Semantic Lego

David A. Espinosa

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy
in the Graduate School of Arts and Sciences.

COLUMBIA UNIVERSITY
1995



(© 1995
David A. Espinosa
ALL RIGHTS RESERVED



ABSTRACT

Semantic Lego

David A. Espinosa

Denotational semantics [Sch86] is a powerful framework for describing program-
ming languages; however, its descriptions lack modularity: conceptually independent
language features influence each others’ semantics. We address this problem by pre-
senting a theory of modular denotational semantics.

Following Mosses [Mo0s92], we divide a semantics into two parts, a computation
ADT and a language ADT (abstract data type). The computation ADT represents
the basic semantic structure of the language. The language ADT represents the
actual language constructs, as described by a grammar. We define the language ADT
using the computation ADT; in fact, language constructs are polymorphic over many
different computation ADTs.

Following Moggi [Mog89a], we build the computation ADT from composable parts,
using monads and monad transformers. These techniques allow us to build many
different computation ADTs, and, since our language constructs are polymorphic,
many different language semantics.

We automate these ideas in SEMaANTIC LEGO (SL), a modular language construc-
tion set written in Scheme. SI. generates interpreters automatically from composable

parts and is a useful tool for programming language design.



Contents

Table of Contents 1
List of Figures v
List of Tables vi
1 Introduction 1
1.1 Denotational Semantics. . . . . . . .. ... 3
1.1.1  Domains / Types . . . . . . ... .. 3

1.1.2  Logics . . . . o o o 4

1.1.3  Environments . . . . . . .. ... oo 6

1.1.4  Stores . . . . . . 6

1.1.5  Continuations . . . . . . . . .. .. oo 7

1.1.6 The importance of types . . . . . . .. ... ... ... 8

1.2 Languages as ADTs . . . . ... .. o oL 9
1.3 Monolithic interpreters . . . . . .. ... oL 15
1.4 Modular interpreters . . . .. ... Lo 18
1.4.1 Lifting interpreter . . . . . . . . .. . L L oo 20

1.4.2  Stratified interpreter . . . . .. ... o0 oL 22

1.5 Examples . . . .. . 26
1.5.1 A Scheme-like language . . . . . . . .. ... ... 27

1.5.2  Nondeterminism and continuations . . . . ... .. ... ... 30

1.5.3  Unified system of parametrization . . . . . . .. .. ... ... 32

1.5.4 Resumptions . . . . .. .. .. L 32

2 Monads 38
2.1 Basic category theory . . . . . . ... 38
2.1.1  Categories . . . . . ..o 39

2.1.2 Functors . . . . . ..o 39

2.1.3 Natural transformations . . . . ... ... ... ... ... .. 40

214 Inmitiality . . . . .o 41

2.1.5 Duality .. .o 41

2.1.6 Category theory and functional programming . . . .. .. .. 42

2.1.7 References . . . . . ... 42



2.2 Monads . . . . .. 43

2.2.1 First formulation . . . . . . .. .. .. ... ... .. ... 43

2.2.2  Second formulation . . . . ... .. ... ... ... ... ... 44

2.2.3  Interpretations . . ... ..o Lo oL 48

2.3 Monad morphisms . . . . ... Lo 52
2.4 Monads don’t compose . . . . ... 52
2.5 Monads do compose . . . ... 53
2.6 Monad transformers . . . . .. .. e 56
26.1 Motivation . . . . . . ... 56

2.6.2 Formalization . . . . . . . . .. . ... 58

2.6.3 Classes of monad transformers . . . . . . . . .. .. .. .... 60

2.6.4 Composition of monad transformers . . . . . .. .. ... ... 62

3 Lifting 63
3.1 Lifting . . . . . ..o 63
3.1.1 Formal lifting . . . ... ... 63

3.1.2  Monads and lifting . . . .. ... ... oL 66

3.2 Pragmatics . . .. .. .o 66
321 Bottom-up. . ... ... . 67

3.2.2 Top-down . . . . .. ... 68

4 Stratification 69
4.1 Stratified monads . . . . . ... . 69
4.2 Stratified monad transformers . . . . . . . .. ... . L. 71
4.2.1  Top transformers . . . . . . . ... oo 73

4.2.2 Bottom transformers . . . . . . .. .. ... . 74

4.2.3 Around transformers . . . . . . .. ... 74

4.2.4 Continuation transformers . . . . . . . . . . .. .. .. .... 75

4.3 Computation ADTs . . . . ... .. 76
4.4 Language ADTs . . . . . . . ... e 79

5 Conclusion 82
5.1 Lifting versus stratification . . . . . .. ..o 82
5.2 Limitations . . . . . . . . . ..o 33
5.3 Related work . . . . . .. 86
5.4 Future work . . . . .. e 90
5.5 Conclusion . . . . . . . e 9]
Bibliography 93
A Miscellanea 98
A1l Why Scheme? . . . . . .0 o 98
A.2 Typed versus untyped values . . . . . . .. .. ... ... 100
A.3 Extensible sums and products . . . .. ... 0oL 101

i



B Code
B.1 Monad transformer definitions
B.2 Language construct definitions

11



List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27

2.1
2.2
2.3
2.4

4.1

Interpreter . . . . . . ..o 10
Environment ADT . . . . . .. ..o oo 11
Expression predicates and selectors . . . . .. ... ... ... 12
Expression constructors . . . . .. ... oo 12
Interpreter interface. . . . . . . ..o oo 13
Denotational implementation . . . .. ... ... ... ... ... .. 13
Map from syntax to semantics . . . . . .. .. ... ... .. .. ... 14
Monolithic interpreter, part 1 . . . . . . . .. ... 16
Monolithic interpreter, part 2 . . . . . . . ..o 17
Store ADT . . . . . oL 17
Lifting operators . . . . . . ... L 21
Value level . . . . . . o o oo 22
Store level . . . . . . 23
Environment level . . . . . . ..o 24
Level-negotiating operators . . . . . . . .. ... oL 26
Modular interpreter, part 1 . . . . . . ... oL 27
Modular interpreter, part 2 . . . . .. ... oo 28
Example specification and expressions . . . . . . .. .. .. ... ... 29
hlet source definition . . . .. ... Lo 30
hlet definition simplified . . . . . . .. .o oo 31
hamb source definition . . . ..o oL L o 31
hamb version 1 . . . . ... 33
hamb version 2 . . . oL L. Lo e 34
hamb version 3 . . . . ... 35
Unified system of parametrization . . . . . . ... ... .. ... ... 36
Unified parametrization examples . . . . . . . ... .. ... ... 36
Parallel language using resumptions . . . . . . . . ... ... ... 37
Example monads, part 1 . . . . . . .. ..o oo 46
Example monads, part 2 . . . . .. ..o oo A7
Monads don’t compose . . . . . ..o 53
Environment monad transformer . . . ... ... 0oL 57
First answer transformer . . . . . . .. ..o oo 76

v



4.2  Second answer transformer . . . . . . . .. ... 76

5.1 Odd definition of %4end-of-input? . . . . .. ... . ... ... ... 85
B.1 Environment transformer . . . . . . .. .. ... L. 104
B.2 Exception transformer . . . . . .. .. ... o oL 105
B.3 Continuation transformer. . . . . . . . . . .. ... ... ... 105
B.4 Store transformer . . . . .. ... L L o 106
B.5 First lifting transformer . . . . . o000 oo 107
B.6 Second lifting transformer . . . . . ... o000 107
B.7 List transformer . . . . . . . ... L 108
B.8 Monoid transformer . . . . . .. ... 109
B.9 Resumption transformer . . . . .. .. ... o oo 110
B.10Amb . . .. 111
B.11 Reset . . . . . . o e 111
B.12 Stores . . . . . e e 112
B3 Output . . . . . ..o 112
B.14 While . . . .. oL 113
B15Begin. . . . ..o 113
B.16 Error exceptions . . . . . . . ... Lo 114
B.17 Error values . . . . . . ... 114
B8 Batch I/O . . . . . oo 115
B.19 Booleans . . . . . . . . .. 116
B.20 Call with current continuation . . . . . . . .. ... ... ... .... 117
B.21 Dynamically scoped procedures . . . . .. . ... ... ... ... .. 118
B.22 Environments . . . . . ... 119
B23 Fixed points . . . . . . . . 120
B.24 Letrec using fixed points . . . . . . .. ..o oL 121
B.25 Numbers . . . . . . . e 122
B.26 Statically scoped procedures . . . . .. ..o 123
B.27T Resumptions . . . . . . . . . Lo e 124
B.28 Products . . . . . . .. e 125
B.29 Sums . . ... e e e 126
B.30 Shift . ..o 127



List of Tables

2.1
2.2
2.3
2.4
2.5

4.1
4.2
4.3
4.4

5.1

Monad type constructors . . . . . . .. ... L L 44
Meaning of existence . . . . . . .. L L oo 50
Monad transformers . . . . .. ..o 57
Monad transformer classification . . . . . ... ... ... 61
Classification examples . . . . . .. .. ... . oL 62
Names associated with each transtormer . . . . . . .. .. .. .. .. 78
Levels and names for a complex language . . . . . ... .. ... ... 79
Procedure types . . . . . . ..o 80
Modules and language constructs . . . . . .. ... ... 81
Non-local language constructs . . . . . . ... .. .. L. 83

vi



Acknowledgements

Mary Ng, my fiancée, has been waiting patiently for this thesis for several years.
I could have done it without her, but it would have been much worse, and it was
already bad. Mary is easily the happiest result of grad school.

Joanne Espinosa, my mother, has been great for 28 years. Thanks, mom.

Gerald J. Sussman, who I have known for a decade now, has always been an
inspiration. His faith in his students never fails, and talking with him makes you
believe, if only for a moment, that you can do anything. On the more material side,
Jerry let me hang out at his lab for the last year (or more).

Sal Stolfo, my advisor at Columbia, has been an extremely tolerant observer of
my graduate school career. In part, I picked Sal as an advisor because he was a nice
guy; remarkably, he still is.

My defense committee, Gail Kaiser, Ken Ross, and Mukesh Dalal, helped me get
out of Columbia in one piece.

Albert Greenberg rescued me from unemployment for several summers at AT&T.
He initially hired me because “it takes less paper work to hire Ph.D. scholars”. We
had fun hacking parallel Fourier transforms and solving models of communication
networks. The connection between that and monads seems certain, but, for the
present time, obscure.

An AT&T Ph.D. scholarship supported me for five years, and they didn’t even
make me beg too hard for a fifth year. Unfortunately, all they gave me was money
(Albert notwithstanding).

Thanks to Phil Chan, Mauricio Hernandez, Sushil Da Silva, Paul Michelman,
and Bulent Yener for keeping me company at Columbia. Similarly for Michael Blair,
Kleanthes Koniaris, Natalya Cohen, Raj Surati, and all the other fourth-floor people
at MIT.

Thanks also to my musical friends, Joseph Briggs, Kerstin Kup, Brian and Karen
Neal, Lois Winter, and Johelen Carleton.

Vil



Albert Meyer has been great fun on many occasions. It’s splendid to talk to
someone who knows semantics inside and out, along with most of its history. You
just can’t get that from papers!

Eugenio Moggi deserves my thanks for his work, sine qua non. Albert objected
to Moggi’s inclusion here since our relationship is scientific rather than personal (es-
pecially since I've never met him). Albert, as a logician, splits any hair he can find.

Jonathan Rees introduced me to monads and category theory. I hope we’ll be
able to work more together later. Now he’s off chasing bugs in England.

Bill Rozas helped me out on many, many occasions and was always happy to
discuss semantics or architecture. Bill is incredibly generous and made me feel that
we were equals, even when we weren’t. I envy him this quality.

Carl Gunter has been a great source of advice and assistance. When [ first met him
at LFP in 1992, he was a soft-spoken man who, after a heated semantics argument
died down, would say, “Actually, the real answer is ...”. His explanations and his
book [Gun92] are crystal clear.

Charles Leiserson provided convincing evidence to attend MIT as an undergrad
by being the most interesting person at Brown when I visited there. He did a great
job teaching me algorithms, but I figure that field’s too easy anyway. Charles has an
astounding ability to formalize just about anything.

Franklyn Turbak and I have had enormous fun hacking interpreters and languages
for the last two years. Until meeting Lyn, [ was convinced that formal semantics was a
non-sensical hodgepodge of Greek letters intended to confuse the reader into thinking
the field had actual content. My present views you’ll have to ascertain by reading

this thesis.

Vil



Chapter 1

Introduction

Denotational semantics is a powertul framework for defining programming languages.
Using it, we can describe languages concisely and unambiguously and build inter-
preters that execute actual programs. It is not a difficult theory to understand,
especially considering its power.

Unfortunately, it is hard to read and write denotational descriptions, primarily
because they lack modularity. Each language construct interacts with all the semantic
building blocks that form the language’s foundation. For example, if we model assign-
ment using a store, then every language construct must interact with the store, not
just assignment. The complexity of this interaction makes denotational descriptions
overly intricate.

This thesis presents a modular style of writing denotational descriptions, which we
automate as SEMaNTIC LEGO'(SL), a Scheme program that builds interpreters from
component parts. In essence, SL is a language for describing languages. This work

makes several important contributions:

o We reintroduce the idea of programming languages as abstract data types. In-

terpreters written in this style are shorter and clearer than usual.

o We restate Moggi’s theory of lifting in simple terms, making it accessible to a

Lego is a registered trademark of Interlego AG.



wider audience.

o We describe a new theory of stratification that is simpler than lifting yet more
powerful. This theory extends Mosses’s work on semantic algebras, adding

structure and modularity.

o We show two styles of writing modular interpreters, based respectively on lifting

and stratification.

o We present SEMaNTIC LEGO, a modular language construction set based on

stratification, and give several examples.
This work has several important consequences:

o We can understand, discuss, and teach languages better by decomposing them
into parts. For example, the resumptions model of parallelism appears complex

until we see it as a combination of several simple features.

o We can experiment with new languages. S handles the bookkeeping associated
with denotational descriptions, leaving the designer free to consider higher-level

issues. SL’s underlying theory can also help suggest new language constructs.

The following story illustrates SI.’s power. Three teaching assistants for the MIT
graduate programming languages course needed to describe the semantics of a sophis-
ticated control construct (shift) in the presence of state. Although they understood
control and state independently, they were unable to find a suitable interaction be-
tween these features before distributing the problem set.

Using SL, I generated two solutions in under a minute. In fact, SL formed complete
interpreters, not just the single required construct. It was also easy to add errors
generation and handling, another semantic complication. Since I was confident in
SL’s ability to produce correct semantics, I did not even examine the definitions to

see if they were well-formed.



The thesis is organized as follows. Chapter 3 discusses lifting; chapter 4 discusses
stratification. Chapter 5 compares these approaches and reviews previous work. Ap-
pendix A covers issues tangentially related to the thesis.

We assume an elementary understanding of denotational semantics and functional
programming; for further background, see [Wad92]. All examples and code fragments
are in Scheme [CR91].

The rest of this chapter presents languages as abstract data types, demonstrates
that the usual style of writing interpreters isn’t modular, shows two styles of writing

modular interpreters, and exercises SL. with a series of examples.

1.1 Denotational Semantics

In this section, we discuss denotational semantics, the theory on which SL is
based. Excellent references are [Gun92, Sch86]. In general, semantics is the study of
meaning. Our goal is to determine, for example, that x = x+1 means “add one to x”.

Programming language semantics is actually a branch of mathematical logic; the
main difference is that logics are for reasoning, while programming languages are
for computation. Semantics (whether of propositions or programs) is split into two
interacting parts. Proof theory, the more syntactic part, lets us reason and compute.
Model theory, the more semantic part, lets us describe what we are actually reasoning

and computing about.

1.1.1 Domains / Types

Our first step is to describe the raw material for building models. This elaborate
subject is called domain theory; however, most of it is irrelevant to our interest in
modeling language features. I usually call domains types, although the concepts are
not quite the same.

We begin with base types such as Num, Bool, and String. We glue these together

using the type constructors — (function space), x (cartesian product), and + (disjoint



union). A — B is the set of functions from A to B. Since — associates to the right,
A— B— C means A — (B — (). A x B is the set of all pairs (a,b). A+ B is the
set of all (0,a) and (1,b6). That is, elements of A + B are either A’s or B’s, except
that we can always tell which is which by checking the tag. Thus, A + A is different
from A.

Two types A and B are isomorphic (set-theoretically) if there exist functions
f:A— Band g: B — Asuch that fog=go f=1d Writing = for isomorphism,

we have

A+B = B+ A
AxB = BxA
(A+B)+C = A4+ (B+C)
(AxB)x(C = Ax(BxC)
Ax(B+C) 2 AxB4+AxC
A—-(B—=C) =2 AxB-=C
A—-C)x(B—=C) =2 (A+B)—=C

Thus, +, x, and — resemble addition, multiplication, and exponentiation. Because
of this structure, types built using these constructors are called algebraic types. Also,
all one-element sets are isomorphic (and similarly for other cardinalities). If we dis-
tinguish a set of each cardinality, we can also write identities such as 0 x A 2 0 and

14+1=2.

1.1.2 Logics

A logic is given by a language, a class of models, a set of inference rules, and a

meaning or denotation function for each model. The meaning function maps terms



in the language to elements of the model and interprets the language as being about
the model. The inference rules are used for reasoning or computation. Let’s take a

simple arithmetic language:

Exp = Num
| Exp + Exp
| Exp x Exp
(Lzp)
Num = Dig | DigNum
Dig = 0...9

An example expression is 3 x (10 4+ 1). For a model, we have the usual natural
numbers. For inference rules, we have the usual identity, associative, commutative,
and distributive laws. The meaning function sends expressions to actual numbers.
For example, it sends 3 x (10 4+ 1) to 33. The inference rules must be sound; that
is, they must preserve meanings. For example, if we apply the distributive law to
3x(10+1) to get 3 x 10+ 3 x 1, the meaning of this totally different expression must
also be 33. Note that we specify only a single model, while our definition allows a
class of models; see [Mes89] for a more thorough treatment of logics.

Interestingly, we have two ways of evaluating expressions: inside the language,
using the inference rules, and outside the language, using the meaning function. If
we use the meaning function, we need a way to compute in the language in which the
meaning function is described (the metalanguage). Sometimes this means is available;
for example, if we implement an evaluator for the above language in C, we can use
C’s arithmetic. Sometimes it is not; in performing arithmetic by hand, we use the
inference rules to justify the syntactic manipulations of the usual addition and mul-
tiplication algorithms. In this thesis, we build interpreters using meaning functions
and focus on models rather than inference rules.

