , 1>0,
Then 3,8°(h) = B(3,b), i >0,’and s; £, B) = s, f s b}, i>0.

Thus if £~ is used to define a structure of complex on the set

Ay B b)Y = Bla, blgy 7,(b) 8, 6.
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';'A = p and AB(B) = B (B)y(b), yw(b) ¢ G, where {a(b)} and
é_'(b)l are any G-atlases of p and p”. If 7 and r” are the twist-
functions defined by {a(b)} and {a’(b)), then it is easily veri-
;ed that i satisfies the identities (U) (with # = } B)' Thus r and
are equivalent. Conversely, suppose r and +” are equivalent
¥: B » G satisfies the identities (U). Thenif x ¢ £ ig
tten as x = B(BMA,A)), b = p(x), and we define !

A(x) = BBYBXEA) = B (BN (b)Y, A,
tfollows that A is a strong G-equivalence of G-bundles.

F x B, we obtain £ YE) = F x_B. This proves the result.
Observe that the G-bundle p: E » B with atlas {a(b}] de-

termines the isomorphism £.

§20. Fibre bundles and twisted Cartesian products

In this section we first define maps of T CP’s with fixed
fibre and group. We then examine in detail the relationship between
T C P’s and fibre bundles and prove that every TCP is a fibre
bundle.

Before proving that every TCP is a fibre bundle, we need

e following definitions.

DEFINITIONS 20.1: Let p: E{s) > B and p: E(+'}) » B’ be
T C P’s with group G and fibre F. A simplicial map

8: E(r) » E(+)
is said to be a map of TCP’s if 6(£ b} = (y(b), n(B)), where
: B+ G isa map of sets. Observe that p@ = 7p. The re-

EFINITIONS 20.3; Let G operate on the right of a complex E

iid on the left of a complex F. Then F xg E is defined to be the
wotient of F x E obtained by identifying (gf, x) and (i, xg) forall
f,and g. If E = Gx_B, then F Xe E may be identified with

, B and is called the TCP with fibre F associated to G x, B.

-p! E - B is aprincipal G-bundle, then for some r E is iso-

quirement that @ be a simplicial map is equivalent to the following
identities on : _

’n(B)dyY(b) = yld, b} r(b)
) al.!/;(b) = yld b} if >0

rphic to G x_ B, and therefore G operates on the right of E
s;plb) = ofls, b} if 7> 0. r ght of E.

he operation is actually independent of the choice of atlas.) In
is case, (F x; E, p*, B), where p*(f,x) = p(x), is said to be the
.G-bundle with fibre F associated to p. If {a(b)} is an atlas of P,

6 is said to be a strong map if B = B” and 7 = lg, and in this

case we say that r and 7~ are equivalent twisting functions. Ob- ;
. . LI #* .

serve that every strong map is necessarily a strong isomorphism. . then {a () is an atlas of p* where

#*
b)(f, = (f, B(s ,
LeuMA 20.2: Let p: E » B and p”: E’» B be G-bundles with B )W) = (L, flbNey, u)), ucAlnly, beB,, feF,.

fibre F. Then p and p’ are strongly G-equivalent if and only if ; Now observe that if F x,B isaTCPand : A » B isa
and 7° are equivalent, where r and 7’ are any twisting functions of simplicial map, then E(r)" may be identified with F x _4, where
p and p’ g 7 = ron and 70 E(H)7 > E(1) is a map of TCP’s.

Proof: Suppose p and p” are strongly G-equivalent. Then

there exists a simplicial isomorphism A: E - E° such that
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THEOREM 20.4: Let F x_B be a TCP and suppose Acr: 4 5 B

Then E()* is strongly isomorphic to E(r)7.
Proof: Suppose first that F =

Then by Proposition 11.5, there exists a strong homotopy equiva-

lence 9: E()" » E(s)7. Clearly we may write §(g, a) = (ylalg, a)

Thus 9 is a strong map of T CP’s, hence a strong isomorphism, and

the twisting functions 7 and /7 are equivalent. The latter stat

ment implies the result for arbitrary F, and the theorem is proven, ]

COROLLARY 20.5: Every TCP is a fibre bundle.
Proof: Let F x B be a TCP, Choose a base pomt q‘> ¢ B
and let b ¢ B .

proves the result.

REMARKS 20.6: An atlas for F x, B may of course be defined by:g;;;

BBEA,) = (4 B).
other words, a TCP with group G is essentially just a G-bundle

The twisting function of this atlas is 7. In

with a chosen atlas.
If p: E » B is a G-bundle with given atlas {a()} and
7: A » B is a simplicial map, then p": E7 » A is a G-bundle wit}

atlas {a"(a}}, where 787(a) = Blala)). If p is principal, then so

is p" and 7 is equivariant, that is, n(xg) = a(x)g for x ¢ E7,

g e G,

COROLLARY 20.6: If p: E » B is a G-bundle and A~n: 4 » B,
then pA: E* 5 A and p": E7 » A are strongly G-equivalent
G-bundles.

Finally, we note that since every TCP is associated to &
PTCP and every TCP is a fibre bundle, we have '

G, that is, E(s) is a PTCP;
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ROPOSITION 20,7: Every G-bundle is associated to a principal
élbundle which is uniquely determined up to strong G-equivalence
f G-bundles.

The converse is obvious: If p: E > B isa prmcxpal
(_;_.bundle and G operates on F from the left, then there is a
ﬁjque G-bundle with fibre F associated to p.

21. Universal bundles and classifying complexes
We will construct a PTCP, or G-bundle,

W(G) = fo(G)W(G)

(EEFINITION 21.1: APTCP Gx B is said to be of type (W) if

. has one element b, and if 50: e, % B - E(r)q_l is an iso-

orphism of sets for all g > 1. We let S: E(r),_; » e, x B de-

“fiote the isomorphism of sets inverse to 60 , so that 6‘05‘ is the

déntit}' on E(r) a1
' We will prove that, up to natural isomorphism, there exists
ne and only one PTCP of type (W) with group G. Before proving

stence, we obtain some of the properties of PTC P’s of type

EMMA 21.2: If G x B is a PTCP of type (W), then:
@ a, S(x) = (eo, by) if x € E(r)o;
() 3,500 = S0 if x ¢ EQ),,
(iii) S = s; on e, Bq;
(iv) ‘Sf+18(x) = S(six) if x ¢ E(r)q, g> 0.
Proof: If x ¢ E(r)q', q 2 0, then x = (r(b),d, 5} for some

¢Boq- M i>0,

g>0;
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S = S8 7(6), 4,0, 8) = S(r(9,,,),3,3,, 8 = (e, 3, b),
and
5(d, x) = S(r ((?ob) dg r(8), N b) = S(:r1 (b}, N b) = (eq, d, b).

On the other hand, J,5(x) = t?i(eq_‘_l,b) = (e, g, B) if i> 0. Thi
proves (i) and (ii), and the proof of (iv) is similar. (iii) follows i

mediately from the definition.

LeEMMA 21.3: If Gx_B is a PTCP of type (W), then B, and the

fore E(r), is a Kan complex.

Proof: Let byreses bk-l’bk+1"”'bq+1 € Bq satisfy
6lbj = a}'—-lb!" f< j; i}f * k-

We must find b such that d,b = b;, i # k. We break the proof ins

to two cases.

(i) k > 0: Here we let x, = (+(b,, ), 9,5, ;). Then
Gx;=G_yxy 1<) Qjé k=1 and plx) = 3dyb,,, = LY
Since p is a Kan fibration, there exists x ¢ E(r) a such that d,x°
= x, i#k-1 and Kx) = b,. Let (en+l,b) = S(x), Then

dob = pdySx} = plx} = by and, if i > 0, i4#£ k, we have
6jb = pal.S(X) - PS(@I_IX) = p(en,bi) = b; .

(i) &k = 0: Here we note that d,7(b. ) = d_yrib, ;)

i
if 0 < 7 < j, so that there exists g ¢ Gq such that

d& = 1(b,, ), i>0.

i+1

Let (eq+1.
r{c) = f(bl)(aog)"'l and dyc = dyb,. Further:

dyc = pS(r(dy b)) o1 (b X3, 9,87, 8y, b,)
pS(r(d, Bdy (6,11, 340, b,
pStrldyb,), 858, b,) = by,

|

b) = S(g,c), where c = pS(r(bl)(ao g)‘1,60 b,;}). Now-

TWISTED CARTESIAN PRODUCTS AND FIBER BUNDLES 85

-.QJ
0
]

pSO,_; (b X3_ 9,87, 9,_, 3, b,)
= PS5 Md,r(b,, D11, 8,,5,)

1417909 by ) = doby s P> 1,

EMMA 21.4: If G x,B is aPTCP of type (W) and G is a mini-
al complex, then (E(r), p, B) is a minimal fibre space.
Proof: By Proposition 18.4, p is a minimal fibration. We

ust prove that B is a minimal complex. Thus suppose b, c ¢ B
q

| x = (r(8),9,b) and y = (7(c), 9y c).

M i+ 1 £k,

5(d, x) = (eq_1,6f+lb) = (eq_l,::'r".+1c) = 8@y,
hence §,x = d,y. Therefore d,r(b) = drlc) if 0 <i# k-1 and
___r(c?o b)aor(b) = r(&oc) dgric) if k£ 1. Thusif k > 0, then

9,7(b} = d,7(c) for i & k-1, and, since G is minimal,

dp_1 76} = 3, 1(a).

- It follows that &kb = pS(r(ak b), aoak b = 8kc_ If k =0,

é),.r(b) = (?l-r(c) for i> 0,

hence 4, t{b) = 3, r{c) and therefore r(&o b = r(&o c). Then
305 = ps(r(aob), 3060.5) = 6'00.

" PROPOSITION 21.5: If G x B is a PTCP of type (W), then E(;)

is contractible.

Proof: Taking ¢ = (ey, by} as base point, (i) and (ii) of
Lemma 21.2 imply that 9C(S) + C(S)d is the identity map of
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C(E(r)), and therefore I}n (E(r)) = 0 forall n > 0, Since E(r) is
a Kan complex, Corollary 13.7 implies that E(r) is contractibie
provided that rrl(E(r), ¢) = 0. Suppose x ¢ é(r)l, that is,
Opx = ¢ = dyx.
Then 9,5(x) = x, 8, 5(x) = 5(d, %) = S(¢), and
d,8(x) = 5(8,x) = S(¢).
Clearly S(¢) = s,¢, and therefore [x][s) ] = [sy¢). Thus [x]

= (), as was to be proven.

Before proving the next, and fundamental, property of PTC P’s

of type (W), we need a definition.

DEFINITION 21.6: If G and G’ are group complexes which oper-
ate on E and on E’from the right and if y: G » G is a simpli-

cial homomorphism, then a simplicial map #: E -~ E” is said to be

y-equivariant if 6(xg) = 0(x)y(g) forall x ¢ Eq, g« Gq. If
G=G"and y = 1., 0 is said to be equivariant.

THEOREM 21.7: Let Gx_B and G'x_ B’ be PTCP’s and let
y: G » G’ be a simplicial homomorphism. Then if G’'x_-B” is

of type (W), there exists a unique y-equivariant map 6 E(r) » E(r')

such that 6(e, x B) Ce xBy, qz0.

Proof: @ is determined, if it exists, by its values on e, <By
q > 0, and since Bo' = ba, 3(66, b = (ec", b(')) defines & on E(r)o.
Again, if 6 exists, thenfor b e b, ¢ 2 1, there exists r(b) ¢ Bq:

such that B(eq,b) = (eq,rr(b)) = S&O(eq,rr(b)).
aoﬁ(eq, b = ao(eq,n(b))

and, requiring d, 6 = 6J,, we find that @ is necessarily given by
the inductive formula

(i) Ole, b) = S09,(e, b), beB, qg>1
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It remains to prove that & so defined is a simplicial map. 9,0 =

09, is true by construction and if b ¢ B, then
6, 6{e, b) = {eg by} = 09, (e;,b) .
Now suppose d,6 = 6d;,, 0 < i < j. Then we find

8410 = 8,1 09 = $3,09, = 569,4,, , = 64,

f equ » g > 1 Next, S-so on equq, g > 0, hence

08 = Sﬂaoso = 830 on e
< 1 < j. Then

PR Bq. Finally, assume $;0 = Os,,

5410 = 8,569, = Seao“‘}ﬂ =05,

equq, g> 1.

OROLLARY 21.8: Any two PTCP’s of type (B)with group G
e naturally isomorphic.

Proof: If E(r) and E{(r") are PTCP’s with group G, there
ist natural maps @: E(r) » E(+") and 6% E(+") » E(r}. By
iqueness, 68’ and 6’0 are the respective identities.

For any simplicial group G, we now construct a PTCP
xr(G)W(G) which is of type (W). Let WO(G) have one element
] and define WH(G) =G _1%XG,_,x-xGy, n>0. Write ele-
ments of W (G) in the form [ n__l,...,go], g, ¢ G,. Define face
d degeneracy operators on W(G) by sl 1= [ey), by

6‘,.[30] =[) i=0o0rl,

dif n > 1 by
i) 60[gn’-") gol = [gn_p--ugol;
) 0,y (8pr o) = 10,800 08108y Fpbpeye

gn—i—Z""’ go] H
(iil) solg,_1re-r 8] = e, 8, _1sens £



88 SIMPLICIAL OBJECTS IN ALGEBRAIC TOPOLOGY

(iv) s!._'_l[én__l,---; gol =
[sjgn,..., Sog

n >0, by

n—i? €nmi? B j -2 gl
Define 7(G) on W (G),
(v) r(G)[gn_l,..., 30] =8, 1-
We could verify directly that W(G) is a complex and that
7{G) is a twisting function, but the following inductive description
of W(G) and W(G) will make these facts obvious. Define an iso-

morphism of sets A: W +1{G » ¥ (G) by

(Vl) A[g ’go (g“’ [gn_l,u., gO])’ n 2 0.
Let o(G): WR(G) - WH(G) be the canonical pseudo-cross section,

a(G)w) = (e_, w). Now knowing the face and degeneracy operators

on Wn (G), those on ¥_(G) are of course determined by the require-_

ment that W(G) = G xr(G)W(G). Knowing the face and degeneracy

operators on W, {G), those on Wn+1 {G) ate determined by:

wii) 9, = pA; 8, = A713A 5= A Y6 (6);
Siv1 ‘\-- si'\'
Finally, define § = o\~ 1: W(G) - en_‘_1 x W (G), that is
iil) S(g,[g, .. 8] = e, . (8,0 6,)).
Clearly 3,5 is the identity of W (G) and 5d, is the identity on
R A2
n+l

Given a simplicial homomorphism y: G - G’ define

(0 WONg,- gob = (g, (g

With this definition, W becomes a functor from the category of sim- -

plicial groups to that of simplicial sets. W(G) will be called the
classifying complex of G, W(G) the universal G-bundle. We now

proceed to justify this terminology.

= G, let B°C B, and define E* = p

' equivariant map 9: E =
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LEMMA 21.9: Every PTCP G x,B is induced from a simplicial
map w: B - W ().
: Proof: Let §: E(r) » W(G) be the equivariant map obtain-
ed in Theorem 21.7 and let »: B - W(G) be defined by

G(eq, b) = (eq, 7 (b)) .
Then dy8 = 69, implies r = +(G) on = +{G)", so that Gx, B

is induced from » and @ = #. We remark that » is given explicit-

‘ly by the formula:
(D 7} = [r(b), (9, 5),..
g = 9p - 3g

The following remarks will lead to a simple proof of the
classification theorem,

o 7(0g )., (3571 1)), where

i factors of 6‘0 .

REMARKS 21.10: By Propositions 18.4 and 18.7, aPTCP is just
a principal fibration with a given pseudo-cross section. From this
point of view, amap #: B - W(G) induces a principal fibration
with given pseudo-cross ¢, namely the canonical pseudo-cross
«cyr B. o7 is compatible with ¢(G) in the sense

We define a morphism of principal fibrations

somorphism of P TCP’s with group G may be regarded as an auto-

~ morphism of a single principal fibration.

