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ON THE COMPLETE LATTICE OF ESSENTIAL LOCALIZATIONS
G.M. Kelly* and F.W. Lawverc*

Dédié A René Lavendhomme & I'oceasion de son saixantidéme anniversaire

ABSTRACT By a locafization of category A we mean a full replete
subcategory whose inclusion admits 2 leftl—exact lefi adjoint R ; the
localization is essential if R itself admits a left adjoint. One has the sets
Loc A > Ess A of localizations and of essential localizations, ordered by
inclusion; we study the completeness properties of the latter, comparing them
with known results on the former. We show that, when the complete and
cocomplete locally—small £ admits either a soong generalor or a storong
cogenerator, Ess 4 is a small complete lattice, suprema in which coincide
with those in Loc A. Even when A is a presheaf category, however, so that
infima in Loc A are just the intersections, the infima in Ess A (even binary
ones) are in general strictly smaller than these.

* The work reported on here, begun in the first half of 1988 while Lawvere was a guest
of the Sydney Category Theory Seminar with support from the Australian Research
Council, was continued in August 1988 in Halifax, where both Kelly and Lawvere were the
guests of R.J. Wood and D. Lever, with support from the Canadian NSERC.
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1. Introduction

We suppose an inaccessible cardinal = chosen once fer-all, and call a set small if
its cardinal is less than =, The morphisms of any category A {orm a ser, and A is small
if this set is small, while A is focafly small if each hom—set A(A.B) is small. We use
farge 10 mean not small.  Although 2 category is said to be complete when it admits all
smalf limits, an ordered set is called a complete fattice only when it admits aff suprema and
infima — even large ones if it is a large set. We write Set for the category of small sets;
similarly, by Grp. Cat, Top, and so on, we mean the categories of small groups, calegaries,

topological spaces, and the like.

We refer 10 {11] for the definitions and properties of sirong epimorphisms and
strong monomorphisms. A strong subobject is one represented by a srong monomorphism.
We call a category strongiy complete if, besides admiuwing small limits, it admits arbitrary
intersections of strong subobjects. Of course a complete caegory is strongly complele
whenever, as is very commeonly the case, every object has but a small set of strong

subobjects.

The definition in [11] of strong cpimorpl';ism admits an evident generalization to 2
definition of a strongly epimorphic family (fk: Ak — B) of mapsin A, in such a way
that, if the coproduct ZAk exists, the family is stroagly epimorphic if and only if the
corresponding map EAk — B is so. When A is finitely complewe, it follows as in [1]]
that the family (f,) is strongly epimorphic if and only if there is no proper subobject of B

through which each fk factorizes.

By a generator {resp. strong generator} of A we mean a small set § of objects of
A such that, foreach A e A, the family (h: Gh —+ A) of all maps with codomain A and

domain in § is jointly epimorphic [resp. strongly epimorphic}.
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The full subcategory B of A is said to be replete if every isomorph in 4 of an
object of 8 iiself lies in B throughout this article we abbreviate by using subcaregory w0
mean full replete subcatcgory. The subcategory B of A is refleciive if the inclusion
I: B~ A admits a left adjoint R: A — B ; the reflective subcategory 5 is a locafizanion
of A if {{or some choice of R, and therefore for any choice} R is left exact; and it is an
essential localization if R admits a left adjoint. {Although in practice, and in our resulis
below, one never uses the word “localization™ unless 4 admits finite limits, we can
harmlessly avoid circumtocution in these general remarks by taking "left exact™ 10 mean

“preserving such finite limits as exist™; then essential localizations are indeed localizations.)

Thus we have the sets Sub A5 Ref 43 Loc 45 Ess A of all subcategories of A,
of reflective subcategories, of localizations, and of essemtial localizations, each ordered by
inclusion. Trivially, Sub A is a complete lauice, with suprema and infima given by the
union UBk and the intersection (™\B, of subcategories; it is of course large unless A
is (essentially) small, having for instance cardinal 2° when A= Set. For the ordered sets
Ref 4, Loc 4, and Ess A, however, we cannot expect reasonable compleieness propenies
unless A itself has reasonable completeness properties. Then, as we shall see, each of
these sets admits small suprema, preserved by the inclusions Ess A c Loc £ c Ref A.
Accordingly, a proper understanding of the completencss properties of Ess A requires a

brief revision of what is known for Ref A4 and for Loc 4.

Ref A has been swdied by Kelly in [13]. it is commonly a large set, even though
it has just three elements when A = Se1 ., In fact, for a locally-small and
strongly—complete A, the conclusion of {13, Proposition 9] as it stands is that Ref A
cannot be small unless A has a swong cogenerator; but it follows a1 once that Ref A
cannot be small unless every reflective subcategory of A has a sirong cogenerator — and

this is such a strong condition that smallness of Ref A is probably quite exceptional. At
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any rate, Ref A is large when A 'is the category Grp of {small) groups; for by the Special
‘Adjoint Functor Theorém,. Grp " has no cogenerator, the functor Grp — Set represented by
the coproduct of all'small simple groups not being represeatable by any small group. So
Ref A is large whenever A, like Cat, has Gri) as a reflective subcategory. Since the
single catégory 3=(0 <! <2) isdense in Cat, it follows further that Ref 4 is large for
the presheaf ;;:cgow A= [M®P Set], where M is the finite monoid Cat(3,3).

Large lhough'i: commonly is, Ref A ‘admits small suprema whenever A is
strongly complete, the supremum VB, in Ref {4 being the closure in A of U5, under

small limits and all intersections of strong subobjects; see [13, Theorems 14 and 135].