Most meaning function definitions are compositional: the meaning of an expression
depends only on the meaning of its subexpressions, rather than their exact syntax.
For example, in the arithmetic language, the meaning of @ 4+ b is the sum of the

meanings of ¢ and b.



1.1.3 Environments

The semantics of more complex programming languages is simply an elaboration
of the above example. In the rest of this section, we discuss the basic techniques.
For example, suppose we add variables and a binding construct let to the language.
Now we can write (shifting to a Scheme-like notation):

(let ((a 1) (b 2))
(+ a (x b 3)))
The meaning of the overall program could still be a number, but what about the
meaning of an expression such as a? We take the meaning of an expression to be a
function from an environment to a number, where the environment assigns values to
variables. We can view the environment as a function from variables to values or as
a list of variable / value pairs; it doesn’t matter which.

Thus, meanings (or denotations), instead of being numbers, are elements of

Den = Env — Num

The primary inference rule for variables is substitution. It must be carefully de-
fined, and there are several variations, but, in general, we can infer that
(let ((a 1) (b 2))
(+ a (* b 3)))
has the same meaning as (+ 1 (* 2 3)). Although it seems simple, it is already not
easy to prove the soundness of this inference rule with respect to the environment

model.

1.1.4 Stores

The next complication arises in modeling state. Suppose we have a language with
assignment statements and sequencing. We can write programs such as

a=1
b=2
a=a+b
return a



The meanings of statements are functions from stores to stores, where a store is just
another name for an environment. That is, a statement accepts a set of variable

bindings and returns a new set. We write this as

Den = Sto — Sto

For example, the meaningof a = a + 1 sends a store binding a to 3 to a store binding
a to 4. To be accurate, we need separate meaning functions for programs, statements,

and expressions. We have

DenPTogmm = Num
Dengiptemens = Sto — Sto
DenExpTession = Sto — Num

We also need to handle unbound variables somehow; there are several viable ap-
proaches. We could return an observable error value (that we could test), an unob-
servable error value (that would propagate through all operators unchanged), or we

could abort the computation immediately.

1.1.5 Continuations

One way to model an abort operator is via continuations. The continuation rep-
resents the rest of the computation, a map from the current store to the final store. A
statement accepts both a store and a continuation. Most statements form a new store
(as usual) and apply the continuation to the result, thus continuing the computation.
To abort, statements return the store directly, ignoring the continuation. Thus, a

model for statements is

Den = Sto — Cont — Sto
Cont = Sto — Sto

In a language with operators for manipulating continuations, such as catch and
throw, we can build non-local control structures for backtracking or coroutines. This
example shows that semantic concepts can sometimes suggest new and useful language

features.



1.1.6 The importance of types

Quite often, once we specify the language and the model, there are few ways to

map terms to denotations. Once we know that

Den = Env — Num

(and that environments map variables to numbers), it is clear how to define variable
reference. Thus, an experienced semanticist needs only the language, the model,
and some general instructions about how the language should behave in order to
reconstruct its exact semantics. The model alone conveys most of the interesting
information, which is why types are good tools for describing semantics.

Why do models determine language construct semantics so completely? With
respect to the values they manipulate, language constructs are general and uniform.
For example, function call works for all types, and in the same way. This notion,
formalized by Reynolds, is called parametric polymorphism.

In the above semantics, it is clear that the only sensible meaning for a variable is
to look it up in the environment. How else could we get a number? We would have
to make one up, which would not be general. A good reference for this material is
[Wad89], which describes Reynolds’ result that polymorphic functions obey identities
derivable solely from their types. For example, a function £ : List(A) — List(A)

must obey

(f (map g 1)) = (map g (£ 1))

for any 1: List(A) and g : A — B.
Since models tightly constrain language semantics, we always begin by finding a
suitable model. Furthermore, it is not surprising that a modular theory of interpreters

begins with a modular theory of models.



1.2 Languages as ADTs

We begin with a simple interpreter in the style of Abelson and Sussman [ASS85]
and reduce it to its essence, eliminating issues of syntax as much as possible. This
approach shows that “metalinguistic abstraction” is no different from ordinary ab-
straction. In other words, it is not necessary to “go outside” the implementation
language in order to program in the target language. It also provides a streamlined
style of writing interpreters that shortens them and makes the separation of syntax
and semantics more apparent.

A simple interpreter for a purely functional language appears in figures 1.1 — 1.3.

A typical use of it is

(compute ’((lambda x (* x x)) 9))
= 81

This interpreter parses concrete syntax in the form of lists. That is, it recognizes the
subset of lists that are valid programs. Parsing has little to do with semantics, so we
pass to an abstract syntax, using the constructors shown in figure 1.4. Now the same

program reads as

(compute (%call (¥lambda ’x (%* (Yvar ’x) (Yvar ’x))) (Jnum 9)))
= 81

which is more explicit (but less readable).

These constructors, along with the procedure compute, describe the interpreter as
an abstract data type (ADT), whose signature is shown in figure 1.5. Of course, the
signature only partially specifies the behavior of the interpreter. The easiest way to
describe its behavior more completely is to provide a “model” implementation, such
as the one in figures 1.1 — 1.4.

Now that we have specified the interpreter’s interface, we can ask whether there
is a simpler implementation. In fact, figure 1.6 shows that there is. In this figure, we

use the Scheme syntax for defining curried functions, so that

(define ((f a) b) ...)



(define (eval exp env)

(cond ((number? exp) (eval-number exp env))
((variable? exp) (eval-variable exp env))
((lambda? exp) (eval-lambda exp env))
((1f? exp) (eval-if exp env))

((+7 exp) (eval-+ exp env))
((*7 exp) (eval-* exp env))
(else (eval-call exp env))))

(define (compute exp)
(eval exp (empty-env)))

(define (eval-number exp env)
exp)

(define (eval-variable exp env)
(env-lookup exp env))

(define (eval-lambda exp env)
(lambda (val)
(eval (lambda-body exp)
(extend-env env (lambda-variable exp) val))))

(define (eval-call exp env)
((eval (call-operator exp) env)
(eval (call-operand exp) env)))

(define (eval-if exp env)
(if (eval (if-condition exp) env)
(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))

(define (eval-+ exp env)

(+ (eval (op-argl exp) env)
(eval (op-arg2 exp) env)))

Figure 1.1: Interpreter

10



11

(define (empty-env) ’())

(define (env-lookup var env)
(let ((entry (assq var env)))
(if entry
(error "Unbound variable: " var)
(right entry))))

(define (env-extend var val env)
(pair (pair var val) env))

Figure 1.2: Environment ADT

expands into

(define f (lambda (a) (lambda (b) ...)))

Notice that the syntactic constructors and selectors have entirely disappeared.
The new implementation is shorter, yet it preserves the semantic content of the orig-
inal. We call figure 1.6 a denotational implementation of the language ADT because
we represent expressions by their denotations rather than their syntax. We call an
equation such as

Den = Env — Val

the basic semantics of the language. We write Den in place of Exp to reflect the
change in point of view, but the ADT semantics remains the same.

Despite these advantages, few authors write interpreters in this style, perhaps
because most languages encourage programmers to use concrete (rather than abstract)
data types. For example, Scheme emphasizes lists, while ML, and Haskell emphasize
algebraic data types (sums and products). Programmers in languages with better
support for ADTs might arrive more easily at this style, although first-class functions
are also necessary.

The denotational style shows explicitly that the semantics is compositional, which

is to say that the meaning of an expression is composed from the meanings of its imme-



(define variable? symbol?)

(define (lambda? exp)
(eq? ’lambda (first exp)))

(define lambda-variable second)
(define lambda-body third)

(define call-operator first)
(define call-operand second)

(define (if7? exp)
(eq? ’if (first exp)))

(define if-condition second)
(define if-consequent third)
(define if-alternative fourth)

(define (+7 exp)
(eq? ’+ (first exp)))

(define (%7 exp)
(eq? ’* (first exp)))

(define op-argl second)
(define op-arg2 third)

Figure 1.3: Expression predicates and selectors

(define (Ynum x) x)

(define (Yvar name) name)

(define ()lambda name exp) (list ’lambda var exp))
(define (Ycall el e2) (list el e2))

(define (Yif el e2 e3) (1list ’if el e2 e3))
(define (J+ el e2) (list '+ el e2))

(define (J* el e2) (list ’* el e2))

Figure 1.4: Expression constructors

12



compute : Fap

Jnum : Val

hvar : Name

hlambda : Name x Fxp
hecall s Exp x Fap

hif s Exp x Fxp x Eap
h+ s Exp x Fap

h* s Exp x Fap

— Val
— Frp
— Frp
— Frp
— Frp
— Frp
— Frp
— Frp

Figure 1.5: Interpreter interface

;3 Den = Env — Val
;5 Proc = Val — Val

(define ((%num n) env)

n)

(define ((Y%var name) env)
(env-lookup name env))

(define ((%lambda name den) env)
(lambda (val)
(den (env-extend env var val))))

(define ((%call d1 d2) env)
((d1 env) (d2 env)))

(define ((%if d1 d2 d3) env)
(if (d1 env) (d2 env) (d3 env)))

(define ((%+ d1 42) env)
(+ (d1 env) (d2 env)))

(define ((Y%* d1 d42) env)
(x (d1 env) (d2 env)))

Figure 1.6: Denotational implementation

13



14

(define (D exp)

(cond ((number? exp) (Ynum exp))
((variable? exp) (%var exp))
((lambda? exp)

(#lambda (lambda-variable exp)
(D (lambda-body exp))))
((1£7 exp)
(%if (D (if-condition exp))
(D (if-consequent exp))
(D (if-alternative exp))))
((+7 exp)
(%+ (D (op-argl exp))
(D (op-arg2 exp))))
((*7 exp)
(%* (D (op-argl exp))
(D (op-arg2 exp))))
(else
(%call (D (call-operator exp))
(D (call-operand exp))))))

Figure 1.7: Map from syntax to semantics

diate subexpressions. The original implementation does not preclude the possibility
that the meaning of an expression could depend on the syntax of its subexpressions.
Figures 1.1 — 1.4 and figure 1.6 implement the same interface (figure 1.5) using very
different base types. The former uses expressions, while the latter uses denotations.
As shown in figure 1.7, we can define a map from expressions to denotations, that is,
from syntax to semantics. For example, (* 2 3) goes to ()* (J)num 2) (Ynum 3))
The denotational approach to interpreters originates with [GTWW77]. This paper
shows that the expression implementation is initial in the category of implementa-
tions of an ADT interface (see section 2.1.4). A consequence is that all syntaxes are
isomorphic, and hence, from a mathematical point of view, syntax doesn’t matter.
The presentation of languages as ADTs shows that, contrary to [ASS85] or even
[Wad92], there is no real difference between “metalinguistic” abstraction and data

abstraction. New syntax (even abstract syntax) is not necessary for new languages.



15

In essence, every ADT forms a new language, and vice-versa. Of course, we cannot
have language without syntax; in fact, we reuse Scheme’s syntax. For example, the

expression

(%+ (Ynum 1) (Ynum 2))

has meaning in Scheme (directly) and in the interpreted language (using compute).
With an extensible parser, we could make the interpreted language more readable.
Finally, observe that the denotational style can be used in languages other than
Scheme. With a little more work, we could implement the language ADT in C, and
the result would be equally usable.

1.3 Monolithic interpreters

In this section, we examine the usual monolithic style of writing interpreters and
show that it is non-modular. Monolithic means that a program is not textually
divided into modules. Non-modular means that a local conceptual change requires a
global textual change. Hence, monolithic is a syntactic property, while non-modular
1s a semantic property.

To see an example of non-modularity, we extend the language presented above to
include stores. We add three new operations:

hbegin : Fxp x Fxp — Fap

hfetch : Loc — Eap
hstore : Locx Exp — Exp

The intuitive meanings of these operations are that %begin threads a store through
two expressions in sequence, %fetch reads a value from the store, and %store writes a
value into the store. We could define ¥begin using %1let but, since they are operations
in the same ADT, I prefer to give them equal status.

Figures 1.8 and 1.9 show a monolithic denotational implementation of the ex-
tended language. The store ADT, shown in figure 1.10, is almost identical to the

environment ADT. The intuitive meaning of the base semantics



16

;3 Den = Env — Sto — Val x Sto
;3 Proc = Val — Sto — Val x Sto

(define (((Y)num n) env) sto)
(pair n sto))

(define (((Yvar name) env) sto)
(pair (env-lookup name env) sto))

(define (((Ylambda name den) env) sto)
(pair (lambda (val) (den (env-extend env name val)))
sto))

(define (((Y%call d1 d4d2) env) sto)
(with-pair ((d1 env) sto)
(lambda (v1 s1)
(with-pair ((d2 env) s1)
(lambda (v2 s2)
((v1 v2) 82))))))

(define (((%if d1 d2 43) env) sto)
(with-pair ((d1 env) sto)
(lambda (v1 s1)
(if v1
((d2 env) s1)
((d3 env) s1)))))

Figure 1.8: Monolithic interpreter, part 1

Den = Env — Sto — Val x Sto

is that an expression is interpreted relative to an environment and a store. For
example, to evaluate (%4fetch ’a), we need to know what is stored in location a. In
addition to returning a value, a denotation also returns an updated store.

Even though we have added only three new language constructs, the implementa-
tions of the other constructs change drastically. For instance, although numbers have

nothing to do with stores, we are forced to write



(define ((((make-op op) dil d2) env) sto)
(with-pair ((d1 env) sto)
(lambda (v1 s1)
(with-pair ((d2 env) s1)
(lambda (v2 s2)
(pair (op v1 v2) s2))))))

(define %+ (make-op +))
(define %* (make-op *))

(define (((%begin d1 d2) env) sto)
((d2 env) (right ((d1 env) sto))))

(define (((Yfetch loc) env) sto)
(pair (store-fetch loc sto) sto))

(define (((Ystore loc den) env) sto)
(with-pair ((den env) sto)
(lambda (val sto)
(pair ’unit (store-store loc val sto)))))

(define (with-pair p k)
(k (left p) (right p)))

Figure 1.9: Monolithic interpreter, part 2

(define (empty-store) ’())

(define (store-fetch loc sto)
(let ((entry (assq loc sto)))
(if entry
(error "Empty location: " loc)
(right entry))))

(define (store-store loc val sto)
(pair (pair loc val) sto))

Figure 1.10: Store ADT

17



18

(define (((Y)num n) env) sto)
(pair n sto))

in place of

(define ((%num n) env)

n)

Thus we have an instance of non-modularity: a conceptually local change requires a

textually global change.

1.4 Modular interpreters
Modular programs have several advantages over monolithic programs:

e They are easier to understand.
o They are easier to reason about.

e They are easier to extend and modity.

In this section, we describe two modular interpreters. We begin by examining the

interpreter constructed in the last section. The basic semantics is
Den = Env — Sto — Val x Sto
In this type, we distinguish three distinct “levels”:

F = Fnv— Sto— Val x Sto
= Sto — Val x Sto

V = Vadl

Modularity is possible because most language constructs operate primarily at a single
level. For example, %var operates on environments, %+ operates on values, and %store

operates on stores.



19

There are two methods for building a modular interpreter, which we describe by
analogy with building a house. In both methods, we build a floor at a time, starting
from the bottom. However, in the first, we move in our belongings (rugs, furniture,
china, paintings, books) after we finish each floor. In the second, we wait until the
house is complete before moving in. It’s not surprising that the second method works
better.

In the first method, we start with the value level and constructs such as %+. Then
we add the stores level and more constructs such as %fetch. We also lift the value
constructs up to the stores level (the interesting part). Then we add the environments
level and constructs such as %call. We also lift the value and store constructs up to
the environments level.

In the second method, we define operators for lifting values and functions between
all pairs of levels. For example, unitVE lifts from values to environments. We can
define these operators in stages, but it is easier to define them all at once. Then we
use them to define each language construct in a single step, without lifting it through
several levels.

In both interpreters, we use monads to relate pairs of levels. A monad is a triple
(T, unit, bind) of a type constructor and two polymorphic operators

unit : A — T(A)

bind : T(B) x (A = T(B)) — T(B)
The operators are required to obey several identities, as discussed in section 2.2. Two
types A and B are related by a monad (7', unit, bind) if B = T'(A). Unit lifts values
from A to B, and bind lifts functions of type A — B to functions of type B — B.
We can use bind to lift functions of other types also.

Let’s examine what lifting means. Suppose that we have a function square
: Num — Num and we want to define a function square-list : List(Num) —

List(Num) that squares each number in a list. Given the list monad



20

555 T(A) = List(A)

(define (unit a)
(list a))

(define (bind tb f)
(flatten (map f tb)))

we can define square-1list as

(define (square-list 1)
(bind 1 (lambda (n) (unit (square n)))))

We can perform this lifting using the standard Scheme map function, but monads can
lift functions that map (and its generalizations) cannot, as shown in section 2.2.3. We

present a formal definition of lifting in section 3.1.

1.4.1 Lifting interpreter

This section presents a modular interpreter built using lifting. Since stratification
is simpler and more powerful, it may be better to skip to the next section on first
reading.

The interpreter is shown in figures 1.11 — 1.14. The first figure shows a set of lifting
operators. These accept a monad relating levels A and B and a function defined on A.
They return a function defined on B. Functions may accept parameter types (written
X), that are untouched by the lifting process. The parameters always come before
the actual arguments. The operator 1ift-pN-aM lifts a function of N parameters and

M arguments. For example, 1ift-p1l-a2 takes functions
f: X xAxA—-A

to lifted functions

f X xBxB—B

The lifting operators assume that all functions return values of type A.



21

(define ((lift-pl-a0 unit bind op) pl)
(unit (op p1)))

(define ((1ift-pO-al unit bind op) d1)
(bind di1
(lambda (v1)
(unit (op v1)))))

(define ((1ift-p0-a2 unit bind op) d1 d2)
(bind di1
(lambda (v1)
(bind d2
(lambda (v2)
(unit (op v1 v2)))))))

(define ((lift-pil-al unit bind op) pl d1)
(bind di1
(lambda (v1)
(unit (op pl v1)))))

(define ((1ift-if unit bind op) d1l d2 d3)
(bind di1
(lambda (v1)
(op v1 d2 d3))))

Figure 1.11: Lifting operators

The second figure shows the values level and the constructs defined on it. The
third figure uses the lifting operators and the stores monad to lift these operators to
the level of stores. It also defines several new operators. The fourth figure does the
same for environments. Using appropriate laws for reasoning about Scheme programs
(essentially call-by-value lambda calculus), we can show that the final constructs are
operationally equivalent to the monolithic definitions of figure 1.8.