LEMMA 21.11: Let p: E - B be a principal fibration with group
~1(B"). Then any morphism

8% E’ 5 W(G) may be extended to a morphism 6: £ 5> W(G).

Proof: 0° defines a pseudo-cross section ¢”; B’ » E ‘.

' By Lemma 18.6, ¢’ may be extended to a: B - E. By Proposition

18.7, ¢ defines a twisting function r: B » G and the resulting

E(r) -~ W(G) extends 8°.
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THEOREM 21.12: 7 =~ A: B » W(G) if and only if the PTCP’s
W(G)" and W(G)* are strongly isomorphic.

Proof: If # =~ A, then W(G)" is strongly isomorphic to
we™ by Theorem 20.4. Conversely, suppose W(G)” and W(GY*
ate strongly isomorphic. Regard W(G)” and W(G)‘\' as copies of
the same principal fibration E. Let G operate on E x 1 by
(x, u)g = (xg,u), sothat px 1: ExI > BxI is aprincipal fibre-
tion. Kentify W(G)” with Ex(0) and W(G)* with Ex(1). Then
E’ = W(G)™ U W(G)* is a sub principal fibration of E x I, and
71 WG)T > W(G) and A: WG - W(G) together define a morphism
9’: E” - W(G). By the previous lemma, #’ can be extended to
0: Ex1 - W(G). If @ induces v on B x I, then ¢ is a homotop

from 7 to A.
Combining Lemma 20.2, Proposition 20.7, and Lemma 21.9

with the theorem above, we obtain the classification theorem:

THEOREM 21.13: Let ¥ be a complex on which G operates effec-

tively from the left. Then the assignmeat to any map
7 B - W(G)

of the TCP (or G-bundle) with fibre F associated with the PTCP
(or principal G-bundle) induced from 7 defines a one-to-one corre-
spondence between the homotopy classes of maps B - #(G) and
the strong isomorphism classes of T CP’s (or strong G-equivalence
classes of G-bundles) with fibre F and base B.

REMARKS 21.14: Given a G-bundle p: E - B, the corresponding
homotopy class of maps n: B - W(G) defines a homomorphism
% HMF(G), A) - HXB, A). If A is aring, 7~ is a morphism of

“rings, and the image of #* is called the charactéristic subring of “p.

TWISTED CARTESIAN PRODUCTS AND FIBER BUNDLES

or example, if G = 5(0(n)) and A = Z, we obtain the Stiefel-
Whitney classes, and if G = S(U(n)) and A = Z we obtain the
‘Chern classes.

91
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BIBLIOGRAPHICAL NOTES ON CHAPTER IV

The material of section 17 is all due to Moore [52]. The
definition of TCP adopted here is a special case of that of Moore
[52], and gives what is called a regular TCP in [1). The compari-
son of principal fibrations and P T C P’s follows Cartan [6]. Of
course, the simplicial concepts of principal fibration and principal
bundle are equivalent, but the connection with topology is more
easily seen using principal fibrations. Nearly all of the material
of sections 19 and 20 is due to Barratt, Gugenheim, and Moore [1).

The complexes W(G) were first constructed (without the
introduction of W(G)) by Eilenberg and MacLane [13]. The con-
structionof G xr(G)W(G) is due to MacLane [40]. The axio-
matic definition of P TCP’s of type (W) is due to Moore [5,52].

The classification theorem as stated here is developed in

1], but our proof follows Cartan [6].

CHAPTER V

EILENBERG-MACLANE COMPLEXES
AND POSTNIKOV SYSTEMS

In this chapter, we first prove that the category of simpli-
cial Abelian groups is isomorphic to that of chain complexes. We
then introduce the minimal Abelian group complexes K(m,n). A
study of their properties leads to a proof that every Abelian group
complex is of the homotopy type of a product of K(m,nys. We also
obtain the well-known characterization of cohomology operations in
terms of the cohomology of Eilenberg-MacLane complexes. Finally,
we will obtain the k-invariants of Postnikov systems by means of a
study of fibre bundles with fibre a K(z, n).

§22. Simplicial Abelian groups

In this section, we investigate the category of simplicial
Abelian groups. We will prove that this category is equivalent to
that of {Abelian) chain complexes. An incidental result is the nor-
malization theorem for simplicial Abelian groups. Finally, we will
compare the homotopy and homology groups of a simplicial Abelian
group.

We first develop an alternative definition of the homotopy
groups of an Abelian group complex G. Let A(G) denote G re-
garde;d as a chain complex with differential J defined on G, by

J = E_O (~1)'3;. Let N(G) denote the chain complex G defined

93
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of sections 19 and 20 is due to Barratt, Gugenheim, and Moore [1].

The complexes W(G) were first constructed (without the
introduction of W(G)) by Eilenberg and MacLane [13]. The con-
struction of G xr(G)W(G) is due to MacLane [40]. The axio-
matic definition of P T CP’s of type (W) is due to Moore [5, 52].

The classification theorem as stated here is developed in

[1], but our proof follows Cartan [6).

CHAPTER V

EILENBERG-MACLANE COMPLEXES
AND POSTNIKOV SYSTEMS

In this chapter, we first prove that the category of simpli-
cial Abelian groups is isomorphic to that of chain complexes. We
then introduce the minimal Abelian group complexes K(m, n). A
study of their properties leads to a proof that every Abelian group
complex is of the homotopy type of a product of K(m, n) s. We also
obtain the well-known characterization of cohomology operations in
terms of the cohomology of Eilenberg-MacLane complexes. Finally,
we will obtain the k-invariants of Postnikov systems by means of a
study of fibre bundles with fibre a K(r, n).

§22. Simplicial Abelian groups

In this section, we investigate the category of simplicial
Abelian groups. We will prove that this category is equivalent to
that of (Abelian) chain complexes. An incidental result is the nor-
malization theorem for simplicial Abelian groups. Finally, we will
compare the homotopy and homology groups of a simplicial Abelian
group.

We first develop an alternative definition of the homotopy
groups of an Abelian group complex G. Let A(G) denote G re-
gardeﬂd as a chain complex with differential J defined on G, by

d= Eo (~1)¥9,. Let N(G) denote the chain complex G defined

93
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in section 17, so that N (G)=G_ NKerdoN...NKerd,,_;. For
convenience, we redefine the differential d on N(G) by
Hx) =(~1)"3,, x e N (G). Then N(G) is a chain subcomplex of
A(G) and there results a natural homomorphism

i: (G} = H (N(G)) - H _(A(B)).
THEOREM 22.1: Let G be an Abelian group complex. Then
i; 7 (G) » H (A(G)) is an isomorphism for all n.

Proof: Filter A(G) by x¢FPA_(G) if x¢G, and d,x =0
for 0< i <min(n, p)- Then FPA(G)= A(G) if p< 0 and
F"’An(a) =N (G) if p> n, sothat I;IFPA(G) = N(G). Each
FP+*'A(G) is a chain subcomplex of FPA{G). We will prove that
each of the inclusions i°: FPY'A(G) C FPA(G) induces an iso-
morphism on homology. It will then follow that i is an isomor-
phism. We first define an epimorphism of chain complexes
f°: FPA(G) > FPYA(G) by

x € FPA,(G)

x if where n<p+l
fP(x) = {x-—spapx if xeFPA(G) where n> p+l,

Clearly fP(x) ¢ FPT'A(G) and fP ©iP is the identity map of
FPHIAG), A simple calculation proves that dP(x) = tP(dx) for
all x. We will complete the proof by obtaining a chain homotopy
t? between 1P ©fP and the identity map of FFA(G). Thus define

0 if xeFPA(G)
tP(x) = (-DPs,x if x ¢ FPA(G) where n2 p.

where n<p

Then tP(x) ¢ FPA,,(G) and it is easily verified that
OP(x) + tP Hx) = x — (i® o FP)(x), as desired.

COROLLARY 2Z. 2: Let G be an Abelian group complex. Then
A(G) = N(G) b D(G), where D{G) is the chain subcomplex of A(G)

generated by the degenerate elements of G.
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Proof: Let i=io...0i™ : N (G)- A (G) and let
=10, of' 1 AG) N (G). foi isthe identity map on
N(G) and therefore A(G) = MG)® Ker £. It suffices to prove
Ker { = D(G), and Ker f < D _(G) is clear from the deﬁmtlon of f£.
Let x = Z;:o s;¥; € D{G). We must prove £(x) = 0, and we have
)= 0. .. of (x=5,400x)

=f"o. .. of'(x")

n=1
1 b 1 1
whete x° = 2 5,3, ¥y =35 ooy,
n—1

.off(xy  where x/= Esfy*‘ y’~y’ 1—31_16 _1y -1
.= l(s a1 ¥ D=0, asclalmed

L =,

i

!I

COROLLARY 22.3: (Normalization Theotem). Let G be an Abe-
lian group complex and let 7: A(G) » A (G) = A(G)/D(G) be the

projection. Then # is a chain equivalence.

Proof: Identifying A p(G) with N(G), we find n=1{ But
iof: A(G) - A(G) is a chain equivalence by the proof of the theo-
rem. I

N is a functor from the category (@ of simplicial Abelian
groups to the category € of chain complexes. We now show that
there exists a functor I': € o @ such that " o N and ¥ ol are

the identity functors of & and €. Thus let X be a chain com-
plex. Define I'(X) as follows:

n—1

D LX)=Xx, &3 = o .05, X,, whete ¢, ...0; X, is

=0 i=n—r ix 177
the Abelian group whose elements are symbols T, o oo Oj X,

x ¢ X,, with the addition defined by

Ojrr - O, X + 05, .. L 05,\¥ =05, ar“(x+y),
and where the sum is taken over all sequences {j;} such that

A>je>...>> 0.

) 9, Ty 5 T_(X) is defined by




9 SIMPLICIAL OBJECTS IN ALGEBRAIC TOPOLOGY

(a) d,x=0(x) and d,x =0 if 1<nm xedX,

(b) If k=n-—r and x ¢ X, then
arhk_l...ohlx Shk—l'ushl i
) =c7,-sjk...s_,-

0

iyt 01 X = = Ohyee - - On, 0x) if Shye+--Sh, 0

1 1t

0 Shk...shlaj,f<r
when d,s;, ...s;, is expressed in the canonical form de-

rived from formula (3) on page 4. .

(iii) s, (X)) - I,4(X) is defined by
(a) s;x=0;%x, xeX,
(b) If k=n—r and x¢X,, then
SO, O X=0p, 1-e-0n X i S5 i85 =Sy oooshy,

where 8,s; ...s; is expressed in canonical form.

It is easily verified that I'(X) is a simplicial Abelian

group. Now we can state

THEOREM 22.4: The functors ¥: & 5 C and I': € - satisfy
MNoN=1p and Nol' = 1. Further, if h: G » G’ is a simplicial
homotopy, h: f == g, then there exists a chain homotopy

s: N(G) » N(G*), s: N(f) = N(g).
Conversely, if s: X » X" is a chain homotopy, s: f =2 g, then there
exists a simplicial homotopy h: I'(X) - I'(X"), h: I'(f) == 1'(g).

Proof: That 'oN =17 and Nol'=1p is an easy con-
sequence of Corollary 22.2 and the construction of I'. Given the
homotopy #: G -G, h: f==g, define s=2Z_ (-1)'h; on A(G).
Then s: A(f) == A{g). s(D(G)) C D(G’) and, identifying N(G)
and N(G") with Ap{G) and A4(G’), we obtain a chain homotopy

s: N(f) =~ N(g) by passing to quotients. Conversely, let s: X -X’
be a chain homotopy, s: f =~ §. Then Js + sd=f—4g Define
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h: T -TX") as follows:

i) If xeX,, then
b (x} = 0, Kx) - 0,80(x) — s(x)
Boa®) = 0y Kx) ~ 0, 59(x)
hfx)=o,Kx) if i<n-1.

(i) h; is defined inductively on the symbols Ojp--0j,X by
hilog,-..05,0 = oy ftialog, ... o5, %) if j,<i~1
hiloj,...05 %)= ojk+lhi(0jk_1 con0j %) if je> i1,

A simple calculation then proves that & is a homotopy from ['(f)

to T'(g), as desired.

We have now proven that the homotopy theory of simplicial
Abelian groups is equivalent to the homology theory of chain com-
plexes.

Theorem 22.1 has the following corollary comparing the
homology and homotopy groups of simplicial Abelian groups.

COROLLARY 22.5: Let G be an Abelian group complex. Then
there exists a natural epimorphism of groups j: f;’,,(G) - 7 ,(G) such
that joh is the identity map of #_(G), where A is the Hurewicz

homomorphism. In particular, & is a monomorphism.

Proof: Using 0 as base point, C(G) is the free Abelian
group generated by the non-zero elements of G,. Thus there is a
natural epimorphism é(G) - A(G), and this induces
it H (G 5 H (AG)).
Clearly j* oh =i, i: 7 (G)S. H (A(G)). Letting j=i~'.;* the

" result follows.

We will later use the corollary above to ptove that every

- Abelian group complex has the homotopy type of a product of

Eilenberg-MacLane complexes.
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COROLLARY 22.6: Let K be a complex. Regarding C(K) as an
Abelian group complex, we have 7 (CK))=H (K) and
7 (CK)) = H (K).

This corollary states that in some sense homology is a spe-

cial case of homotopy.

§23. Eilenberg-MacLane complexes

Recall that an Eilenberg-MacLane complex of type (m,n) is
a Kan complex K such that # (K,¢) =7 and #w(K,$) =0, i £n.
Such a complex K will be calied a K(w, n) if it is minimal. We

will prove the existence and essential uniqueness of K(m,n)'s.

LEMMA 23.1: Let n be a group. Define a group complex K by
K,=m n>0, and by letting each 9, and s; on K, be the
identity map of #. Then K is a K(v,0) and any other K{(x,0)

L is naturally isomorphic to K.

Proof: Clearly K isa K(#n,0). Now Ko=Lgo=n and
the identity map Ko - L, induces a unique simplicial monomor-
phism f: K » L. Suppose f: K, -L_ is an epimorphism, n> 0,
and let yeL, . If £x,)=93;y, then f0;x;} = Hd;_, x;) implies
X, =x;=x,8ay. Let z=24;y, all i. Then 2,80z =3,y foralli,
hence since n,,3(L) =0, s¢z ~ y. By minimality soz =y, and
thus fls¢x) =Y.

Now observe that if G is an Abelian group complex, then
if we regard W,,(G) as the group G,_; x... x Gy, #(G) becomes
an Abelian group complex. Define W7(G) = Wi "~'(G)) for all
n> 1, W°(G) = G. The next theorem follows inductively from
Lemma 21.4 and Proposition 21.5.

THEOREM 23.2: Let n be a group. Then W(K(x,0) is a K(z,1).
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If # is Abelian, then the Abelian group complex W*(K(w,0)) is a
- K(m, n).

Before proving uniqueness, we need some preliminaries.

DEFINITIONS 23.3: Let (K, ¢) be a Kan pair, where ¢ is the

only vertex of K. Define a complex P(K) by letting

A Kn+1 - Pn(K)

- be an isomorphism of sets and by defining 9, = Ad;;,A~! and
5, = As; A1, Define p: P,K) K, by p=doA~" and let
“L(K) = p~'(¢). It is easily verified that p is a Kan fibration and
, therefore P(K) and L(K) are Kan complexes. Let

S =AsgA™!: P(K) 5 P, (K).
Then d,5 is the identity map of P(K), 8;5(x) = A(sg¢) if

- x ¢ Py(K), and 0,5 =53; on P (K), n> 1. As in the proof of
- Proposition 21.5, it follows that P(K) is contractible.

“LEMMA 23.4: Let (K,¢) be a Kan pair, where ¢ is the only

vertex of K. Then p: P(K) ~K is a PTCP of type (W) if L(K)

. is a group complex.