. However Ref A need not admit arbirrary suprema, even when £ is as well behaved as the

citegory Top of topological spaces — which is locally small, complete and cocomplete,
wellpowered and cowellpowered, and has a generator and a swong cogenerator. For then
Ref A would be a completc lattice, and admit arbitrary infima; yet it is shown in [13,
Theorem 7] that, when A is locally smail and strongly complete, an infimum in Ref A, if

it exists, must be the intersection fN\B,_ ; while Addmek and Rosicky have shown in [1]

that intersections of reflective subcategories of Top need not be reflective. [ This last is

now known 10 be true even for binary intersections, as shown by Tmkovi, Addimek, and

Rosicky in {15].}

The study of Loc A when A is a presheaf category or a category of modules over
a ring is classical, the localizations in these cases corresponding respectively to the

Grothendieck topologies and to the Gabriel 1opologies; and it is nearly as classical when A

s a Grothendieck topos (or an elementary topos for that matter — but this present article is

devoted to externally—complete categorics A ). For a much wider class of such categories,

Loc A has been studied by Borceux and Kelly in [3). Whenever A is complete — we no
longer need, as we did for Ref A, strong completeness — Loc A admits small suprema;

and moreover these are precisely the suprema VBk in Ref A of the localizations Bk ,

4
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although we can now deseribe ".fBk more simply just as the closure in { of UBk under
small limits, without reference to the intersections of strong subobjects; sec {3, Theorems
3.1 and 3.3 and Corollary 3.4). Yet, as [3, Example 5.1] shows, even when the
locally-small A is complete and cocomplete, with & generator and a cogenerator, Loc 4
may [ail 10 admit binary infima; in such a case, of course, Loc A is a large set which fails
to admit arbitrary suprema. By [3, Theorem 6.4), however, Loc 4 is small whenever the
locally—small and finitely—complete A has a strong generator, thus we have as in
[3, Proposition 6.5] the positive result that Loc A is g small complete lattice when A is
focally small and complete with a strong generator. Although, for such an A, we have
arbitrary infima in Loc 4, these need not be the intersections: we exhibit in Example 5.2
below, A being the dual of a presheaf category, localizations B and € whose infimum
BaC in Loc A is stictly smaller than Bn €, even though §nC is reflective in 4 and
is therefore the infimum in Ref A. [No such counter-example was known at the time of

writing {3]; the A of [3, Example 5.2] has no strong generator.)

Much deeper results on Loc A were proved in (3] for a special but important class
of categories A, namely those locally—presentable £ in which finite limits commute with
‘filtered colimils. Since the writing of [3], the nature of this class has been much clarified
b); the work of Day and Sueet reported in [5] and in'thc very recent [6]; they show the

equivalence of the following:
{) A is locally presentable and finite limils commute with filtered colimits;

(i) A is locally small, cocomplete, and finitely complete, with a sirong generator, and

finite limits commute with filtered colimits;

(iii) A is a localization of some locally—finitely—presentable category;
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(v) - :_for,semc finitely—cocomplete. small category € and some Grothendicck tbpoldgjr
U en.C, A isthe subcalcgo; of (C°P sex) given by those F CPP .+ Set which

| . .. are at once sheaves for.the topology and left exact as {unctors.. . -

\ ' T . - T .. .

L3

Categories s:ﬁis{ying (iii) were called geometric categories by Borceux in [2]; let us retain

this name. - An:ong the gcomcmc-catcgoﬁas are of course all the locally-finitely—

_ —presentable categorics, such as  Grp, Cat,. or a presheaf category (AP Se1] with . A
small. bSincc‘a, Grothendieck topos is a lecalization of some (AP Set], it too is a
geometric category. It is clear from (i) that, if A is a geomeuric caiegory, so is the functor
category [K, A} forany smai K and 30 is the category JT of algebras for a finitary
monad T on. .4 note that we call a monad T fimirary if the functor T is finitary, in the
sense that it preserves filtered colimiss. It is further the case that a reflective subcategory. B
of the geometric A is geomeiric if the inclusion I: 8 — A is finitary, which is to say that
B is closed in A under filtered 'calimiis; se:c (3, Examples 6.9(v)). From this it follows as
in [3, Examples 6.9(vi}} that, for a geomerric A and a finitely—complete small K. the
category Lex[K , A4} of lefi~exact functors is again geomemic. Whether every geometric
category is of this lauer form for some Grothendieck topos A remains unknown; we do not

see how to deduee this from (iv).

It is proved in [3, Theorem 6.8] that, for a geometric A, the infima in Loc A are

' (in contrast 1o the last example of the penultimale paragraph) preciscly. the intersections;
- and that, morcover, these infima are preserved by Bv— foreach 8 in Loc 4, so that

(Loc 4)°P is a frame (also called a complete Heyting algebra, or a locale).

We now turn to Ess 4. In Section 2 below we recall the injcctién & from Rel 4

to the set of subsets of mor A, sending 5 1o the set £ of morphisms inverted by the
reflexion R, and use it to show that Ess A is isomorphic o Ess(d OP). The techniques
used in {i3] and [3] to study small suprema in Ref 4 and in Loc A involved idemtifying

v
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the images under @ of Ref A4 and of Loc A, and showing these images to be closed
under small intersections for any reasonable 4 ; in Section 3 we determine the image
under @ of Ess A, and deduce that Ess A admits small suprema, which agree with those
in Loc 4 and in Ref 4, when A is complete and cocomplete. If we further suppose that
A is locally small then, as we have seen, Loc A fresp. Loc (£ °P)] is smallif A has a
strong generzior [resp. a strong cogencrator]; so that in either case Ess A is small, and is
therefore a small complete lattice. We give an example, however, of a spatial topos A for

which a countable infimum in Ess A, unlike thatin Loc A, is not the intersection.

That counter—example, based on the fact thar an intersection of open seis need not
be open, tells us nothing about the relation of binary infima in Ess 4, for a gcometic
category A, to the intersections. To show that even these can be different, we examine in
Section 4 essendal localizations of a presheaf category A = [A°P.Set] in terms of
“idempotent ideals™ of A, and then produce a concrete counter—example in Section S,
showing at the same time that a binary i‘nfim:‘lm in Loc {4%P), with A=[AP.Ser}, may

also differ from the intersection.

2. The basic properties of essential localizations

For a typical reflective subcategory 5 of A with inclusion It B — A, wc use
p: 1~ IR for the unit of an adjunction R —§ [. We have no need below to mention the
counit RI — 1 explicitly; it is of course invertible, and we may always so choose R and
p that Rl =1 and the counit is the identity. Since IB = B, we may suppress I where

convenient.