Although the code for this interpreter is somewhat long, it is fairly modular. For

example, the definitions of

e Jnum, %+, and %* do not involve environments or stores,



22

;55 V=Val
(define computeV id)

(define %numV id)
(define %+V +)
(define %*V *)

(define (%ifV d1 42 d3)
(if d1 d2 d3))

Figure 1.12: Value level

e /fetch and %store do not involve environments, and

e Jvar, Jlambda, and %call do not involve stores.

We obtain modularity by lifting operators in a canonical way using unit and
bind. Canonical means that operators with identical types have identical liftings. An
exception is %if, which needs special treatment. Even in this case, the lifting of %if
is uniform for all levels.

A more serious lack of modularity occurs when defining %var, %1lambda, and %call.
Here we use unit$S and bindS, which were intended solely for the stores level. Also, we
assume that environments contain values from the values level. Since the environment

constructs interact with multiple levels, we say that they are non-local.

1.4.2 Stratified interpreter

The second interpreter is much simpler than the first. We define all language

constructs using five operators that relate levels in pairs:



i3 S =5l —=V x Sto
;3 Store monad

(define (unitS v)
(lambda (sto)
(pair v sto)))

(define (bindS s f)
(lambda (sto)
(let ((v*xsto (s sto)))
(let ((v (left v*sto))
(sto (right v*sto)))
((f v) sto)))))

;5 Lifted operators

(define (computeS den)
(computeV (left (den (empty-store)))))

(define %numS (1ift-p1-a0 unitS bindS ¥%numV))
(define %+S (1ift-p0-a2 unitS bindS %+V))
(define %x*S (1ift-p0-a2 unitS bindS %*V))

(define %ifS (lift-if unitS bindS %ifV))
;35 New operators

(define ((YfetchS loc) sto)
(pair (store-fetch loc sto) sto))

(define ((YstoreS loc den) sto)
(let ((v*s (den sto)))
(let ((v (left v*xs))
(s (right v*s)))
(pair ’unit
(store-store loc v s)))))

(define ((%beginS d1 d2) sto)
(d2 (right (d1 sto))))

Figure 1.13: Store level



s B=

Env — S

555 Proc=V — S

;5 Environment monad

(define

(unitE s)

(lambda (env) s))

(define

(bindE e f)

(lambda (env)

((£

(e env)) env)))

;5 Lifted operators

(define

(compute den)

(computeS (den (empty-env))))

(define
(define
(define
(define
(define
(define
(define

Ynum (1ift-p1l-a0 unitE bindE %numS))

%+ (1ift-p0-a2 unitE bindE %+S))
%k (1ift-p0-a2 unitE bindE %*S))
Yif (1ift-if unitE bindE %ifS))

hfetch (1ift-pl-a0 unitE bindE YfetchS))
hstore (1lift-pl-al unitE bindE YstoreS))
%begin (1ift-pO-a2 unitE bindE %beginS))

;35 New operators

(define

((%var name) env)

(unitS (env-lookup name env)))

(define

(units

((%lambda name den) env)

(lambda (val)
(den (env-extend name val env)))))

(define

((%call d1 d2) env)

(bindS (d1 env)
(lambda (v1)
(bindS (42 env)

(lambda (v2) (vi1 v2))))))

Figure 1.14: Environment level

24



25

unitSE : S — K
unitvs :V — 8§
unitVe :V — F
bindSE : E X (S — F) = F
bindVE : K x (V= E)— E

We have left out bindVS since we don’t need it. These operators form an abstract
data type of computations, from which we can build the usual language ADT. We
could alternatively call it an ADT of denotations, but Moggi’s work on monads sets
a precedent for “computations”, although we have altered his meaning somewhat.
Peter Mosses was the first author to describe an ADT abstracting the basic se-
mantics of a language [Mo0s92]. What is new here is stratification, which has several

advantages:

o We can define non-local language constructs more naturally.

o We can understand computations and language constructs via the structure

that stratification provides.

e We can build stratified computation ADTs automatically from component mod-

ules.

We return to this approach in chapter 4.

Figure 1.15 shows the computation ADT for this semantics, and figures 1.16 and
1.17 show the language ADT built from it. Once again, this interpreter is observa-
tionally equivalent to the original monolithic interpreter. It is also somewhat non-

modular; specifically, all constructs assume
e There are no levels above F.
o Level S is immediately below F.
o Level V is immediately below S.

Section 4.3 solves these modularity problems in the context of automatically generated

interpreters by giving each level several names.



26

i B=Fnv — S
i3 S =5l —V x Sto
;3 V=Val

(define ((unitSE s) env)
s)

(define ((unitVsS v) sto)
(pair v sto))

(define (((unitVE v) env) sto)
(pair v sto))

(define ((bindSE t f) env)
((f (t env)) env))

(define (((bindVE t f) env) sto)
(let ((p ((t env) sto)))
(let ((v (left p))
(s (right p)))
(((f v) env) s))))

Figure 1.15: Level-negotiating operators

1.5 Examples

The examples in this section show SEMANTIC LEGO’s input / output behavior; the

next two chapters explain the mechanisms behind it. We consider

o A full-featured, Scheme-like language,
e Three interactions between nondeterminism and continuations,
e Lamping’s unified system of parametrization, and

o A parallel language modeled using resumptions.



27

i B=Fnv — S

i3 S =5l —V x Sto
5 V= Val

53 Proc=V — S

(define (Ynum v)
(unitVE v))

(define ((Y%var name) env)
(unitVS (env-lookup env name)))

(define ((%lambda name den) env)
(unitVvs
(lambda (val)
(den (env-extend env name val)))))

(define (Ycall d1 42)
(bindVE d1
(lambda (v1)
(bindVE d2
(lambda (v2)
(unitSE (v1 v2)))))))

(define (%if 41 42 d3)
(bindVE d1
(lambda (v1)
(if v1 d2 43))))

Figure 1.16: Modular interpreter, part 1

1.5.1 A Scheme-like language

We construct an interpreter for a language with environments, call-by-value pro-
cedures, stores, continuations, nondeterminism, and errors. Figure 1.18 shows the
complete language specification, the basic semantics, and two example expressions.
SL automatically generates descriptions of the basic semantics in prefix form.

We build an interpreter in two steps. In essence, SL. automates the manual meth-

ods used to build the stratified interpreter just shown. First, we define a computation



28

(define ((make-op op) dil d2)
(bindVE d1
(lambda (v1)
(bindVE d2
(lambda (v2)
(unitVE (op v1 v2)))))))

(define %+ (make-op +))
(define %* (make-op *))

(define (Ybegin d1 d2)
(bindVE d1
(lambda (v1)
d2)))

(define (Y fetch loc)
(unitSE
(lambda (sto)
(pair (store-fetch loc sto) sto))))

(define (Ystore loc den)
(bindVE den
(lambda (val)
(unitSE
(lambda (sto)
(pair ’unit (store-store loc val sto)))))))

Figure 1.17: Modular interpreter, part 2

ADT using make-computations, which accepts a list of semantic modules. The re-
sulting ADT is just a collection of appropriately named unit and bind operators.
Second, we load several files of language constructs. These define the language
ADT using operators extracted from the computation ADT. These definitions are
similar to those of the last section. Constructs may be defined over any computation
ADT that includes the appropriate semantic modules. For example, the J%amb con-
struct requires the nondeterminism module. In general, the same construct definition

yields different semantics when defined over different computation ADTs.



29

;5 Computation ADT

(define computations
(make-computations
cbv-environments stores continuations nondeterminism errors))

;5 Language ADT

(load "error-exceptions" "numbers" "booleans" "procedures" "amb"
"environments' '"while" 'numeric-predicates' '"stores" "callcc")

;3 Basic semantics

(show-computations)
= (-> Env
(-> Sto
(let A0 (* Val Sto)
(let A1 (+ (List AO) Err)
(-> (=> A0 A1) A1)))))

;5 Sample expressions

(compute
(%call (%4lambda ’x 4+ (Yvar 'x) (Yvar ’x)))
(hamb (%4num 1) (Ynum 2))))
= (2 4) ; would be (2 3 3 4) in call-by-name

(compute
(%begin
(%store ’n (Yamb (%num 4) (%num 5)))
(%store 'r (Ynum 1))
(%call/cc (Ylambda ’exit
(%while (Y%true) (/begin
(%1if Uhzero? (Yfetch ’n))
(%call (Yvar ’exit) (Yfetch ’r))
(%unit))
(%store 'r (hx (Yfetch 'r) (Yfetch ’n)))
(hstore ’n (%- (hfetch 'n) (Ynum 1)))))))))
= (24 120)

Figure 1.18: Example specification and expressions



30

(define %let
(let ((unitE (get-unit ’envs ’top))
(bindE (get-bind ’envs ’top))
(bindV (get-bind ’env-values ’top)))
(lambda (name cl c2)
(bindV c1
(lambda (v1)
(bindE c2
(lambda (e2)
(unitE
(lambda (env)
(e2 (env-extend env name v1)))))))))))

Figure 1.19: %let source definition

A typical construct is %let, whose source definition (from the environments file)
is shown in figure 1.19. We have not yet described enough of SL to explain this
definition in detail, but its form should be clear. Appendix B.2 shows the definition
of each construct presently available in SL.

Although Scheme procedures are usually opaque, MIT Scheme allows us to reify
them as abstract syntax. We then apply a program simplifier that performs inlin-
ing and # and 7 reduction. By inlining the operators of the computation ADT and
simplifying, we automatically generate denotational-style definitions of language con-
structs.

The result of simplifying %1let in the context of the specified computation ADT,
shown in figure 1.20, is exactly what we would have written by hand. The whole point
of SL is that the source definition of %let did not mention stores or continuations,

yet they were introduced properly and automatically.

1.5.2 Nondeterminism and continuations

In this section, we use SL to explore the interaction between nondeterminism and

continuations. We use three different computation ADTs but leave the definitions



31

(lambda (name cl c2)
(lambda (env)
(lambda (sto)
(lambda (k)
(((cl env) sto)
(lambda (a) ; Val x Sto
(((c2 (env-extend env name (left a)))

(right a)) k)))))))

Figure 1.20: %let definition simplified

(define %amb
(let ((unit (get-unit ’lists ’top))
(bind (get-bind ’lists ’top)))
(lambda (x y)
(bind x
(lambda (1x)
(bind y
(lambda (1ly)
(unit (append 1x 1y)))))))))

Figure 1.21: %amb source definition

of all language constructs unchanged. For reference, figure 1.21 gives the source
definition of %amb. For each semantics, we show the modules forming the computation
ADT, the basic semantics, the simplified version of %amb, and the evaluation of an
example program.

In the first semantics (figure 1.22), the subexpressions of %amb are evaluated with
list as a continuation. The results are appended and returned. In the example, the
list continuation is replaced by a continuation that adds one, hence the result 51.

In the second semantics (figure 1.23), we replace continuations with continuations?2
These modules differ only in their treatment of operators on continuation answers
The continuations transformer passes down an identity continuation, applies the

operator to the results, and then applies the original continuation in the appropriate



32

way. Continuations2 passes the original continuation down directly and applies the
operator to the results. The evaluation of the example in this semantics is clear.
In the third semantics (figure 1.24), we compose the continuations and nondeterminism

modules in the opposite order. Here, continuations accept lists of values, rather than
just values. Jamb takes two lists, appends them, and continues with the result. In
the example, invoking the captured continuation aborts this process and returns 4
directly. Hence, the expression has only one value in contrast to the other two se-
mantics. Of the semantics presented here, this is the only one that Steele’s system
can generate [Ste94]. Incidentally, replacing continuations with continuations?2

leaves %amb unchanged.

1.5.3 Unified system of parametrization

In this section, we use SL to realize John Lamping’s “Unified System of Pa-
rametrization” [Lam88]. Lamping describes a semantics in which expressions are
parametrized over variables that (recursively) denote expressions. This recursion
models a substitution in which substituted terms can contain variables. The language

also includes call-by-name static environments; hence the basic semantics is

Den = Env — EEnv — Val

where both Env and EFEnv contain EEnv — Val. Figure 1.25 shows the SL lan-
guage specification and the semantics of evar and %elet, which are used to form
expressions. The line marked *** is especially interesting. Figure 1.26 shows several

examples.

1.5.4 Resumptions

Resumptions are a denotational model of interruptable execution sequences. The

basic structure of a resumption semantics is

Den = fie(X) T(Val + X)



33

;5 Computation ADT

(define computations
(make—computations environments continuations nondeterminism))

i Basic semantics
(-> Env (let A0 (List Ans) (-> (-> Val A0) A0)))
;5 Simplified %amb

(lambda (x y)
(lambda (env)
(lambda (k)
(reduce append ()
(map k (append ((x env) list) ((y env) list)))))))

;5 Frample

(compute
(%+ (Jnum 1)
(%call/cc
(%1lambda 'k
(%* (Jnum 10)
(hamb (Jnum 3) (%call (hvar k) (Ynum 4))))))))

= (31 51)

Figure 1.22: %amb version 1

where T is a type constructor describing other features present in the language.

This construction means that a computation either terminates, producing a value,

or pauses, producing a computation with which to continue. The typical use of re-

sumptions is to interleave several computations by executing one until it pauses, then

executing the next, etcetera.

The standard parallel semantics, described in [Sch86] has

T(A) = Sto — List(A x Sto)



34

;5 Computation ADT

(define computations
(make—computations environments continuations2 nondeterminism))

i Basic semantics
(-> Env (let A0 (List Ans) (-> (-> Val A0) A0)))
;5 Simplified %amb

(lambda (x y)
(lambda (env)
(lambda (k)
(append ((x env) k) ((y env) k)))))

;5 Frample

(compute
(At (Ynum 1)
(%call/cc
(%1lambda 'k
(%* (Ynum 10)
(hamb (%num 3) (Ycall (Yvar k) (Ynum 4))))))))

= (31 5)

Figure 1.23: Jamb version 2

so that computations accept and return stores and can fork into multiple computa-

tions. Thus the complete type of denotations is
Den = fix(X) Sto — List((Val + X') x Sto)

Figure 1.27 shows the SL specification for this language, along with several examples.
An expression evaluates to a list of values, one for each possible order of execution.
The definition of Ypar appears in appendix B.2, figure B.27; we could show its ex-

pansion, but it is not especially enlightening.



35

;5 Computation ADT

(define computations
(make—computations environments nondeterminism continuations))

; Basic semantics
(-> Env (let A0 (List Ans) (-> (-> (List Val) A0) A0)))
;5 Simplified %amb

(lambda (x y)

(lambda (env)
(lambda (k)
((x env)

(lambda (a)

((y env)

(lambda (a0)
(k (append a a0)))))))))

;5 Frample

(compute
(At (Ynum 1)
(%call/cc
(%1lambda 'k
(%* (Ynum 10)
(hamb (%num 3) (Ycall (Yvar k) (Ynum 4))))))))

= (5)

Figure 1.24: Yamb version 3



;5 Computation and language ADTs

(define computations
(make-computations cbn-environments exp-environments))

(load "error-values" "numbers" '"booleans" "numeric-predicates"
"environments" ”exp—environments”)

;5 Simplified Yfevar and Yelet

(lambda (name)
(lambda (env)
(lambda (eenv)
(if (env-lookup eenv name)
((right (env-lookup eenv name)) eenv) s koksk
(in ’errors (unbound-error name))))))

(lambda (name cl c2)
(lambda (env)
(lambda (eenv)
((c2 env) (env-extend eenv name (cl env))))))

Figure 1.25: Unified system of parametrization

(compute
(flet ' (Yx (Yevar ’x) (Yevar ’x))
(h+ (helet ’x (Ynum 3) (Yvar ’£))
(helet ’x (Ynum 4) (Yvar °£)))))
= 25

(compute
(hlet ’g (h+ (hevar ’a) (Yevar ’a))
(Y1let °f (Yelet ’a (Yx (Yevar ’x) (Yevar ’x))
(hvar ’g))
(helet ’x (Ynum 3) (Yvar °£)))))
= 18

Figure 1.26: Unified parametrization examples

36



37

;5 Computation and language ADTs

(define computations
(make-computations resumptions stores lists))

(load "error-values" "numbers" '"booleans" "begin" "while"
"products" "numeric-predicates" "amb" "stores" "resumptions")

;5 Framples

(compute

(Jhpar (Jnum 1) (Ynum 2) (%num 3)))
= (1 21323)

(compute
(hseq
(%store ’x (Yunit))
(hpar
(%store ’x (Ypair (Ynum 3) (%fetch ’x)))
(%store ’x (Ypair (Jnum 2) (%fetch ’x)))
(hstore ’x (Ypair (Jnum 1) (%fetch ’x))))
(%fetch ’x)))
= ((pair 3 (pair 2 (pair 1 unit)))
(pair 2 (pair 3 (pair 1 unit)))
(pair 3 (pair 1 (pair 2 unit)))
(pair 1 (pair 3 (pair 2 unit)))
(pair 2 (pair 1 (pair 3 unit)))
(pair 1 (pair 2 (pair 3 unit))))

(compute
(hseq
(%store ’x (Ynum 1))
(%store ’go (Ytrue))
(hpar
(%store ’go (%false))
(%while (Yand (%fetch ’go)
(h< (hfetch ’x) (Ynum 7)))
(4pause (Ystore ’x (V1+ (Jfetch ’x))))))
(%fetch ’x)))
= (23456771)

Figure 1.27: Parallel language using resumptions



Chapter 2

Monads

In this chapter, we first present some basic category theory, then discuss monads,
maps between monads, monad composition, and monad transformation. This may
sound like “everything you always wanted to know about monads”, but in reality it
barely scratches the surface. See [BW85, Mog89a] for more information.

Monads may be a “hot topic” in the 1990’s functional programming community,
but the real “monad explosion” occurred in the category theory / algebraic topology
community during the 1960’s, when they were first invented. Although I consider
myself a fairly good “monad hacker” by 1990’s standards, I have to admit that I'm
not even on the 1960’s chart. Even so, I find hard to hear computer scientists ask,
“Monads — aren’t those about state?”. That’s like asking, “Algebra —isn’t that about
14+1=27".

