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1. Introduction

This is an expository paper on homotopy colimits and homotopy limits. These
are constructions which should arguably be in the toolkit of every modern algebraic
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topologist, yet there does not seem to be a place in the literature where a graduate
student can easily read about them. Certainly there are many fine sources: [BK],
[DS], [H], [HV], [V1], [V2], [CS], [S], among others. Of these my favorites are
[DS] and [H], the first as a general introduction and the second as an excellent
reference work. Yet [H] demands that the student absorb quite a bit before reaching
homotopy colimits, and [DS] does not delve deeply into the topic. The remaining
sources mentioned above present other difficulties to readers encountering these
ideas for the first time.

What I found myself wanting was a relatively short paper that would start with
the basic ideas and then proceed to give students a ‘crash course’ in homotopy
colimits—a paper which would survey the basic techniques for working with them
and show some examples, but not weigh the reader down with too many details.
That is the aim of the present document. Like most such documents, it probably
fails to truly meet its goals—as one example, it is not very short!

Many proofs are avoided, or perhaps just sketched, and the reader is encouraged
to seek out the complete proofs in the above sources.

1.1. Prerequisites. The reader is assumed to be familiar with basic category the-
ory, in particular with colimits and limits. [ML] is a fine reference. Some experience
with simplicial sets will be helpful, as well as some experience with model categories.
For the former we recommend [C], and for the latter [DS].

Almost no model category theory is used in the first eight sections, where we
keep the focus on topological spaces for the most part. Readers will only have
to know that a cellular inclusion is the main example of a cofibration, and that a
CW-complex is the main example of a cofibrant object. “Weak equivalence” means
weak homotopy equivalence—that is to say, a map inducing isomorphisms on all
homotopy groups.

In Sections 7–10 model category theory is much more prevalent. Although one
can state the basic properties of homotopy colimits and limits without using model
categories, the most elegant proofs all use model category techniques. So it is very
useful to become proficient in this way of thinking about things.

What we have just outlined is something like the ‘minimum basic requirements’
assumed in the paper. In reality we have assumed more, because we assume
throughout that the reader has a certain amount of experience with many ba-
sic homotopy-theoretic constructions (classifying spaces, spectral sequences, etc.)
Hopefully students with just one or two years experience past their first algebraic
topology course will find the paper accessible, though.

1.2. Organization. Part 1 of the paper (Sections 2–6) develops the basic definition
of homotopy colimits and limits, as well as some foundational properties. Every-
thing is done in the context of topological spaces, although the entire discussion
adapts more or less verbatim to other simplicial model categories.

Parts 2 and 3 of the paper (Sections 7–12) concern more advanced perspectives
on homotopy colimits and limits. We develop spectral sequences for computing
some of their invariants, explain how to adapt the constructions to arbitrary model
categories, and in Part 2 we intensively discuss the connection with the theory of
derived functors.

To conclude the paper we have Part 4, concerning examples. Most of the material
here only depends on Part 1, but every once in a while we need to use something



A PRIMER ON HOMOTOPY COLIMITS 3

more advanced. Most readers will be able to understand the basic ideas without
having read Parts 2 and 3 first, but will occasionally have to flip back for complete
details.

1.3. Notation. If C is a category and X and Y are objects, then we will write
C(X, Y ) instead of HomC(X, Y ). The category (C ↓ X) is the category whose
objects are pairs [A, A → X ] consisting of an object A in C and a map A → X .
A map [A, A → X ] → [B, B → X ] consists of a map A → B making the evident
triangle commute. Occasionally we will denote an object of (C ↓ X) as [A, X ← A],
depending on the circumstance.
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Part 1. Getting started

2. First examples

The theory of homotopy colimits arises because of the following basic difficulty.
Let I be a small category, and consider two diagrams D, D′ : I → Top. If one has
a natural transformation f : D → D′, then there is an induced map colimD →
colimD′. If f is a natural weak equivalence—i.e., if D(i)→ D′(i) is a weak equiv-
alence for all i ∈ I—it unfortunately does not follow that colimD → colimD′ is
also a weak equivalence. Here is an example:

Example 2.1. Let I be the ‘pushout category’ with three objects and two non-
identity maps, depicted as follows: 1←− 0 −→ 2. Let D be the diagram

∗ ←− Sn −→ Dn+1

and let D′ be the diagram
∗ ←− Sn −→ ∗.