Recall that, in the terminology first used in {8), a morphism f: C— D in A and

an object A of A are said to be orthogonal when A(FA): AD,A) — AC.A) is a
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bijection. Given a subcategory & of A we write B" for the set of morphisms orthogonal
toevery B in B . and given a set £ of morphisms of A4 we wrile £ for the
subcategory given by those A orthogonal to every ¢ in £. Let us write & for the
order-reversing function, from Ref 4 to the set Amor A of all subsets of the set mor A
of all morphisms of A, which sends B 10 B*. The following is in [4], but is probably 100

well known in the folkiore to deserve atiribution:

Proposition 2.1 For Be Ref A, the set ®(B) = B~ coincides with the set £ of
those morphisms of A inverted by the reflexion R: A — B | moreover the Junction

®: Ref A — Plmor A) is injective, since in fact B=E".

Proof B° =&, since to say that A(f,B) is bijective for all B ¢ 8 is equally to say that
B(RfB) is bijective foralt Be §, or cquivalgmly that Rf is invertible. Since mivially
Bc B* = £4, it remains to show that £ ¢ B. Because the unit pA: A — RA clearly
liesin £, it is a coretraction whenever A € &L butthen A, as a retract of an object tA

of the reflective 8, itself lies in B by a well-known argument. 0

We content ourselves with a clear statement of the following simplc result, leaving

the reader 1o supply the easy proofs:

Proposition 2.2 Let ne:5 — T : K — A bean adjunction in which T is fully
faithful (or, equivalently, in which € is inveriible). Write B for the “full replete image” of
T : that is, the subcategory of A given by those A isomorphic to some TK, which are
equally those A for which NA : A — TSA is invertible. We have T=1P, where
I: B— A is the inclusion and P: K~ B differs from T only in thar its vaiues are deemed

to lie in B. The funcior P is an equivalence, with equivalence-inverse 31, and Bisa
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reflective subcategory of A with reflexion R = PS, the unit p: 1 — IR=IPS =TS
coinciding with 1: | — TS. The set £ = B* of morphisms iaverted by R is equally the
set of morphisms inverted by S. The reflective B is a localization of A if and only if §

is left exact.

The next result is again foiklore; Kelly recalls leaming it from M. Barr in 1976;
the authors of [7], unable to find a proof in the litcrature, gave one in their Lemma 1.3; we
too give onc, perhaps a few lines shorter, for completeness. The proof applies to
adjunciions in any 2-category and uses, besides the triangular equations for the adjunciions,
only instances of the 2—categorical equality X¢é.6M = 8Y M¢@: MN — XY where
BM—X and N—Y.

Proposition 2.3 Given adjunctions NE: S — T L — A and a: U—S: A=K
in any 2-category, if € Is invertible, so s o . When we are dealing with the 2-category of
categories, therefore, U is fully faithful whenever T is so.

Proof We show that the compesite y given by

SU ——— SUST + ST 1
SUe SBT 3

is inverse to o 1 — SU. First, yo = E.SBT.SUE“l.a = E.SﬂT.BST.E_l, which is the

identity since SP.aS is an identity,  Secondly, oy = YSUSUa which - since
els =5 - is

eSU.SPTSU.SUSNU.SUa = eSU.SNU.SBU.5Ua ;

and this is the identity since £5.9 and BU.Ua are identities. o
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We remarked in the penultimate paragraph of the inwoduction that Ess 4 s
isomorphic to Ess(4 OP). 1t is far more convenient, however, to remain within the language
of A, speaking of coreflective subcategories of £ rather than reflective subcategories of
A%P. To this end we dualize cur notation and nomenclature. The subcategory C of A is
of course coreflecrive if the inclusion J: € — A has a right adjoint S: d—C; it is then a
cofocalization of A if S is right exact, and an essential colocalization if S has a right
adjoint. We write .CoEss 4 ¢ CoLoc A c CoRef A for the ordered sets of such
subcategaries, which are of course respectively isomorphic to Ess(d “F) c Loc(4 Py ¢
Ref(A °P). We call 2 morphism f: C — D in A and an object A of A coorthogonal
when AAD: AAC) — LAD) isa bijection. Given a subcatcgory ¢ of A we write c7
for the st of morphisms coonhogonal to every C in €, and given a set 7 of morphisms

of A we write F° for the subcategory given by those A coorthogonal 1o cvery f in 7.
Let us call an ordered pair (8.C) of subcategories of 4 an associated pair if B

is reflective, C is coreflective, and B =C'.

Theorem 2.4 (a) Let(B.C) be an associared pair, with R — 1: B— A and

J— S: A=+ C, where 1 and ] arethe inclusions. Then

(i) each of B and C is uniquely determined by the other, since we have (= BT
and B=C"";

(ii) the functors SI: B—C and REC— B are mutually inverse equivalences,

(iit) B is an essential localization and C an essential colocalizarion.
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{b) Moreover, every essential localization B forms part of an associated pair (5.C ).
and if U: B—s A is any left adjoint of R: A — B, we car describe € = BT

alternarively as the full replete image of U.

{© B 1= BT is an order-preserving bijection Ess A — CoEss A, with inverse

C —C*.

Proof For (a), iet & be B* = . Then (i) is immediate since Proposition 2.1 gives
B=E=(C", while €=5"T is just the dual of this. As for (ii), the components of the unit.
p:t — IR lie in C7 since they clearly lie in BY, by Proposition 2.1, therefore, they are
inverted by S; thus we have an isomorphism Sp: § — SIR. This gives SIRJ=S8J= I}
dually we have RISI = 1; whence (ii) follows. Now, since SI is an equivalence and
sinte S = SIR by the penoltimate sentence, R like § has a left adjoint, proving (iii).
Turning to (b), we first observe that U is folly faithful by Proposition 2.3; write £ for its
full replete image, so that U = JP where J: C — A is the inclusion and P: B—» C is the
functor U seen as taking its values in € . By the dual of Proposition 2.2, C is
coreflective and € is the set of morphisms inverted by R, which by Proposition 2.1

again is B*. This proves (b), and now (c) follows trivially. o

We now rationalize our notation, in the fellowing sense. A typical reflective
subcategory of A is stll B, with inclusion 1: §~+ 4 and reflexion R: A — B, the unit
being p: 1 — IR. When B is an essential localization, however, the associared essential
colocalization B'7 will no longer be called € s in Theorem 2.4, bur wil! henceforth be
B . This releases € as a possibie name for a second reflective subcategory, perhaps
another essential localization. When we deal with general families (lk: Bk ~ A) of

subcategories of some type, we of course just add a subscript k throughout as appropriate.
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3. Small suprema of essential localizations

We suppose the reader is familiar with the notion of a factorization system (£, 4)
for a category A, which was inooduced in [8] and revised, with more details, in [4] and
f3]. Recall that the X of a faciorization system (£, 4} is fully determined by £, being
necessarily what was called £ ! in [8] and [3].