Proof: Define ¢ =Asg: K, » P (K). Then po is the iden-

- tity map of K and we may identify P (K) with L (K)x oK ). An

_easy calculation proves that we may define an operation from the

right of L(K) on PK) by (£,,0(k})E; = ({,£,, o(k)). It follows
that p: P(K) - K may be regarded as a principal fibration with

- group L(K). Proposition 18.7 now implies that P(K) is a PTCP.

By definition d,S is the identity of P(K) and Sd, is clearly the
identity on e, x o(K,)). Therefore p: P(K) - L is of type (W).

REMARK 23.5: If K is a group complex, then so is L(K), and .
therefore K is isomorphic to W(L(K)). This implies the existence

of a group complex structure on W({L(K)). However, unless K is
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Abelian, this product will not be that obtained by regarding
W (LK) as L,_1(K) x...x L oK).

THEOREM 23.6: Let K and L be K(m, n)’'s. Then there exists
an isomorphism K - L. Further, if # is Abelian, then any K(w,n)

has a structure of Abelian group complex.

Proof: It suffices to obtain an isomorphism K - L, where
L = W(K(z, 0)). We proceed by induction on n and assume the re-
sult for n”<m, n>0. Since K is a minimal complex, it is easy
to see that p: P(K) - K is a minimal fibration. Therefore L{K) is
a K(m, n-1). By the induction hypothesis, L(K) is isomorphic to
Wo~Y(K(w,0)). But then LK) is a group complex and, by the lemma
above and by Theorem 21.7, it follows that K is isomorphic to
Wr(K(x, 0)).

REMARKS 23.7: Observe that if # is an Abelian group and we de-
fine a chain complex C(w,m) by C, (m,n)=n and C (7,n) =0 for
g#n, then I'C(m,n) is a K(m,n). This gives an alternative proof
of the existence of K(#, n)’s. Now, knowing that any K(r,n) is an
Abelian group complex, it follows that any K(m,n) is equal to -
I'C(r7,r). This is true since by Proposition 17.5 (recalling that
what is there denoted G is the chain complex N(G)), we must have
NK(m,n} = C(mr, n}, and since ['NK(r,n) = K(m,n) by Theorem 22.4.

As a corollary of these remarks, we have:

PROPOSITION 23.8: Let f: 7 - 7" be a homomorphism of Abelian
groups. Then there exists a unique simplicial homomorphism
¢: K(z, n) > K(n",n} such that ¢ = f: K{z, m), - K(z", n),,.

When n is an Abelian group, there is an alternative, and
more usual, description of K(w,n). Let C*(A[q], 7) denote the

normalized cochain con_nplex and Cy(Alg]) the normalized chain
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complex (previously denoted C y(Alg)), so that
C*(Alq), 7) = Hom, (C4(Alg)), n).

Fix an integer n and let L(7,n+1), = C*(Alg), ), ¢ > .0. Define
a structure of Abelian group complex on L(r, n+1} by

d,u(x) = u(d,x), ue Lim,n+1) 41, x¢C(Alq]),
and

s;v(y) = v(o,y), ve L(n,n+1)q, y ¢ C (Alg+1D),
where 8. C(Alq)) - C(Alg+1]) and o, C(Alg+1]) - C(Algl) are
induced from the simplicial maps &;: Alg] » Alg+1] and
oy Alg+1] - Alql defined in Definitions 5.4. Let

K(n,n), = Z"(Alg), m),

the subgroup of L(m, n+1), consisting of all cocycles. Observe

that K(7,n) is a subcomplex of L{w, n+1).

THEOREM 23.9: The Abelian group complex R(n,n) defined

above is in fact a K(w, n).

Proof: First observe that K(a, n},=0 if g<n because
every element of Alg} in dimension greater than ¢ is degenerate.
Next, K(z,n)_ = since Z™(Aln], 7) = Hom, (C (AlaD),n) and
C,(Aln]} is the free Abelian group generated by A,. By Remarks
23.7, it suffices to prove that the chain complex Nﬁ(n, n) is
C(m, n). Clearly Nnﬁ(n, n) = K(x, n), =, and it remains to prove
N K(m,n}=0, g>n. Thus let pe Nq'R-'(n, n), ¢ >n, so that
O;p=0, 0< i< g—~1. Suppose for a contradiction that u(x) £0,
where x ={ag,...,a,), 0< ag<...<a, < g is some basis ele-
ment for C_(Alg]). Then x£8,y, since wboy)=0, so ag=0
(otherwise x = 84(ag—1,..., a,~1)). Similarly x £ 8,y implies
ay =1 and, inductively, a,=14, 0< i < n. But p is acocycle,

and this implies:
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n+1 .
S(uX0,1,...,n+1) = _Eo (~=1) 4(3/0,1,...,n+1))

- 3 (D) + D) = (DT ) = 0,
where X denotes x={0,1,...,n) reparded as an element of
Alg-1],. Thus p(x) =0 and p =0, as was to be proven.

From now on, the symbol K(r,n) will denote the explicit
complex K(w,n) described above. Now since H™(Algl,#) =0,
5(C™Alg), ) = Z"'(Alg], 7). Thus the coboundaries & define a
simplicial homomorphism 8 L, n+ i) -+ K(m, n+1). Further, addi-
tion defines an operation of K(m,n) on L(w, n+1) and of course
K(r,n) = Ker 6. It follows that 5 is a principal fibration with
group K(w,n). Define o: K(m,n+1), »L{m, n+1), by
(i) o(uXag,...,a,)=p0,a9,.-.,8,)

n+1
Then 80(#)(&0, vy an+1) = ‘zo (—1)‘#(0;30) seas af-l!ai-}-ls---ran-l-l)

= —u(0(0,a80 - .5 81 0) +pl@gy e oy a041)

=pfag, . ) @pp1)
Thus 8o is the identity of K(w, n+1), and it is easily verified
that o is a pseudo-cross section of &, the corresponding twisting
function ¢ being explicitly defined by:
(ii) r(uXag ++-.a,) = p(0,8304L, ... yaptl)—u(l,ap+l, .. aq+l).
Observing that v ¢ Image (¢) if and only if {ag,...,a,) =0 when-
ewer ag =0, we define S: L(m, n+1), » o(K(m, n+1)) 4, by
(iii) S(p)ag,...,an =mao—1,... ,a,—1) if ag>0 and 0

if ag=0. '

Then Jo9 is the identity on L(z, n+1) and Sdy is the identity
on ofK(m, n+1)). Thus & is a PTCP of type (W). Identifying
K(n,n) with W7K(7,0)) and letting W 1(K(w,0)) = WW (K (,0)),
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Theorem 21.7 implies:

THEOREM 23.10: The PTCP §&: L(w, n+1) - K(m, n+1) with

group K(n,n) is naturally isomorphic to the universal PTCP
p: W (K(w,0)) » W' (K(n,0)) of K(nm,n).

§24. K(w,n)'s and cohomology operations

We develop here certain fundamental properties of K(r, n)’s.

- These properties will lead to a proof that every Abelian group com-

plex has the homotopy type of a product of K(m,n)’s and to the

- characterization of cohomology operations. In the next section,

‘these properties will be used to define the k-invariants of Postni-

kov systems.

All chains and cochains mentioned in this section and the
next are normalized.

Recall that L{w,n+1), is 7 regarded as the group of
homomorphisms of the free Abelian group generated by A, into #.
Define an n-cochain u ¢ C"(L{(m, n+1),7) by u(f)= KA,

f e Homz(F(A ), 7). u is called the fundamental cochain of
L{m n+1).

LEMMA 24.1: Let x ¢ L{m, nn+ 1), and consider the simplicial

— %
map X: Alg) -+ L(m, n+1). If X : CL(n, n+1),5) - C™(Alg), ) is
induced by X, then %*(u) = x.

Proof: Since C"(Algl,7) =L{m n+1) o the formula * uw)=x *
makes sense. From the definition of L(n, n+1) as a complex and
the requirement that X be a simplicial map, we derive
X(y) = 77 (x) ¢ C*(Alp), 7) for y e Algl,, where 7: Alp]l - Algl. In

particular, if. .y ¢ Algl, _is non-degenerate, then we must have:

X)) = u&E) = XEHA ) =F* GHA ) = xF A, ) =x() ,
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as was to be proven.
Let K be a complex and let Hom(K, L{m, n+1)) denote
the set of simplicial maps K - L(#, n+1). The addition in L(7,n+1)

induces a structure of Abelian group on this set.

LEMMA 24.2: Let K be a complex. Define
¢: Hom(K, L(m, n+1)) - C™K,n)
by &(f) = *(u). Then ¢ is an isomorphism of groups with inverse
y defined by ¢(V}x) =%*() for ¥ e C"(K,n), x ¢ K, where
3% CYK, 7) -~ C(Algl, »).

Proof: We must first prove that (¥) is in fact a simpli-
cial map. However, since d,=8} and s,=oF on L(n,n+1), we
find:

AN =dx* =81 =X 8)* =@ x)* ) =¢(¥X3; %),
and similarly for the degeneracy operators.
¢ and i are obviously homomorphisms, and it remains to prove
that they are inverse to each other. If x ¢ K, is non-degenerate:
(b oY YY) = (M) (X x) = u(p () = u&* VN =2 ONA,) = ¥(x).
Finally, if x ¢ K,
(o BUE ) =2 (BN =% (1 () = ) *(w) = £(x).

then using the first lemma we find:

LEMMA 24.3: ¢ and ¢y define an isomorphism between the co-
cycles Z"(K,n) and the maps Hom(K, K(z,n)).

Proof: If Y ¢ Z™K,n), we must prove that Y (¥)}x) ¢ K(=, n)
for all x ¢ K, that is, (¥)(x) is a cocycle. But
BN = 3 =%HEOY) = 0.
Conversely, suppose that ¢(YXx) is a cocycle forall x ¢ K.

Then if x ¢ K., is non-degenerate, we find that:

BY(x) = BYGHA 14 1)) =8(E* (DNA 4 1) =B ONENA 1) =0,
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and Y is a cocycle.

¢: Hom(K,K(m,n)) - Z"(K %) is defined by @(f) = f*(u),
where u is regarded as an element of Z"(K(n,n),rr). Here o s
called the fundamental cocycle of K{(m,n) and its cohom:)Iogy class

is called the fundamental class. We note that the following diagram

© commutes:

Hom(, L(r, n+ 1)) —2- Co(K,m)
|Hom(1,3) 2

Hom(K,K(z, n+1)) —2- Zr+1(K )

Further, we have the following theorem.

THEOREM 24.4: Let fg ¢ Hom(K,K(w,n)). Then § = g if and
only if ¢(f) is cohomologous to ¢(g). Thus ¢ induces an iso-

motphism of #(K,K(m,n)), the group of homotopy classes of maps
K > K(m, n), onto H¥K, ).

Proof: If f= g, then &(f) = £*(u) = 6%) = $(g) on the
cohomology level, hence the cocycles f*(u) and g*(u) are coho-
mologous. Conversely, suppose ¢(f) =~ Hg) + &a),
aeC" Y (K,m). Let ig: K +K x(0) and i,: K - K x (1) be the
simplicial maps identifying K with the cited subcomplexes of
K x 1. It suffices to find ¥ ¢ Z"(K x I, ) such that

i§) = YICK x (0)) = $(F)
and 109 = YK x (1) = ¢(g), for then ¥(¥): K x I - K(z,n) will be
a homotopy from { to 4. Let p: K xI - K be the projection onto
K and let Yo = p@UN) ¢ Z™K xl,m). Clearly if(Vg)=if(V) = &(f).
Further, regarding a as a cochain defined on 1,(K), we may choose
a cochain 8¢ C"7'(K x I, #) which extends « and vanishes on
foK). Thus i5(B)=0 and i}(B)=a. Let ¥=7¥,— 5(B). Then
1oy = f) and if(¥) = () = 8(a) = $(g), as desired.
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Before studying cohomology operations, we prove:

THEOREM 24.5: Let G be a connected Abelian group complex,
and let w_ = n,{(G). Then G has the homotopy type of the infinite
Cartesian product o1 Kz ,, n).

Proof: By Corollary 22.5, there exists an epimorphism
jt H (G) » # (G) such that joh: w, -7, is the identity map,
n> 1. Let ¥Y" ¢ Z2"(G,n,) satisfy Y"(x) = jix}, x ¢ C (G), where
{x} denotes the homology class of the non-bounding cycle x. By
Lemma 24.3, ¥" determines amap "1 G ~K(m_,n). If g¢G, re-
garded as A(G),, then ("(g) =3 (Y™ and

DA, = Y™g) = jig) = j o blgl = lel.

Therefore f3§: 7, (G) & 7 (K(m,,m). Let f=x_ " G—»x:°=1K(frn,n).
Clearly f is a weak homotopy equivalence, hence by Theorem 12.5

a homotopy equivalence.

Now we define and characterize cohomology operations.

DEFINITION 24.6: Let n and #° be Abelian groups, n and n’
integers. Regard H"(K,n) and H"'(K, 7"} as defining functors
from the category of simplicial sets to that of sets. Then a coho-
mology operation of type (n,n",7,#”) is a natural transformation
of functors C: H*( ;x) - H™ ( 7°).
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Let H"trr, m,7°} denote the cohomology group H"tK(rr,n);w’).

Then we have:

- THEOREM 24.7: The cohomology operations of type (n, n”, 7 ")

‘| are in natural one-to-one correspondence with the elements of

H"t:r,n,rr’).

Proof: 1f C is a cohomology operation of type (n, 1, 7, 7°),
define a(C) = C(u) ¢ H" (m,n,n"), where u denotes the fundamental
class of H"(m,n,7). Conversely, suppose c ¢ H" (n, n, #") and
Y e HUK, n), where K is some complex. By Theorem 24.4, ¥ de-
fines a homotopy class of maps ¢(¥): K + K(m,n). Define a coho-
mology operation S(c) by B(c)Y) = $()*(c). Then since ¥(u) is
the class of the identity map K(m,n) - K(m, n), we find

(@ ° B)(c} = Ble) () = Y)™(c) = .
Finally, if ¥ ¢e H™K,n) for some complex K, then using the natu-

rality of cohomology operations and the fact that (V) u) =Y we
find
(B 2a)(CYY) = BC)XNY) = Y(¥) (Cu)) = CR(¥Y () = C(¥).

§25. The k-invariants of Postnikov systems

Let (K,#) be a connected Kan pair. We wish to obtain in-
variants which characterize the homotopy type of K. Choosing a
minimal subcomplex if necessary, we may assume that K is mini-
mal (by Theorem 9.5). Let X =(X‘®’, ..., X __.) dencte the
natural Postnikov system of K (Definition 8.5). Then by Lemma
12.1, each X' is a minimal fibre space. Letting 7, denote
m(K, ), the fibre Firt1} of x(m g isomorphic to K(r,,.,,n+1)
by Lemma 10.2 and Theorem 23.6). Observe that K(® = P, so
that K'?=2 K(r,,1). Now by Theorem 11.11, each X™ is a fibre
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bundle, n > 1. We will show that, under assumptions on 7y, the
group of the bundle X can be reduced to K(m, ., n+1), n> L
Then by Theorem 19.4, it will follow that Xt can be given a
structure of PTCP. By Lemma 21.9, there will result a map

o gem W(K(nnﬂ, n+1)) = K(n .1, n+2) which will induce the
PTCP X¢*). By Lemma 24.3, ™2 will determine a cocycle
k72 202K 4o 0). A sequence k72, 1 < n, of cocycles so
chosen is called a set of k-invariants of K, and such a sequence
certainly determines the homotopy type of K.