Let f : D → D′ be the natural weak equivalence which is the identity on Sn and
collapses all of Dn+1 to a point. Then colimD ∼= Sn+1 and colimD′ = ∗, so the
induced map colimD → colimD′ is certainly not a weak equivalence.

So the colimit functor does not preserve weak equivalences (one sometimes says
that the colimit functor is not “homotopy invariant”, and it means the same thing).
The homotopy colimit functor may be thought of as a ‘correction’ to the colimit,
modifying it so that it is homotopy invariant.

There is one simple example of a homotopy colimit which nearly everyone has
seen: the mapping cone. We generalize this slightly in the following example, which
concerns homotopy pushouts.

Example 2.2. Consider a pushout diagram of spaces X
f
←− A

g
−→ Y . Call this

diagram D. The pushout of D is obtained by gluing X and Y together along the
images of the space A: that is, f(a) is glued to g(a) for every a ∈ A. The homotopy
pushout, on the other hand, is constructed by gluing together X and Y ‘up to
homotopy’. Specifically, we form the following quotient space:

hocolimD =
[

X ∐ (A× I)∐ Y
]

/ ∼

where the equivalence relation has

(a, 0) ∼ f(a) and (a, 1) ∼ g(a), for all a ∈ A.

We can depict this space by the following picture:

X Y

A× I
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Consider the open cover {U, V } of hocolimD where U is the union of X with the
image of A× [0, 3

4 ], and V is the union of Y with the image of A× [ 14 , 1]. Note that
U deformation retracts down to X , V deformation retracts down to Y , and that the
map A→ U∩V given by a 7→ (a, 1

2 ) is a homotopy equivalence. The Mayer-Vietoris
sequence then gives a long exact sequence relating the homology of hocolimD with
H∗(X), H∗(Y ), and H∗(A). Similarly, the Van Kampen theorem shows (assuming
X , Y , and A are path-connected, for simplicity) that π1(hocolimD) is the pushout
of the diagram of groups π1(X)←− π1(A) −→ π1(Y ). The moral is that the space
hocolimD is pretty easy to study using the standard tools of algebraic topology—in
contrast to colim D, which is much harder.

It is now easy to prove that our construction of hocolimD preserves weak equiv-
alences. Suppose D′ is another pushout diagram X ′ ←− A′ −→ Y ′, and that
D → D′ is a natural weak equivalence. Let {U ′, V ′} be the cover of hocolimD′ de-
fined analogously to {U, V }. Note that the map hocolimD → hocolimD′ restricts
to maps U → U ′, V → V ′, and U ∩ V → U ′ ∩ V ′, and these restrictions are all
weak equivalences (because both U and U ′ deformation retract down to X , and
so forth). It then follows from the naturality of the Van Kampen theorem, and of
the Mayer-Vietoris sequence, that hocolimD → hocolimD′ induces isomorphisms
on π1 and on all homology groups. So it is a weak equivalence by the Whitehead
theorem.

Before leaving this example we should relate it to mapping cones. If f : A→ X is
a map, then the quotient X/f(A) is the pushout of ∗ ←− A −→ X . The homotopy
pushout of ∗ ←− A −→ X , as defined above, is nothing other than the mapping
cone of f .

There are several things to be learned from the above example, and we will
return to it often as we develop the general theory. For now, here are four basic
things to notice right away:

(1) Whereas the colimit of a diagram is obtained by taking the spaces in the dia-
gram and gluing them together, the homotopy colimit will be constructed by
gluing them ‘up to homotopy’. Sometimes one says that the homotopy col-
imit is a ’fattened up’ version of the colimit. The above example is perhaps
misleadingly simple, because the indexing category I is so simple—for general
categories quite a bit more will be involved in encoding the necessary homo-
topies. Still, this basic idea of ‘gluing up to homotopy’ is the important one.

(2) Note that in the above example one has a map hocolimD → colim D obtained
by collapsing the homotopy. Specifically, one defines a map X ∐ (A× I)∐Y →
(X ∐A Y ) by letting it be the natural inclusions on the X and Y factors, and
on the A × I factor it is the projection A × I → A followed by the natural
inclusion. This map respects the identifications in the definition of hocolimD,
so we get our map hocolim D → (X ∐A Y ).

This situation is typical. When we finally define hocolimD for general dia-
grams we will find that there is a natural map hocolimD → colimD obtained
by ‘collapsing homotopies’.

