
10 Theorem A space is paracompact if every interior-preserving open cover of the space

has a closure-preserving closed refinement.

Proof. Assume that every interior-preserving open cover of X has a closure-preserving

closed refinement. Let U be an interior-preserving open cover of X. We show that U has a

locally finite open refinement. By Lemma 9, every interior-preserving open cover of X has

an interior-preserving open point-star refinement. As a consequence, we can inductively

construct a sequence 〈Un〉n∈N of interior-preserving open covers such that U1 = U and Un+1

is a point-star refinement of Unn for every n ∈ N. By Proposition III.1.4 and Lemma III.1.6,

there exists a continuous pseudometric d of X such that we have Bd(x, 2−3) ⊂ St(x,U2)

for every x ∈ X. Since U2 is a point-star refinement of U , the cover U is d-uniform, and it

follows, by Corollary 1.5, that U has a τd-open and locally finite refinement V. Since d is

a continuous pseudometric of X, the family V is open and locally finite in X.

We have shown that every interior-preserving open cover of X has a locally finite open

refinement. It follows, by Theorem 6 and Lemma 8, that X is paracompact.

We can use the characterizations of paracompactness obtained above to study the

preservation of paracompactness in topological operations. We consider preservation with

subspaces and mappings below, and in the next section, we shall study preservation of

paracompactness in products.

We note first that paracompactness is not a hereditary property: every compact space

is paracompact and we saw in Chapter I that every Tihonov space is a subspace of some

compact Hausdorff space. As a consequence, any non-normal Tihonov space, such as

the “Sorgenfrey square” S × S, gives an example of a non-paracompact subspace of a

paracompact space.

Even though paracompactness is not hereditary, it is closed-hereditary and, for regular

spaces, even Fσ-hereditary.

11 Proposition A. A closed subspace of a paracompact space is paracompact.

B. An Fσ-subspace of a regular paracompact space is paracompact.

Proof. A. Let X be paracompact and F ⊂c X. To show that F is paracompact, let G be

an open cover of F . For every G ∈ G, the set G ∪ (X r F ) is open in X. It follows that

the family U = {G ∪ (X r F ) : G ∈ G} is an open cover of X. Let V be a locally finite

open refinement of U . Then the family {V ∩F : V ∈ V} is a locally finite open refinement

of the cover G of F .
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B. Let X be paracompact and regular, and let L be an Fσ-subset of X. Then there exist

sets Fn ⊂c X, for n ∈ N, such that L =
⋃

n∈N
Fn. We use Theorem 5 to show that L is

paracompact. Let G be an open cover of L. For every G ∈ G, since G ⊂◦ L, there exists

UG ⊂◦ X such that UG∩L = G. Let n ∈ N. Then the family Un = {UG : G ∈ G}∪{X rFn}

is an open cover of X. Let Vn be a locally finite open refinement of Un. Then the family

Wn = {V ∩ L : V ∈ (Vn)Fn
} is locally finite and open in L; moreover, Wn is a partial

refinement of G and Wn covers the set Fn. By the foregoing, the family
⋃

n∈N
Wn is a

σ-locally finite open refinement of G. We have shown that every open cover of L has a

σ-locally finite open refinement. By Theorem 5, L is paracompact.

Unlike two other important covering properties, compactness and the Lindelöf pro-

perty, paracompactness is not preserved under continuous mappings: every space is the

continuous image of a discrete space. Nevertheless, there exists one important class of

mappings which preserve paracompactness.

12 Theorem The image of a regular paracompact space under a closed and continuous

mapping is paracompact.