2.1 Basic category theory

In this section, we define the basic notions of category theory, discuss the rela-
tionship between category theory and functional programming, and mention some

references.

38



39

2.1.1 Categories

Categories abstract the composition of typed functions. A category is a set of 0b-
Jects (these are the types), a set of arrows (these are the functions), and a composition
operator on the arrows. Each arrow points from one object (its domain) to another
(its codomain). If f: A — B and ¢ : B — C are two arrows then go f : A — C is
their composition. There is a distinguished identity arrow from each object to itself.
Composition must be associative with the identity arrows as left and right identities.

The basic category that we use depends on whether we are doing semantics or
functional programming. In semantics, we use a suitable domain theory (see [Gun92]).
In functional programming, we use the types and functions of our language, in this
case, Scheme [CR91]. Scheme has no explicit types, so we have to imagine them
ourselves.

In a category, composition is primary, rather than application. In functional
programming, it’s the reverse, unless we program in a combinator language. This
change in point of view causes few problems in practice; we use whichever is most

convenient.

2.1.2 Functors

In category theory, whenever we define a class of objects, we also define the ap-
propriate maps between them, thus making them into a category. For this reason, we
now consider maps between categories.

A function T between categories C and D is a map from C’s objects to D’s objects.
An endofunction is a function from a category to itself. In our case, an endofunction
is a type constructor; it builds one type from another. For example, T(A) = List(A)
builds lists of any type we like. The other type constructors we use are function space
(—), products (x), and sums (+).

Functions are insufficient as maps between categories because they have no action

on arrows. We define a functor T : C — D to be a function, also called T', along with



40

an function mapT from C’s arrows to D’s arrows such that

s mapT : (A — B) — (T(A) — T(B))

id
(oD (mapT g) (mapT £))

(mapT id)
(mapT (oC g £))

An endofunctor is a functor from a category to itself, so that we need only one
composition operator. For example, the ordinary map function on lists makes T'(A) =
List(A) into an endofunctor. Functors are the appropriate class of maps between
categories, since they respect identities and composition structure. Other functors

are the pairing functor
;5 T(A)=Ax A

(define ((map f) ta)
(pair (f (left ta)) (f (right ta))))

and the environment functor, which parametrizes a type by an environment:
;5 T(A)=FEnv — A

(define (((map f) ta) env)
(f (ta env)))

2.1.3 Natural transformations

A natural transformation from a functor S to a functor 7' is a polymorphic function
sigma: S(A) — T(A)

such that

(o sigma (mapS f)) = (o (mapT f) sigma) : S(A) — T(B)

for all £ : A — B. It is easy to remember this law as “sigma commutes with map”.

Examples include



41

reverse : List(A) — List(A)
flatten : List(List(A)) — List(A)

list : A — List(A)
left TAXA— A
diag A= Ax A

where list is natural from [Id to List, left is natural from pairing to Id, and diag
is natural from Id to pairing.

In categorical terms, a natural transformation is a map from objects to arrows.
Given an object A, we obtain an arrow sigmaA: S(A) — T'(A). In other words, we ob-
tain a family of functions, indexed by type. The naturality condition above structures
our choice of arrows; we cannot pick arbitrarily. This yields parametric polymorphism

rather than ad-hoc polymorphism. For further information, see [Wad89].

2.1.4 Initiality

An object in a category is initial if there is a unique arrow from it to each object
of the category. A object is terminal is there is a unique arrow to it from each object.
Initial and terminal objects are unique up to isomorphism if they exist. Two objects
A, B of a category are isomorphic if there exist arrows f : A — Band g : B — A
such that go f = Idg and fo g = Id4.

For example, in the category of sets and total functions, the empty set is initial
and any one-element set is terminal. Notice that there are many one-element sets, all
of which are isomorphic. Initiality will not see much use in this thesis, although it is

perhaps the fundamental concept of category theory.

2.1.5 Duality

Given a category C, we can form its dual C°? by reversing the direction of each
arrow and the order of composition. Needless to say, this operation is quite difficult
in ordinary functional programming. If an object is initial in C, it is terminal in

C°, and vice-versa. Hence we say that initial and terminal are dual concepts. Other



42

well-known dual concepts are products / sums and injective / surjective. In general,

we can form the dual of any concept formulated solely in category-theoretic terms.
In his brilliant master’s thesis [Fil89], Filinski shows that values and continuations

are dual. Although it is difficult to develop an intuition for his language, his thesis

contains many surprising insights.

2.1.6 Category theory and functional programming

It is important to remember that, at least for the moment, mathematics and
programming are two different activities. The main problem is that current languages
provide no automated support for representing and verifying properties of programs.

In this thesis, we embed category theory within functional programming in a
particular way: objects are types, and arrows are functions. Other embeddings are
possible; for example, see [RB90], which represents objects as values. Their approach
is less straightforward, but more flexible.

Our choice of embedding has several problems:

e Current languages have weak, non-existent, or implicit type systems (see section

A.l). In category theory, we can form categories with any kind of objects at

all.

o [t may not be easy to represent categorical composition as functional composi-

tion. Also, we cannot represent uncomputable compositions.

The clearest and most comprehensive treatment of category theory and functional
programming in this embedding is [Spi93]; hopefully, Spivey will soon publish these
handwritten notes in electronic or book form. A much-abbreviated version appears

as [Spig89).

2.1.7 References

General references on category theory for computer science are [Pie91] and [BW90].

The latter contains many examples and applications and is easy despite its length.



43

Category theory is not terribly hard to learn, because its rich descriptive content
encourages the reader to acquire concepts one at a time, relating each to already-
understood notions from other fields.

Category theory may be considered part of abstract algebra. MacLane and
Birkhoff’s larger book [MB88] is a wonderful introduction to algebra, not only because
it presents category theory near the end, but because it applies category-theoretic in-

sight throughout.

2.2 Monads

In this section, we present two formulations of monads and discuss the intuitions
behind them. Monads are functors with additional structure, in the same way that

functors are functions with additional structure.

2.2.1 First formulation

A monad is a triple! (7, unit, join) of an endofunctor and two natural transfor-

mations

unit : A — T(A)

join: T(T(A)) — T(A)
Unit is natural from the identity to T' and maps values into 1. For example, unit
for the list monad is 1ist. Unit is not required to be injective, although it actually
is in most applications. Join is natural from T'oT" to T" and flattens multiple 7"s into
a single T'. Join for the list monad is flatten.

Unit and join for the environment monad T'(A) = Env — A are

(define ((unit a) env)

a)

(define ((join tta) env)
((tta env) env))

IMonads are also called triples.



44

‘ Monad ‘ Action T'(A) = ‘
Identity A
Lists List(A)
Lifting 1— A
Environments | EFnv — A
Stores Sto — A x Sto
Exceptions A+ X
Monoids AxM
Continuations | (A — Ans) — Ans
Resumptions | fix(X) (A + X)

Table 2.1: Monad type constructors

Unit and join must satisfy the additional properties
(o join unit) = id . T(A)— T(A)
(o join (map unit)) id . T(A)— T(A)
(o join (map join)) (o join join) : T(T(T(A)))— T(A)

This formulation presents monads as modified monoids [Mac71] (whence the name),
where unit is the identity and join is the monoid operator. The above laws are left
and right identity and associativity.

Table 2.1 shows the type constructors for some common monads used in seman-
tics. We describe their unit and join operators in the next section (via the second

formulation).

2.2.2 Second formulation

We can also describe a monad as a triple (7', unit, bind) where T is an endofunc-
tion, unit is a family of arrows that is not necessarily required to be natural, and

bind is a map between sets of arrows:

unit : A — T(A)
bind: (A — T(B)) — (T(A) - T(B))

Unit functions exactly as before. Just as map takes functions from A — B into
T(A) — T(B), bind takes functions of the more general form A — T'(B) into T'(A) —

T(B). Unit and bind obey several properties:



45

;5 £ A—=T(B)

;58 B=T(C)

(bind unit) = id : T(A) — T(A)
(o (bind f) unit) = f : A—T(B)

(o (bind g) (bind £)) = (bind (o (bind g) £)) : T(A) — T(C)

To show the equivalence of the two monad formulations (bind versus map and join),

we can write

(define ((map f) ta) (bind ta (o unit f)))
(define (join tta) (bind tta id))
(define (bind ta f) (join ((map f) ta)))

Proving the two sets of laws equivalent is easy.
The second formulation is easier to understand if we rephrase it in terms of the

Kleisli composition oT on the space of functions A — T (B):

;55 0T (B=TC)x(A—=T(B)) = (A—=T(C))

(define ((oT g f) a)
(bind (f a) g))

Then the laws become

(oT unit f) f
(oT f unit) = f
(oT h (oT g £)) (oT (oT h g) )

In other words, oT is associative and has unit as left and right identity. Thus, we can
form a Kleisli category whose objects are types and whose arrows are functions of the
form A — T(B), with oT as composition. Like all systems of functional combinators,
Kleisli composition is useful for stating and deriving laws but is unwieldy for writing
programs.

Figures 2.1 and 2.2 define unit and bind for the type constructors shown in table
2.1. These figures use an applicative (rather than compositional) version of bind

obtained by uncurrying and reversing arguments:

bind : T(A) x (A —=T(B)) — T(B)



;; Identity: T(A)=A

(define (unit a)

a)

(define (bind ta f)
(f ta))

;; Lists: T(A) = List(A)

(define (unit a)
(list a))

(define (bind ta f)
(reduce append ’() (map f ta)))

;; Environments: T(A)= Fnv — A

(define (unit a)
(lambda (env) a))

(define (bind ta f)
(lambda (env)
((f (ta env)) env)))

;5 Stores: T(A)= Sto — A x Sto

(define (unit a)
(lambda (sto) (pair a sto)))

(define (bind ta f)
(lambda (sto)
(let ((a*xs (ta sto)))
(let ((a (left axs))
(s (right axs)))
((f a) 8)))))

Figure 2.1: Example monads, part 1

46



;; Exceptions: T(A)=A+4+ X

(define (unit a)
(in-left a))

(define (bind ta f)
(sum-case ta
(lambda (a) (f a))
(lambda (x) (in-right x))))

;; Monoids: T(A)=Ax M

(define (unit a)
(pair a monoid-unit))

(define (bind ta f)
(let ((al1 (left ta))
(m1 (right ta)))
(let ((a*m (f al1)))
(let ((a2 (left axm))
(m2 (right a*m)))
(pair a2 (monoid-product mi m2))))))

;; Continuations: T(A)= (A — Ans) — Ans

(define (unit a)
(lambda (k) (k a)))

(define (bind ta f)
(lambda (k) (ta (lambda (a) ((f a) k)))))

;; Resumptions: T(A) = fix(X)(A+ X)

(define (unit a)
(in-left a))

(define (bind ta f)
(sum-case ta
(lambda (a) (f a))
(lambda (ta) (bind ta f))))

Figure 2.2: Example monads, part 2

47



48

2.2.3 Interpretations

In this section, we give several interpretations of monads. Moggi’s model, which
we discuss last, is the one most relevant to this thesis.
Monads resemble monoids

MacLane [Mac71] describes monads as a variation on monoids, with unit as the
identity and join as the monoid product. A monoid product (on a type constructor)

has type
x :T'xT =T
For example, consider append on List(A). A monad product has type
join:ToTlT — T

For example, consider flatten. That these notions have a common generalization is

rather odd.

Monads model substitution

Suppose T(A) is a type of arithmetic expressions over a set of variables A:
TA)=A|TA)+TA) | T(A)=T(A)

Then unit transforms a variable into an expression, and bind performs substitution.
A substitution is a map A — T(B) that gives an expression T'(B) over B for each
variable of A. Bind takes an expression over A and a substitution and returns an
expression over B.

Join also performs substitution by flattening “expressions over expressions”. Bind
accomplishes everything that join does, but we never have to see more than one

application of T.



49

Monads model lifting

We can view bind as a generalization of map. The naturality of unit means that

(unit (£ a)) = ((map f) (unit a))

In other words, it doesn’t matter whether we apply £ before unit or (map f) after.
We say that (map £) is a lifting of £ through unit. We give a very general definition
of lifting in chapter 3.

Just as map lifting functions of the form A — B, we can say that bind lifts
functions of the more general form A — T'(B), and the first two monad laws ensure a
property similar to the above. Bind can also lift functions on products. For example,
we can lift + to act on lists of numbers using the list monad:

(define (1list+ 11 12)
(bind 11
(lambda (nl1)
(bind 12

(lambda (n2)
(unit (+ n1 n2)))))))

This definition is not possible using map alone. However, with a map
product : T(A) x T'(B) — T(A x B)

we can write

(define (1list+ 11 12)
(map (product 11 12)
(lambda (ni1*n2)
(+ (left n1*n2) (right ni1*n2)))))

A purely categorical model of lambda calculus over a monad (see [Mog89b]) actually
requires a “tensorial strength” similar to product, even when using bind. Thus, some
of the power of bind (when compared to map) comes from Scheme, rather than from

pure category theory.



30

‘ Monad ‘ A computation exists when it
Lists Produces a single value
Lifting Terminates
Environments | Is independent of environment
Stores Leaves the store unchanged
Exceptions Causes no exceptions
Output Doesn’t output anything

Continuations | Invokes its continuation exactly once

Resumptions | Terminates in one step

Table 2.2: Meaning of existence

Monads model computation

Moggi’s insight was that T'(A) represents a computation of a value of type A. For
example, a nondeterministic computation produces not just a single value but a set of
possible values. Unit lifts a value to a computation that produces that value (and does
nothing else). Join flattens computations of computations into single computations.
Bind composes functions from values to computations.

Moggi also made the following definition: a computation is a value or exists if it
is in the image of unit, that is, if it equals (unit v) for some value v. Thus, we
can say that a nondeterministic computation exists if it produces only a single value.
Table 2.2 shows the meaning of existence for other monads.

If unit is a way into a monad, we also need a way out. We cannot have a map
from computations to values because we might want to see more than one value or
perhaps know what final store a computation produced. Thus, we augment all our

monads with a map
compute : T(A) x (A — Rep) — Rep

where Rep is a universal representation type designed for users to read. In many
languages, this type would be String, but in Scheme we use lists, numbers, etcetera.

An alternative is



51
compute : T'(Rep) — Rep

in which we map a function of type A — Rep across T(A), then apply compute.

Although this approach is direct, it conflicts with the computational analogy, since

T(Rep) is a computation of a representation rather than a computation of a value.
We do not discuss compute in the rest of the thesis, but section B.1 shows its

definition for each of the monad transformers we use.

Why monads?

Moggi’s intuition of “values and computations” does not quite explain why we need
join in addition to map and unit. In fact, we need it to abstract over computations
using functions.

In a language with a nondeterminism operator amb, modeled by the semantics

Den = Env — List( Val)

consider the program

(define (f n)
(g (ambn (+n 1))))

(define (g n)
(ambn (xn 2)))

The function g, although it accepts values, must return computations, since it uses
amb. The function £ must apply g to a computation rather than a value. Thus, we

need a function
apply : (Val — Comp) x Comp — Comp

This function is essentially bind.



52

2.3 Monad morphisms

In keeping with the “categorical imperative” that arrows between objects are as
important as the objects themselves, we define arrows between monads. Thus, we
form a category of monads and monad morphisms.

Since Kleisli categories were helptul in developing the monad laws, we suppose that
an arrow between monads S and T is a functor K between their Kleisli categories.

K acts as the identity on objects. On arrows, we have
mapK : (A — S(B)) = (A = T())

satisfying the functorial properties

;5 £ A— S(B)
;5 80 B—5S(0)
(mapK 1dS) = idT

(mapK (oS g £)) (oT (mapK g) (mapK £))

We can reformulate this definition in terms of unit, bind, and a natural transforma-

tion K : S(A) — T(A), in which case

(K (units a))
(K (bindS sa £))

(unitT a)
(bindT (K sa) (o K f))

An example of an arrow between monads is reverse from the list monad to itself:

(list a)
(append-map (o reverse f) (reverse 1))

(reverse (list a))
(reverse (append-map f 1))

An example of a natural transformation from the list monad to itself that is not an

arrow between monads is (lambda (1) ’()), which fails the first law.

2.4 Monads don’t compose

Given the variety of semantic features that monads offer, it seems that we should

have no trouble building all sorts of languages. Unfortunately, monads don’t compose.



33

;5 S(A)= EnvS — A
;5 T(A)= EnvT — A
;5 ST(A)= EnvS — EnvT — A

(define ((joinS ssa) envS)
((ssa envS) envs))

(define ((joinT tta) envT)
((tta envT) envT))

(define (((joinST ststa) envS) envT)
((((ststa envS) envT) envS) envT))

Figure 2.3: Monads don’t compose

This may seem odd, since functors do compose. Unit also composes, but join and
bind do not.

As an example, let’s try to compose two environment monads S and T'. Figure
2.3 shows join for the individual monads and for their composition. It is clear by
inspection that the latter cannot be defined from the former, even using unit and
map.

Jones and Duponcheel [JD93] give a rigorous proof based on the propositions as
types analogy, showing that the type of joinST is not provable in implicational logic
from the types of the other operators. However, if we think of monads as generalized
monoids, that is, as acting on sequences of S’s and T"s, we realize that unit introduces
an S or T, join flattens S5 or 1T, and map allows us to act anywhere in a sequence.
Is is clear that we cannot reduce STST to ST using these operators, since they never

decrease the number of S/T" boundaries.

2.5 Monads do compose

In the last section, we showed that, given two monads S and 7', there is no way to

form a monad on ST using only the operators of S and T'. There are three equivalent



o4

ways around this difficulty, via distributive laws, liftings, and compatibility.

A distributive law is a map
swap : T'S — ST

that distributes T' over S and obeys several side conditions. Clearly, this map allows
us to reduce arbitrary sequences of S’s and T’s to a single pair.

A lifting of S over T' 1s a monad on the Eilenberg-Moore category of T-algebras,
which we will not discuss. It may also be possible to lift S onto T"s Kleisli category,
although the construction would be less direct. It may also be possible to present
monad transformers (section 2.6) as liftings of this form.