(3) Many algebraic-topological invariants of the space hocolimD should be com-
putable in terms of the invariants for the Di’s. We will see, for instance,
that this is true for any cohomology theory E∗(−) and any homology theory
E∗(−). This is one of the main ways in which homotopy colimits are better



6 DANIEL DUGGER

than colimits—they interact in predictable ways with the standard machinery
of algebraic topology.

(4) It is not completely obvious, but it turns out that in our construction of
hocolimD we could have replaced the interval I by any contractible space
Z admitting a cofibration {0, 1}֌ Z. So we could have defined hocolimD as
[X ∐ (A×Z)∐Y ]/ ∼ where (a, 0) ∼ f(a) and (a, 1) ∼ g(a). This gives a space
which is weakly equivalent to the definition we used above. (Even more, we
could have replaced A×Z with any space B admitting a cofibration A∐A ֌ B
and a weak equivalence B → A coequalizing these two maps A → B). What
this is telling us is that there is not really a single homotopy colimit of a dia-
gram; rather, there are lots of different ‘models’ for the homotopy colimit, all
weakly equivalent to each other. The model where we used the interval I is in
some sense more natural than the others, but we don’t always want to be tied
down to one model.

2.3. The million-dollar question. Why should one learn about homotopy col-
imits? How are they useful? These are the kind of questions every student should
ask their professors before learning about something. It is often hard to give a
simple answer, but here are my attempts:

(a) As remarked above, it is relatively easy to compute the homology or cohomology
of a homotopy colimit (“easy” in the sense that there is a spectral sequence).
So if one is studying a space X and can identify it as being a certain homotopy
colimit (or more precisely, weakly equivalent to a certain homotopy colimit),
then one has a good chance of computing the homology and cohomology groups
of X .

(b) Many things that happen in algebraic topology come down, in the end, to
showing that two spaces X and Y are weakly equivalent. As we will see, there
are many techniques for showing that different homotopy colimits are weakly
equivalent. So if one can first identify X and Y as certain homotopy colimits,
there are suddenly a number of tools available for proving that X ≃ Y .

(c) Algebraic topology is full of machinery. This word can mean lots of things, but
what I mean at the moment is a method for starting with some input data and
producing a space or a sequence of spaces. For instance, one can start with a
category and produce its classifying space; or start with a symmetric monoidal
category and produce a Γ-space, and from the Γ-space get a spectrum. In
algebraic K-theory one starts with a ring, considers the exact category of R-
modules, and from this data constructs a K-theory space K(R). These are only
the most obvious examples—a complete list of such ‘machines’ would probably
fill hundreds of pages.

Anyway, the point I want to make is that homotopy colimits (and limits) play
an important role in the construction of the output spaces for many of these
machines. If you are a student of homotopy theory and haven’t yet encountered
homotopy colimits, it is only a matter of time.
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2.4. One more example. Before ending this section we examine another brief
example. Consider a diagram of spaces

A
f
−→ X

g
−→ Y.

One way to construct the homotopy colimit in this case is as the double mapping
cylinder shown below

A

X

Y

This is the space [(A × I) ∐ (X × I) ∐ Y ]/ ∼ in which we have identified
(a, 1) ∼ (f(a), 0) and (x, 1) ∼ g(x), for all a ∈ A and x ∈ X . Note that this
space deformation retracts down to Y .

Now consider the following. For the colimit of a diagram D, every map f : Di →
Dj in the diagram tells us to glue a ∈ Di to f(a) ∈ Dj . In the homotopy colimit
we are supposed to glue up to homotopy, and this is what we tried to do in the
double mapping cylinder above. But note that we have only done this for f and g,
whereas there is a third map in our diagram—namely, the composite gf ! Maybe
we should glue in a homotopy for that map, too.

This suggests that we should do the following. Start with A∐X∐Y and glue in
a cylinder for f , g, and gf . This gives us the following space, which we’ll call W :

A

X

Y

Unfortunately W is clearly not homotopy equivalent to Y , and therefore not ho-
motopy equivalent to our double mapping cylinder above. But we can fix this as
follows.

There is an evident map A × ∂∆2 into W : we have an A × I occuring in the
mapping cylinders for f and gf , forming two of the ‘sides’ of A× ∂∆2. The third

side comes the composite A × I
g×id
−→ X × I → W , where the second map is the

mapping cylinder for g. What we will do is take W and attach a copy of A ×∆2
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along the image of A× ∂∆2; that is, we form the pushout

A× ∂∆2 //
��

��

W

��
A×∆2 // W ′.