Of course a similar argument holds for fibre spaces. Thus
let (F,¢) < (E,v) = (B,¢) be a fibre sequence of connected
Kan pairs. By Cotollary 10.11, we may assume that (E, p, B) is a
minimal fibre space. Let €=[&®,..., &, ...} denote the nat-
ural Postnikov system of (E, p, B) (Definition 8.10). Lemmas 10.3

and 12.6 imply that each £") is a minimal fibre space. Letting

7, denote 7 (F,y), the fibre of g7} is jsomorphic to K(m 1, n+1),

n> 0. Under assumptions on 7, 7,(E), and 7,(B), we will show
that the group of each of the fibre bundles g™ can be reduced to
K(#,41, nt+1). Then each g™ will have a structure of PTCP,
there will be a map "2 E® S W(K(m 41, n+1)) = K(z iy, n42)
which will induce the PTCP &' and there will result a cocycle
k™2 e ZTH2(E( 5 ). A sequence k™2, 0< n, of cocycles so
chosen is called a set of k-invariants of p, and such a sequence
determines the strong homotopy type of (E, p, B).

To validate the arguments above, we must study fibre bun-
dles with fibre K(#,n). The group of any such bundle is contained
in A(K(w, n)}, the group complex consisting of invertible elements
of the monoid complex M(m, n) = K(z,n)¥* ™", We determine the

structure of M(7,n) and A(K(7,n)) in the next two propositions.
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We will need the following lemma.

LEMMA 25.1: The group of simplicial maps Hom (K(r, n), K(n* )
1s isomorphic to the group of homomorphisms Homgz(m, 7"}, and

every element of Hom (K(#, n),K(z',n)) is a homomorphism.

Proof: We observe first that every element
f ¢ Hom (K(n, n), K(n”, n})
is & homomorphism. This is true since f induces a homomorphism
7+n" on K(m,n), = rf,,(K(rr, n)) =7 and since if X,y € K(;r,n) ., g>n
then, by induction on g, f(x +y) and £x) + {y) have the samqe ,
faces, hence are homotopic and therefore equal. Now { determines
a homomorphism # - #” and the converse was proven in Proposition

23.8.

PROPOSITION 25.2: As a complex, M{m, n) is isomotphic to
End (7, 7} x K(#7, n), where End (m,m) is the complex defined by

End (7, 7), = Hom (K(7, n), K(m, ) for all g, with each 9. and s,
the identity map. ‘

Proof: M(m, n), = Hom (K(z, n) x Alq), K(n, n)}. Define
L,=2%K(n,n) x Alql, 7). Then ¢ of Lemma 24.3 defines an iso-
morphism M(7, n), - L .. Anticipating the Eilenberg-Zilber theorem
to be proven later, we know that the chain complexes ’

Co(K(m,n) x Alq)
and Cy(K(m,n)) ® Cy(Algl) are chain homotopic. Further,
K(m, n),

since

=0, g<n, and 0 isa degenerate simplex, ¢ > 0, we find:

(@) C.(K(mn)xAlgh= Cn(K(fT.n))@Co(A[qD®C0(K(ﬂ,n))®cn(6{q]),
(ii) B (K(m,n)x Algl) 2B (K(7,n)) ®Co(Alg)) DCLK(7,n) @ By(Alg))
D Co(K(m,n)®B (Alg)).

Now suppose ¥ ¢ L_, so that 8(¥) = 0, From the second term on
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the right of (ii}, we find Y(x, y) = ¥{(x, 2}, where x ¢ C (K(m, n)) and
v, z € Algly. Then we see that if ¥ =¥, + ¥, where
¥y = ¥| €K, m)) ® ColAlg)

and ¥, = Y| Co(K(m, n)) @ C (Algl), we may regard ¥; as an ele-
ment of Z™(K(m,n),n) and ¥, as an element of Z“(A[q],rr):K(rr,n)q.
Translating back to M(w,n), we obtain the result.

The result above determines the structure of M{(m,n) as an
Abelian group complex, but we must still determine the monoid
structure and identify A(K(w, n)) C M(n, n).

PROPOSITION 25.3: The product in M(w,n) is given by

@ )8 y)=(18,1(y) +x), {,8 cEnd(m,7),, X,y ¢K(m,n),.

Let Aut(m,n), C End(7,7}, denote the group of automorphisms

K(z,n) > K(w,n). Then (f,x) ¢ A(K(r,n)) if and only if f¢Aut(m,m),

and in that case:

(i) )= —fYx)), fe Aut(m,7),, x ¢ K(7, n),.

Finally, the embedding v: K(#,n) > A(K(m,n)} of K(m,n) as a

subgroup of operators on K(m,n) is given by:

(Gii) v(x)=(1,x), x¢ K(rr,n)q, where 1 denotes the identity
map of K(m, n).

Proof: 1f (f,x) and (g,y) are as in (i) and z ¢ K(m,n),,
w ¢ Algl,, then using Lemma 25.1 we find:
(1)@ )W) = (6 0lE(2) +F (W), w)) = £ - £(2) + FF W) + 3 (W),
where X,y: Alg] » K(m,n) and £F(w)) = 3)w).
This implies (i) and (i) implies (ii). If w <€A, then:
v(x)(z,w) =z + E(x) = z + x(w) = (1, x) [(z, w)).
This proves (iii)- - - —- e o

In the next two theorems, we obtain conditions on a bundle
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with fibre K(7,n) which guarantee that the group of the bundle can

be reduced to K(#,n) and show by how much two K(z,n)-bundles
so obtained can differ.

THEOREM 25.4: Let p: E - B be a fibre bundle with fibre K{m,n)
and assume B is a connected Kan complex such that there exist
no non-trivial homomorphisms of 7,{B, ) into the group of auto-

morphisms of #. Then the group of the bundle can be reduced to
K(w,n).

Proof: Let {a(b)] be an AK(m, n))-atlas of p with twist-
ing function 7(b) = (f(h),x(b)). Let ¢ ¢ B,. Then from
do(c) = r(dyc)! 7(d, c)
and d,7(c} =r(d;¢c) we derive (34 ¢} = Kc) = K3y )™ K4, c).
Considering f as a function B, - Aut(n, ), we find that b ~ b
implies f(b) =~ f(6") and that f induces a homomorphism
7,(B, ¢} » Aut(n, 7)
for any base point ¢. Therefore £bY=1 for beB,. Define
Bb) ~ B(b)((b), 0), whete g(b) =1 for b ¢ B, and

88) = 1B} 1@ b). .. £33 'b) for b ¢ B,, ¢>0.

The relations d)r(b)=r(d, b)~1#(d, b) and & r(b)=1(d;,\B), >0,
together with the condition f(by=1 for b e B
imply that g(b) = 4(3,b) for i> 0. Then:
@ 3,B(®) =3, BBYE®),0) = B(3, bXg(3,5),0)=BAB), i > 0,
and :
(i) 3, B(bY= B3, bY((b),x(b))(g(b),0)~ B3N g3 b)), x(B))

= 3(36b)(£(305),0)(1,8(3ob) 1 (x(b)))

= B(30bX1,8(345) 1 (x(b))).

1 are easily seen to

" Thus f{a(b)} is A(K(nm, n))-equivalent to the -K(r-},n)-étias fa(b),

and the result is proven.
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THEOREM 25.5: Let p: E + B be a fibre bundle with fibre K(m,n),
and suppose the group of bundle can be reduced to K(#,n). Then if
B, has just one element, the resulting K(w, n)-bundle is unique up
to an automorphism of = (in a sense to be made precise in the

proof).

Proof: Let {a(h}} and fa(b)} be two K{(am,n)-atlases for p
with twisting functions #(b} = (1, x(b))} and 7(b} = (1,»(d)). la(b)}
and fa(b)} are necessarily A(K(m, n))-equivalent, say

B(B) = B(b)(g(b), z(b)).

Then:
(i) o Bb) = B0 b)(1, x(b)) (g(b), do 2(b))

= B(30 b)Y [(g(dy B, 2(3 o BN~ (1, x(B)) (g(h), I 2(b))

= B(d0 B)(1, y(B)).
It follows that g(dob) ' g(b) = 1, &) = 8(dob). Since B, has just
one element, we find inductively that g(b) is the same element g
for every b. In this sense, any two K(m, n)-atlases of p differ at
most by an automorphism of 7. In fact, replacing f{a(b)} by the
K(n,n)-equivalent atlas {a(b)} where [é(b):f_i'(b)(l,-—g"](z(b))), we
have:

(i) Bb) = BbY(@, (b)) (1, -4 (z(b)) = Bb)(g,0).

The resulting twisting functions may be inequivalent, but
(g—l ] 0) T(b) (gs 0) = ?(b)
or, considering 7 and r to take values in v~(1,K(w,n)),

g7 (r(B)) = 7(b).

REMARKS 25.6: Let r: B » K(m,n) be a twisting function and let
£ B - W(K(w, n)) = K(», n+1) be the corresponding map. Then
S(£)eZ™ B ,x) is given explicitly by $UEXB)=r(bXA,), beB .
This follows from a calculation showing that r(K(m,n))(yé)Xf) =7+
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when @(f) is so defined (where (K7, n)) is the twisting function
for W(K(m, n)) defined by formula (ii) on prge (02),

Therefore, if k, k ¢ Z™YB, %) arise from twisting functions 7,7
such that 7 = g.7, where g is an automorphism of K(z, n), then
k= g-k, where ¢ is regarded as an automorphism of 7. Now we
extend the concept of a map of PTCP’s with fixed fibre and base
to include g-equivariant maps, or g-maps, £ an automorphism of
the group. Then two cocycles k and k in Z™NB,n) determine
g-isomorphic PTCP’s ?.vith fibte K(z,n) if and only if gulkl=1k},
where g4 H"WY(B 7)., H™"Y(B,7) is induced by the automorphism
g of =

Now we have proven the following theorems:

THEOREM 25.7: Let (X, ®) be a2 connected minimal Kan pair and

let 7, denote 7,(K,#). Suppose there exist no non-trivial homo-

morphisms 7, -+ Aut{w,7,), n> 1. Then each of the fibre bundles

X™, > 1, of the natural Postnikov system of K is a

K(7 iy, n+1)-bundle, unique up to g-isomorphism,
geAutlm g, 7, 1),

X is determined by k™Y - (i) ¢ Zrg in) To.v1), Where

7K™ L K(m_ 1, n+2) is defined by any twisting function of

X Apother cocycle k™2 alg0 induces X' if and only if

fk"t%} = gkk™?} for some g ¢ Aut (CASSTL ARV

THEOREM 25.8: Let (F,y) - (E,¢¥) £ (B, ¢) be a fibre sequence
of connected Kan pairs, where (E,p, B) is a minimal fibre space.
Let =, denote 7. (F,¢) and assume 7, is Abelian. Suppose
there exist no non-trivial homomorphisms m,(E,4) » Aut G

n > 1. Then each of the fibre bundles £ n> 0, of the natural

Postnikov system of p is a K(z .11, n+1)-bundle, unique up to
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g-isomorphism, g ¢ Aut(m 1,7, 1} £(" is determined by

kn+e _ ¢(fn+2) ¢ zn+2(E(n)r”n+1):
where £°*2: E(W L K(n ,,,n+2) is defined by any twisting func-
tion of €. Another cocycle k™2 also induces g if and

only if fkm2} . gik™*} for some £ e Aut(m, 1,7 ,01)

REMARKS 25.9: There are various comments to be made on the
arguments above:

(1) The k-invariants could be defined and should be inter-
preted as obstructions to the cross-sectioning of the relevant bun-
dles.

(2) Had we developed the theory of the operation of 7 ,(K,¢)
on 7, (K,$) (and of 7,(B,¢@) on 7. (F,y)), then the assumption
as to non-existence of homomorphisms could have been replaced by
the assumption of n-simplicity for all n. Further, the appropriate
generalization to the case where n-simplicity fails could be devel-
oped by use of the results on the structure of A(K(7,n))'s.

(3) If (K,¢) is a Kan pair and # is an Abelian group
such that Aut(m,#) is an Abelian group, then the statement that
there exist no non-trivial homomorphisms 7 ,(K, ) ~ Aut (=, 7) is
precisely the statement that HYK, Aut(m, 7)) = 0. This follows
from the universal coefficient theorem and the fact that

H (K, Z) 2 7K, $)/lma (K, ), my(K, $)].

(4} There is an obvious inverse procedure for constructing
any (simple) homotopy type: Let there be given a sequence of
greups (my, ..., 7, ...), 7, Abelian if n> 1. Define

K — K@y, D).
~ Choose k3¢ ZS(K“), rr;) and construct K® a5 the PTCP induced
from g[f(ks) KM L K(m,,3). Choose ke Z‘(K(z) #3) and con-
struct K’ from Y(k*), etc. Similarly, suppose =, is Abelian

; Choose K ¢ ZE™), m,), and construct E@) from (&3,
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and let B be a connected minimal complex.

. Define E(® _ B.
Choose k* ¢ ZHE® 7.} and let E

be induced from
W(k™): E® 5 K(,,2).

etc.
(5) The precise statement of the topological results implied

by the arguments above should be clear. Starting with a connected

CW-complex X or a Serre fibration p: E 5 B of connected CW-

iomplexes we derive (via the functor 5, minimalization, and the

functor T) a sequence of principal fibrations (in the topological

.:,t;ense) which are determined by k-invariants and which determine

he homotopy type of X or of (E, P, B). The additional assumption

;:hat all homotopy groups in sight are countable must here be made

inless one takes the precaution of working in the category of com-
tly generated spaces.
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BIBLIOGRAPHICAL NOTES ON CHAPTER V

The result that #,(N(G)) = H_(A(G)) and the resulting com-
parison of the homotopy and homology of Abelian group complexes
is due to Moore [52], but our proof is essentially that of Cartan [6].
The equivalence of the categories of simplicial Abelian groups and
of chain complexes is due to Dold [8] and Kan [27]). Our construc-
tion of the functor I follows MacLane {41]. The relation

7 (CKY) = H (K)
is the simplicial analog of 2 result of Dold and Thom [9] on the in-
finite *‘symmetric power”’ of a space.

The material on K{w,n)’s is mainly due to Eilenberg and
MacLane [13]). The proof of uniqueness of K(r, nYs is due to
Moore [5,52]. Our presentation of the results of [13] comparing
maps into K(m, n)’s and cohomology groups follows Douady [7].
The relationship between K(m,n)’s and cohomology operations
was first observed by Serre [58].

The approach to the k-invariants of Postnikov systems via
the study of simplicial fibre bundles with fibre K(z,n} is new. An
obstruction theoretic approach in the semi-simplicial case is taken

by Heller {21] and Moore [53].

CHAPTER VI

LOOP GROUPS, ACYCLIC MODELS,
AND TWISTED TENSOR PRODUCTS

The main object of this chapter is the construction of the
Serre spectral sequence by means of twisted tensor products. The
basic tool in this development, which is completed in section 32,
is Brown’s theorem, which gives a natural equivalence between
Cn(F % BY and C,(B) &, Cn(F) on the category of twisted Car-
tesian products, where ¢ is a twisting cochain determined by the
twisting function r. In order to define twisting cochains, the theory
of cup, Pontryagin, and cap products is developed in section 30,
Of course, the definition of those products depends on the Eilen-
berg-Zilber theorem, and this is proven in section 29. The proofs
of both Brown’s theorem and the Eilenberg-Zilber theorem rely on
the method of acyclic models, which is described in section 28.
The models for Brown’s theorem are defined in terms of functors
which assign to a (reduced) simplicial set K a simplicial group
G(K) and a PTCP G(K) %, K such that T(EG)) is contractible,
G(K) is called a loop group of K. G(K) and GK) %, K are de-
fined in section 26. In section 27, it is shown that G and W are
adjoint functors, the suspension E(K) of g complex K is defined,

and miscellaneous results about the functors G, W, and E are ob-

tained.
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§26. Loop groups
In this section, we will prove the existence of loop groups
of reduced complexes, that is, of complexes having just one vertex.

We will also give a reinterpretation of the Hurewicz homomorphism.

DEFINITION 26.1: A group complex G is said to be a loop group
of the complex K if there exists a PTCP E(r) = G X, K such that

T(E(r)) is a contractible space.