Finally, we can describe conditions under which ST is compatible with S and T
There are two formulations of these conditions. The first, due to Barr [BW85] (page
315), is

ST =50T

map = mapS o mapT

(Cl) unitST

unitS o unitT = mapS(unitT) o unit$S

(C2) joinST o mapST(unitS)
(C3) joinST o mapS(unitT)

mapS(joinT)
joinS

(C4) joinS o mapS(joinS)
(C5) joinST o mapST(mapS(joinT))

joinST o joinS

mapS(joinT) o joinST

Drawn as diagrams, these laws are just triangles and squares, which are sufficiently

described by their types:

(Cl): Id — ST
(C2) : STT — ST
(C3) : SST — ST
(C4) : SSTST — ST
(C5) : STSTT — ST

The second formulation, due to Beck [Bec69], requires that the two maps

units T — ST
mapS (unitT) 5 = ST



)

be monad morphisms (see section 2.3) and that the middle unitary law holds:

joinST o mapS(unitT o unitS) = id : ST — ST

Distributive laws and liftings were discovered by Beck [Bec69]. Both Beck [Bec69] and
Barr [BW85] prove that liftings, distributive laws, and compatibility are equivalent.
Why Barr used a different formulation of compatibility is unclear?. Barr studied dis-
tributive laws at the same time as Beck (see Beck’s paper); perhaps the two sets were
derived independently. It remains to verify that the conditions are indeed equivalent.

Jones and Duponcheel’s paper [JD93] is entirely about distributive laws but misses
the earlier references. This omission is unsurprising since the relevant section in
[BW85] occurs late in the book and is titled “distributive laws” rather than “monad
composition”.

Using compatibility, we can develop monad composition as a relation rather than
a function. The composition of two monads is thus the set of all monads compatible
with them. The compatibility laws imply that composing a monad T" with the identity
yields exactly T" and no other monads. I have not been able to show associativity —
further conditions may be necessary.

If associativity holds, we can form a relational category whose arrows are monads.
The notion of a relational category is obvious but appears not have been studied before
(perhaps it lacks sufficient structure to be interesting). A request for references to a
large mailing list of category theorists yielded few replies. One was directly relevant:
Martin Wirsing (Munich) mentioned that an (unnamed) student of his is studying
the idea in relation to nondeterminism and that his/her thesis is expected during the
summer of 1995.

Needless to say, the compatibility laws don’t yield a method for composing mon-
ads. We cannot even verify computationally that three monads are compatible, since
we cannot check equality of functions. For the same reason, we cannot check that
one function is a lifting of another (section 3.1). Nevertheless, the compatibility laws

do constrain possible compositions and allow us to reason about them.

?Barr graciously replied to my questions but doesn’t recall why his conditions are different.



56

2.6 Monad transformers

Since monad composition fails to be constructive, we try monad transformation;
categorically speaking, if monads aren’t arrows, let them be objects. That is, we
build monads from other monads. After motivating the basic concepts, we formalize

our constructions.

2.6.1 Motivation

For example, the environment monad transformer, shown in figure 2.4, adds an

environment to any monad. We write the environment transformer as
F(T)(A) = Env — T(A)

which indicates that it accepts a monad T" and returns a new monad F(7T). The
action of FI(T') on a type A is as shown above.

Applying monad transformers for EnvS and EnvT to the identity monad yields
precisely the monad for both environments, with joinST as shown in figure 2.3. Thus,
we immediately see an example of a construction we could not previously make.

The transformation of join is fairly complex. It accepts an argument
ftfta: EFnv — T(FEnv — T(A))

and forms a value of type T(T'(A)) in order to use joinT. Thus it reduces Fnv — T(A)
to T'(A) inside T(Env — T(A)) using mapT.

Other monad transformers are listed in table 2.3, one for each monad in tables 2.1
and 2.2. More precisely, applying the X monad transformer to the identity monad
yields the X monad, where X is environments, stores, etcetera. Appendix B.1 shows
the definition of each transformer. As usual, composition of transformers is not
commutative, and we shall make creative use of this fact later.

To illustrate the need for monad transformers further, we model a language with

nondeterminism and state using the type of denotations

Den(A) = Sto — List(A x Sto)



;5 F(T)(A)= Env — T(A)

(define (environment-transformer m)
(let ((unitT (monad-unit m))
(mapT (monad-map m))
(joinT (monad-join m)))

(define (unit a)
(lambda (env) (unitT a)))

(define ((map f) fta)
(lambda (env)
((mapT £) (fta env))))

(define (join ftfta)
(lambda (env)
(joinT
((mapT (lambda (fta) (fta env)))
(ftfta env)))))

(make-monad unit map join)))

Figure 2.4: Environment monad transformer

‘ Transformer ‘ Action on types F(T)(A) = ‘
Identity T(A)
Nondeterminism | T'(List(A))
Environments Env — T(A)
Stores Sto — T(A x Sto)
Exceptions T(A+ X)
Monoids T(Ax M)
Continuations (A — T(Ans)) — T(Ans)
Resumptions fie(X) T(A+ X)

Table 2.3: Monad transformers



38

Unit for this type is

(define (unit a)
(lambda (sto) (1list (pair a sto))))

but it is clear that it cannot be defined from

(define (unitS a)
(lambda (sto) (pair a sto)))

(define (unitL a)
(list a))

In fact, there is no way to build Den(A) by composition. The only monad with type
constructor T(A) = A x Sto has

(define (unitT a)
(pair a (empty-store)))

which is useless. On the other hand, we can easily construct this type by composing

the store and nondeterminism transformers.

2.6.2 Formalization

Since we have already constructed a category of monads, we have several choices
for defining monad transformers. They could be functions (on objects), functors
(with an action map on arrows), premonads (functors with unit), or even monads.
We develop these ideas in sequence and show that monads on the category of monads
are less complex than they sound. Formally, we define a monad transformer to be
a premonad on the category of monads, since there is at least one case of a useful
monad transformer (stores) that is not quite a monad in the higher category.

A monad transformer’s action on objects is to create a monad F'(7T') from a monad
T'. Tts action on arrows is to send an arrow K : S — T between monads to an arrow
(mapF K) : F(S) — F(T) such that the functorial properties are satisfied. For

example, the action of the list monad transformer on arrows is



39

55 F(T)(A) = List(T(A))

(define ((mapF K) fta)
(map K fta))

[ts action on objects (monads) is more complex and is given in appendix B.1. For

each monad transformer F', we require a natural transformation
unitF : T(A) — F(T)(A)

from the identity to F'. UnitF allows us to lift values from T'(A) in F(T)A.
To lift functions from T to F(T') we can either use mapF, or, if possible, define a

map
bindF : F(T)(A) x (T(A) — F(T)(B)) — F(T)(B)

obeying the usual laws. BindF makes F' into a monad on the category of monads.
Before we faint from lack of air at these dizzying heights of abstraction, let’s take
the environment monad transformer as an example. First we consider its action on

objects (monads):
;5 F(T)(A)= Env — T(A)

;5 unitFT @ A — F(T)(A)
;5 bindFT @ F(T)(A) x (A — F(T)(B))— F(T)(B)

(define (unitFT a)
(lambda (env) (unitT a)))

(define (bindFT fta f)
(lambda (env)
(bindT (fta env)
(lambda (a)
((f a) env)))))

Next we consider its action on arrows (between monads):



60

;5 F(T)(A)= Env — T(A)
;5 mapF @ (S(A) = T(A)) — (F(S)(A) — F(T)(A))

(define (((mapF K) fsa) env)
(K (fsa env)))

And finally, we consider unitF and bindF:
;5 F(T)(A)= Env — T(A)

;5 unitF : T(A) — F(T)(A)
;5 bindF @ F(T)(A) x (T(A) — F(T)(B))— F(T)(B)

(define (unitF ta)
(lambda (env) ta))

(define (bindF fta f)
(lambda (env)
((f (fta env)) env)))

This last definition is in fact identical to that of the usual environment monad (see
figure 2.1). UnitF and bindF are thus much simpler than unitFT and bindFT. As we
pass to higher levels of abstraction, the definitions become simpler but their types
become more complex. Essentially, the more polymorphic a function is, the less it
knows about its arguments, so the less it can do (see section 1.1.6). As before, mapF

is unnecessary if we have unitF and bindF.

2.6.3 Classes of monad transformers

Suppose F' transforms type constructors. It may not be possible to extend F's

action to monads. For example, we can extend
F(T)(A) = Env — T(A)

but not
F(T)(A)=T(Env — A)

We do not give a rigorous proof, but let’s try it and see what happens:



61

‘ Type ‘ Form ‘
Bottom | F(T)=ToU
Top F(T)y=SoT
Around | F(T)=SoToU

Table 2.4: Monad transformer classification

(define (bindFT fta f)
(bindT fta
(lambda (env->a)
o))

(define (bindFT fta f)
(unitT
(lambda (env)
(bindT fta ;o odokok
(lambda (env->a)
(env->a env))))))
The first attempt falls flat. The second appears more promising, but is badly typed

at the starred line. Similar arguments indicate that we can define
F(T)(A)=T(List(A))

but not
F(T)(A) = List(T(A))

These observations naturally lead to a classification of monad transformers as top,
bottom, or around, as shown in table 2.4. Continuations and resumptions do not
fit into this classification, but table 2.5 classifies the other transformers we have
discussed. Lifting appears twice since there are two different lifting transformers.

Note that S and 7" in bottom and top transformers have monadic structure, since
we can apply the transformer to an identity monad. In around transformers, S o T
has monadic structure. Although we have only one good example each of top and
around transformers, the classification will prove useful later, in section 4.2.

The nondeterminism monad transformer should actually use sets, rather than

lists. In fact, “monads” created by list transformer don’t obey the associative law



62

‘Nanw ‘Typeﬁwfﬁ@4): ‘Ckwﬁﬁawmn‘
Nondeterminism | T'(ListA) Bottom
Exceptions T(A+ X) Bottom
Monoids T(Ax M) Bottom
Lifting1 T(1— A) Bottom
Lifting2 1 —T(A) Top
Environments Env — T(A) Top
Stores Sto — T(A x Sto) | Around

Table 2.5: Classification examples

unless the original monad is commutative (see [JD93]); however, in our interpreters,
we represent sets as lists and ask the reader to collapse distinctions of order and

multiplicity.

2.6.4 Composition of monad transformers

We can use transformers to build quite complex types. For example, consider a
language with environments, stores, continuations, nondeterminism, and exceptions.

We compose the transformers as

(compose
environments
stores
continuations
nondeterminism
exceptions))

obtaining

F(T)(A) = Env —
Sto —
(Ax Sto — List(Ans + Err)) —
List(Ans + Err))



Chapter 3
Lifting

This chapter shows how to use monad transformers to build interpreters via the
important notion of lifting. The first section presents a general definition of lifting,

and the second describes several methods of building interpreters.

3.1 Lifting

In this section, we formalize lifting and show how monads can lift operations with

simple signatures.

3.1.1 Formal lifting

We define a language of types ¢(.5) parametrized by a functor S:

Hs) =A (constants)
|V (variables)
|t xt (pairs)
|t —t (functions)
| S(t)  (functors)

The form of this definition is from [LHJ95]; a slightly more complex version appears
in [Mog89a]. It is also nearly identical to the fundamental definition in Reynolds’

work on parametricity [Wad89].

63



64

For any particular S, #(5) is still polymorphic, since we allow type variables.
Given two functors S, S” and a natural transformation sigma : S — S, a lifting of

type t through sigma is a map

L:1(S) — 1)

such that
(L a) = a (constants)
(L v) =y (variables)
(L (pair x y)) = (pair (L x) (L y)) (pairs)
(L £) (Lzx)) = (z3x)) (functions)
(L ) = (sigma (mapS L s)) (functors)

Notice that
(sigma (mapS L s)) = (mapS’ L (sigma s))
since sigma is natural. This definition specifies lifing as a relation, not a function.

In fact, given ¢ and sigma there may be many liftings, one, or none. For example,

suppose we fix the following signature, functor, and function:

t(9) = SA)— A
S(A) = A

(mapS f a) = (fa)

id :t(9)

Then if we specify a functor 5" and a natural transformation sigma from S to S’ we

can enumerate the liftings of id along sigma. First, we try
;5 S'(A)=AxA

(define ((mapS’ f) p)
(pair (f (left p)) (f (right p))))

(define (sigma a) (pair a a))

Then there are two liftings of id: left and right. The constraint on liftings £ is

(f (pair a a)) =



65

which both left and right satisfy. Another choice of S” and sigma is
;5 S'(A) = List(A)
(define (mapS’ £ 1) (map f 1))
(define (sigma a) (list a))
Liftings in this case have type List(A) — A. But there are no functions of this type,

since we wouldn’t know where to send the empty list. Vacuously, all of them meet

the lifting constraint

(f (1ist a)) = a

Given a monad 7', we lift functions from Id to T' through unit. Both cases above
are examples of this form. Given a monad transformer F', we lift functions from 7' to

F(T) through unitF. For example, consider append defined on the list monad:

T(A) = List(A)
append : T(A)x T(A) — T(A)

It we lift append through the environment monad transformer
;5 F(T)(A)= Env — T(A)

(define (unitF ta)
(lambda (env) ta))

we obtain
;; lifted-append : F(T)(A)x F(T)(A) — F(T)(A)

(define (lifted-append ftal fta2)
(lambda (env)
(append (ftal env) (fta2 env))))

There are additional naturality conditions on these liftings that we do not discuss

(see [Mog89al).



66

3.1.2 Monads and lifting

By now, it should be obvious that monads can define liftings. For example, let’s

lift a binary operator £ : A x B — (' up to F along unit for a monad T'. We write

(define (F ta tb)
(bind ta
(lambda (a)
(bind tb
(lambda (b)
(unit (f a b)))))))

Using the monad laws, we can show that F is a lifting of £ according to the previous

section. We need

(F (unit a) (unit b)) = (unit (f a b))

Using substitution and the first monad law twice, we have

(F (unit a) (unit b))

(bind (unit a)
(lambda (a)
(bind (unit b)
(lambda (b)
(unit (£ a b))))))

(bind (unit b)
(lambda (b)
(unit (£ a b))))

(unit (f a b))

It would be interesting to determine the set of signatures liftable using monads. Some

useful operators, such as %callcc, are not apparently liftable.

3.2 Pragmatics

Consider a composition of monad transformers applied to a monad:



67

(Fyo---0 F,)(T)

From the bottom up, we form a sequence of monads F,(T), Fi,—1(F,.(T)),.... From
the top down, we form a sequence of monad transformers Fy, F} o £y, .... Naturally,
we can combine these approaches by splitting the sequence of transformers at some
point, forming the left half top-down and the right half bottom-up, then combining
the two halves by application.

3.2.1 Bottom-up

In the bottom-up approach, we begin with a basic monad, usually the identity,

and apply monad transformers to it. As we apply a transformer we

o Lift existing operators through the the transformer, and

o Add new operators to the resulting transformed monad.

Thus, we obtain a new monad with not only the existing operators, but several new
ones as well. In this case, we lift along the unitF operator of the monad trans-
former. Although we are technically working with monads on the category of mon-
ads, Scheme’s implicit polymorphism allows us to use ordinary monads for lifting.
For example, we can lift an operator from T(A) to Env — T(A) using the ordinary
environment monad. Even easier, an operator on T(A) is already an operator on
T(List(A)), with no lifting needed. These short cuts would not be possible in the
polymorphic lambda calculus, where we would have to keep track of types explicitly.

It appears that we always lift operators through monad transformers, rather than
monads, but this is not quite the case. To define operators on monad transformers,
we must often lift values and functions through the monads they transform. For
example, in order to define call-by-value variable reference on Env — T(A), we must

lift values using unitT:



63

;5 hvar @ Name — Env — T(A)
;3 Env = Name — A

(define (Yvar name)
(lambda (env) (unitT (env-lookup env name))))

Similarly, to define %amb on T'(List(A)), we lift append through 7. Modulo these

considerations, building a system based on lifting is straightforward.

3.2.2 Top-down

The top-down approach yields a system of extensible interpreters generalizing
Wadler [Wad92]. In a sequence Fy, FioF,, ... we view Fy as an interpreter parametrized
by a monad; for example, Wadler’s basic interpreter is F(T)(A) = Env — T(A).
However, instead of supplying a monad, we supply a monad transformer to obtain
another interpreter. In other words, given a parametrized interpreter I and a monad
transformer F', we form another parametrized interpreter I o F'. Of course, we must
also take care to lift operators properly. Steele searched for this approach in [Ste94]
but missed passing to higher-order types.



Chapter 4

Stratification

In this chapter, we formally define stratified monads and their transformers and

describe how SI actually works.

4.1 Stratified monads

Using compatible monads (section 2.5), we can formalize the notion of “levels
related by monads” discussed in chapters 1 and 3.

A level is simply a type constructor (an endofunction on the category). A monad
T relates Ly to Ly it Ly = T o Ly. We can form categories whose objects are levels
and whose arrows are monads by defining composition any way we like, subject to
the category laws and the compatibility of composites.

For example, let’s form a category of levels and monads for the semantics Den(A) =

Env — Sto — A x Sto. We have levels

Li(A) = Env— Sto — A x Sto
Ls(A) = Sto— A x Sto

Ly(A) = Ax Sto

Li(A) = A

69



70

These are related by monads

= [Inv— A

= Sto — A

(4)
(4)

To(A) = Env— Sto— A
(A) = Sto— A x Sto
(A) = Env— Sto — A x Sto

where 154 and 153 are environment monads, 773 1s the store monad, T34 is a “double
environment” monad, and Tj4 is an “environment / store” monad. We also have an
identity monad from each level to itself (not shown). Notice that there is no monad

from 4 to Ly. Composition is given by

T340z = Ty
T340T93 = Ty
both of which satisfy the compatibility laws.

A stratified monad is a category of levels and monads satisfying several additional

properties that do not follow solely from the category structure. We require

All diagrams commute.
o There are distinguished levels Bot and Top.
e Bot is the identity type constructor.

o Bot and Top are related by a monad T'. We also call the entire stratified monad
T.

e Bot must be minimal, and Top must be maximal, meaning that no monad can

relate any L to Bot or Top to any L.



71

The requirement that all diagrams commute means there is at most monad relating
any two levels (there may be none), since two parallel arrows form a diagram. Also,
by forgetting the structure of the arrows, we obtain a partial order in which 1; C L,
if and only if there is a monad relating Ly to Ls.