Proof. Let X be a regular paracompact space and f be a closed, continuous and onto

mapping from X onto a space Y . To show that Y is paracompact, it suffices, by Theorem

10, to show that every open cover of Y has a closure-preserving closed refinement. Let G

be an open cover of Y . Then the family U = {f−1(G) : G ∈ G} is an open cover of X. By

Lemma 1.17, the open cover U of X has a locally finite closed refinement F . The family

K = {f(F ) : F ∈ F} is a refinement of the cover G of Y . We show that K is closure-

preserving and closed. Let H ⊂ F . By Lemma 1.2, the family F is closure-preserving in

X, and hence the set
⋃

H is closed. Since f is a closed mapping, the set f(
⋃
H) is closed

in Y . Since f(
⋃
H) =

⋃
{f(F ) : F ∈ H}, we have shown that the set

⋃
{f(F ) : F ∈ H} is

closed in Y . The foregoing shows that, for every L ⊂ K, the set
⋃
L is closed in Y . As a

consequence, the refinement K of G is closure-preserving and closed.

For inverse preservation, we have the following result.

13 Theorem A. The pre-image of a paracompact space under a perfect mapping is pa-

racompact.

B. A regular space is paracompact provided the space can be mapped into a paracompact

space by a closed continuous mapping with Lindelöf fibers.
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Proof. We prove part B; the proof of A is similar (but simpler). Let X be a regular

space, Y a paracompact space, and let f : X → Y be a closed continuous mapping such

that the subspace f−1{y} of X is Lindelöf for each y ∈ Y . mapping. Let Z = f(X), and

note that since f is a closed mapping, we have that Z ⊂c Y . It follows by Proposition

11 that the subspace Y of X is paracompact. We use Theorem 5 to show that Z is

paracompact. Let G be an open cover of X. For every y ∈ Z, there exists a countable

subfamily Gy of G such that the set Gy =
⋃
Gy covers the Lindelöf-subspace f−1{y} of X;

we set Uy = Z r f(X r Gy) and we note that Uy is an open nbhd of y in Z. The family

U = {Uy : y ∈ Z} is an open cover of the paracompact space Z and hence U has a locally

finite open refinement V. Note that the family W = {f−1(V ) : V ∈ V} is a locally finite

open cover of X. For all V ∈ V and y ∈ Z, if V ⊂ Uy, then f−1(V ) ⊂ Gy . It follows

that, for every W ∈ W, there exists a countable GW ⊂ G such that W ⊂
⋃

GW . We write

GW = {GW,1, GW,2, ...} for every W ∈ W. Then it is easy to see that, for every n ∈ N,

the family Hn = {W ∩ GW,n : W ∈ W} is a locally finite open partial refinement of G.

Moreover, the family
⋃

n∈N
Hn covers X. We have shown that every open cover of X has

a σ-locally finite open refinement. Since X is regular, it follows from Theorem 5 that X is

paracompact.

It follows from Theorems 12 and 13 that if X and Y are regular spaces and there exists

a closed continuous mapping with Lindelöf fibers from X onto Y , then X is paracompact

iff Y is paracompact.

We close this section with examples indicating limits for preservation and inverse

preservation of paracompactness under non-closed mappings.

14 Example (a) For every x ∈ R, let Rx = ({x} × R) ∪ (R × {x}). Denote by X the

space obtained when R2 is equipped with topology in which points of the set R2 r ∆R are

isolated and a point (x, x) has a nbhd base by sets Rx rF , where F is finite and (x, x) 6∈ F .

It is easy to see that the disjoint τ -closed sets {(x, x) : x ∈ Q} and {(x, x) : x ∈ RrQ}

cannot be separated by open sets in X. Hence X is non-normal and thus non-paracompact.

Denote by Y the subspace
⋃

x∈R
Rx × {x} of the product space X × Rd, where Rd is

the discrete space on R. The space Y is paracompact, and the mapping (a, b, c) 7→ (a, b)

is open and continuous from Y onto X, and each fiber has at most two points.

We leave the verification of the details of this example as an exercise.

(b) Let S be the Sorgenfrey line. A projection S×S → S is an open continuous mapping,

with Lindelöf fibers, from a non-paracompact space onto a paracompact space.
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3. Paracompactness and normality in products.