It is hard to draw a picture for W ′, but maybe we can try something like this:

A

X

Y

This new space W ′ is homotopy equivalent to the double mapping cylinder we
started with: the cylinder corresponding to gf can be squeezed down into the
double mapping cylinder, via the A×∆2 piece we just attached. So W ′ is another
model for the homotopy colimit of our diagram

2.5. Summary. The previous example suggests the following. Suppose given a
small category I and a diagram D : I → Top. To construct hocolimD we should
start with ∐iD(i), and then for every map f : i→ j in I we should glue in a cylinder
D(i)×∆1 corresponding to f . Then for every pair of composable maps

i
f
−→ j

g
−→ k

in I we should glue in a copy of D(i) × ∆2. Continuing the evident pattern, for
every sequence of n composable maps

i0 → i1 → i2 → · · · → in

we should glue in a copy of D(i0)×∆n. The problem is to figure out how to keep
track of all this gluing in an efficent way! We’ll begin developing the techniques for
this in the next section.
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3. Simplicial spaces

Before giving a general construction of homotopy colimits we need some prelim-
inary machinery.

Let ∆ be the cosimplicial indexing category: the objects are the finite ordered
sets [n] = {0, 1, . . . , n} for n ≥ 0, and the maps are the monotone increasing
functions. Note that there is an inclusion ∆ →֒ Top which sends [n] to ∆n and sends
a map σ : [n]→ [k] to the corresponding linear map ∆n → ∆k which coincides with
σ on the vertices of ∆n. Sometimes we will blur the distinction between ∆ and
this subcategory of Top which is its image; in fact, historically the category ∆ first
arose as this subcategory—the description in terms of ordered sets is really just a
modern convenience.

If C is any category, a simplicial object in C is a functor X : ∆op → C. This
is commonly drawn as a diagram consisting of spaces Xn = X([n]) together with
‘face’ and ‘degeneracy’ maps between them:

· · ·
//
////// X2

// ////
}}}}}}

X1
// //

{{{{
X0

{{
.

The face maps decrease dimension, and the degeneracies increase dimension; we
will usually not draw the degeneracies, for typographical reasons. A cosimplicial
object in C is a functor Z : ∆ → C, which is a similar diagram with all the arrows
going in the other direction.

3.1. Geometric realization. Suppose X : ∆op → Top is a simplicial space. The
geometric realization of X is the space

|X | = coeq

[

∐

[n]→[k]

Xk ×∆n
⇉
∐

n

Xn ×∆n

]

.(3.2)

This is a ‘coequalizer’, which is just another name for a colimit of a diagram
consisting of two parallel arrows: so the coequalizer of two arrows f, g : S ⇉ T is
the quotient space T/∼ in which one identifies f(s) ∼ g(s) for all s ∈ S.

To finish explaining the formula in (3.2), we should mention that the first co-
product in the coequalizer is taken over all maps in ∆. If σ : [n] → [k] is a map in
∆ then there are two evident maps from Xk ×∆n into

∐

i Xi×∆i. The first sends
Xk ×∆n to Xn ×∆n via the map σ∗ : Xk → Xn, and the second sends Xk ×∆n

to Xk × ∆k via the map s : ∆n → ∆k. This gives the two parallel maps in the
coequalizer diagram.

A little thought shows that the above formula for |X | can also be written as

|X | =

(

∐

n

Xn ×∆n

)

/

∼

where the equivalence relation has

(dix, t) ∼ (x, dit) and (six, t) ∼ (x, sit).

Here the di’s and si’s are the face and degeneracy maps in X , and the di’s and
the si’s are the coface and codegeneracy maps in the cosimplicial object ∆→ Top
sending [n] 7→ ∆n.
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Remark 3.3. Note that if each Xn is a discrete space then we can regard X as a
functor ∆op → Set and the above construction is the same as the usual geometric
realization of a simplicial set.

3.4. Homotopy invariance of geometric realization. By a map of simplicial
spaces X → Y we mean a natural transformation of functors. Such a map is said
to be an objectwise weak equivalence if Xn → Yn is a weak equivalence of spaces,
for all n. It is not quite true that if X → Y is an objectwise weak equivalence of
simplicial spaces then |X | → |Y | is a weak equivalence of spaces. At about the same
time, Segal [Se] and May [M] independently developed conditions under which this
is true. We will describe a modern version of such conditions next.