In necessary, we can drop the “all diagrams commute” condition; however, most
semantics obey it, since there aren’t usually multiple ways to relate levels. Indeed,
we could call a language “non-uniform” if it requires multiple monads between levels
to define its constructs. This restriction makes the implementation of SL easier since
we don’t have to specify which monad we want.

We do not require Bot and Top to be initial and terminal (stronger conditions
that minimal and maximal), since some semantics include levels unrelated to Bot and
Top; for instance, in the previous example, Bot fails to be initial since there is no
monad T75. In many semantics, however, they are actually initial and terminal.

A level L is a monad (rather than just an endofunction) if there is a monad
relating Bot to it; hence, Bot is initial if and only if all levels are monads. Thus, in
the previous example, Ly isn’t a monad. I haven’t found any real examples where

Top fails to be terminal, but we weaken this condition for symmetry.

4.2 Stratified monad transformers

According to the “categorical imperative”, we should now form a category of
stratified monads; however, in this application, we do not need this structure.

Thus, a stratified monad transformer is an endofunction on the set of stratified
monads. We can verify these directly for each transformer that it respects the strat-
ified monad structure.

In practice, we build stratified monad transformers by “lifting” ordinary monad
transformers to act on stratified monads. Here the lifting is along the map that
extracts the monad T' relating Bot to Top from the stratified monad T' (recall our

naming convention). The action of a stratified monad transformer is not hard to



72

guess from its action on levels. Let’s do an example. By applying stratified monad

transformers, we build the semantics

Den(A) = Env — Sto — List(A x Sto)

We begin with an identity stratified monad, which has a single level and a single

monad:

Li(A) = A

Tn(A) = A

We apply the nondeterminism stratified monad transformer F(T)(A) = T(List(A)).

Omitting the identity monads at each level, we obtain

Lo(A) = List(A)
Li(A) = A

Tio(A) = List(A)

Remember that each T;; is an entire monad, not just a type constructor. Now we

apply the store stratified monad transformer F(T)(A) = Sto — T(A x Sto), obtaining

Li(A) = Sto — List(Sto x A)
Ls(A) = List(Sto x A)
Ly(A) = Stox A

Li(A) = A

T34(A) == StO — A



73

T24(A) == StO — LZSt(A)
Ti4(A) = Sto — List(Sto x A)

Finally, we apply the environment stratified monad transformer F(T)(A) = Env —
T(A):

= FEnv — Sto — List(Sto x A)

= Sto — List(Sto x A)

= Stox A

(4)

(4)

Ly(A) = List(Sto x A)
(4)

(4) = 4

Tis(A) = Env— A
Tsu(A) = Sto— A

Tys(A) = List(A)

Tss(A) = Env — Sto — A

Thu(A) = Sto — List(A)

Tys(A) = Env — Sto — List(A)
Tiu(A) = Sto — List(Sto x A)

Tis(A) = Env — Sto — List(Sto x A)

In the next few sections, we elaborate the action of the stratified monad transformers

built from the classes of monad transformers discussed in section 2.6.3.

4.2.1 Top transformers

Top transformers have the form F(T) = SoT. F acts on the levels of a stratified

monad by adding a new top level S o Top. F acts on the monads by applying F' to



74

all monads relating to Top. We add the new monads without deleting the originals.

We can verify this action in the example above for the environment transformer,
which has S(A) = Env — A. We formed each of the monads involving environments
by transforming a monad relating some level to Top. Conversely, all such monads

were transformed.

4.2.2 Bottom transformers

Bottom transformers have the form F'(T') = T olU. F acts on levels by composing
each level with U and adding a new identity at the bottom. F' acts on monads by
applying F' to all monads relating to Bot. As before, we add the new monads without
deleting the originals.

We can verity this action in the example above for the nondeterminism trans-
former, which has U(A) = List(A). We formed each of the monads involving lists by
transforming a monad relating some level to Bot. Conversely, all such monads were

transformed.

4.2.3 Around transformers

Around transformers are somewhat more complex than bottom and top trans-
formers. In order to construct all the possible monads relating different levels, we

require three ordinary monad transformers, not just one. If the around transformer is
Fa(T)y=So0ToU

we also require

Fp(T) = SoT
FT(T) = TolU

The action on levels is to add a new top level So Top, compose each level with U below,

and add a new identity as Bot. The action on monads is to transform the monad



75

T using F4, to transform all monads relating to Bot using Fg, and to transform all
monads relating to Top using Frp. Note that we also transform T using Fg and Fr.
As before, we add the new monads to the result, leaving the old ones in place.

We obtain the store monad transformer by taking

Ar(TYA = Sto — T(A x Sto)
Top(TYA = Sto — T(A)

We do not use a Bot transformer, since it would have to be
Bot(T)A =T(A x Sto)

and we have seen that this choice does not make sense.

4.2.4 Continuation transformers

The continuation transformer is
F(T)(A)=(A—T(Ans)) — T(Ans)

where Ans is a fixed domain of answers. F' acts on levels as F'(L)(A) = L(Ans). That
is, once T' is applied to answers, it ignores whatever else we apply it to. We add a
single new level L(A) = (A — T(Ans)) — T(Ans), where T is the old top level.

£ acts on monads as follows. It transforms 7" using the continuation transformer,
yielding a monad relating Bot to the new Top. It also transforms monads M relating
to Top via a special “answer transformer” Fl,;, yielding monads relating M to the
new Top. These monads allow us to access the levels of the answer type T'(Ans).

There are two choices for Fly,;, shown in figures 4.1 and 4.2. If we define amb in

the semantics
Den(A) = (A — List(Ans)) — List(Ans)

using each of these choices, we obtain



76

(define ((unitl a) k)
(bindT (unitM a) k))

(define ((bindl ¢ f) k)
(bindM (c unitT)
(lambda (a)
((f a) k))))

Figure 4.1: First answer transformer

(define ((unit?2 a) k)
(unitM a))

(define ((bind?2 ¢ f) k)
(bindM (c k)
(lambda (a)
((f a) k))))

Figure 4.2: Second answer transformer

(define ((ambl d1 d2) k)
(reduce append ()
(map k (append (d1 list) (d2 list)))))

(define ((amb2 di1 d2) k)
(append (d1 k) (d2 k)))

as discussed in section 1.5.2. Both definitions are reasonable.

4.3 Computation ADTs

A computation ADT is a stratified monad, except that we associate a set of
names with each level. Since there is at most a single monad relating any pair of
levels, monads are uniquely identified by the levels they relate.

We use sets of names because a single level can play multiple roles in a semantics.

For example, in



77

Den(A) = Env — List(A)

the level List(A) is called both Lists and Env-Results.
Each stratified monad transformer adds several new names. For example, the

environment transformer adds the following pairs of names and levels:

Envs =  Fnv — T(A)
Env-Results = T(A)
Env-Values = A

Table 4.1 shows the names added by each transformer. In some cases, we reuse the
same stratified monad transformer, changing only the names that it adds. For exam-
ple, we build both the Stores and Batch 1/O modules using the store transformer. We
can build a semantics using multiple instances of the same transformer (environments,
for example) by assigning different names to the instances.
Table 4.2 shows the names and levels associated with the following language det-
inition:
(define computations
(make-computations
cbv-environments
stores
continuations

nondeterminism
errors))

Using the information contained in table 4.1, we can define language constructs
over stratified monads. Construct definitions assume the existence of various levels
and monads. For example, %amb assumes the existence of the level Lists and a monad

relating Lists to Top. The definition of %amb is



‘hﬁoduka ‘:Nanuﬁ ‘ Levels

Environments Enuvs Env — T(A)
Env-Results T(A)
Env-Values A

Stores Stores Sto — T(A x Sto)
Store-Results T(A x Sto)
Store-Pairs A x Sto
Store-Values A

Batch 1/0 10 10 — T(A x 10)
10-Results T(A x 10)
10-Pairs Ax 10
10-Values A

Lifting 1 Lifts 1 — T(A)

Lifting 2 Lifts 1—- A

Errors Errors A+ Err

Output Output A x Out

Nondeterminism | Lists List(A)

Continuations Conts (A — T(Ans)) — T(Ans)
Cont-Values A
Cont-Answers | T'(Ans)
Answers Ans

Resumptions Res-Top fie(X) T(A+ X)
Res-Bottom A+ fix(X) T(A+ X)

Table 4.1: Names associated with each transformer

(define %amb

(let ((unit (get-unit ’Lists ’Top))
(bind (get-bind ’Lists ’Top)))

(lambda (x y)

(bind x

(lambda (x)
(bind y

(lambda (y)
(unit (append x y)))))))))

78

The stratified monad operators are not quite sufficient to form a truly abstract data

type of computations. We need to know precisely the additional information contained

in table 4.1. For example, Lists are lists of some type, Enwvs are functions from

environments to Env-Results, etcetera. Thus, if we desire to build true abstract data



79

Names ‘ Level L(A) = ‘
Env —
Envs, Top Sto —

let Al = List(Ans x Sto) + Err in
(A x Sto — Al) — Al

Sto —
Env-Results, Stores let Al = List(Ans x Sto) + Err in
(A x Sto — Al) — Al
let Al = List(Ans x Sto) + Err in
(A x Sto — Al) — Al

Store-Results, Conts

Cont-Answers, Errors List(Ans x Sto) + Err
Lists List(Ans x Sto)
Answers Ans x Sto
Store-Pairs, Cont-Values A x Sto

Env-Values, Store-Values, Bottom | A

Table 4.2: Levels and names for a complex language

types, we have to represent all this information as part of the interface.

The types Sto and Env are parameters to the semantics that can be specified quite
late. That is, after forming a computation ADT, we can decide what type variables
should denote. Of course, the language constructs must implement this choice, and

not all choices make sense.

4.4 Language ADTs

In general, operators that act primarily at a single level, such as %amb (figure 1.21)
and %let (figure 1.19), are easy to write using standard idioms. More complex oper-
ators, such as %call/cc, are best written by abstracting from their definitions in an
example semantics. Using a sufficiently complex semantics ensures that conceptually
distinct levels are not confused. Table 4.4 lists the available modules and the values
and language constructs they define. We omit leading percent signs from the names.

SL includes four types of procedures. Table 4.3 shows the levels of their domains

and codomains. We define all four types of procedures over the same environments



‘ Procedure type ‘ Domain

‘ Codomain ‘

CBV-static Env-Values | Env-Results
CBN-static Env-Results | Env-Results
CBV-dynamic | Env-Values | Envs

CBN-dynamic

Env-Results

FEnvs

Table 4.3: Procedure types

80

monad transformer by writing different versions of %}lambda and %call. Clearly, we

can define other types of procedures as well.



Module ‘ Values ‘ Constructs

Amb amb

Batch 1/0O read, write, end-of-input?
Begin unit begin, unit

Booleans booleans true, false, not, if, boolean?
CallCC callcc

Dynamic procedures | procedures | lambda, call, procedure?
Environments var, let

Error exceptions error

Error values errors error

Exp environments evar, elet

Fix fix, rec, letrec

Numbers numbers num, +, -, *, /

Numeric predicates =7, zero?, number?

Output write

Procedures procedures | lambda, call, procedure?
Products pairs pair, left, right, pair?
Resumptions pause, seq, par

Shift shift, reset

Stores fetch, store

Sums sums case, in-left, in-right, sum?
While while

Table 4.4: Modules and language constructs

81



Chapter 5

Conclusion

This chapter compares lifting and stratification, describes the limitations of these
ideas, relates this work to previous research, and suggests directions for further ex-

ploration.

5.1 Lifting versus stratification

The main problem with lifting is that it ties language constructs too tightly to
the monad transformers on which they are defined. For example, if we define variable
reference on Env — T(A), there is no easy way to raise an unbound variable error.
We could define an ad-hoc set of lower-level operators to circumvent this problem (see
[LHJ95]); however, stratification shows how to define a principled set of lower-level
operators.

Phrased differently, constructs cannot interact with multiple semantic levels. For
example, + interacts with values and errors, raising an error for non-numeric argu-
ments, and callcc interacts with continuations, environments, and values. Table 5.1
shows the levels referenced by the more complex language constructs.

Lifting also interleaves the creation of new operators with the lifting of old ones.
Not only are these actions conceptually separate, but when we use a transformer, we

might not want all of the operators that come with it. Again, stratification provides

82



83

‘ Construct ‘ Modules referenced ‘
hend-of-input? 10, booleans
hread, Jwrite IO, numbers
hcall/cc, %shift | continuations, environments, procedures
hlambda, Y%call environments, procedures
hvar environments, errors
hfix, Jrec lifting, environments, procedures
hletrec lifting, environments
W/ numbers, errors
ficase sums, environments, procedures

Table 5.1: Non-local language constructs

a solution by separating the language constructs from the base semantics. Still, the
lifting approach remains viable for building abstract data types whose operators are

more local.

5.2 Limitations
SL has several intended limitations:

e Since it was designed to build denotational models, SI. does not address issues

of type and syntax, which occupy large parts of most language specifications.

o We could extend SL to perform almost any compositional program analysis;
however, it provides no help in defining “extra semantic” mechanisms such
as unification or constraint set solution. That is, although an SL-constructed
analysis could derive a set of type constraints from a typed program, it would

not solve them.

o Although S can build the basic semantics for a real-world language like C, by
the time we add all the specific details of C’s language constructs, we would

hardly claim to have built C from reusable parts.



84

SL also has several unintended limitations, but their descriptions are rather tech-
nical. First, store transformers do not compose modularly with each other. For
example, suppose we define a language that includes both stores and batch I/O (two

different parametrizations of the store transformer). By composition, we obtain

Sto — (10 — (Val x Sto) x 10)

Consider the following construct (%read would do as well):

(define (((%end-of-input?) sto) io)
(pair (pair (in ’booleans (null? io)) sto) io))

To define it directly (see appendix B.2, figure B.18), we need a monad relating Val
to Val x Sto, an impossibility.

There are two unsatisfactory solutions to this problem. The first is to compose
the transformers in the opposite order and hope that the store operators don’t require
a monad from Val to Val x IO (indeed, they don’t).

The second solution is, instead of lifting Val to Val x Sto, to return Val in place
of Val x Sto, as though we could put any type at all there. Then we adjust the
result appropriately at the end (see figure 5.1). Hudak et al. adopt this solution
ubiquitously [LHJ95], as described in section 5.3. The real problem is that monads
are not flexible enough to handle store transformers. We require a more sophisticated
lifting operator, although its form is not yet clear.

The second unintended problem is similar to the first. When defining %callcc in

the usual Scheme semantics, we need to uncurry a function from

f:Val — Sto — Val x Sto

to

f': Val x Sto — Val x Sto

Surprisingly enough, the stratified monad operators on stores cannot perform this
transformation. To be clear, we should say that our goal is not explicitly to uncurry

f but to change its type from



to

(define %end-of-input?
(let ((unitT (get-unit ’io-pairs ’io-results))
(unitS (get-unit ’io ’top))
(unitB (get-value-unit ’booleans ’top))
(bindV (get-bind ’io-values ’top)))
(lambda ()
(bindV
(units
(lambda (io)
(unitT (pair (null? (batch-input io))
i0))))
(lambda (b)
(unitB b))))))

Figure 5.1: Odd definition of %end-of-input?

f: Store-Values — Stores

f': Store-Pairs — Store-Results

(see section 4.3).

iunit. Then the required lifting can be defined (see the tilt function in the definition
of %icallcc, appendix B.2). Since we require unit to be injective, a left inverse always
exists; however, it is less apparent that the argument to iunit in the %callcc is
always in its domain. In this case, if we could prove using the monad laws that its

argument is always unit of something, we could probably eliminate iunit.

enough to perform all manipulations of the store transformer that occur in standard

construct definitions.

89

To circumvent this problem, we add a left inverse to unit to each monad, called

iunit is clearly a hack; once again, the monad operators are simply not powertul



86

5.3 Related work

Spivey [Spi90] used monads to abstract over exception handling but did not connect

these ideas with extensibility.

Moggi [Mog89b, Mog91] split an “applied” lambda calculus into a core (variables
and environments) and an extension (other features), expressed as a monad.
He presented many extensions and derived a “computational lambda calculus”

for reasoning about programs.

Moggi also showed that monad transformers can build complex monads from
parts [Mog89a]. This crucial facility was hitherto missing; however, his presen-
tation is difficult, and few researchers realized that he had made substantial

progress.

Rewriting Moggi’s methods [Esp94], I saw that they did not easily handle con-
structs involving multiple semantic levels, such as %call/cc or even %+ (because
it raises errors on non-numbers). Stratified monads solve this problem, increas-
ing modularity by inserting an abstraction barrier between computation ADT

and language ADT.

Wadler [Wad92] popularized Moggi’s ideas by presenting monadic interpreters writ-
ten in Haskell. The interpreters’ limitation to extension by a single monad
motivated this thesis. Also, Wadler and King showed how to combine continua-
tions and lists with other monads [KW92]. Despite Moggi’s earlier formulation
of monad transformers, they discussed “combining M and L” rather than “con-
structing M L from M”. SL treats monad constructors in general and exhibits a

complete system for building interpreters from multiple modules, not just two.

Steele [Ste94] showed how to compose pseudomonads, a new construction. Although
they compose, pseudomonads are both more complex and less general than
monad transformers. In fact, pseudomonads are essentially bottom monad trans-

formers. That is, they can realize



87

F(TY(A) = T(ListA)
F(T)(A) = T(A+X)

=

=

=
I

T(Ax M)

but not

F(TY(A) = Env— T(A)
F(T)(A) = Sto — T(A x Sto)

Steele’s claim that pseudomonads improve on monad transformers by providing
a fixed composition operator fails to hold since they are not equally power-
ful; however, Steele’s complete implementation of a modular semantics was
inspiring, and the stratified approach described here is based on his tower of

pseudomonads.

Jones and Duponcheel [JD93] addressed the problem of composing monads. They

showed rigorously that monads do not compose, but that if one of several aux-
iliary maps is defined relating the structures of two monads, they can be com-
posed. They found that some monads compose naturally to the left and some
to the right (corresponding to our bottom and top). Although composition is
strictly weaker than transformation, they came as close as one could to discov-
ering monad transformers, and their work provides useful information about
the structure of semantic models; however, they did not attempt to build inter-

preters.