Consider the following properties which a set £ of morphisms of 4 may possess:

El If fgef and fe £ then ge £.
E2. Every pullback of an £ isan £.
E3. There is a factorization system (£, K).

Ed. There are factorization systems (£, X) and (¥, £).

Under mild condidons on A, Cassidy, Hébert, and Kelly identified in [4] the
images of Ref A and of Loc £ under the injection &: Ref A — P (mor A) of Proposition
2.1. The following extracts their results on this from their Corollaries 3.4 and 4.8; although

we use only their Loc 4 result, we include their Ref 4 result for its inherent interest.

Proposition 3.1 A set £ of morphisms of the finitely~complete A is of the form B*
Jor some localization B of A if and only if £ satisfies El, E2, and E3. If we further
suppose that A admits arbitrary intersections of strong subobjects, £ l's.of the form B

Jor some reflective B if and only if £ satisfies El and E3.

We can now identfy the image under @ of Ess A:
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Theorem 3.2 A set £ of morphisms of the finitely-complete and finiiely-cocomplete A

is of the form B“ for some essential localization 8 of A if and only if £ savisfies E4.

Proof If £ = B* for some essential localization B, then by Theorem 2.4 we have
E=B where B is the associated essentiat colocalization; so by Proposition 3.1
£ satisfies both E3 and its dual — that is, £ satisfies E4. Suppose conversely that €
satisfies E4 and hence E3. Since (¥, £) is a factorization system, £ satisfies E1 and E2
by [8, Propositicn 2.1.1]. Accordingly, by Proposition 3.1, £ = B* for some localization
B; dually, however, £= CT for some colocalization £ ; by Theorem 2.4, therefore, 8 is

an essential focalization. o

Theorem 3.3 Let (Bk) be a small famity of essential localizations of the complete and
cocomplete A, and ser £ = M, where & = B; . Then £ =B for an essentiai
localization B of A, and B is the supremum of the family (B) not only in Ess £ bur
also in Loc A andin Ref A. Explicitly,” B is the closure in A of UBk under small

limits .

"Proof By [3, '}lf’hcorcm 3.1}, because 4 is complete and the Bk are localizations, £
satisfies E3, the appropriate 4 being constructed explicitly in the proof of that theorem.
Using the fact that we aiso have £ = & , and applying [3, Theorem 3.1 now to 4 %P ,
we see that £ in fact satisfies E4. By Theorem 3.2, therefore, £= 8 for an essential
localization B . Since @: Ref A — PAmor 4 is an order-reversing injection by
Proposition 2.1, it follows at once that B is the supremum of the Bk in Ref £,in Loc A,

and in Ess 4. The explicit description of B follows from (3, Theorem 3.3]. o

Theorem 3.4 Suppose that A is complete and cocompleie. Then Ess A is a complete
lattice whenever it is small; and this is surely the case if A is locally small and has either

a Jirong genergtor gr a lfrong cogereraror.
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Proof  The first assertion is immediate from Theorem 3.3; as for the second, so longas A
is locally small, Loc A [resp Loc (4 “P)] is small by [3, Proposition 65] if 4 hasa
strong generator [resp. swrong cogenerator], whence Ess A is small in either case by

Theorem 2.4, O

We recalled in the Introduction the result of [3, Theorem 6.8] that, for a geometric
category A, the infimain Loc A are precisely the intersections. We now show that, even
when A is the category Shv A of sheaves on a compact hausdorff space A, the infima in
Ess A (which of course exist by Theorem 3.4) are in general stricily smaller than those in

Loc A —in contrast to the result of Thearem 3.3 for suprema.

It is classical that a continuous map i: B — A of wpological spaces induces a
geometric morphism i* — i,: Shv B =+ Shv A, and that i, is fully faithful if i is the
inclusion of a subspace. So each subspace B of A gives by Proposition 2.2 a localization
B of the topos A= Shv A, namely the full repleie image of i,. If we ideniify sheaves on
A with local homeomorphsims p: X — A, il is very easy to describe i* and i, ; the
former is just the “restriction” functor, sending p to its restriction p"l(B) — B, while the
tatter extends a sheaf q: Y — B on B tooncon A by taking the stalk at each point of
A — B 10 be a single poim and giving to the result the unique locally—homeemorphic
topology. Accordingly B consists exactly of those sheaves on A whose stalks at each

point of A — B are singletons; it is of course equivalent 1o Shv B.

It is equally classical that, when the subspace B of A isopen, i* iself has a
left adjoint i, , necessarily fully faithful by Proposition 2.3; in fact i sends a sheaf
q: Y — B toonecon A by iaking the stalk at each point of A — B to be empty — which
does produce a tocal homeomorphism p: X — A when B is open, although not for a

general B. Then B is an essential localization of A : and the associated essential
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colocalization B, which by Theorem 2.4 is the full replete image of i, , consisis of those

sheaves on A whose stalks at each point of A —B are empty.

Now take for A the (compact) subspace of the reals consisting of 0 and the
points i/n for positive integral n; write Bk for the open subspace given by 0 and the
I/n forn 2k, where k isagain a positive integer; write B for the empty subspace of
A ; and write C for the subspace mBk= {0) of A. Taking A 1w be Shv A, we have
as above the essential localizations Bk and B corresponding 10 the open subspaces B,
and B, along with the associated essential colocalizations B_ and B, and we have the

localization € corresponding to the subspace C.

The intersection (™\B, consists of the sheaves on A whose stalks, except that &t
0, are all empty: but then the stalk at 0 is necessarily empty 100, so that (B, = B, which
is the category (isomorphic to 1) consisting of the empty sheaf alone. Tt follows that 5 is
the infimum of the B in CoEss A; whence, by the isomorphism of Theorem 2.4(c), the
infimum in Ess 4 of the B is B, which is the catcgory (equivalent to 1) consisting of

the sheaves that are isomorphisms p: X — A. By [3, Theorem 6.8)], however, the infimum

“of the Hk in Loc A is the intersection f-‘!Bk . which is clearly the localization C,

cduivalem as a category (since the stalk at 0 of an object of € is arbivary) 10 Set.