If si : Xn−1 → Xn is a degeneracy map, 0 ≤ i ≤ n− 1, then note that one of the
simplicial identities is disi = id; so Xn−1 is a retract of Xn. We then have that si

is injective, and a point-set-topology argument shows that the topology on Xn−1

coincides with the subspace topology on its image. So si is an inclusion. If Xn

is Hausdorff (which is necessarily true if Xn is cofibrant), more point-set topology
shows that si is in fact a closed inclusion.

Define the nth latching object of X to be the subspace

LnX =

n−1
⋃

i=0

si(Xn−1) ⊆ Xn.

The inclusion LnX →֒ Xn is called the nth latching map.
The first few latching spaces are easy to picture: L0X = ∅, L1X ∼= X0, and

L2X ∼= X1 ∐X0
X1. These spaces get more complicated as n grows. For instance,

L3X consists of three copies of X2 glued together along three copies of X1, all
containing a single copy of X0.

A simplicial space X is called Reedy cofibrant if the latching maps LnX → Xn

are cofibrations, for all n. If X is Reedy cofibrant then each Xn is cofibrant, by an
induction starting with the fact that the 0th latching map is ∅ → X0.

Theorem 3.5. Suppose X → Y is an objectwise weak equivalence between two
simplicial spaces, both of which are Reedy cofibrant. Then |X | → |Y | is also a weak
equivalence.

Sketch of proof. Let Skn |X | denote the subspace of |X | defined by

Skn |X | = coeq

[

∐

[k]→[l]
k,l≤n

Xl ×∆k
⇉
∐

k≤n

Xk ×∆k

]

.

Then there is a sequence of closed inclusions

Sk0 |X | →֒ Sk1 |X | →֒ Sk2 |X | →֒ · · ·

and the colimit is |X |. One shows that there are pushout squares

(LnX ×∆n) ∐(LnX×∂∆n) (Xn × ∂∆n)

��

// Skn−1 |X |

��
Xn ×∆n // Skn |X |

for each n, and our assumption that X is Reedy cofibrant implies that the left
vertical map is a cofibration.
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Using that X → Y is an objectwise weak equivalence, one shows inductively that
each LnX → LnY is a weak equivalence, and then that each Skn |X | → Skn |Y | is
a weak equivalence. It then follows that |X | → |Y | is also a weak equivalence. �

Remark 3.6 (The fat realization). Let X be a simplicial space. Define

||X || = coeq

[

∐

[n]→֒[k]

Xk ×∆n
⇉
∐

n

Xn ×∆n.

]

where the left coproduct runs over all injections in ∆. Note that this definition
completely ignores the degeneracy maps in the simplicial space X . The space ||X ||
is called the fat realization of X .

The disadvantage of ||X || over |X | is that the former space is always much bigger
and more complicated—in fact, it is always infinite-dimensional! For instance,
suppose X is the simplicial space consisting of one point in every dimension. Then
|X | is just a point, but ||X || is a space consisting of one 0-cell, one 1-cell, one 2-cell,
etc. This is because the degenerate stuff in X hasn’t been collapsed, as it was in
|X |.

The advantage of ||X || over |X | is that this fat construction preserves weak
equivalences under much weaker hypotheses. If X → Y is an objectwise weak
equivalence between simplicial spaces which are cofibrant in each dimension, then
||X || → ||Y || is a weak equivalence. We’ll see a proof of this in Example 8.13 below.

3.7. Collapsing the geometric realization. One often thinks of the Xn × ∆n

pieces in |X | as ‘higher homotopies’. Consider the process of collapsing them, in
which one shrinks every ∆n to a point. Thus, we consider the diagram

∐

[n]→[k]

Xk ×∆n

��

////
∐

[n]

Xn ×∆n

��
∐

[n]→[k]

Xk
// //
∐

[n]

Xn

where the vertical maps come from the projections Xk×∆n → Xk and Xn×∆n →
Xn. The coequalizer of the bottom two arrows is precisely colim∆op X . Thus, we
have a natural map

|X | → colimX.

Now, colim X can be identified with the coequalizer of the first two arrows
d0, d1 : X1 → X0. This is an exercise for the reader; clearly there is a map
coeq(X1 ⇉ X0) → colim X , and one can prove using the simplicial identities that
any map X0 → Z which coequalizes d0, d1 : X1 → X0 actually induces a map
colimX → Z. Thus, one gets a map colim X → coeq(X1 ⇉ X0), and one readily
sees that the two compositions are the identities.