The familiar weak separation properties, from T0 up to the Tihonov property, are

productive. However, normality is not even finitely productive. On the other hand, com-

pactness is productive but the Lindelöf property is not finitely productive.

The standard example to show non-productivity of normality or the Lindelöf property

is the square S × S of the Sorgenfrey line S. The space S is regular and Lindelöf, hence

normal, but the product S×S is neither normal nor Lindelöf. Since regular Lindelöf spaces

are paracompact and regular paracompact spaces are normal, the space S × S also serves

as an example of non-productivity of paracompactness. Our next example shows that even

the product of a paracompact space and a separable completely metrizable space may fail

to be paracompact.

1 Example Denote by J the subspace R r Q of R. There exists a paracompact space X

such that X × J is not paracompact.

Proof. Denote by τ the usual (euclidean) topology of R, and denote by π the topology

of R in which every x ∈ J is isolated and every x ∈ Q has the same nbhds as in τ . We

denote by X the space obtained when R is equipped with the topology π. It is easy to see

that X is zero-dimensional and T1 and hence Tihonov. To show that X is paracompact,

let G be an open cover of X. For every G ∈ G, denote by G′ the τ -interior of G. Let

G′ = {G′ : G ∈ G} and O =
⋃

G′. In the relative τ -topology, the space O is metrizable and

hence paracompact; as a consequence, G ′ has a refinement U such that U is locally finite

and open in the relative τ -topology. It is easy to see that the family U ∪{{x} : x ∈ R rO}

is a locally finite open refinement of G in X. We have shown that X is paracompact.

We show that the product space X × J is not paracompact. Note that, for every

x ∈ J, the set Vx = {(x, x)} ∪ (X × J r ∆J) is open in X × J. We show that the open

cover V = {Vx : x ∈ J} of X × J has no locally finite open refinement. Let W be an

open refinement of V. For every x ∈ J, let Wx ∈ (W)(x,x), and note that Wx 6= Wy for

x 6= y. For every x ∈ J, there exists nx ∈ N such that {x} × (x − 1
nx

, x + 1
nx

) ⊂ Wx. By

the Baire Category Theorem, there exist m ∈ N and a, b ∈ R such that we have a < b

and (a, b) ⊂ Cl τ{x ∈ J : nx = m}. Let q be a rational number in the interval (a, b),

and let p be an irrational number with |p − q| < 1
2m

. We show that W is not locally

finite at the point (q, p). Let N be a nbhd of (q, p). Then there exists 0 < ε < 1
2m

such
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that (q − ε, q + ε) × {p} ⊂ N . Since we have that q ∈ Cl τ{x ∈ J : nx = m}, the set

A = {x ∈ J : nx = m and |x − q| < ε} is infinite. For every x ∈ A, we have that

|x − p| ≤ |x − q| + |q − p| < ε +
1

2m
<

1

m
=

1

nx

and it follows that (x, p) ∈ Wx; we also have that (x, p) ∈ N and hence we have that

Wx ∩N 6= ∅. We have shown that every nbhd of the point (q, p) meets infinitely many sets

of the family W. As a consequence, W is not locally finite.

The space X above is known as the Michael line.

After the above counter-examples, we state a positive result.

2 Theorem The product of a paracompact space with a compact space is paracompact.

Proof. The result follows from Theorem 2.13.A, since the projection map p : X ×K → X

is perfect whenever K is a compact space (see Exercise 1, Problem 4).

It follows from Theorem 2 that the product X ×K of a paracompact Hausdorff space

X with a compact Hausdorff space K is normal. Curiously, it turns out that this result

has a converse: if X is a Tihonov space and X ×K is normal for every compact Hausdorff

space K, then X is paracompact. We shall obtain this result as a corollary to the following

one, known as “Tamano’s Theorem”.

3 Theorem The following are equivalent for a Tihonov space X:

A. X is paracompact.

B. X × βX is normal.

C. There exists a Hausdorff compactification K of X such that X × K is normal.

Proof. A⇒B: This follows from Theorem 2 and Proposition 1.3.