It follows, of course, that the localization € of A is not essential. In fact it is
easy to exhibit an infinite limit in A not preserved by the reflexion of A onto C, or
cquivalently rot preserved by the functor 5: A — Set given by caking the stalk at O :
namely the intersection in A of the sheaves ik: B, — A, scen as subsheaves of

I: A — A, which is the empty sheaf i: B — A; although each S(ik) =1 while S{i)=0.
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In order to give cxamples where even binary infimain Ess A4, fora geometric A,
differ from those in Loc A, we now turn to the study of essential localizations of presheaf

categories.

4. Essential localizations of presheat categories

Since the earlier parts of what follows apply to categories other than presheafl
categories, we give them in a general form. We recall for convenience the following

aspects of Propositions 2.3, 2.4, 2.5, 6.2, and 6.3 of (3):

Proposition 4.1 For a localization B of ihe finitely-complete A, write & jor B

and £ for the set of monomorphisms in £. Then

) if fge £, and f is monomorphic, we have fe £ ;

-y - i .

(il) 8= Em ;

{ni) if every morphism f of A factorizes as a sirong epimorphism followed by a
monomorphism — ihe latter then being called the image of £ — we have fe £ if

and only if the image of f and the equalizer of the kernel-pair of f both lie in

€ -

Now suppose further that A has a strong generator ¢, and write T for the set of
morphisms in £ n with codomain in § . Then

(iv) B=1T;

{v) a monomorphism f: A — B liesin £_ if and only if, for every g: G — B with
Ge G, the pullback g*f of f along ¢ liesin T.
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The basic result we need is;

Theorem 4.2 Ler the locally-small, complete and cocomplete A admit a strong
generalor § and a cogenerator, and suppose thar smail preducis of sirong epimorphisms in
A are again strong epimorphisms. Let B be a localization of A, define T asin
Proposition 4.1, and for G & G write T(G) for the ser of morphisms in T with codomain
G, thought of as a set of subobjects of G. Then the localization § is essential if and only
if each T(G) has a leasr element e T(G) ~ G ; whereupon T(G) consists of all

subobjects of G greater than or equal to G-

Proof First observe that, because of its strong generator, A is wellpowered — see [3,
Proposition 6.1). In consequence, each morphism f: A — B of A dees factorize as a
strong epimorphism followed by 2 monomorphism, the image of f being the intersection of
those subobjects of B through which { factorizes; the point being that the complete and
wellpowered A admits arbitrary intersections of subobjects. If now the localization 5 is
essential, the reflexion R: A — B preserves all limits and in particular all intersections of
subobjects; it follows that 7(G) is closed under intersectons, and hence has a least element
tG T(G) — G. For the converse, suppose that each 7(G) does have such a least clement.
Then, by Proposition 4.1(i), 7(G) in fact consists of ali subobjects of G greater than or
cgual 10 G whence it is certainty closed under intersections. Now let (fk: Ay — Bk) be
a smali family of elemenis of £, and iet £ A — B be their product. For Ge @, fo
give a morphism g: G — B =T1B is to give its components g1 G — Bl-: ; and since the
pullback p*[ as a subobject of G is the intersection (M\ggf, . 1t follows from
Proposition 4.1¢v) that é,'m is closed vnder small products. Now it follows easily, from
Proposition 4.1(iii) along with the hypothesis that strong epimorphisms are closed under

products in A, that £ is closed under small products. We use this 1o conclude that
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R: A— B preserves small products: the canonical comparison map h: R(HAk) —
I'I{RAk) is the unique morphism whose composite with the unit p(HAk): I]Ak — R(HAk}
is l'I(pAk): l’lAk — fI(RAk) . since each pC: C — RC clearly belongs to the set £ of
morphisms inverted by R, and since £ is closed under small products, it follows that h
is inverted by R; thus h, being a morphism berween objects of B, is utself invertible.
Accordingly the left—exact R preserves all small lmits. Since A4 is locally small,
complete, and wellpowered, and has a cogenerator, it follows from Freyd's Special Adjoint
Functor Theorem (see [14, Ch.5, §8, Theorem 2]) thatr R has a left adjoint, and 5 is

essential. o

Remark 4.3 TopOP. the dual of the category of topological spaces, satisfies the
hypotheses of Theorem 4.2; the one—point space 1 is a generator of Top {which has no
strong generator), while a strong cogenerator is formed by the chaotic space 2 = (0,1} and
the Siempinski space 2s . the strong monomorphisms in Top are the subspace—inclusions,
and these are closed under coproducts. Since 2 and 2, have but a finite number of
subobjects in Topop, it follows from Theorem 4.2 that every localization of Topop, or
equivalently every colocalization of Top , is essential. A very simple analysis of cases
shows that there are just three such colocalizations, namely Top itself, the subcategory of
discrete spaces, and the subcategory given by the empty space alone. By Theorem 2.4,
therefore, the three essential localizations of Top are Top itself, the subcategory of
chaotic spaces, and the subcalegory of one—¢lement spaces. Theorem 4.2, however, tells us

nothing about the set of afl localizations of Top.

Similar remarks apply 10 other categories which resemble Top ; but we henceforth
restrict ourselves o the primary object of this section, by taking A to be the presheaf
catlegory [APP Sct] for some small category A. This A satisfies of course the hypotheses
of Theorem 4.2, The strong generator § that we choose in order 1o define the 7 of

Proposition 4.1 and Theorem 4.2 is the set of representable functors A{—A) for Ae A,

—
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in fact we abbreviate by treating the fully~faithful Yoneda cmbedding A — [{A®P Set] as
an inclusion, and writing A for A(—A). {Since all monomorphisms and all epimorphisms
in A are swong, there is no difference between a strong generator and 2 generator, or
between a strong cogencrator and a cogenecrator.} A cogenerator of A is given by the
presheaves [A(A.-).2) where 2 is the two~clement sct (0,1} and ([X,Y] denotes the
power—set v, Finally, products of epimorphisms in A are again cpimorphisms, since

this is true in Set and since }imits and colimits in A = [A%P,Set] are formed pointwise.