Mosses [Mos92] showed how an abstract semantic algebra, which we call a com-

putation ADT, could modularize a semantics. By choosing algebra operators
low-level enough to be flexible, yet high-level enough to hide irrelevant details,

we can make a semantics much easier to understand.



88

Mosses gave a single ADT with operators for environments, stores, and contin-
uations. Using this ADT, we can define other semantic features, but only in an
unnatural and non-modular way. With SL, we can build ADTs custom tailored
to the languages we define. In essence, SL is the final step in Mosses’s program,

the ability to combine algebras.

Filinski [Fil94] showed how to compute over an arbitrary monad in a language with
composable continuations. His construction is a direct use of the continuation

monad transformer

F(T)(A)=(A—T(Ans)) — T(Ans)

Most of his paper presents a rather technical proof that computing over F/(7T')
yields the same results as computing over T', as long as our constructs don’t use
F. Tt is possible that his proof could be simplified using the general properties

of monad transformers.

Although composable continuations yield extensibility, we could alternatively
add reflection operators to a language directly. Thus, we would need nothing
but lambda calculus and primitives to be “monadically complete”; however,
this point is irrelevant, since we probably want to stores and continuations to
be primitive for efficiency. FExtensibility through continuations costs nothing
(beyond the continuations) if we don’t use it. This point is not obvious; see

Filinski’s paper.

Cartwright and Felleisen [CF94] postulate that a computation is either a value
or an effect and include a resource administrator to manage effects. Their
semantics already includes environments, stores, and continuations, the latter

two of which are hidden using a monad (bind is called handle).

Their semantics employs object-oriented techniques such as extensible prod-
ucts (for stores), extensible sums (for values), and “self” arguments (for in-

terpreter composition). These techniques recall my earlier thesis proposals



89

[Esp93a, Esp93b], although there was no direct connection.

In general, it not surprising that Felleisen and Cartwright’s system can be ex-
tended with stores and continuations, since they are already included, in the
guise of a resource administrator. The intuitive value of this abstraction remains
to be seen. We can extend the store; however, stores are already extensible in

most languages, since we can create new locations on demand.

Liang, Hudak, and Jones [LHJ95] recently published a paper improving on my

earlier work [Esp94] and on Moggi’s work as well.

Their first improvement was to lift callcc using operators designed specifically
for it. Both Moggi and I lifted all operators of a given type in a similar way
(parametrically, rather than ad-hoc). Ad-hoc liftings are non-modular, since
they require a new lifting method for each operator and monad transformer.
Using stratified monads, we can define a single reusable callcc (see figure B.20).

Although its definition is complex, it is independent of new transformers.

Their second improvement was to express monad transformers in a typed lan-
guage (Gofer, an extension of Haskell). This work shows the power of Jones’s

constructor classes, since monad transformers cannot be expressed in pure

Haskell.

The main problem with Liang, Hudak, and Jones’s approach is the treatment
of non-local language constructs (those involving multiple levels). They shift
all interaction to the top or bottom of the single monad that defines the base

semantics. That is, in a semantics

Den = Env — List( Val)

procedures have types

CBV Proc = Val — Den

CBNProc = Den — Den



90

Although these appear reasonable at first glance, procedure arguments and
results unnecessarily include environments. That is, without access to interme-

diate levels in the semantics, their types lose precision.

Similarly, to define variable reference, they form Den(FEnv), denotations that

return environments. In effect, this approach desugars a reference to = into

(env-lookup ’x (the-environment))

Explaining variable reference using first-class environments is inappropriate,

since environments would not normally appear in a language’s value domain.

Of course, after simplification, the actual constructs reduce to the definitions
we would expect, so perhaps the ends justify the means. In general, since their
approach is based on lifting, it is much weaker than stratification, as discussed

in section 5.1.

5.4 Future work

Implementation As mentioned in section A.1, we could rewrite SL in Quest [Car89]

to verify proper use of higher-order types.

By forming domains from expressions instead of functions, we could build ab-

stract interpretations, translations (such as CPS), and simple compilers.

We could apply the methods developed here to other semantically complex do-
mains, such as communication protocols. If we don’t need functional abstrac-

tion, simpler lifting operators than monads should suffice (see section 2.2.3).

Extensibility We could generalize call-by-value and call-by-name to abstract over
other semantic levels. For instance, abstracting over the top level of denotations
yields most of the functionality due to macros. Also, we could define a language

capable of abstracting over each semantic level.



91

We could define a uniform family of reification and reflection operators (see
[Fi194]), one for each semantic level. These would generalize constructs such as

the-environment, call/cc, and exception handling.

Models Are stratified monads derivable from more categorical considerations? Since
the monad laws follow nicely from the Kleisli formulation, can we define a Kleisli
category for several monads at once? This construction would presumably be
a product of the individual Kleisli categories, indexed by monad. The key idea

is that compositions associate.

Having presented two approaches to building interpreters, lifting and strati-

fication, can we show their equivalence, at least in the cases that lifting can

handle?

Logics Can we develop modular calculi for reasoning about the languages we con-
struct? Moggi’s computational lambda calculus [Mog91] captures precisely the
inferences valid for lambda calculus over an arbitrary monad. Moggi’s syntactic

approach [M(C93] is relevant but does not seem to address the problem directly.

Calculi can probably be derived via both lifting and stratification. Given a set
of laws on T', can we lift them to F(7')? Or, can we use the stratified monad
laws to derive laws for a completed semantics? Abramsky’s work [Abr91] on
deriving program logics from domain equations is applicable to domains built
using type constructors; however, his methods seem to derive calculi that are

still very low-level.

5.5 Conclusion
Four simple imperatives summarize this thesis:

e Think with types, both abstract and concrete.

e Compute with denotations, not expressions.



92

e Split a complex interpreter into a computation ADT and a language ADT.

e Structure the computation ADT using monads and monad transformers.

The first two of these are most important, since types let us think in a simple
yet structured way, and denotations let us implement interpreters easily and directly.
These two ideas make an otherwise difficult field accessible to anyone who understands

functional programming.



Bibliography

[Abr9l]

[ASS85]

[Bec69]

[BW85]

[BW90]

[Car89]

[CF94]

[CR91]

Samson Abramsky. Domain theory in logical form. Annals of Pure and

Applied Logic, 51:1-77, 1991.

Harold Abelson, Gerald J. Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs. MIT Press, Cambridge, MA,
1985.

Jon Beck. Distributive laws. In Seminar on Triples and Categorical
Homology Theory, volume 80 of Lecture Notes in Mathematics, pages
119-140. Springer Verlag, 1969.

Michael Barr and Charles Wells.  Toposes, Triples, and Theories.
Springer Verlag, New York, 1985.

Michael Barr and Charles Wells. Category Theory for Computing Sci-
ence. Prentice-Hall, 1990.

Luca Cardelli. Typeful programming. Technical Report 45, DEC Sys-
tems Research Center, Palo Alto, CA, May 1989.

Robert Cartwright and Matthias Felleisen. FExtensible denotational
language specifications. In Theoretical Aspects of Computer Software,

Sendai, Japan, April 1994.

Will Clinger and Jonathan Rees. Revised* Report on Scheme. Lisp
Pointers, 4(3), 1991.

93



[Esp93a]

[Esp93b]

[Esp94]

[Fi189]

[Fil94]

[GMY4]

[GTWWTT]

[Gun92]

[JD93]

[KBARO1]

94

David Espinosa. Language extensibility via first-class interpreters and

constructive modules. See http://www.cs.columbia.edu, April 1993.

David Espinosa. Language features for extensible programs. See

http://www.cs.columbia.edu, October 1993.

David Espinosa. Semantic Lego. See http://www.cs.columbia.edu, Jan-

uary 1994.

Andrzej Filinski. Declarative continuations and categorical duality.
Master’s thesis, University of Copenhagen, August 1989. See http:

//www.cs.cmu.edu:8001.

Andrzej Filinski. Representing monads. In Proceedings of the 21st An-
nual ACM Symposium on Principles of Programming Languages, Port-
land, OR, January 1994.

Carl Gunter and John Mitchell, editors. Theoretical Aspects of Object-
Oriented Programming. MIT Press, Cambridge, MA, 1994.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial
algebra semantics and continuous algebras. Journal of the ACM, 24:68—
95, 1977.

Carl Gunter. Semantics of Programming Languages. MIT Press, Cam-
bridge, MA, 1992.

Mark P. Jones and Luc Duponcheel. Composing monads. Technical

Report YALEU / DCS / RR-1004, Yale University, December 1993.

Gregor Kiczales, Daniel G. Bobrow, and Jim des Rivieres. The Art of
the Metaobject Protocol. MIT Press, Cambridge, MA, 1991.



[KW92]

[Lam88]

[LHJ95]

[MacT1]

[MBSS]

[MC93]

[Mes89]

[Mog89al]

95

David King and Philip Wadler. Combining monads. In Proceedings of
the Fifth Annual Glasgow Workshop on Functional Programming, Ayr,
Scotland, 1992. Springer Verlag.

John Lamping. A unified system of parametrization for programming
languages. In Conference Record of the 1988 ACM Symposium on Lisp
and Functional Programming, pages 316-326, Snowbird, Utah, July
1988.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and
modular interpreters. In Proceedings of the 22nd Annual ACM Sym-
posium on Principles of Programming Languages, San Francisco, CA,

January 1995.

Saunders MacLane. Category theory for the Working Mathematician.
Springer Verlag, New York, 1971.

Saunders MacLane and Garrett Birkhoff. Algebra. Chelsea, New York,
3rd edition, 1988.

Eugenio Moggi and Pietro Cenciarelli. A syntactic approach to mod-
ularity in denotational semantics. In Category Theory and Computer

Science, Lecture Notes in Computer Science. Springer Verlag, 1993.

José Meseguer. General logics. In H. D. Ebbinghaus, editor, Logic Col-
loqguium 87, pages 275-329. North Holland, 1989.

Eugenio Moggi. An abstract view of programming languages. Techni-
cal Report ECS-LFCS-90-113, Laboratory for Foundations of Computer
Science, University of Edinburgh, Edinburgh, Scotland, June 1989. FTP

from theory.doc.ic.ac.uk.



[Mog89b]

[Mog91]

[Mos92]

[Pie9l]

[RB9O]

[Sch86]

[Spi89]

[Spi90]

[Spi93]

[Ste94]

[Wad89]

96

Eugenio Moggi. Computational lambda calculus and monads. In IEFFE
Symposium on Logic in Computer Science, pages 14-23, Asilomar, CA,
June 1989.

Eugenio Moggi. Notions of computation and monads. Information and

Computation, 93:55-92, 1991.

Peter D. Mosses. Action Semantics, volume 26 of Tracts in Theoretical

Computer Science. Cambridge University Press, 1992.

Benjamin C. Pierce. Basic Category Theory for Computer Scientists.
MIT Press, Cambridge, MA, 1991.

David Rydeheard and Rod Burstall. Computational Category Theory.
Prentice-Hall, New York, 1990.

David A. Schmidt. Denotational Semantics. Allyn and Bacon, New
York, 1986.

Michael Spivey. A categorical approach to the theory of lists. In Math-
ematics of Program Construction, volume 375 of Lecture Notes in Com-

puter Science, pages 399-408. Springer Verlag, 1989.

Michael Spivey. A functional theory of exceptions. Science of Computer
Programming, 14(1):25-42, June 1990.

Michael Spivey. Category theory and functional programming. Technical
Report PRG TR 7-93, Oxford University, June 1993.

Guy L. Steele, Jr. Building interpreters by composing monads. In Pro-
ceedings of the 21st Annual ACM Symposium on Principles of Program-
ming Languages, Portland, OR, January 1994.

Philip Wadler. Theorems for free. In Functional Programming Languages

and Computer Architecture, London, England, September 1989.



97

[Wad92] Philip Wadler. The essence of functional programming. In Proceed-
ings of the 19th Annual ACM Symposium on Principles of Programming
Languages, pages 1-14, Albuquerque, NM, January 1992.



Appendix A

Miscellanea

This appendix discusses issues tangent to the thesis proper at various points.

A.1 Why Scheme?

The real reason for writing this thesis in Scheme! is that I'm used to it. Although
Scheme has many problems (notably the lack of modules and abstract data types), it

is still pretty fun to program in. But, for this thesis, Scheme has several disadvantages:

o [t fails to express the typed structure of the mathematics.

e Implicit polymorphism does not distinguish between a polymorphic function

and its instantiations at various types; hence, a whole level of structure is lost.

e Since types are not mechanically verified, our understanding of them could be

incorrect.

On the other hand, Scheme’s advantage is that it does not limit what we can

express. For example, in the usual Hindley-Milner type system, polymorphic values

"When I failed to explain an example sufficiently in an earlier thesis proposal, one reader ex-
claimed, “You can’t write your thesis in Scheme!”

98



99

are not first-class, since we cannot instantiate them at different types. 3 has first-
class polymorphism but cannot treat type constructors as types, so that monads
cannot be first-class.

We can probably type SL in Fj5, which includes type constructors; however, it is
not clear how to type the levels of a stratified monad. For instance, we would need

types Envs and Env-Results such that

Envs = Env — Env-Results

(see section 4.3). It would be a good exercise to rewrite SL in Cardelli’s Quest
language, which includes higher-order polymorphism as well as several other advanced
typing ideas [Car89]. Also, Liang, Hudak, and Jones [LHJ95] have implemented
monad transformers in Gofer, a version of Haskell with an enhanced type system
(essentially Hindley-Milner extended to higher types).

In general, the programming languages community is realizing that current type
systems are inadequate; however, we should go further and question the entire basis
for typed languages. In general, types are a form of specification. When we say that
an expression has a type, we really mean that its evaluation meets a specification.
This point of view leads naturally to more expressive types. Although inference
and verification are intractable for these systems, we should recall that for years,
proof verifiers have automated a well-defined class of simple inferences within complex
logics.

To strengthen the case for more expressive types, we cite two examples from the
monad literature of problems with limited type systems. In [Ste94], Steele writes,
“...the principal practical motivation for [a program simplifier] was to transform the
code into a form acceptable to the Haskell type-checker”. In other words, he had to
treat programs at the syntactic level in order to bypass the type system. In [Fil94],
Filinski circumvents ML’s type system using a universal type. He also states in a
different context, “Peyton-Jones and Wadler probe the relationship between monads

and CPS further, and Wadler analyzes composable continuations from a monadic



100

perspective, but in both cases the restriction to Hindley-Milner typeability obscures

the deeper connections.”

A.2 Typed versus untyped values

Typed languages have multiple value domains, one for each type, and determine
expression types statically. Untyped languages have a single value domain that is
a sum of several others, and determine types dynamically. Untyped languages also
make fewer type distinctions than typed languages, particularly with respect to pro-
cedures. For instance, Scheme does not distinguish procedures returning numbers
from procedures returning pairs.

Monads are typed, as are all category-theoretic concepts, and denotations are
polymorphic over values. For example, we can type the language construct %zero?

as

hzero? : Den(Num) — Den(Bool)

However, in S, we compute over a single untyped value domain, represented as an

extensible sum. Thus %zero? has type

%zero? : Den — Den

where we write Den instead of Den( Val). Tagging values with their types exposes the
treatment of types in the semantic equations and abstracts from the existing Scheme
types.

Most type systems are not powerful enough to type typed interpreters. For exam-
ple, the interpreters in [Wad92] are untyped even though they are written in Haskell,
which is typed. The problem is that we would like to write

(Yvar ’x) : Num

when x is a number; however, the type of (Yvar ’x) depends on the context in

which the expression occurs. In general, the type of an expression needs to include



101

the names and types of its free variables, just as in the usual sequent-based typing
rules.

On a slightly different subject, Steele [Ste94] tries to extend the domain of values
using monads, and I follow him in [Esp94]; however, as he points out, using the

exceptions monad to build extensible sums yields behavior such as

(compute (%+ (Ynum 3) (%true)))
= true

which shows that monads are not the right tool for building extensible sums.

A.3 Extensible sums and products

Although extensible sums and products play little part in this thesis, they are
useful for building extensible systems (see [Esp93b]), and I believe they capture the
essential aspects of object-oriented programming. They also demonstrate how cate-

gory theory can aid language design. We consider types

— Sy 4 Syt
P = P1><P2><"'

that can be extended either statically or dynamically. It doesn’t matter which; these
considerations are orthogonal to the basic idea. To .S and P there correspond exten-

sible functions

s: 55— 1B
p:A— P

Note that s and p have opposite types. As we extend S or P, we also extend s or p.

As an example, suppose that s computes various vehicles’ maximum speeds. Then

s : Vehicle — Number



102

where Vehicle is an extensible sum. Extensible sums are simply generic functions
in the sense of CLOS [KBdR91], while extensible products are not commonly used.
The types of s and p come directly from the category-theoretic definitions of sum

and product. For other theoretical treatments of object-oriented programming, see

[GMO4].



Appendix B

Code

This appendix lists the Scheme code for the monad transformers and language con-

structs presently supported by SL.

B.1 Monad transformer definitions

The code for transforming types and inverse unit operators is omitted for clarity.