EXAMPLES 26.2: K(z, n) is of course a loop group of K(m,n+1).
By Lemma 23.4, if K is a Kan complex, then L(K)} is a loop group
of K provided that L(K) admits a structure of simplicial group.

If K is a reduced complex and K, = ko, we will let k&,

denote sgk,. We now define a loop group of such a complex.

0
DEFINITION 26.3: Let K be a reduced complex. Define G (K)
to be the free group generated by the elements of K., modulo the
relations sox = e, for x € K. G (K} is of course a free group.
If xe€K,,,,let 7(x) denote the class of x in G (K). Define

face and degeneracy operators on the generators of G(K) by:

7(3ox) do7{(x) = 7(d, x)
(T) da(x) =1(d; %) if >0

si(x) = 7(s;4,x) if 1>0.

The d, and s, extend uniquely to homomorphisms G (K}-G ., (K)
and G, K) -G, (K). G(K) so defined is easily verified to be a
group complex, and 7: K » G(K) is clearly a twisting function. We
let E(r) = G(K)} % K.

We must prove that T(E(r)) is contractible, and it suffices
to prove m(T(E(r))) =0 and _f};tg(r))_ =0, n> 0. '

LEMMA 26.4: 7 (T(E()) = 0.
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Proof: Recall that #,(T(E(r))) can be considered as a
group having one generator for each 1-cell not in a maximal tree
and one relation for each 2-cell. We regard non-degenerate simpli-
ces (4. x) as denoting the comresponding cells. The 1-cells )
(soé x), x € K| non-degenerate and g € Go(K), form a maximal
tree. This holds since dy(sqg; x) = (r(x)g, ko) and 9,(so8,x)=(8, k),
which implies that any two O-cells can be connected in one and

only one way by 1-cells of the cited form. We must show that every
l-cell (4,x), § non-degenerate, is homotopic to the product of 1-

| cells in the maximal tree and their inverses (reverses). The 2-cell

- (816, sox) shows that (g, x) is homotopic to (s49.4, x)(g, k) If

- g =1(y)"'g’, the 2-cell (so&) y) shows that (g, d,y) is homotopic

to (¢, 007) (50018, d,¥). If g=r(y)g’, the 2-cell (s¢8". ¥) shows

-~ that (g, doy) is homotopic to (8", 9,¥) (s,0,&", d,9)~'. Combiriing

- these relations, (g, x) is homotopic to the product of (£, k,) with

1-cells of the maximal tree or their reverses, where the group theo-

- retic length of ¢” is strictly less than that of 4. Inductively,

since €, = sgyey, the result is proven.
“LEMMA 26.5: H(E())= 0, a> 0.

Proof: Consider C (E(r)), where (eo, kg) is taken as base

- point. For 4 € G,(K) and x €K, define [g,x] € (},,(E(r)) by:
(1) [g: x] = (f(X)g, 30") - (g’ kn)‘

:-Observe that ¢, k,,,] = 0 and define B = {[g, x)|x £ k., . Suppose
for the Enoment that we know that B is a basis for the free Abelian
group C (E(r)), and define §: én(E(")) - én+1(5(f)) by

(i) sl « = .g"o EDIs &, (so)*'(3y) 1],

Using the easily verified relations
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(lll) ai[grx] = [ajg!ai+lxl Elnd Si[grx] = [Sgrs;'q.]x]r

a simple calculation proves that dS +3d =1 on C(E(r)). It remains

to prove that B 1s a basis for én(E(r)). We show first that the sub- -

eroup Z(B) of C(E()) generated by B is all of C(E(r)). Let
(g, x) be an element of the natural basis for C,(E(n). Since

(8,x) = (&,k,) + [8,5¢x], (&%) = (&,k,) mod Z(B). Since

(iv) ()~ '¢" k) = (8,d0y) — ()~ '¢"y] and
(V) (T(J’)g’:ao.?) = (g'!kn) + [g’y]n

and £ can be written in one of the forms §=1(y}~ 16 or g=1(y)é’,
it follows that (&,x) = (8°.k,,) mod Z(B), where g  is an element

of G, (K) with length strictly less than that of &. Inductively, we
find Z(B) = én(E(r)). We must still prove that the elements of B

are linearly independent. Let g be an integer and define B, to be

the union of the following sets:

tlg,sor] |y # k,,, length (&) < ¢}
(vi) g x| length ((x)g) = length (g) +1 < g}
Hr(x)~ '8, x] | length (r(x)~'4) = length (§) + 1 < ql

Since B = Lg B, it suffices to prove that the elements of B, are
linearly independent for each q. B, = {le,soyli = l(ep), sothe
result is true for g = 0. Now we need only show that the elements
of B,—B,_, are linearly independent mod Z(B,_,), ¢> 1. But

B, —B, ymod Z(B,_,) is the union of the following sets:

Kg)Y)_(g’kn) ] IEHgth (g) = q}
(vii)  H(r(x)8,04%) | length (1(x)€) = length (&) + 1 = q}
{(r(x)~ '8,k ,) | length (7(x) 'g) = length (&) + 1 = qi.
Clearly these elements are linearly independent, and this completes

the proof.
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Thus we have proven the following theorem,

THEOREM 26.6: Let K be a reduced complex. Then TE®D) is
contractible, hence G(K) is a loop group of K.

COROLLARY 26.7: The homotopy groups 7 (K} = 7 (ST(K)) of a

reduced complex K are calculable as 7 a1 (GK)), n> 1.

REMARKS 26.8: In i:»rinciple, the corollary defines a procedure for
a purely group theoretic calculation of the homotopy groups of any
reduced complex. The construction of G can actually be carried
out for an arbitraty connected complex. The details of this general-
ization may be found in Kan [30].

There is an interesting interpretation of the Hurewicz homo-
morphism ir terms of the functor G. Let AKR=GEK)Y/[GK),GK)) .
Then the projection p: G(K) ~ A(K) can be verified to be a Kan fi-
bration, whose fibre we denote by F(K). We will show that

Py ma ((GIKY) 7, ((A(K)) is essentially the Hurewicz homomor-
phism h: n (K) - H (K).

THEOREM 26.9: n (A(K)) is naturally isomorphic to H ., (K),

n > 0, and the following diagram commutes

ron &) s H_, (K)

7GR 2 o (AKY),

whete the vertical arrows are the natural isomorphisms.

Prool: By Theorem 22.1, if we regard A(K) as a chain com-
plex with differential d = 2(-1)'3. | then 7 LAK)) = H (AKK)). Ob-
serve that A (K)=C, (K)/s,C (K). Thus it suffices to prove that
H, (CKY)=H_ (CK)s,C(K)). Now if A is any Abelian group

complex. then As. + 5.4 .4 ~an 4 e 1 heaaa
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Osg(sgx) + Sg0(sgx) = sox for x € A, _,. Therefore sqoA is stable
under d and is null-homotopic. Since the commutativity of the

cited diagram follows from the definitions, this proves the result.

REMARKS 26.10: We have the following commutative diagram,

where the rows are exact and the vertical arrows are isomorphisms:

w2 Wy ) (AK) X K)o oy (K) = H  (K) - 7 (AK) % K) .

| ! ! !

wr m(FEKY  swa K -H o K)sw, ((FKY) -

The first exact sequence arises from p: G(K) - A(K), the second
from the PTCP A(K) %, K. The outer vertical arrows result from
the fibration G(K) x; K -~ A(K) %, K with fibre F(K).

§27. The functors G, W, and E

Here we prove that G and W are adjoint functors. From
this will follow the essential uniqueness of loop groups. We then
define the suspension E(X) of a complex K and make some re-

marks about the functor E.

THEOREM 27.1: Let § denote the category of simplicial groups,
S that of reduced complexes. Then the functor G: & -G is an ad-
joint of W: G 3.

Proof: Define yr: Hom@(G(K),A) - Hom$ (K,W(4)) as fol-
lows. Given a simplicial homomorphism ¥: G(K) - A4, there exists
a unigue Y-equivariant map &: G(K) %, K - A such that
He, *xK )T e, x WQ(A), ¢ > 0 (by Theorem 21.7). Define
() K - W(A) by pf=y(V)p. As in(l) of Lemma 21.9, y(¥) is
given explicitly by:

(1) !/l(Y) (X) = [}’T(X), yf(aox)! *rrs )’f(ag_ lx)] r X = Kﬂ N
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Define ¢: Hom§ (K ,W(4)) - Homg(G(K),A) by
@ WD (r(x) = (A) ((x)), x €K, ’

This means that if f(x) =[a,_,,...,a0), thea ¢(f (r(x)) = an_ -
() is extended to G(K) by the requirement that it be a simplicial
homomorphism. It is easily verified that $oy and iy ogd are the

respective identities.

COROLLARY 27.2: There is a natural one-to-one cotrespondence

between twisting functions K - 4 and simplicial homomorphisms
G(K) - A.

Proof: Each twisting function 7: K » A is induced by a
unique simplicial map f(7): K - W(A) by the rule 7 = A)of(7).
Notice that
B)  GU(T)) () = (A7) (x) = 7w), x€K,.

COROLLARY 27.3: Any PTCP with base K is determined by a
unique simplicial homomorphism of G(K) into the group of the
PTCP.

COROLLARY 27.4: Let A be a loop complex for K. Then there

- exists a simplicial homomorphism GK) > A which is a homotopy

. equivalence.

Proof: There exists a twisting function 7 K > A such that

- T(A X K) is contractible. If f(r): K » W(A) induces A %K,
~then clearly £(7) is a weak homotopy equivalence. Consider

- @¢(H(7)): GK) > A. By definition of i, the o(f(7))-equivariant map
- G(K) % K > W(A) of Theorem 21.7 covers (¢ o XHF))=F(7): K - W(A).

. Therefore @(F(7)) is a weak _}-i_n_:n_rr-lsﬁ\-t_opy- eﬁuivalénce, hence a homo-

topy equivalence.
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REMARKS 27.5: Free groups play a role in the category G similar
to that played by Kan complexes in the category S. To see this,
we note first that the natural concept of homotopy in Q is that of
loop homotopy: Two simplicial homomorphisms f,§: G » H are loop
homotopic if there exists a homotopy F: f~2 ¢ such that

F(xy,v) = F(x,v)F(y,v) forall x,y € G, and v &I, It canbe
shown, by appropriately redefining HY in the category G and
proving that HS is a Kan complex if G is a free group, that loop
homotopy is an equivalence relation on homomorphisms defined on
free groups. Similarly, a weak homotopy equivalence of free groups
is a loop homotopy equivalence. Further, ¢ and ¢ of Theorem
27.1 induce one-to-one correspondences between the homotopy
classes of simplicial maps K - W(4) and the loop homotopy classes
of simplicial homomorphisms G(K) - A. Let ®: GW - 1§ and

W. 1§ - WG correspond to ¢ and ¥ (as in Lemma 15.2) so that
WdoWW: W W and OG o GY¥: G- G are the respective identity
natural transformations. In analogy with Theorem 16.6, we can
prove that W(K): K » WG(K) is a weak homotopy equivalence (and
is a homotopy equivalence if K is a Kan complex) and that

d(A): GW(A) > A is a weak homotopy equivalence (and is a loop
homotopy equivalence if A is a free group complex). Finally,
G(F): G(f) =2 G(g) is a loop homotopy in G if F:f~g in 3, and
W(F): W =W(@g) in S if F:f=~g is a loop homotopy in G.
Proofs of these results may be found in Kan [31].

Now we define the suspension of a complex.

DEFINITION 27.6: Let K be a complex with base point k4. De-
fine the suspension E(K) as follows, E(K)=b,; E(K) consists
of all symbols (i,x), i > 1, x €K,_;, modulo the identification

(i,k)=s""by=b,,,, whete k,= sCko. Define face and degen-
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eracy operators an E(K) by:
(i) s{U,x) = (i +j,x)
(1) siy (10 = (1,s:%)
(lll) ao(ls") = bnl xe Kn

(iv) 0,(1,x)=b,, x€K,

(v) 9;44(L,x) = (1,0,x), x€K,, n>0.
s;Gx) for i> 1, j>2 and 9,(,x) for 1> 0, j> 2 are deter-
mined by the operations abave and the requirement that E(K) be a
complex. We note that (f+1,x) is often denoted by s‘Ex in the
literature. '

Recall that if (X,x,) is a topological pair, then the (re-
duced) suspension E(X) of X is the identification space obtained

from X xI by collapsing (X X1y U (x4 XI) to a point.
LEMMA 27.7: TEK) is canonically homeomorphic to ET(K).

Proof: Define £ ET(K) - TE(K) by the formula:
(i) f(x8],1-¢) = j(1,x),5(t)], where x €K, and where
if 8=(t,...,t,), thea §(¢) = (A-titeg, ... t)
f is the required homeomorphism.

Writing r(1,x) = x, we find that GE(K) is just the free sim-
plicial group generated by K, subject only to the relations & =e.
It follows that AE(K) = C(K), so that n,(AE(K)) = H (K). The
inclusion map K -~ GE(K) induces o: 7 oK)~ (GEK )27, (EK).
o is called the suspension map of the homotopy groups.  Using
Theorem 26.9, we obtain the commutative diagram:

| g
7oK) —— n (GEK) = 7, (EK))
f Jps p

HK) = o (AEKY —=, B (ECKY
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The pair (GE(K),K) gives rise to the exact sequence:
er2 g t(GECK) K = 1 oK) % 7 4 (EKD) » 7 (GEK),K) ...

REMARKS 27.8: The construction GEcould be modified by using
free monoids instead of free groups. We denote the resulting free
monoid complex by G'E(K), The interest in G*E(K) arises from the
fact that if K is a countable complex, then TGYE(K) is canoni-
cally homeomorphic to the reduced product (James (23] of T(K).
However, a homological argument shows that the inclusion of GtE(K)
in GE(K) induces an isomorphism on homotopy groups when Kis
connected.

REMARKS 27.9: Let & denote the category of simplicial sets,
$* that of reduced complexes. One would like G: M) and
E: S 58" to be adjoint functors, since in the topological case we
have Homq(X,{1Y) = Homj‘(E(X),Y), where (YY) denotes the loop
space of ¥. This conclusion is false: It is easy to construct a
natural transformation - Homg+ (EF)K") - HomS(K,G(K’)), but
i has no inverse. If G is replaced by L of Definition 23.3 and
S is taken to be the categoty of Kan complexes, then ¢ is still
defined and now does have an inverse. Thus the functor L is more
closely analogous to Q than is G. However, L(K) is only defin-
ed if K is a Kan complex, and L(K) may admit no structure of

group complex.

§28. Acyclic models

Wa davalan hare a seneral nrocedure for the construction of
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chain maps and chain homotopies. The method applies when a cat-
egoty has certain distinguished objects, called models, which are
acyclic with respect to a homology theory defined in terms of one
functor from the given category to the category of chain complexes
and which, in a suitable sense, represent another such functor.

Let § denote a fixed category. Let M denote a set of ob-
jects of §, called the models. € will denote the category of chain
complexes, B that of Abelian groups. Let A: S - B be a covariant
functor. We must define the concept of representability of A,

Assume (or arrange by use of the free Abelian group functor) that

8 is an additive category and 4 is an additive functor. Define A(K) =
®uon (Homg (M,K) ® A(M)), K an object of 8. For maps a: K — L
and u: M — K in 8 and a ¢ A(M), define A(a)(n,0) = (@ © p,a).

Then A4: 8% is an additive functor. Define a natural transforma-

tion of functors A: A » A by AK)(u,a) = A(uXa), p: M -K, aecA{M).

DEFINITION 28.1: A:8 » B is said to be representable if there
exists a naturat transformation of functors & 4 - A such that

Al A - A s the identity natural transformation. £ is then said to
be a reptesentation of 4.