By Proposition 4.1(iv), the function sending the Jocalization 8 1w T is, like the
@& of Proposition 2.1, an order—reversing injection. In the case of our presheaf category
A, itis classical that 7 lies in the image of this injection precisely when il is a
Grothendieck topology on A, in the sense that it satisfies (see, for example [10, Section
0.3] the following three conditions, where 7(A) for A ¢ A denotes as in Theorem 4.2 the
set of subobjects of A in A thatlicin 7, and where [*u denotes the puilback of o

along f:
GT1. Foreach A€ A the identity iA: A— A isin T(A)
GT2. f*u isin 7(B} whenever : U — A isin T(A) and B — A in A.

GT3. A subobject v: V—~+ A of A in A isin T(A)if, for some w U— A in 7(A),
we have f*v e 7(B) for every B ¢ A and every {: B — A that factorizes
through u.

{Recall that to give a subobject u: U — A = A(—A) in A is to give for each Ce A 2
subset UC of A{C,A), in sucha way that ghe UC whenever ge UD and he A(C,D);
then [Ul= }:CE AUC is the corresponding sieve an A, consisting of all the morphisms in

A with codomain A that factorize through v.}
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By Theorem 4.2, therefore, to give an essential localization B of the presheaf
category A is cqually to give, for each A ¢ A, a subobject t,: T(A)— A of A in A,
in such a way that, if we define T(A) to consist of the subobjects of A greater than or
equalto t, , we have GTi~GT3. To give the subobjects t, for cach A is to give for
each C.A ¢ A asubset Z{(C,A) =T(AYC of A(C,A) with the property that gh ¢ I(C,A)
whenever g € 7(D.,A) and h e A{CD);, we call such an I aright ideal of A; itisthe
same thing as a sieve Z(—A) on A foreach A e A. Of course f ¢ A(C,A} [acrorizes

though t, ifand only if feZ.

With 7 so defined in terms of the t, and thus in terms of the right ideal 1,
GT1 is wivially satisfied; while GT2 is precisely the condition that fig factorizes through
ts for all fe A(B,A), or equivalemly that fg e I(D,A) whenever g ¢ I(D,B) — which
we cxpress by saying that the right ideal ¥ of A is a fwo-sided ideal, or more concisely

an ideal. It remains to consider what conditions on I are imposed by GT3.

If 7 and J are ideals of A, sotoo isthe set IJ of all fg where fe I and
geJ Anideal I is said to be idempotent if IZ = I ; since wivially I c 1,
idempotence is in fact the assertion that 7 c I = 1’2. or thatevery fe I can be wrilten as

f=gh with ghe L

if we have GT3 as stated, we have it in particular when u: U — A is taken 10 be
ta: T(A) — A conversely, if we have GT3 when u is ¢ A We have it for any u & T(A),
since an f: B — A that factorizes through 1, certainly factorizes through u. What GT3
asserts wher u s t, is that the subobject v: V — A isin T(A) if f*ve 7(B) forali
f ¢ J(B,A). To saythat f*v ¢ F(B) is equally 1o say that fig factorizes through v, which
in turn is to say that fg: C — A factorizes through v forall Ce A and alt ge I(CB).

To say that v isin 7(A) is to say, in terms of the comesponding sicve [V}, (hat
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I(-A)c [V). Accordingly the impont of GT3 is this: given a sieve (V] on A, if
12(—.A) c [Vl then X{-A) c [V]. Since we may always take {V] 10 be the sieve
12(-.A), this is just the assertion that I{—A} c 12(«-,A) for each A, orthat I = Iz.
Thus:

Theerem 4.4 There is an order-preserving bijeciion berween essential localizations §
of the presheaf category A= [AOP.Scil arnd idempotent ideals T of A. Given B, we
find H(—A) — A as the smallest subobject of A in A that lies in B>, given I, we
find B as T* where T(A) consisis of ail the subobjects of A greaier than or equal 10
I(—A) — A,

Remark 4.5 Now suppose that B is a (fult replete) subcategory of A, with inclusion
i: B — A. The latter induces a functor i* A = {A°p,8151] —s [B%P Set), which is just
composition with i%P, and which has left and right adjoints given by the left and right Kan
extensions along i°P. Because i is fully faithful, so is each of these Kan adjoints. Tt
follows form Section 2 that we have an essential localization 5 of A given by the full
replete image of Ran,, : (B°P Sej — [A®P Set], whose associated essential

colocalization 8 is the full replete image of Lan,op .

Theorem 4.6 The ideal I of A corresponding by Theorem 44 to the esseniial
localization B of Remark 4.5 consists of those morphisms of A which factorize through

some object of B.

Proof &= B" consists of the morphisms q: F — G in A inverted by i*, and thercfore
of the morphisms for which ¢B: FB — GB is invertible foreach Be B. For A€ A, a
subobject u: U — A is therefore in £ exactly when UB s all of A(B.A) for each
Be B : which is to say that the corresponding sieve [U] on A contains all the

morphisms C —» A that factorize through some B e B. The resuit follows. ©

b s a1 e

k
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Remark 4.7 In the situation of Remark 4.5, different subcategorics B, C of A may
give risc to the same essential localization B ; by Theorems 4.4 and 4.6, this happens
precisely when cach Ig for Be B factorizes through some C ¢ C and each 1. for
Ce C factorizes through some B e B — that is, when each B isareractof a € and
vice versa. Equivalently, we do not change B if we augment B by adding to its objects
all their retracis in A ; and then this augmenied B s uniquely determined by 5.

consisting in fact of those A€ A with 1, € L

Remark 4.8 Let us write A* for the Cauchy completion of a small A, obtained by
frecly splitting the idempotents of A, Recall that an object of A* is an idempotent
e:A— A in A, while a morphism in A* from e: A—A 0 ¢':A'— A' isan
fe A(A,A) with fe = =c¢ef; and that the embedding A — A* sending A (o
I: A — A induces an equivalence [{\*Op,Scl] —+ [APP Se1) = 4. Accordingly we can get
further essential localizations B of A by waking B in Remark 4.5 to be a subcategory not
of A butof A*. The reader will easily verify that the idempotcat ideal I of A
corresponding 1o such 2 B consists of those morphisms that have the form heg for some

e:B-B in B.