C⇒A: Asume that K is a Hausdorff compactification of X and the space X×K is normal.

To show that X is paracompact, let G be an open cover of X. For every G ∈ G, there

exists G∗ ⊂◦ K such that G∗ ∩ X = G. Let G∗ = {G∗ : G ∈ G} and U =
⋃

G∗, and note

that we have X ⊂ U ⊂◦ K. Denote by F the closed subset X × (K rU) of X ×K. Since K

is a Hausdorff space, the set ∆X = {(x, x) : x ∈ X} is closed in X. Moreover, we have that

∆X ∩ F = ∅. By normality of X × K, there exists a continuous function f : X × K → R

such that we have f(x, x) = 0 for every (x, x) ∈ ∆X and f(x, k) = 1 for every (x, k) ∈ F .

We define a pseudometric d of X by the formula d(x, y) = supk∈K |f(x, k)− f(y, k)|.

To show that d is continuous, it suffices to show that we have Bd(x, ε) ∈ ηx(X) for all
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x ∈ X and ε > 0. Let x ∈ X and ε > 0. For every k ∈ K, since f is continuous on X ×K,

there exist Vk ∈ ηx(X) and Wk ∈ ηk(K) such that we have |f(y, `) − f(z, t)| ≤ ε
2 for all

(y, `), (z, t) ∈ Vk × Wk; in particular, we have that |f(y, `)− f(x, `)| ≤ ε
2

whenever y ∈ Vk

and ` ∈ Wk. Since K is compact, there exists a finite A ⊂ K such that
⋃

a∈A Wa = K.

Denote by V the nbhd
⋂

a∈A Va of x. For every y ∈ V , we have that

{y} × K ⊂ V ×
⋃

a∈A

Wa =
⋃

a∈A

V × Wa ⊂
⋃

a∈A

Va × Wa

and it follows that |f(y, `)− f(x, `)| ≤ ε
2 for every ` ∈ K. As a consequence, we have that

ρ(y, x) ≤ ε
2 < ε for every y ∈ V . We have shown that Bd(x, ε) ∈ ηx(X) for every ε > 0.

By Corollary 1.5, there exists a τd-locally finite and open cover H of X such that each

H ∈ H has d-diameter at most 1
2 . Since d is a continuous pseudometric of X, the family

H is a locally finite open cover of X. We show that, for every H ∈ H, there exists a finite

family GH ⊂ G such that H ⊂
⋃

GH . Let H ∈ H, and let x ∈ H. For every y ∈ Y , we

have that d(y, x) ≤ 1
2 , and hence that f(x, y) = |f(x, y)− f(y, y)| ≤ 1

2 . It follows that we

have

Cl K(H) ⊂ Cl K{y ∈ X : f(x, y) ≤ 1
2} ⊂ {k ∈ K : f(x, k) ≤ 1

2} .

We have that f(x, `) = 1 for every (x, `) ∈ F . Since F = X × (K rU)), it follows from the

foregoing that we have Cl K(H) ⊂ U . Moreover, the set Cl K(H) is compact and the set

U is the union of the open family G∗. As a consequence, there exists a finite GH ⊂ G such

that we have Cl K(H) ⊂
⋃
{G∗ : G ∈ GH}. Since we have that H ⊂ X and G∗ ∩ X = G

for every G ∈ G, it follows that H ⊂
⋃

GH .

It follows from the foregoing that the family {H∩G : H ∈ H and G ∈ GH} is a locally

finite open refinement of G.

4 Corollary A Tihonov space X is paracompact iff X × K is normal for every compact

Hausdorff space K.

Let X be a non-paracompact normal space. The above results show that there exist

compact Hausdorff spaces K such that the product X × K is non-normal. However, it

is still possible that all products X × C are normal for some sufficiently simple compact

spaces C. In particular, the above results leave the following problem open.

4 Problem Let X be a normal space. Is the product X × I normal?
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