THEOREM 28.2: Let A and B be additive functors & - and
let n> 0 be aninteger. Suppose given natural transformations

fi: A; > B; suchthat d,f;={,_,d,, 0< i< n (where A,B:8-B
are determined by A(K), B(K), K an object of §). If each Aq:S-nfB
is representable for ¢ > n and each H(BM) =0 for g> n and

M ¢ M, then there exists a natural transformation f: A = B such that
fla;=f,,0<i< n

Proof: We construct fpA, - B,;, 'bsr in&udioﬁ 6:1 q, start-

ing with the given f,, i < n. Suppose fq_1 has been defined on
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Ag_y g2 n+l 1T ac A (M), M N, then f,_d (a)eZ,_B(M)
because by the induction hypothesis we have

Since H,_,(B(M)) =0, we may choose b ¢ B (M) such that

d(b) = f,_,d(a). Define a natural transformation jz: .;1‘z - B, by

3(K)(p.a) = B (@) (D), u: M > K. Then we find:

dq3(K) (ua) = d B (p)(B) = By (p)do(B) = B, ,(10f 4_ 1d (&)
= fq— IA q— l(p-)dqr(a) = !q— lqu q(ﬂ') (@) = ‘fq— lqu(K) (ﬂ-ua)o

Thus dg=f,_1dA. Nowlet &4, A q be a representation of
A, and define f,=4¢{: A, > B, Then we have

df,= dqgé =fq_ ldqz\f =f,_y dq )
as desired.

THEOREM 28.3: Let A and B be additive functors & - € and
let n> 0 be an integer. Let f and £ be natural transformations
A -+ B and suppose given natural transformations s;: 4,- B,
such that d; (s, +s;_,d;=f,—g,, 0< i< n-1. If each Aq:§-$
is representable for ¢> n and each H (B(M))=0 for ¢ > n and
M ¢ M, then thete exists a natural chain homotopy s: f = g such

that s|A;=s; 0< i< n-1

Proof: The argument is similar to that above. We construct
Sqt Ag~» B4y by induction on g, starting with the given s,
i< n—1,orwith s_;=0 if n=0. Suppose s,_, has been de-
finedon A,_y, g2 n If acA M), MM, then we find that
By~ fq—5q-1dy) (@) ¢ Z B(M) by use of the induction hypothesis.
We then choose ¢ ¢ B o (M) such that d,,(c)=(8 ;~f—s,_,d)a)

and define a natural transformation 7 A e Basr by

Q(K) (p_,&) = Bq‘+l(P—) (C)- I M- K.

ting & A, - .:1q be a representation of A, we define

and then d i 8,=4£4—fq—s5,.,d,, as desired.

REMARKS 28.4: In the applications, one often encounters the sit-

H BM) =0 for ¢>0 and € HoBMNZ Z. In this case, we

say that M is acyclic with respect to B. Here, if n=0 in Theo-
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An easy calculation proves that d, 5 = @q—1f,— Sourd A, ]_.,et.__«-.-r""f

sq=nf Ag- B,

uation where B(M) is an augmented chain complex satisfying

rem 28.2, we must assume that f,0,(A(M)) CKer€ forall M e M,
while if n =0 in Theorem 28.3 we must assume that
(fo— o) (A(M)) CKer €.

The proofs then go through with the obvious trivial modifications.

REMARKS 28.5: If each model M has a canonical contracting

homotopy with respect to B, then there are canonical choices for
the chains b and ¢ in the preceding proofs. Therefore explicit
formulas for the constructed chain maps and homotopies are then

obtainable.

§29. The Eilenberg-Zilber theorem

Let (@ denote the category of simplicial Abelian groups.
If K and L are objects of (, it is necessary to modify the defi-
nition of K x L by letting (K xL),, =K, ®L, inorder for K x L
to be an object of (. Now we have two functors A and B: @ x(3-C,
defined as follows. A(K,L) is A(K xL), that is, K XL regarded
as a chain complex, with d, = X7 (-1)'d,. BK,L) is AK)YIA(L),
sothat B (K,L) =2, A(K)®A(L) and d=d®1+1Q@d
(with the sign convention: (1 ® d)(x ® y)=(-1)4%¢ *x @ d(y)). We

will abtain a natutal chain homotopy equivalence of functors {: A~B
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with inverse g: B - A by use of the method of acyclic models.

Since A K,LY=Ky, ® L, = ByK,L), we define {5:44-B
and go: By » Aq to be the identity natural transformations. We will
obtain models in (& x @ which represent both A and B and are
acyclic with respect to both 4 and B. Thus let ¥9 denote the
free simplicial Abelian group generated by Alg] and define the
models M in @ x (@ to be the pairs (MP,M9).

LEMMA 29.1: Both A, and B, are representable, n> 0.
Proof: Define & A, A4, by
1) &KLYk, ® )=k, xT,, A, ® A,
Then 3
MELYEK, LYk, ® €)= Ak, X £)(A, ® A,) =
FAD® LB =k, ®E,.
Similarly, define & B, - B, by
Q@) &KLYk, ®L)=(k,xE,A,®A), p+g=n
Again we find A¢ =1, as desired.

LEMMA 29.2: The models are acyclic with respect to both A and
B.

Proof: MP is augmented with augmentation €: M? - Z de-
fined by E(x)=0 if xeM°, n>0, and E(x)=1 if xeAlply. Define
€ AMPMT > Z by £(x @ y) =€(x)e(y), and similarly for
B(MP,M%)., We must prove that H _(AMP,MN) =0, n>0, and
€ HO(A(M",M"))go Z, and similarly for B. Define s: H: - M:H by
s(ag,...,a,)=(0,89,...,a8,), 0< a;<...<a,<p Then

(1) d¢s =1; d;s =(0) on Alply; d;4y5 = sd; on Alp),, n> 0.

Therefore ds + sd = 1—0€, where o: Z - MP is defined by
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o(1) = (0). Now define s: A (M?M% > A, ,(M?, M) by

(2) sx@p)=st)® sy, xcM?, yeM?.

Then ds +sd=1® 1 - 0€ ® o€ on AMP,MY). Similarly define
s: B, (M®,M% 5 B, ,(M",M9) by

B) sx By =50V y +(-1)"0EX) @ s(¢7), x e M", y e M7,

U+v=n.

Then ds +sd=1® 1 — o0& @ o€ on B(MP,M9). This proves the
result.

Now the following theotem, due to Eilenberg and Zilber
(16], follows immediately from Theotem 28.2 (with n = 0) and Theo-
rem 28.3 (with #=1 and s, = 0), coupled with Remarks 28.4.

THEOREM 29.3: Let 4, B: (T x@ - C be defined by

A(K,L) = A(K X L)
and BU,L)= A(K) @ A(L). Then there exist natural transforma-
tions A > B and £: B - A lying over the respective identity
transformations {,: Ay > B, and g,o: By - A,. Any two such f
are naturally chain homotopic, as are any two such g. Further, for
any such f and g, fog: BB and §of: 4 > A are naturally

chain homotopic to the respective identity transformations.

COROLLARY 29.4: Let Ay, By @%@ - € be defined by
AyK,L) = Ay(K X L) and By(K,L) = Ap(K) @ Ap(L). Then the

theorem remains true if we replace A, B by Ay, By,

Proof: The models of @ x{ are acyclic with respect to
Ay and By by Corollary 22.3. It is easy to check directly that

Ay and By ate tepresentable, but since it follows from Theorem

"22.2'and Corollary 22.3 that A \{K,L) and B (K,L) are direct

summands of A(K,L) and B(K,L), this result is a consequence of

tha fAllamions lammn seblinb ceee 211 Laaen £ an LI N T
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LEMMA 29.5; Let A4, A”: S » C be additivefunctors. Let aA-A"
and 3: A" > A be natural transformations such that Boa=1:4 - A.

Then if A” is representable, so is A.

Proof: The following diagram is commutative:

;! a :.;-i' B‘A
]r 1% )
A2 4. Ba.

Here a(K) (@) = (ua(M) (@), p: K-M, ac A(hM), and
BE) ,a”) = (uBM) (@), a” < A‘(M). Let &: A" > A’ be a repre-
sentation of A" and define §: A - A by & = Bf’a. Then:
Af = ABf’a = BA Ea=PBa=1, so { is a representation of A.

COROLLARY 29.6: Let K and L be simplicial sets. Then there

are natural chain homotopy equivalences f:C(KXL)-C(K) @ C(L)

and g: C(K) @ C(L) » C(K x L), and similarly with C replaced by
Cy-

Proof: We need only observe that C(K XL)=A(F(K),F(L))
and C(K) @ C(L) = B(F(K),F(L)), where F(K) and F(L) are the
free simplicial Abelian groups generated by K and L.

As stated in Remarks 28.5, the contracting homotopies on
the models determine explicit choices for f and g. It is simpler
in this case to construct explicit transformations ad hoc. For con-
venience, if K is a simplicial set and x ¢ K, we let dx = d,x and

in general 9" 'x =39,,;... d.x

DEFINITIONS 29.7: Let K and L be simplicial Abelian groups. -

Define f. A(K X L) - A(K) @ A(L) by

n

B Hk,®L)= 2 Ik, ® alt,
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f is called the Alexander-Whitney map.
Define g: AK) ® A(L) > A(K x L) by -

(ii) g(kp ® Eq) = (‘u’z"})(_ l)o(p)(qu--- Svlkp X Sp-p"' splﬂq),

where the sum is taken over all (p,¢)-shuffles G,
(Definition 6.5) and whete o(4)=3" [ (i-1)] is

the signature of the corresponding permutation.

We will call g the Eilenberg-MacLane map, since these authors in-
troduced and studied it in {13].

PROPOSITION 29.8: The Alexander-Whitney map f is a natural
transformation A(K x L) » A(K) @ A(L) lying over the identity
Ag(K X L) > Ay(K) @ Ag(L). 1t is assaciative in the sense that

the following diagram commutes:

}aA(K) ® AL XK | o,
AK xL xM /A(K) Q ALY ® AM).
AR <Ly @ Amy {®1
f induces a natural transformation [yt An(KXL)> A (K) ® A pnL).

Proof: Clearly f, is the identity and f is natural. To prove
that df = fd and 1 ® NHf=(f @ 1){, we need only demonstrate
these equations on A, ® A, andon A, ® A, ® A,. Here these
results follow from explicit calculations, which will be omitted.

Next, we have an exact sequence (with the obvious maps)

(a) DEK) @ AL) B AK) ® D(L) - AK) ® A(L) » ANK)® A (L),
Now if x®@y e DIKXL), say x ® y = six" @sgy’, thenif i< k,

agsky’ is degenerate and if ¢ >k, 9" s 1 is degenerate, Thus

one factor in each term of f(x @ y) is degenerate, and therefore,

by (a), f does induce fre
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PROPOSITION 29.9: The Eilenberg-MacLane map ¢ is a natural
transformation A(K) ® A(L) - AK x L) lying over the identity
A K) @ AgL) » Ay(K XL). It is associative in the sense that

the following diagram commutes:

AK x L) ® A(M)
®
> \é’A(K x L x M)

A(K) ® A(L) ® A(M)
1Q &Ky @ a@. x i) 8

£ induces a natural transformation gyt A y(K) ® Ap(L)-A (K XL),

Proof: Clearly g, is the identity and g is natural. To
prove that dg = gd and g(8 ® 1)=g(1 ® §), it suffices to abtain
these results on A, ® A, andon A, ® A, ® A,. Here these
equations follow from lengthy computations, which will be omitted.
Finally, if either x ¢ K, or y ¢ L, is degenerate, then so is each

term of £(x @ y), and this implies that g induces gy.

COROLLARY 29.10: gof=~1, fogerl, gyofy=1, and
fyody=1

Proof: The existence of the cited chain homotopies follows
from Theorem 29.3 and Corollary 29.4. The fact that fycgy =1
(with no chain homotopy required) is verified by explicit computa-
tion.

Finally, f and ¢ are homotopy commutative in the sense of

the following lemma.

LEMMA 29.11: Let K and L be simplicial Abelian groups. De-
fine : KXL -LxK by t(x @ y)=y ® x. Then the following
diagrams are chain homotopy commutative:

ARXL) L A(L XK) AK)Y® ALY -Lv ALY ® AKK)
lf lf and lg lg 4
AKYVR ALY Ly ALY 0 AKD AK XLy L5 ALK
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where T(x @ y) = (=1)9°¢*xdeery @ 4,

Proof: We note first that the sign in the definition of T ' '
makes it a chain map. Since {t =Tf on Ay(KxL) and T =t on -
A (K) ® Ay(L), the result follows from Theorem 28.3 (with n= 1.

and s, =0), using the same models as those used in Theorem 29.3.

§30. Cup, Pontryagin, and cap products; twisting cochains

Here we define cup products, Pontryagin products, cap pro-
ducts, and twisting cochains. Twisting cochains define twisted
tensor products, which ate related to tensor products in a2 way ana-
logous to the way twisted Cartesian products are related to Carte-
sian products.

We first define algebras, coalgebras, and Hopf algebras.

DEFINITIONS 30.1: Let X be a graded A-module, A a commuta-
tive ring. X is said to be a A-algebra if there exist morphisms of
A-modules ¢: X ®p X - X (the product), 5: A » X (the unit; n(1)
is the identity), and £ X - A (the augmentation) such that the

following diagrams commute (all tensor products are over A in this

definition):

n&1

X@X@X ' ‘;/1X,
1®}'X®X/¢ 2y QAL y g X P

X®x -2 x
l€®8 e

A®A -2, A

X is said to be commutative if the following diagram commutes:
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XX 2L X, T(x®y)=(=1)eeexdeery g 5,

r =

XX
Reversing all the arrows, we obtain the definition of a A-coalgebra
(with coproduct, counit, and coaugmentation), and of cocommutati-
vity of a coalgebra. If X is an algebra with product ¢, X @ X is
an algebra with product (¢ @ H)A ® T @ 1). If X is a coalgebra
with coproduct i, X @ X is a coalgebra with coproduct

1 TR Y Y.

If X is both an algebra and a coalgebra, and if the unit is the co-
augmentation, the augmentation is the counit, and the product is a
morphism of coalgebras, then X is said to be a Hopf algebra. The
last condition is that Yp = (@ X NU ST RO W Q ) on X D X.
If X is both an algebra and a differential A-module and if dp=¢d
d=d®1+1®d on X ® X), then X is said to be a differen-
tial algebra. If, further, ¥ is both a (left) X-module and a differ-
ential A-module, then ¥ is said to be a differential X-module if
dg = od, where o: X ® Y » Y defines the X-module structure on
Y. Differential coalgebtas and comodules are defined similarly.

In what follows, if the base ring A is not mentioned it is
assumed to be Z, and ® and Hom without subscripts are taken
over Z. We will here work with unnormalized chain and cochain
complexes, but by Corollary 22.3 (and Lemma 29.5 in acyclic model
arguments) we could equally well use normalized complexes.

Let (B,b,) be a simplicial pair. Define A: B - B XB by
A(B) = (b,b). Let f be the Alexander-Whitney map and define
(1) D =foC(A): C(B) »C(B) ® C(B).

Define £:C(B)-Z by £(b)=1 if be¢Bgy and €(b)=0 if b¢B,,
n > 0. Define 1: Z - C(B) by n(1) = by. Since (AX 1)A =(1 x A)A
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and (f® 1)f = 1@ Hi, we find (D Q1D = Q@ D). Clearly
EQN=1Q1=(1VED and Dy =(n®nD. Finally, dD=Dd.
Therefore C(B) is a differential coalgebra with coproduct D, co-
unit €, and coaugmentation 7. (The counit is, of course, usually
called the augmentation).

Now let X be a differential A-module with product m, Aa
commutative ring. Consider Hom (C(B),X)=C*B;X). heC(B;X)
is a sequence of homomorphisms b : CLB) - X ,_. The A-module
structure on X induces such a structure on C*(B;X). Define the
differential & on C*B;X) by
(@) 5(h)(b) = dh(b) + (~1)?°& "1 hd(p),

Then define the cup product C*(B;X) ®, C*B,X) > C¥B:x) by
3) (U AYB) = alth ® RIDW)].