Remark 4.9 It is clear from Theorem 4.2 that every localization of A= [Aop.Sci] is
essential if A is such that, for each A, the ordered set of sieves on A satisfies the
descending chain condition; and in particular, therefore, if A is finite. Since A* is finiic
when A is so, we may as well, by Remark 4.8, suppose A to be Cauchy complete in the
following observation, which is [9, Exercise 9.1.12). The proof outlined there uses very
deep results; there is a guite clementary proof in some unpublished 1977 notes of P.T.

Johnstone catitled "Topologies on finite categeries”; the proaf that follows is shorter still.
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Proposition 4,10  If idempotents split in the finite A, every localization of A= [AOP Set)

arises as in Remark 4.5 from a subcategory B of A.

Proof Let the localization B of A, which is essential by Remark 4.9, correspond as in
Theorem 4.4 10 the idempotent ideal T of A. Define the subcategory B of A to consist
of those A e A for which 1, e 7, and write J for the idempotent ideal of A consisting
of those morphisms which factorize through some B e B, Clearly Fc 7, and we are 10

prove that Ic J. First,since I=1>=1"=.., any f in I has the form

with each f; ¢ 7 and n arbitrarily large. Because A is finite, the A, here with
0 < i < n cannot be all different when n is large enough; accordingly f has the form hig
for some endomorphism 1. E — E, with htge I. Now apply the same argument with t
in place of f; we get t = hjig, where 1, is an endomorphism and h,.t;.g, € I.

Continue thus, with t = h212g2 , and so on. Because A is finite, we must have

L=lym for sorne r and some m > 0. It suffices, of course, (o show that T € I.
Writing s for the endomorphism L owe have s =ysx where ysxe I. Thus 5= yks:ck

forall k2 1. For k large enough, we must since A is finite have yk = yzy"; 50 yk =€

is an idempotent belonging to I, and it suffices 1o show that ee J. Let ¢t A — A split
as e=ip, where it B— A and p: A — B satisfy pi=lg. Since p= pip = pe, we

have pe 7; so Ig =pi liesin T, and B € B. This completes the proof.

5. PARTICULAR EXAMPLES IN PRESHEAF CATEGORIES

Because of the need to relate our considerations in Section 4 to classical

Grothendieck topologies, we felt constrained to write a typical presheafl caiegory A as
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[A“p,Sc:t]. For our examples below, however, it is much more convenient 10 Bvoid &
superfluous dualization by wking A 10 be [A, Set], which we do henceforth. Note tha,
because the notion of an ideal I of A is self-dual, Theorem 4.4 and 4.6 are totally
inscnsitive to this change. We abbreviate further by writing & for Set, wriling SA for
[A . Set] whenever convenicnt, and writing § 9. SB — .SA for the functor g* induced by

q: A— B

Example 5.1 For our primary example we take for A the category frecly generated by

 the graph with two objects P and Q and two arrows f: P— Q and g: Q— P An

object F of A= .S'A is accordingly given by two sets X =FP and Y = FQ, along with

Lo Eunc_tions
d=FEX—-Y . Yy =FnY—=X (5.1}

Taking for B and C respectively the full subcatcgories of A whose objeci—sets are (P)
and (Q), we get as in Remark 4.5 essential locatizations B and ¢ of A, with
associated essential colocalizations B and C . Wrile N for the monoid of nawral
numbers, seen as a category with a single object + and with generator €1 « — *, S0 that
a typical morphism is {not n but} ¢". Eachof B and C is a monoid isomorphic to N,
the respective generators being gf and fg. Instead of taking i to be as in Remark 4.5 the
inclusion B — A, and j to be the corresponding inclusion C — A, we find it more
convenient lo invoke the isomorphisms above, and to define i and j 10 be the
fully—faithful funciors N — A given by i(x) = P, i(¢) = gf and by j(0 =Q. j(e)=fg L
is of course still the case that B and C arc the full replete images of Ran; and Ras,,

while B and € arc the full replete images of Lan; and Lan,.

It i5 immediate that each of B and C is both reflective and coreflective in A,

There is in addition a relation betwsaen the two reflexions and the two coreflcxions, which is
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best expressed by speaking instead of the adjoints to i and to j, as follows. The category
A being free on the appropriate graph, we can define functors rs: A — N, necessarily

sending P and Q to +, by
N=ze.fg)=1,; s(B=1, s(g)=c. (5.2)
It is at once clear that we have a cycle of adjuncrions
r -~ i —s —4j —r, (3.3)
with ri=sst=g=sj=1.
The adjunctions (5.3} induce adjunctions
STt 8 4 55— st s (5.4)
from which it follows that we can take

Ran; = Lan; = 5", Ran; = Lan; = 5%, {5.5)
The functor &' SN — SA sends an object €: W — W of 6'N 10 the object (5.1) of A
givenby ¢g=e: W =W and y=1: W — W, Itis easy to see that a general object (3.1}
of A is isomorphic 1o one of this form, and hence belongs to the full replete image of § r
if and only if w is invertible. Thus, using (¢} for a typical object of A asin (5.1), we

have

B =C = {{w)]y invertible}. (5.6)
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Exactly similar considerations applied to § 5 Eive
€ = B = {{¢.¢)| 9 invertible]. {5.7)
Writing henceforth 2 for BnC, we accordingly have
P=BnC=BnC=[(¢y)]¢ and y invenible). (5.8)

We now use Theorem 4.4 to verify that ?= 8nC, although by [3, Theorem 6.8]
it is a localization of £, is not an essential one. Let I and J be the idempotent ideals
of A comesponding by Theorem 4.4 to the essential localizations 8 and € respectively.
By Theorem 4.6, I consists of all the morphisms of A that factorize through P thatis,
all the morphisms of A except lQ . Similarly J consists of ali the morphisms of A
except lp . So the ideat InJ of A consists of all the words in f and g of length
>0. Lot X be an idempotent ideal contained in 70 7. If K were not empty, it would
contain a word in [ and g of minimal lengih; bat then it could not be idempotent. So the
idempotent ideal £ cormresponding o the infimum B AC in Ess A is empty. By Theorem
4.4, therefore, the corresponding T(A) consists of aff the subobjects of A in A, whence

BAC consists of the terminal object | of A and its isomarphs.