Putting everything together, we have shown that there is a natural map

|X | → coeq
[

X1 ⇉ X0

]

.

Remark 3.8. Note that if X is a simplicial set then this coequalizer is just π0(X),
the set of path components. In this case our map is just the usual one from |X | to
its set of path components (equipped with the discrete topology).
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3.9. Degenerate simplicial spaces. A simplicial space X is degenerate in di-

mension q and above if the maps LkX → Xk are homeomorphisms for all k ≥ q.
It follows that the spaces Xk, k ≥ q, all get collapsed inside of |X |. The reason is
that if x ∈ Xk then x = si1si2 . . . sir

y for some y ∈ Xq−1. So for any t ∈ ∆k we
have

(x, t) = (si1 . . . sir
y, t) ∼ (y, si1 · · · sir t)

in |X |. A little thought shows that in this case we can write

|X | = Skq |X | = coeq

[

∐

[n]→[k]
n,k≤q

Xk ×∆n
⇉
∐

n≤q

Xn ×∆n

]

.

This observation simplifies the process of computing |X | in many cases, and we’ll
use it in the next sections when we’re faced with some specific examples.

3.10. Contracting homotopies. Suppose X∗ is a simplicial set and ∗ is a 0-
simplex of X . A contracting homotopy for X is a collection of combinatorial data
which will guarantee that |X | deformation-retracts down to ∗. So we need to deform
each n-simplex of X down to a point, and the deformations for different simplices
need to be compatible. The easiest way to accomplish this is to specify the following
data:

• For each 0-simplex a of X , a 1-simplex S(a) connecting a to ∗;
• For each 1-simplex b of X , a 2-simplex S(b) whose base is b, whose remaining

vertex is ∗, and whose ‘sides’ are the 1-simplices previously specified;
• And so on—for each n-simplex c of X we will need an (n + 1)-simplex

whose base is c, whose remaining vertex is ∗, and whose sides coincide with
previously specified data.

A contracting homotopy for X will therefore be a collection of maps S : Xn → Xn+1

which are required to satisfy some identities. These identities will take a different
form depending on whether we want the simplices S(a) to point towards the simplex
∗ or away from the simplex ∗. We’ll differentiate these cases by calling them
“forward” and “backward” contracting homotopies, respectively.

Before giving the formal definition it will be useful to generalize somewhat. By
an augmented simplicial set we mean a simplicial set X together with a set W
and a map X0 →W which coequalizes the two maps X1 ⇉ X0. This is the same as
having a map of simplicial sets X → cW , where cW is the constant simplicial set
having W in every dimension. A contracting homotopy for an augmented simplicial
set X∗ → W will be a map W → X0 such that W → X0 → W is the identity
together with a way of deformation-retracting X∗ down to the image of W in X0.

Finally, we wish to generalize our discussion from simplicial sets to simplicial
spaces . The basic formalism is the same, and in particular the definition of aug-
mented simplicial space is the same.

Definition 3.11. Let X∗ → W be an augmented simplicial space. It will be con-
venient to define X−1 to be W , and to have the map X0 → W be denoted by d0.
Then a forward contracting homotopy is a collection of maps S : Xn → Xn+1

for n ≥ −1 such that for each a ∈ Xn one has

di(Sa) =

{

S(dia) if 0 ≤ i < n

a if i = n
and S(sia) = si(Sa) for 0 ≤ i ≤ n.



A PRIMER ON HOMOTOPY COLIMITS 13

A backward contracting homotopy for X is a collection of maps S : Xn → Xn+1

for n ≥ −1 such that for each a ∈ Xn one has

di(Sa) =

{

a if i = 0

S(di−1a) if 0 < i ≤ n
and S(sia) = si+1(Sa) for 0 ≤ i ≤ n.

Proposition 3.12. Let X∗ → W be an augmented simplicial space which admits
either a forward or backward contracting homotopy. Then |X | → W is a homotopy
equivalence.

Proof. An easy exercise, or see ?????. �

Example 3.13. Let X be the simplicial set ∆n. The k-simplices of X are all the
monotone increasing sequences of length k + 1 taking values in {0, 1, . . . , n}. We
regard X as augmented by the one-point space, so we set X−1 = {∗}; it is useful
to think of the element of X−1 as the “empty sequence”.