Define €%: A » C*(B;X) by €%1)(b) = £(ble, e the identity of X,
and define 7*: C¥(BiX) > A by n*(%) = h(y(1)). Then C*(B;X) is
a differential A-algebra with product U, unit £*, and augmentation
n*. The relation U = U may be written out as:

(4) 3R UR)=8E)UB +(~1)°8"p U 50".

Together with Lemma 29.11, the constructions above imply

PROPOSITION 30.2: Let B be a simplicial set. Then H.(B) is
a cocommutative coalgebra. If X is a differential A-module, then
H¥BH(X)) is a A-algebra, which is commutative if H(X) is com-
mutative. (For the first statement, assume that H,(B) is A-flat.)

ExaMPLES 30.3: The most common instance of the proposition is
X = A with zero differential. We will have occasion to use the
cases X = C(G), where G is a simplicial group, and X = C¥(F;A),
where F is a simplicial set. In the latter case, we must take

X_,=C"(F;A) to make sense of the grading. and the coo nroduct
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is here given explicitly (with # the product in A) by:
(5) (R UB)B)(H = a{((R® RHDBGNHD()) .

Next, let G be a simplicial group with product 7, and sup-
pose G operates from the left on a simplicial set F via g: GXF-F.
Let g denote the Eilenberg-MacLane map and define the Pontryagin
product by:

(6) T=C(o)g: C(GY® CF) - C(F).
With F =G and o =7, we {find that C(G) is a differential algebra
with product 7, unit  (base point eg) and augmentation €. Then

C(F) is clearly a differeatial C(G)-module, and we have:

PrROPOSITION 30.4: Let G be a simplicial group which operates
from the left on a simplicial set F. Then H (G) is a Hopf algebra,
which is commutative if G is commutative, and H«(F) is a left

H 4(G)-module.

in the sense that the module product is a morphism of coalgebras.
(For both statements, assume that H,(G) is A-flat.)
Proof: We need only prove that the chain maps Do and

(FRFX1RTRIXDOD): C(GIRC(F) » C(F)RC(F) are chain homo-
topic (taking F=G and &=7, this will imply that H4(G) is a Hopf al-

H (F) is in fact a left module coalgebra over H «(G),

gebra). Now if K and L are any simplicial Abelian groups, then
by Theorem 28.3 (with r=1, s, =0, and the models of the previous

section) the following diagram is chain homotopy commutative

AK) @ ALY 25 AK x L)
(1QTR1YDR D) l ID ]
AGK) ® ALY ® 4K ® AL) £ 28 AR x L) ® AK x L)

_ By the naturality of D, Doy = (0,®0,)D. Therefore Doyg and
(0sRoJEREXL® T® 1XD D D) are chain homotopic, as was to
be proven.

For the remainder of this section, B and Fuiy
plicial sets and G will denote a simplicial group w1th produ'
which opetates via ¢ on F. Define the cap product:

nc (B;C(G)) ® [C(B) B C(F)] - C(BY® C(F)
by
(7 tNBRIN=(1QNLRJtR DD RJNNBRI).

PROPOSITION 30.5: The cap product gives C(B)® C(F) a struc-
ture of left differential C*(B;C(G))-module.

Proof: We must prove the following two formulae:
(8) deNGBRIN=ONGBRF) +(-1)CNdbRS 1),
9 UOHNGERIN=tOENGBRI).
Define u(f): C(B) ® C(F) - C(BY® C(G) @ C(F) by
HO=(1P QDD Y,
t ¢« C(B;C(G)). To prove (8), it suffices to show that

dt) = (D) + (=1)" (D).
But:

d(t) = (d®1D1 + 1QdR1 + 1R 1V tRNDD )
=[d®'®1+10dR1 + (1)U tRNH DD 1)
= [(-D)(1®QIYdR1R1 +1RdR1 + I®LRd) + 1D HR 1D D)
= (D1 RIXDRINID1 +1Rd) + (1QHOHRD R 1)
= (=D)"u(t)d + p(&(1)),

whete we have used formula (2) and the relation dD = Dd. It te-

mains to prove formula (9). Here we find:

UDN=ARX1Q7(R DR 1NDR1)
= (1R X1¥7RD(1RtRt" VIX1V DR 1XD® 1)
= (1@ )X(1RV1VWIX1RIR1N1R1R' R1NDR 11DV 1)
=(187)(1R1Y}(1D1RVI PRI (1R QIXD® 1)
= (I®FN1R¢QIUDRIN1RT 1R’ ®1)(D®1)
=¢tN{¢’ M), as desired.
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The cap product is natural in two senses, as shown in the

following lemma.

LEMMA 30.6: Let 8: B > B’ be a simplicial map, let ¥: G » G’
be a simplicial homomorphism, and let a: F » F” be a Y-equivariant
map. If t ¢« C¥(B;C(G)) and " ¢ C*(B';C(G") satisfy ¥4(6)=8*(1"),
that is, if C(¥Y) ot = t” 0 C(), then:

10) (B«RaltNGRNH]=1t"N[Bub) B aul)].

On the other hand, if k¢ C (B”;C(G)), then:

11) (A®anh NBBH)ON)] = (B OV L BN BB ayi)).

The proof is straightforward, and will be omitted.

REMARKs 30.7: If F = G is the trivial simplicial group and we
replace C(G) by Cp{(G)=Z, then the cap product reduces to a map
CHB)Y® C.(B) » C«(B). Explicitly, if ¢t e CP(B) and b ¢ C,  (B),
then:
(12) tNb=1®ODB) = (~1)P90°b - HI7b) € Co(B).

Now let A be a commutative ting. We can and will make
the identification:
(13) C*(B;C*(F;A)) = Hom (C(B) ® C(F),A).
Then the dual of the cap product, which we shall also call a cup
product, defines a structure of right differential C*(B;C(G))-module
on C*B,C*F;A)). Explicitly, if h ¢ Hom (C(B)® C(F),A), we de-
fine:
(14) BUDHGBEH=hUNGBRI)), and then
(15) SR Uty =8(B) Ut + (1?5 h U 5(¢) and
(16) AUEUY=(GUHUL.

Here in deriving (15) we have used the special case of (2):

(17) SBYB® )= (1)« " hdbQ ).

At this point we have developed all the feqtus;t

to define twisting cochains.

DEFINITION 30.8: Let t ¢ CYB;C(G)), so that ¢ : Cq(a)_,o
Define d,: C(B) ® C(F) » C(B) @ C(F) by:

(18) d(b®f)=db® ) +tN(B ).

Using (8) and (9), we find dX(b® /)= () + tUHN BB 1), ¢ is
said to be a twisting cochain if 8(¢) + ¢ U ¢ = 0, that is, if

(19) dt, +¢,_,d + :;z_: t,Ut,_;=0, n>1,
and if £¢; =0 (so that (EQ E)d, = €E® E)(tN) = 0). Then d, is
called the differential twisted by ¢ and C(B) ® C(F) furnished with
this differential is denoted by C(B) &®, C(F) and is called a twisted
tensor product. Dually, Hom(C(B) ®, C(F),A) is given the differ-
ential &, defined by (17) with §, and d, replacing § and d, or:
(20) S,(h) =d() + (=1)%€ ™+ lp g,

§31. Brown’s theorem

Brown's theorem states essentially that there is a natural
way to assign to every twisting functior; r a twisting cochain ¢ in
such a manner that C(F X; B) is chain homotopy equivalent to
C(B) ®, C(F). In the last section, this result will be used to con-
struct the Serre spectral sequence.

Unless otherwise specified, the symbols C and C* will de-
note the normalized chain and cochain functors in this section and
the next, and the symbol (n) will refer to formula (n) of section 30.

We will use the method of acyclic models, and we must first
define a category, the objects of which are all twisted Cartesian
products.

DEFINITION 31.1: Let F % B and F" X, B” be TCP’s with
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groups G and G’, and let ¥: G » G’ be a simplicial homomorphism.
A Y-map 8: E(r) -+ E(+") is a simplicial map such that

0(F,b) = (Y(b)alf), BB,
where a: F + F’ is a Y-equivariant map, 3: B - B’ is a simpli-
cial map, and ¢ B » G’ is a function. Clearly p’d = Bp. We will
write 0 = (a,B,4). @ is said to be Y-special if ¥r = r'8. The re-

quirement that @ be a simplicial map is equivalent to the identities:

7' B(B)do Y(b) = Y(dpb)Y 1(b)
U)  B(b) = y(d;b) if i>0

s;(B) = (s, by if i> 0,
The composite of a Y-map & and a Y’-map &  is the Y’V-map
80 = (a’a, BB B)-(Y'¥)). With the obvious identity maps, we
have defined a category whose objects are all TCP’s and whose
maps are alil Y-maps. If maps are required to be special, we obtain a
subcategory with the same objects, which we shall call R. P will
denote the subcategory of R, the objects of which are all PTCP’s.
Observe that if 6 = (a,8,4) is a Y-map of PTCP’s, then neces-
sarily a = ¥. If base complexes are required to be reduced, we ob-

tain subcategories Ry of R and o of . The categories R, and

®o will be of primary interest. {We implicitly make them additive; see § 28.)

The symbdl F x; B will denote ambiguously an object of
R4 or the corresponding total complex. We now define mode! ob-
jects in the category R,. Let Aln] denote A[n)/Aln)®, where
Alnl® denotes the zero skeleton of Algl, and define the models
MP:'9 of Ry by:
(i) MP 7= (GAlp] x Algl) xr(,, Alp).
For clarity, we have here denoted the twisting function-

Alp] » G(ALpD)

bor e £AAT RN Anaratac Aan the fikea G{K[n-h v AlAl vria
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é(8°u) = (86",u). Clearly
(i) M9 2 (G(Alp]) xr(,, AlpP]) x Alg].

Therefore the realization of each M9 is contractible.

Using the modeis, we can assign a twisting cochain to each

twisting function. We first need a definition.

DEFINITION 31.2: A twisting cochain on the category 5’0 is al
function T which assigns a twisting cochain 7'(7) sHoml(C(B),C(G))
to each twisting function r: B ~ G, B a reduced complex, in such

a manner that the following conditions are satisfied:

(T.1) T(GXb)=eq— r~'(b) forall nondegenerate b ¢ B,

(T.2) I r(b)=e,_, forall beB, andall q< n, then T(r}b)=0
for all nondegenerate b eB, andall g< n.

(T.3) If 6=0,84):Gx B>G x’B’ is a y-special map of

PTCP’s, then the following diagram is commutative:

c®) 1D, 6

N
C(B;_T(L)_,C(G')

THEOREM 31.3: There exists a twisting cochain on the category

?,.

Proof: Let G x; B be a PTCP, B a reduced complex. De-
fine T(r); by formula (T.1) and define T(r), by:
(T.4) TEXb) = —r~1(B) - sqr—(dyh) for all non-degenerate b ¢ R ,.
Clearly €.T();, =0, and dT(r); + T@);d + T, U T(E), =0 is
proven by an easy calculation. Condition (T.2) holds for n =2
since e, is degenerate and thetefore zero in C(G). Suppose in-
ductively that T(r), has been defined for i< ¢q, ¢> 2. We require
that
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dT(r) g = —T(r)o_1d — :z.‘,: T, VT, = X, say.
Clearly dX,=0. First consider G(Alg]) xr4, Alg). Since
H (G(AlqD)) = 0 for n> 0, there exists m ¢ C,_;(G(Alql)) such
that d(m) = X (A.). We define T((@)A) =m.
G(K) xr g K, 7(K): K - G(K), K any reduced complex, and let
x e K, be non-degenerate. x:A[g] » K induces G(x):G(Alq)) ~G(K)

and we define:
T(r(KIXx) = G(x)4{m) ¢ C,_1{(G(K)). Then we have:
dT(r(K)Xx) = G(x)¢d(m) = G(x)4X (A =X (A =X (x).
Finally, consider the arbitrary PTCP G x; B and let b ¢ B, be
nondegenerate. H r is induced by £r): B - W(G), define:

T()(b) = )T (BB € C_,(G), where
H{l(z)): G(B) - G is as defined in Corollary 27.2. Then again we
find dT{(r)(b) = X (b). Condition (T.2) holds since for any
ceB,, SUDN(BXc)) = {c), and since e,_; is degenerate.

Clearly condition (T.3) is satisfied, and this completes the proof.

Next consider

We can now define the two functors 4 and B1: fRo » C that
we wish to compare by the method of acyclic models. Thus define
A(F x; BY = C(F x; B) and B (F x; B) = C(B) ®, C(F), where
t= T(r), T being a fixed twisting cochain on the category fj)o. Ob-
serve that if 8 = (a,8,4) is a Y-special map of TCP’s, then (T.3)
and (10) of Lemma 30.6 guarantee that B () = Bx @ a4 is a chain

map.
LEMMA 31.4: Both A, and (B ), are representable, n> 1,

Proof: By Theorem 22.2, Corollary 22.3, and Lemma 29.5,
it suffices to prove the result when C(F x; B), C(B), and C(F) are

interpreted as unnormalized chain complexes, T(r) being extended

L Tl T o T
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to C(B) by letting T(-)(b) =0 if b is degenerate. Thus, for the
purposes of this proof only, we regard 4 and By as being defined
in terms of unnormalized chain complexes. Let F x; B be a TCP
with group G, B a reduced complex. I b ¢ B,, define
_)’(b) = (7)) o G(b): G(Alr)) -~ G,

where Kr): B »W(G) induces r and where ¢(f(r)) is as defined
in Corollary 27.2. Explicitly, Y(OXr(r)u)) =7 o b(u), u ¢ Alr]. Let
o: G x F > F defline the action of G on F and let e: Alr] -~ G be
the map defined by e(u)=e,,, ue E[r]m . If [ eF,, define
HELDY: M©® 5 F x; B to be the Y(b)-special map

8(6,0) = (a(¥(8), 1), b,e).
Now define & A, A, by
(i) &Lb) = (6(b),((en, D), AL, where FcF_, beB

and ((e,, A,), A,) e AM™ ™),

nt

Then clearly A{=1: A, ~ A,. Similarly, define & (B ), (B

by

(ii) bR f)=(6(Lb)A, Qleg,AY), whete beB,, feF
p+gq=n and A, ®(e,,A) e B (MP %),

Again, Af =1: (Bp), » (B )., and this completes the proof,

T)n

q?

LEMMA 3L5: H (AMP'9) =0 and H (B (M”'*)=0, n> 1.

Proof: Since the realization of M?'? is contractible,
H (AMP'9) =0 is clear, n> 1, Now Alg] is contractible and
the operation of G(Alp]) on G(A(p)) x Alg] does not depend on
Algl). 1t follows that:

(i) BMP 7 and B (G(Alp]) X7 (p) Alp]) are chain homotopy

equivalent,

(A more formal demonstration of (i) will be given in Remarks 31.6).
Let m=m;(&lp)). Then H (G(B(p))) < 0 if ¢ >0 and Ho(GAlp)) is
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isomorphic {under the Pontryagin product) to the group ring Z(n).
Now r has one generator x for each l-simplex of A[p] and, re-
garding Z(n) as a chain complex with differential zero, we may
define a chain equivalence h: CG(Alp)) » Z(m) by A(x) = 0 if
deg x>0 and A(r(x)) = [x] if x ¢ Alp],. Since h is a morphism
of aigebras, we have:
(i) CAlpD) ®, CG@AIp]) and C@Alp)) ®,0, Z(r) are chain homo-
topy equivalent, where ¢ = T({(p)).

{Again, a more formal argument will be given in Remarks 31.6). Now

if xeAlpl, is non-degenerate and ¢ ¢ #, then

dp(x®a)= 'go(_l)i 0;x@a +AN{(x®a), and

BNGx@a)=18)1RM DD (x® )
- 3 (191K B®NE™ x®Ix B a)
= (D™ 9,2 B3 0la

Since t((?:_lx) =gy — f'l(n)(:ﬂ:-lx) by (T.1), we find

dp(x®a)= (-1)ax®a+(-1)"19,x®a +(-1)" x &3] x]1a

-l

= 2 (-1'9x®@a+(~1)"dx ® [9; " x]"a.