It follows from Theorem 2.4 that the infimum BAC in CoEss A is B A C; itis
therefore the subcategory of A consisting of the initial object 0 alone. Thus BaC, 100,
differs from BnT=7. Infact BnC, although a coreflective subcategory of A, is not
even 2 colocalization; this is the example we promised in the Inwroduction that goes beyond
{3, Example 5.2]. The following considerations not only establish this, but provide an
alternative proof that Bn € is not an essential localization by showing that the reflexion

fails to preserve infinite products.
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Example 5.2 We retain the notation of Exampie 5.1, of which this is but a continuation.
The subcategory P of A given by (5.8) may be identified with s , where D is the
category generated by the graph with two objects P and Q and four arrows fg P—Q
and g% Q — P, subject to the conditions that T and f° be mutually inverse and that g
and g' be mutually inverse. Write p: A — D for the functor sending F, Qf.g wo P
Q. T, 2 ; then we may identify the inclusion ?— A4 with § P. s . sM This of course
has left and right adjoints L.:mp and Rnnp , exhibiting P as both a refleciive subcategory
of A (known by [3, Theorem 6.8] 10 be in fact a localization} and as a coreflective
subcategory of A (which latter we had no a priori reason o suppose). We re—verily that
the localizarion P is not essential by observing that L:mp fails o preserve infinite
products, and we verify that P is not a colocalization by observing that Ranp fails 0

preserve epimorphisms,

We simplify the calculations by arguing somewhat indirecly. Write Z for the

infinite cyclic group on the generator e, seen as a category with one object +, and write

q: N~ Z for the functor sending ¢ io €. There are obviously unique functors 1, T, ], s

rendering commutative

N A + N + A N
N
Z - + D — Z — D — z, (5.9
i r i 5

and they are clearly equivalences. Recall from, say, 12, Theorem 4.47] that Lan pL_zmj

Here Lans like j is an equivaience, while Lan; , being st

Lan B = L‘qu = L:mjr Lan q

by (5.5), preserves all limits; so il Lanp preserves all products, so does Lan q In the

same way we have RanpRnni = Rnn; Ranq » where Rans is an equivalence and Ran, ,
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which by (5.5) is again § T preserves all colimits; so if Ranp preserves epimorphisms, so
does Rnn(l . We arc thus reduced to proving that Lanq does no1 preserve products, nor
Ran q epimorphisms; and we do. so by calculating these Kan adjoints explicitly.

We can identify an object F of SN with n set W along with an endofunction
£:W — W, the object being in .S‘z when € is invertble. Let us write Ramq and Lzmq
of W —-W as "W — W' and ™ W" — W" respectively. Using the classical
formulas for Kan extensions in  terms of limits and colimits — see [14, Chapter X,

Theorem 1] or [12, Section 4.2] — we see that W' is given as the limit, and W™ as the

colimit, of the doubly~infinite sequence

An clement of W', then, is a family w = {wn]n € Z} of clements of W which satisly

Ew and it is easy to sce that the isomorphism €. W' — W' is given by

n = ¥n+lr

W = Yer

(n+1,w) ~ (new), and €" sends [(n,w)] to [{n+1,w)].

On the other hand W™ is the quotient of Z x W by the relation

Now take & W — W tobe o: N — N, where ¢ is the successor function. It
is clear that W' is empty. On the other hand Ranq lakes the terminal object 1: 1 — |
of .S‘N . which in fact lies in SN to itself. So Ranq does not preserve the epimorphism
(N,o) — 1, where henceforth {W.e) is used for €: W —~+ W. Not only does this confirm
that P is not 8 colocalization of A; i1 enables us 1o conclude that the enly colocalization
¥ contained in P is {0); for the coreflexion of P onto F must invert 0 — 1. Thus the

infimum of B and € in CoLoc A is their intersection {0) in CoEss A.
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Aggin with (W.g) = (N,0), consider (W",e"). Anelement of Zx N has, under
the relation — above, a normal form (n0); so that W™ may be identified with Z, and
g" with 0:Z —Z sending n 0 n+ I. Next, take for {(W.g) the N—th power (NN.ON )
of (N.a) in .S‘N . Anclement of Z x NN is a pair {n,w) where w is 2 sequence
(wnln € N) of elements of N, and oN(w) being the sequence (wn+1 Ine M), suchan
clement has under ~ a normal form (0,w), where w is now a sequence (wn|n e N} of
clements not of N but of Z, subject however 10 the condition that the sequence be
bounded below in Z . To accord with this, the normal form above for an element of
Zx N could have been written (O.n) rather than (n,0), with the understanding that n

here may be ncgative. Abbreviating Lan_ to L, we sec that the canonical comparison

9
map L((N,U)N) — (L(N.G))N is the inclusion into ZN of those sequences w € ZN
which are bounded below. Since this is_not an isomorphism, Lzmq does not preserve

infinite products.

Example 5.3 The authors spent some little time looking for an example, of the same
generat kind as that above, where 5 C is the infimum of B and C in Ess A4, but BnC
is not the infimum of B and € in CoEss A. They did not succeed in the time available;

but the following example may be worth noting, in that B=8 and C=C.

This time we again take A to be generated by the graph with two objects P and
Q and with two arrows f: P — Q and g: Q — P, but now subject to the relations fgf =f
and gfg = g. The full subcategories B and C of A again give rise, as in Remark 4.5, to
essential localizations 8 and C of A= SM. Kt tums out that both B and B consist of
those objects (¢: X = Y, y: Y — X) of A for which y¢ =1, while both € and €
consist of those with ¢ = 1; sothat DP=BnC consists of those for which ¢ and W
are mutnally inverse. Since Bn  is known 10 be a focalization of A4 by {3, Theorem
6.8]. end since (A here being finite) all localizations of A are essential by Remark 4.9,

BnC is necessarily the infimum of B and € in Ess 4. Once again 2 has the form SD




for a suitable D, and is hence not only refleciive in 4 but also coreflective.
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being equivalent to 1, the category sP s cquivalent 1o S, and the inclusion B— A isin

effect the diagonal functor A:§ — S* . wisleft and right adjoints are lim and colim; and

for this A, these coincide.
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