103



;;; Environments: F(T)(A) = Env -> T(A)

(define (env-trans t)
(with-monad t
(lambda (unit bind compute)
(make-monad

(lambda (a)
(lambda (env) (unit a)))

(lambda (c f)
(lambda (env)
(bind (c env)
(lambda (a)
((f a) env)))))

(lambda (c f)
(compute (c empty-env) f))

)))

Figure B.1: Environment transformer

104



105

;5 Exceptions: F(T)(A) = T(A + X)

(define (exception-trans t)
(with-monad t
(lambda (unit bind compute)
(make-monad

(lambda (a) (unit (in-left a)))

(lambda (c f)
(bind ¢ (sum-function
f (lambda (x) (unit (in-right x))))))

(lambda (c f)
(compute ¢ (sum-function f compute-x)))

)))

Figure B.2: Exception transformer

;;; Continuations: F(T)(A) = (A -> T(Ans)) -> T(Ans)

(define (continuation-trans t)
(with-monad t
(lambda (unit bind compute)
(make-monad

(lambda (a)
(lambda (k) (k a)))

(lambda (¢ £)
(lambda (k)
(¢ (lambda (a) ((f a) k)))))

(lambda (c f)
(compute (c (composel unit value->answer)) f))

)))

Figure B.3: Continuation transformer



106

;33 Stores: F(T)(A) = Sto -> T(A * Sto)

(define (store-trans t)
(with-monad t
(lambda (unit bind compute)
(make-monad

(lambda (a)
(lambda (sto)
(unit (pair a sto))))

(lambda (c f)
(lambda (sto)
(bind (c sto)
(lambda (as)
((f (left as)) (right as))))))

(lambda (c f)
(compute (c (initial-store))

(lambda (a*s)
(compute-store (f (left a*s)) (right a*s)))))

)))

Figure B.4: Store transformer



107

;53 Lifting 1: F(T)(A) = 1 -> T(A)

(define (liftl-trans t)
(with-monad t
(lambda (unit bind compute)
(make-monad

(lambda (a)
(lambda () (unit a)))

(lambda (¢ £)
(lambda ()
(bind (c) (lambda (a) ((f a))))))

(lambda (¢ £)
(compute (c) £))

)))

Figure B.5: First lifting transformer

;33 Lifting 2: F(T)(A) = T(1 -> A)

(define (1ift2-trans t)
(with-monad t
(lambda (unit bind compute)
(make-monad

(lambda (a)
(unit (lambda () a)))

(lambda (¢ £)
(bind ¢ (lambda (1) (f (1)))))

(lambda (¢ £)
(compute ¢ (lambda (1) (f (1)))))

)))

Figure B.6: Second lifting transformer



108

;33 Lists: F(T)(A) = T(List(A))

(define (list-trans t)
(with-monad t
(lambda (unit bind compute)

(define (amb x y)
(bind x
(lambda (x)
(bind y
(lambda (y)
(unit (append x y)))))))

(make-monad

(lambda (a)
(unit (list a)))

(lambda (c f)
(bind c
(lambda (1)
(reduce amb (unit ’()) (map £ 1)))))

(lambda (¢ £)
(compute ¢ (lambda (1) (map £ 1))))

)))

Figure B.7: List transformer



;33 Monoids: F(T)(A) = T(A * M)

(define (monoid-trans t)
(with-monad t
(lambda (unit bind compute)
(make-monad

(lambda (a) (unit (pair a (monoid-unit))))

(lambda (¢ £)
(bind ¢
(lambda (a*m)
(let ((c2 (f (left a*m))))
(bind c2
(lambda (a*m2)
(unit
(pair (left a*m2)
(monoid-product
(right a*m) (right a*m2))))))))))

(lambda (c f)
(compute
¢ (lambda (a*m)
(compute-m (f (left a*m)) (right a*m)))))

)))

Figure B.8: Monoid transformer

109



110

;5 ; Resumptions: F(T)(A) = fix(X) T(A + X)

(define (resumption-trans t)
(with-monad t
(lambda (unit bind compute)
(make-monad

(lambda (a) (unit (in-left a)))

(lambda (¢ £)
(let loop ((c <))
(bind ¢
(sum-function
f (lambda (c)
(unit (in-right (loop <¢))))))))

(lambda (c f)
(compute
(let loop ((c <))
(bind ¢
(sum-function
(composel unit f)
loop)))
id))

)))

Figure B.9: Resumption transformer



B.2 Language construct definitions

;55 Amb

(define %amb
(let ((unit (get-unit ’lists ’top))
(bind (get-bind ’lists ’top)))
(lambda (x y)
(bind x
(lambda (x)
(bind y
(lambda (y)
(unit (append x y)))))))))

Figure B.10: Amb

;;; Reset
;5 [[ (reset E) 11 k = k (E \i.1)

(define Yreset
(let ((mapC (get-map ’conts ’top))

(unitC (get-unit ’cont-values ’cont-answers))
(bindC (get-bind ’cont-values ’cont-answers)))

(lambda (exp)
(mapC exp
(lambda (cont)
(lambda (k)
(bindC (cont unitC) k))))H)))

Figure B.11: Reset

111



112

;5 Stores

(define Yfetch
(let ((unitT (get-unit ’store-pairs ’store-results))
(unitS (get-unit ’stores ’top)))
(lambda (loc)
(units
(lambda (sto)
(unitT (pair (store-fetch sto loc) sto)))))))

(define Y%store
(let ((unitS (get-unit ’stores ’top))
(unitT (get-unit ’store-pairs ’store-results))
(bindV (get-bind ’store-values ’top)))
(lambda (loc val)
(bindV val
(lambda (val)
(units
(lambda (sto)
(unitT (pair val (store-store sto loc val))))))))))

Figure B.12: Stores

;555 Output

(define Y%write
(let ((unitV (get-value-unit ’unit ’top))
(map0 (get-map ’output ’top)))
(lambda (message)
(map0 (unitV ’unit)
(lambda (a*m)
(let ((a (left a*m))
(m (right a*m)))

(pair a (cons message m))))))))

Figure B.13: Output



113

;3 While

(define %while
(let ((bindB (get-value-bind ’booleans ’top)))
(lambda (cl c2)
(letrec
((Loop
(bindB c1
(lambda (b)
(if b
(%begin2 c2 loop)
(hunit))))))
loop))))

Figure B.14: While

;5; Begin
(define-show ’unit (lambda (b) ’unit))
(define %unit (make-opO ’unit ’unit))
(define %unit? (make-type-predicate ’unit))
(define %begin?
g
(let ((bindV (get-bind ’bottom ’top)))
(lambda (cl c2)
(bindV c1
(lambda (v1) <¢2)))))

(define (Jbegin . s)
(reduce Y%begin2 (Yunit) s))

Figure B.15: Begin



;3;; Error exceptions
(define (raise-error top)
(let ((unit (get-unit ’errors top)))
(lambda (msg) (unit (in-right msg)))))

(define %error (raise-error ’top))

Figure B.16: Error exceptions

;553 Error values

(define-show ’errors
identity-procedure)

(define—predicate ’errors
(lambda (x)
(and (pair? x)
(eq? (car x) ’error))))

(define (raise-error top)
(get-value-unit ’errors top))

(define %error (raise-error ’top))

(define %error? (make-type-predicate ’errors))

Figure B.17: Error values

114



;;; Batch I/0

;5 10 = Input * Output
;3 Input = List Number

;3 Output = List Number

(define %end-of-input?
(let ((unitT (get-unit ’io-pairs ’io-results))
(unitS (get-unit ’io ’top))
(unitB (get-value-unit ’booleans ’io-values)))
(lambda ()
(units
(lambda (io)
(unitT (pair (unitB (null? (batch-input io)))
10)))))))

(define Y%read
(let ((unitT (get-unit ’io-pairs ’io-results))
(unitS (get-unit ’io ’top))
(unitN (get-value-unit ’numbers ’io-values)))
(lambda ()
(units
(lambda (io)
(unitT (pair (unitN (car (batch-input io)))
(make-batch (cdr (batch-input io))
(batch-output i0)))))))))

(define Y%write
(let ((unitS (get-unit ’io ’top))
(unitT (get-unit ’io-pairs ’io-results))
(bindN (get-value-bind ’numbers ’top))
(unitU (get-value-unit ’unit ’io-values)))
(lambda (val)
(bindN val
(lambda (val)
(units
(lambda (io)
(unitT
(pair (unitU ’unit)
(make-batch
(batch-input io)
(cons val (batch-output 10))))))))))))

Figure B.18: Batch I/0

115



;;; Booleans

(define-

show ’booleans

(lambda (b) (if b ’true ’false)))

(define-

predicate ’booleans

boolean?)

(define

(define
(define

(define
(define

(define
(define
(define

(define

hboolean? (make-type-predicate ’booleans))

htrue (make-op0 ’booleans #t))
hfalse (make-op0 ’booleans #f))

(b-or x y) (or x y))
(b-and x y) (and x y))

hnot (make-opl ’booleans ’booleans not))
hor (make-op2 ’booleans ’booleans b-or))

hand (make-op2 ’booleans ’booleans b-and))

hif

(let ((bind (get-value-bind ’booleans ’top)))
(lambda (p ¢ a)
(bind p

(lambda (p)
(Gif p ca))))))

Figure B.19: Booleans

116



117

;5 Call/cc

;3 Proc : env-values -> env-results
;; Cont : cont-values -> cont-answers

(define Y%call/cc
(let ((mapC (get-map ’conts ’top))

(mapK (get-map ’conts ’env-results))
(iunitK (get-iunit ’conts ’env-results))
(unitE (get-unit ’env-values ’env-results))
(unitP (get-value-unit ’procedures ’env-values))
(unitR (get-unit ’cont-values ’env-results))
(bindS (get-value-bind ’procedures ’env-results)))

;3 tilt : cont-value * (procedures -> env-results) -> conts

(define (tilt cv f)
(iunitK (bindS (unitR cv) f)))

(lambda (exp)
(mapC exp
(lambda (cont)
(lambda (k)

(define (callcc-proc v)
(mapK (unitE v)
(lambda (cont)
(lambda (k1) (cont k)))))

(cont
(lambda (cv)
((tilt cv
(lambda (p)
(p (unitP callcc-proc))))
k)))))))))

Figure B.20: Call with current continuation



118

;33 Dynamically scoped procedures

(define-show ’procedures
(lambda (p) ’<procedure>))

(define-predicate ’procedures
procedure?)

;; Proc : env-values -> envs

(define %lambda
(let ((bindE (get-bind ’envs ’top))
(unitP (get-value-unit ’procedures ’top)))
(lambda (var body)
(bindE body
(lambda (body)
(unitP
(lambda (arg)
(lambda (env)
(body (env-extend env var arg))))))))))

(define Y%call
(let ((bindP (get-value-bind ’procedures ’top))

(bindV (get-bind ’env-values ’top))
(unitE (get-unit ’envs ’top)))

(lambda (proc arg)

(bindP proc
(lambda (proc)
(bindV arg
(lambda (arg)
(unitE (proc arg)))))))))

Figure B.21: Dynamically scoped procedures



;33 Environments
;; Env = Id -> env-values

(define Yvar

(let ((unitT (get-unit ’env-values ’env-results))

(unitE (get-unit ’envs ’top))
(error (raise-error ’env-results)))
(lambda (id)
(unitE
(lambda (env)
(let ((binding (env-lookup env id)))
(if binding
(unitT (right binding))
(error (unbound-error id)))))))))

(define %let
(let ((unitE (get-unit ’envs ’top))
(bindE (get-bind ’envs ’top))
(bindV (get-bind ’env-values ’top)))
(lambda (id cl c2)
(bindV c1
(lambda (v1)
(bindE c2
(lambda (c2)
(unitE
(lambda (env)

(c2 (env-extend env id v1)))))))))))

Figure B.22: Environments

119



120

;33 Fixed points

(define %fix
(let ((bindP (get-value-bind ’procedures ’top))
(unitl (get-unit ’1lifts ’top))
(bindV (get-bind ’env-values ’1lifts))
(unitR (get-unit ’env-results ’lifts)))
(lambda (p)
(bindP p
(lambda (p)
(unitL
(fix (lambda (1)
(bindV 1
(lambda (v)
(unitR (p v))))))))))))

(define Y%rec
(let ((unitE (get-unit ’envs ’top))
(bindE (get-bind ’envs ’top))
(bindV (get-bind ’env-values ’1lifts))
(unitl (get-unit ’1lifts ’env-results))
(unitR (get-unit ’env-results ’lifts)))
(lambda (name c)
(bindE c
(lambda (c)
(unitE
(lambda (env)
(unitL
(fix (lambda (1)
(bindV 1
(lambda (v)
(unitR (¢ (env-extend env name v)))

2)))))))))))

Figure B.23: Fixed points



;5 Letrec

(define %letrec
(let ((unitE (get-unit
(bindE (get-bind
(bindV (get-bind
(unitL (get-unit
(unitR (get-unit
(lambda (name cl c2)
(bindE c1
(lambda (c1)
(bindE c2
(lambda (c2)
(unitE

’envs ’top))

’envs ’top))
’env-values ’1lifts))
’1ifts ’env-results))
’env-results ’lifts)))

(lambda (env)

(unitL
(bindV
(fix

(lambda (1)
(bindV 1

(lambda (v)

(unitR (c1 (env-extend env name v)))

))))
(lambda (v)

(unitR (c2 (env-extend env name v)))

2)))))))))))

Figure B.24: Letrec using fixed points

121



122

; ;3 Numbers

(define-show ’numbers identity-procedure)
(define-predicate ’numbers number?)

(define %num (get-value-unit ’numbers ’top))

(define %+ (make-op2 ’numbers ’numbers +))
(define %- (make-op2 ’numbers ’numbers -))
(define %* (make-op2 ’numbers ’numbers *))

(define %1+ (make-opl ’numbers ’numbers 1+))
(define %-1+ (make-opl ’numbers ’numbers -1+))

(define %/

(let ((unit (get-value-unit ’numbers ’top))
(bind (get-value-bind ’numbers ’top))
(error (raise-error ’top)))

(lambda (al a2)
(bind al
(lambda (al)
(bind a2
(lambda (a?2)
(if (zero? a2)
(error (divide-by-zero-error))

(unit (/ al a2))))))))))
;33 Numeric predicates

(define %zero? (make-opl ’numbers ’booleans zero?))

(define %= (make-op2 ’numbers ’booleans =))
(define %< (make-op2 ’numbers ’booleans <))
(define %> (make-op2 ’numbers ’booleans >))
(define %<= (make-op2 ’numbers ’booleans <=))
efine £>= (make-o numbers ooleans >=
(defi % (mak p2 "’ b ‘bool ))

(define Ynumber? (make-type-predicate ’numbers))

Figure B.25: Numbers



;35 Statically scoped procedures

(define-show ’procedures
(lambda (p) ’<procedure>))

(define-predicate ’procedures
procedure?)

;3 Proc : env-values -> env-results
(define %lambda

(let ((unitE (get-unit ’envs ’top))
(bindE (get-bind ’envs ’top))

(unitP (get-value-unit ’procedures ’env-results)))

(lambda (var body)
(bindE body
(lambda (body)
(unitE
(lambda (env)
(unitP
(lambda (arg)

(body (env-extend env var arg)))))))))))

(define Y%call
(let ((bindP (get-value-bind ’procedures ’top))

(bindV (get-bind ’env-values ’top))
(unitR (get-unit ’env-results ’top)))

(lambda (proc arg)

(bindP proc
(lambda (proc)
(bindV arg
(lambda (arg)
(unitR (proc arg)))))))))

(define Yprocedure? (make-type-predicate ’procedures))

Figure B.26: Statically scoped procedures

123



124

;33 Resumptions

rec(X) T(A + X)
T(A + X), res-bottom = A + X

;5 F(T)(4)
;; res-top

(define %pause
(let ((bindR (get-bind ’res-top ’top))
(unitT (get-unit ’res-bottom ’top)))
(lambda (c)
(bindR c
(lambda (t)
(unitT (in-right t)))))))

(define (%seq2 cl c2)
(%begin2 c1 (Ypause c2)))

(define (%seq . s)
(reduce %seq2 (%pause (%unit)) s))

(define (Ypar2 cl c2)
(%hamb (%then c2 c1)
(%then c1l c2)))

(define (Ypar . s)
(reduce %par2 (Y%pause (%unit)) s))

(define %then
(let ((bindR (get-bind ’res-bottom ’top))
(unitT (get-unit ’res-top ’top)))
(lambda (cl c2)
(bindR c1

(sum-function
(lambda (a) (%pause c2))
(lambda (t) (Ypause (Y%par2 (unitT t) ¢2))))))))

Figure B.27: Resumptions



125

;53 Products

(define-show ’pairs
(lambda (p)
“(pair ,(show-value (left p))
, (show-value (right p)))))

(define-predicate ’pairs pair?)
(define %pair? (make-type-predicate ’pairs))

(define (make-pair-op op)
(let ((unit (get-unit ’bottom ’top))
(bind (get-value-bind ’pairs ’top)))
(lambda (a)
(bind a
(lambda (a)
(unit (op a)))))))

(define %left (make-pair-op left))
(define Jright (make-pair-op right))

(define Ypair
(let ((unit (get-value-unit ’pairs ’top))
(bind (get-bind ’bottom ’top)))

(lambda (cl c2)
(bind c1

(lambda (v1)

(bind c2
(lambda (v2)
(unit (pair vi v2)))))))))

Figure B.28: Products



126

;55 Sums

(define-show ’sums
(lambda (p)
(sum-case p
(lambda (x) ‘(in-left ,(show-value x)))
(lambda (x) ‘(in-right ,(show-value x))))))

(define-predicate ’sums sum?)
(define %sum? (make-type-predicate ’sums))

(define (make-sum-op op)
(let ((unit (get-value-unit ’sums ’top))
(bind (get-bind ’bottom ’top)))
(lambda (a)
(bind a
(lambda (a)
(unit (op a)))))))

(define %in-left (make-sum-op in-left))
(define %in-right (make-sum-op in-right))

(define Y%case
(let ((bindS (get-value-bind ’sums ’top))
(bindP (get-value-bind ’procedures ’top))
(unitV (get-unit ’bottom ’env-values))
(unitR (get-unit ’env-results ’top)))
(lambda (x f g)
(bindS x
(sum-function
(lambda (x)
(bindP f (lambda (f) (unitR (f (unitV x))))))
(lambda (x)
(bindP g (lambda (g) (unitR (g (unitV x)))))))))))

Figure B.29: Sums



;35 Shift
;5 [0 (shift p) 11 k = (p (\v. \k1. (k1 (k v))) \i.1)

(define Y%shift
(let ((mapC (get-map ’conts ’top))
(mapK (get-map ’conts ’env-results))
(iunitK (get-iunit ’conts ’env-results))
(unitC (get-unit ’cont-values ’cont-answers))
(bindC (get-bind ’cont-values ’cont-answers))
(unitE (get-unit ’env-values ’env-results))

(unitP (get-value-unit ’procedures ’env-values))

(unitR (get-unit ’cont-values ’env-results))

(bindS (get-value-bind ’procedures ’env-results)))

;3 tilt : cont-value * (procedures -> env-results) -> conts

(define (tilt cv f)
(iunitK (bindS (unitR cv) f)))

(define (cont-compose k1 k2)
(lambda (cv)
(bindC (k2 cv) k1)))

(lambda (exp)
(mapC exp
(lambda (cont)
(lambda (k)

(define (shift-proc v)
(mapK (unitE v)
(lambda (cont)
(lambda (k1)
(cont (cont-compose k k1))))))

(cont
(lambda (cv)
((tilt cv
(lambda (p)
(p (unitP shift-proc))))
unitC)))))))))

Figure B.30: Shift