By Definition 16.4, the last formula is precisely that for the bound-

ary in the normalized chain complex of the universal covering com-

plex of Alpl. Since all of the higher homology groups of this vanish,

we have proven the result,
Before stating Brown’s theorem, we define filtrations of
- A(F x; B) and of -B (F x; B):- Thus filter -C(F x; B) by:

o e L
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(A) (£,b) ¢ FPC (F x; B) provided that b = Siq e Siy b,
whete 0< j, <.., <jg<n, b’ is non-degenerate, and
dim b’ =n~-g< p. Tz;(f;,b,) e FPC(F = B) provided
that each (f;,b;) ¢ FPC (F x; B).

Thete results a spectral sequence {E(F xr B}t which converges

to H4(F x; B). Dualizing, let A be a commutative ring and filter
CH*F % B; A) by:

(A") F,C*F x B;A) = Hom(C(F =, B)/FP~'C(F x, B), ).

The resulting spectral sequence {E/{F x, B)} converges to
HYF x; B; A). The cup product preserves filtration, as is easily
verified from the definition ((1) and (3)), and it follows that each
E, is a differential A-algebra. (See e.g. Massey [43,44] for the
construction of spectral sequences and of their products).

Filter C(B) &, C(F), t = T(r), by:

(B) FPC(B) ®, C(F) = éo C{B) ® C(F).

Observe that if 5 ® f ¢ FPC(B) &, C(F), thenboth (dQ@ DG f)
and tN(B®I) ate in FP-IC(B) ®, C(F), the latter fact follow-
ing from the definition (7) of N and from the form of D(b). There-
fore Epl’q(F xr B) = Co(B)®H ((F) (not necessarily as a complex)
in the resulting spectral sequence {E'(F x; B)}. Dualizing, filter
Hom (C(B) &, C(F), A) by:

(B%) FHom(C(B) ®,C(F),A)=Hom(C(B) ®, C(F)/FP~'C(B) &, C(F),A).

Then Ef'q(F xz B) = CP(B;H %F;A)) in the resulting spectral se-
quence {E,(F xp B

REMARKS 31.6: Suppose in the situation of (10) of Lemma 30.6

that a;.‘ is a chain homﬁtopy equivalence, B = B’, and 8 = 1, so

i~ that 1®ay induces an isomorphism E!(F x,B) > EX(F" x,” B).
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Then by the comparison theorem for spectral sequences (see e.g,

Moore [5, 52)) it follows that 1®ay: C(B) ®, C(F)-C(B) & C(F"

is a chain homotopy equivalence. This argument applies to give a

rigorous demonstration of (i) and (ii) in the proof of the lemma above,
We can now obtain Brown’s theorem, which may be regarded

as a direct generalization of the Eilenberg-Zilber theorem.

THEOREM 31.7: Thete exist natural filtration-preserving transfor-
mations ¢: 4 - B and -x,[;: Br - A lying over the natural trans-

formations ¢o = T: Ay »(By), and yo=T:(By)y A, (where

T(x®y) =y ®x). Any twosuch ¢ are naturally chain homotopic
via filtration presetving chain homotopies, as are any two such .
Further, for any such ¢ and ¢, ¢ oy By - B, and op:A A
are naturally chain homotopic to the respective identity transforma-

tions via filtration-preserving chain homotopies.

Proof: To prove the existence of ¢ and ¢, we apply Theo-
tem 28.2 with n=1 (since H (B (M7 %) is non-trivial), Thus

define:

qsl(fl’bl) = bl ® 7(b1) aofl + 6‘lbl ® fl
Pilbo® 1) =(f),50bo) and (b O fe)=(so(r™ b, )),b,).

Then an easy calculation using (T.1) proves that dap1 = ped and
dyy =y d,, and the existence of ¢ and ¥ follows from Lemmas
31.4 and 31.5. The existence of the cited chain homotopies follows
from Theorem 28.3 (with n =1 and s¢ =0). It temains to prove that
¢, ¥, and the chain homotopies are filtration-preserving. Observe
that the maps @(f,5) defined in the proof of Lemma 31.4 satisfy
(D) B (Lb) (B (M™") CFPC(B) ®, C(F)

if (£b) ¢ FPC (F %, B), and
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(1) AG(L L)) (AM 7)) CFPCF xr B)
if bQf¢ FPC (BY® C(F), so that q<p -

Here (i) holds since by(u) =0 unless m <P uelln),. (i) holds
since by(u) is here obtained from degeneracy operators applied to
a nondegenerate element of dimension <p if weAlgl,. Nowan
inspection of the proofs of Lemma 29.5 and Theorems 28.2 and 28.3
shows that ¢, , and the chain homotopies obtained above are alj

necessarily filtration-preserving.

§32. The Serre spectral sequence

Using Brown’s theorem, we can easily develop the proper-
ties of the Serre spectral sequences {EY(F x; B)} and [E (F xr B},
including the products in cohomology and the identification of the
first non-trivial higher order differentials. We note first the follow-

ing corollaries of Brown’s theorem.

COROLLARY 32.1: ¢: 4 - By and : B, -~ A induce natural
inverse isomorphisms ¢': E* , E7, Y E* 5 E* and ¢ E, 5 E,,
(l[;‘,.' Er—rEr, !'2 1.

COROLLARY 32.2: Define a natural transformation:

() Dr=(¢Q)D¢: By > Br® By, whete D is the natural
coproduct 4 - A ® A.
Then D, s filtration-preserving and is chain homotopy coasso-

ciative and cocommutative. Dually, define
(ii) Ur =Hom(D 5,1): Hom(B ;,A)® Hom(B ;,A) - Hom(B 1,A).
Then each E, is a differential A-algebra, and, for r > 1, ¢, and
Y, are isomorphisms of differential A-algebras.

Now {E(F x, B)}, and therefore aiso {E"(F %, B)}, con-
verges to Hy(F x, B), and E‘;,q(F xr By = C (BY® H (F). The
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dual statements hold for cohomology. To complete the development
of the Serre spectral sequence, we must identify the terms E 2(Fx,B)

and E,(F x, B). We need the following concepts.

DEFINITIONS 32.3: A twisting function r is said to be n-trivial
if r(by=e;_, forall b¢B;, 1< n A twisting cochain ¢ is said
to be n<trivial if ¢, =0, i < n. By condition(T.2}), if r is n-

trivial, then so is T'(5),

REMARKS 32.4: [f the group of the fibre bundle determined by
F x; B can be reduced to one such that G;=e; for { <n, then
F x; B is isomorphic to F x; B, where r” is n-trivial, Converse-
ly, if r is n-trivial, then the subgroup G of A{F) generated by
{r(b)} satisfies G,=e; for i<n. If #{B)=0 for i< n, then
replacing F x; B by a minimal fibre space of the same homotopy
type (first applying S oT to a minimal fibration of the same homo-
topy type, if necessary, to obtain Kan complexes), we may suppose
that B, has just one simplex, < n, and then r is clearly n-
trivial.

Now let F x; B be a TCP such that 7, and therefore
t = I'(r), is n-trivial for some n> 1. By the definition (7) of N
and the form of D(b), we find that if b® f ¢ FPC(B) ®, C(F), then
tN(bR ) e FP~"IC(R) &, C(F). It follows that d' =d® 1 and
d =0, 2 <r< n, in the spectral sequence E<(F x; B). Therefore

we have:

THEOREM 32.5: If r is n-trivial for some n>> 1, then

() EIV(F % B)=E) (Fx B)=H(B:H F)), and

P9

(i) EPF % BY=E"F %, B) = HO(B:H %F A)

nt

Under the hypothesis of n-triviality, we can also identify

e finApan s
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d™*! and Snt1- Thus if x ¢ E°F x; B) survives to Enty(F xr B),
then d"*'(x) is cleatly induced by ¢ Nx and if & ¢ EyF x; B) sut-
vives to E . (F » B), then §,,,(d) is induced by (~1)2¢8+1pq
By (19), since t; =0 for 1 < n, we have df,,, =0 and
dtngy +tppd = 0.
Thus {,,) ¢ Hom(C ,(,(B),C (G)) defines a cocycle
v e Hom (C ., (B), H (G)),
whose cohomology class in H™"'(B;H (G)) we denote by 1. Now
we have
@ ™) =1 Nx, x ¢ HyB:H(F), and
®)  Sanlh) = (D)€ h Uy, b H¥BHYF; A))
v can be further identified as follows. Since we may assume that
G; =6, for i< n, we can define a cocycle u ¢ CG;H (G)) by
u(g) = {gl. v is called the fundamental cocycle of G and its co-
homology class will be denoted by ;. Since B is reduced, say
By = by, we may consider u to be an element of
Hom (Co(B) &, C(®),H (G)),
and then w Ut is defined. Now if ¢ B, then:
(U (BR eg) = u(t (b @ eq)) = ulbo ® t(b))={t(h)}= v(b).
Thus g U v =, hence 8,.,(p) = (~D"* v in E ..\ (G x; B) (with
coefficient ring H4(G)). In other words, 1 is the transgression of

(—1)"'”;1 in this spectral sequence. We have now proven

THEOREM 32.6: Let F x; B be a TCP with group G such that
Gi=e; for i<n Let peHUGH () =E (G x B) (with co-
efficients H4(G)) denote the cohomology class of the fundamental
cocycle of G. Let ve H™ (B H (G)=E (G B) denote

the transgression of .(~1)"*'y.. Then d°*! on E**)(F x, B) and

8p41 o0 E_ L (F xr B) (with coefficients A) are defined by formu-

e e

e e s
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lae (a) and (b) above.
It remains only to identify the U rp-product induced on

E,(F x; B), where r is 1-trivial. Now under the identification
(13), the cup product (5) on C*B;C*F;A)) becomes:

Hom (D,1): Hom (C(B) ® C(F), A) ® Hom (C(B) Q C(F), A)

-» Hom{(C(B) @ C(F), A),

where D=(1® T ®1)(D® D). Of course Dy #D in general. An
easy acyclic model proof shows that D and D’ are chain homo-
topic (on the category of Cartesian products), where D'=(ft® f)DgT.
(Here D is the coproduct on C(F x B), and t(f,b) = (b,0).) D" and
D, both define natural transformations E! SE'® E! on the sub-
category O of R,, the objects of which are all 1-trivial TCP’s

with reduced base complex. We have

THEOREM 32.7: Dy and D E' s E'®E"' are naturally chain
homotopic on the categoty ©. Thus if 7 is l-trivial, then
E,(F x; B) = HYB;H*(F; A)) as a ring, where the product on the

right is the usual cup product.

Proof: Take as models in O all induced TCP's Fx 5 Alp],
where the reduced complex B is the base of a l-trivial TCP
F x; B and &: A[p] -~ B. Then E;’, is representable, p > 1,
since if b: F %5 Alp) > F x; B covers b, then defining

Eb® () = (b, A, ®if

for b® {f} e C (BYB HF) we find A{(b®{f}) = b® {f]. We claim
that if p + g > 2, then Ei,, ®EZ’, =0 on the models of ©. To
see this, we note first that » = =,(Alp]) is a free group. In fact, =
is freely generated by {(f, i +1)|0 < i < pl. Next, if we choose a
minimal subcomplex M of ST(Aln]), then M is a K(n,1) and is

therefore isomorphic to W(K(#,0)) by Theorem 23.6. Since

AN MR oD MR B Ity e
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CWEK(#,00)) is isomorphic to the bar construction of the group ring
Z(n) (see e.g. MacLane [42, p. 114]), it follows that

HuAlnD) & H(m:2)
(the cohomology of #» with coefficients in Z, or Torf mr)(Z, Zy).
Since 7 is free, HP(K[n]) =0 for p>1 (seee.g. {42, p. 123D
and H,(A[n)) is free Abelian. By the Kunneth theorem, this proves
our claim. Now we will be able to obtain the desired chain homo-

topy by applying Theorem 28.3 with n =3 and Sg=8,=8,=0

(using induction on the base degree in the proof), provided we can
first prove that D" =D on E;' o P=0,1,2, It is easily seen
that we may suppose i = ¢ on F!C(B) ®, C(F) and éd=1Ft on
FIC(F % B) when we restrict ourselves to the category C. Thus
D"=D4 on Eg', and on Elo‘,. It temains to prove that D’ and
D r are chain homotopic on ES". To prove this, let
A2] = Af21/A12)",

where A[2)! denotes the 1-skeleton of Al2], and define new mod-
els in O by MP = (6(5[2]) x Alp]) X1 2 5[2]. A proof similar to
that of Lemma 31.4 proves that E;p is tepresentable for p > 1.
An argument analogous to that given above shows that if pP+q>2,
then 3, ., E:,p ® E:'q =0 on the models. Now we can apply
Theorem 28.3 with n =3 to obtain the desired chain homotopy,
provided we first prove that D’ o~ D, on E:’p, p=0,1,2 Here
a lengthy calculation gives the result, noting that on O we may
suppose: (b = B,)
@ Bllab) =by @ dgf, + 33, ®1(b) gy +by® 1, |

+bo® 5677 (by)s, r(b,)s, 9,1,
(i) Y, Bf) = (#E’](—l)ﬂ(#)(spn see Sy SorT ‘(bg)sl,,zs,,lfr1 ,

S+ Spybr) mod F 'C(F %, B), where the sum is
taken over all (n,2)-shuffles (g.0).
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REMARKS 32.8: There are several comments to be made.

{1) Had we developed the theory of the operation of = ;{B)
on 7 ,(F), then the assumption of 1-triviality on r would have re-
duced to the assumption of n-simplicity for all n. However, the
theory does not lend itself to the development of local coefficients.

(2) The treatment of products here is quite unsatisfactory.
While it does show that products can be introduced in {E (F x, B),
it would be more desirable to have a procedure for defining a coprod-
uct directly on C(B) &, C(F), without having to throw the definition
back to C(F x B). Incase C(B) is cocommutative, this can be
done using a procedure developed in [45].

(3) The topological implications are clear. Starting with a
Serre fibration p: E » B, one can pass to a minimal sub-fibre space
of the Kan fibration S(p): S(E) > S(B) and apply the theory above.

BIBLIOGRAPHICAL NOTES ON CHAPTER VI

The functor G was introduced by Kan [30, 31]. Our proof
of Theorem 26.6 follows that of Cartan [6]. This construction gen-
eralizes results of Milnor [49], who defined the functors E, GE,
and G'E. The relationship between G and W was investigated
by Kan [31]. Free simplicial groups have been studied by Kan in
[34, 35, and 36]. Also Kan {29] has reproved the Hurewicz theorem
by means of a study of the algebraic situation given by the map
p: G(K) » A(K) and has shown in [36] that the exact sequence of
Remarks 26.10 is essentially that of Whitehead [63].

The method of acyclic models was introduced by Eilenberg
and MacLane in [12], and was used in [16] to prove the Eilenberg-

Zilber theotem. Our treatment follows these soutces and MacLane -

{42]. Most of the material of the last thtee sections is contained,

gebras may be found in Milnor and Moore [51] The pm:c,f Of-B cm;n s .
theorem is parallel to, but simpler than, the topological proof gwen
in his original paper [3]. An explicit exptession for a tw:stmg co-
chain T(r) interms of the twisting function r has been obtained
by Szczarba [61].

The Serre spectral sequence was, of course, studied in the
classical paper [57], following its introduction in cchomology by
Letay [38, 39]. The apptoach here shows that the introduction of
cubical singular theory is unnecessary, a fact shown by Gugenheim
and Moore [20] using quite different methods. Brown [3] proved that
the spectral sequence defined here is in fact isomorphic to that de-
fined by Serre.

Szczarba [61] studied the products in the Wang spectral se-
quence using twisted tensor products. The form of d,,, and Snt1
in the case of n-triviality was discovered by Fadell and Hurewicz
[17], but of course the result is there proven by quite different meth-

ods. A generalization of this result is proven by Shih in [59].
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