One can define a backwards contracting homotopy for X by having S : Xn →
Xn+1 send a sequence a0 . . . an to the sequence 0a0 . . . an. In other words, the
contracting homotopy inserts a 0 at the beginning of every sequence. One can also
define a forwards contracting homotopy for X , by inserting an n at the end of every
sequence.

Example 3.14. Let f : X → Y be a map of topological spaces, and consider the
simplicial space Č(f) defined by

[n] 7→ X ×Y X ×Y · · · ×Y X ((n + 1) factors).

If (x0, . . . , xn) is an element of Č(f)n, then the ith face map omits xi and the jth
degeneracy repeats xj . This simplicial space is called the Čech complex of f . If
we forget the topological structure then this is the nerve of a category, where there
is one object for every element of X and a unique map between any two objects
which have the same image under f .

We may regard Č(f) as being augmented by Y , via the map f . Suppose s : Y →
X is a section of f . Define a backwards contracting homotopy for Č(X) by sending
the point (x0, . . . , xn) to (s(f(x0)), x0, . . . , xn). Note that one can also obtain a
forwards contracting homotopy by appending s(f(xn)) to the end of the tuple. So
if f admits a section then |Č(f)| → Y is a homotopy equivalence.

Example 3.15. This final example will not be needed until Part 2, but we include
it here as a titillating exercise. Let L : C ⇄ D : R be adjoint functors between
two categories. Recall that such a pair is equipped with natural transformations
LR(X)→ X and Z → RL(Z), which we’ll refer to as ‘contraction’ and ‘expansion’.
These natural transformations have the property that the two composites RX →
RLR(X) → RX and LZ → LRLZ → LZ (both obtained by first expanding and
then contracting in the evident way) are the identities.

For each X ∈ D one can construct a simplicial object BLR(X) over C having the
form

[n] 7→ (LR)n+1(X).

If the LR pairs in BLR(X)n are labelled as 0 through n, then the face map di

applies contraction to the ith LR pair; the jth degeneracy sj applies an expansion
between the L and R of the jth LR pair. Using only the facts stated in the previous
paragraph, one may check that these face and degeneracy maps indeed satisfy the
axioms for a simplcial object.
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Note that the contraction map LR(X) → X provides an augmentation for
BLR(X).

Now apply R levelwise to BLR(X) to obtain a simplicial object over C. One
can check that RBLR(X)→ RX admits a backwards contracting homotopy, where
the map S : R[BLR(X)]n → R[BBL(X)]n+1 is simply an expansion before the first
R—that is, S is the map Z → RL(Z) where Z = BLR(X)n. It is routine to check
that the necessary identities are satisfied.

Likewise, consider the case where X = LA. The augmented simplicial ob-
ject BLR(LA) → LA admits a forward contracting homotopy, where the map
BLR(LA)n → BLR(LA)n+1 inserts an expansion between the L and the A.

Exercise 3.16. Given a map of topological spaces f : X → Y , there are adjoint
functors

L : (Top ↓ X) ⇄ (Top ↓ Y ) : R

where L is composition with f and R is pullback along f . Check that the bar con-
struction for LR, applied to the terminal object of (Top ↓ Y ), is Č(f). Which of the
two contracting homotopies of Example 3.14 is related to the ones in Example 3.15?
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4. Construction of homotopy colimits

Let I be a small category, and let D : I → Top be a diagram. We will now explain
how to construct the homotopy colimit of D (really we should say, “a homotopy
colimit of D”).

The simplicial replacement of D is the simplicial space
∐

i0

D(i0)
∐

i0←i1

D(i1)oooo
∐

i0←i1←i2

D(i2)oooooo · · ·oo oooo
oo

We will denote this srep(D). So we have

srep(D)n =
∐

i0←i1←···←in

D(in)

where the coproduct ranges over chains of composable maps in I. We must define
the face and degeneracy maps. If σ = [i0 ← i1 ← · · · ← in] is a chain and 0 ≤ j ≤ n,
then we can ‘cover up’ ij and obtain a chain of n−1 composable maps—call this new
chain σ(j). When j < n, the map dj : srep(D)n → srep(D)n−1 sends the summand
D(in) corresponding to σ to the identical copy of D(in) in srep(D)n−1 indexed by
σ(j). When j = n we must modify this slightly, as covering up in now yields a chain
that ends with in−1. So dn : srep(D)n → srep(D)n−1 sends the summand D(in)
corresponding to the chain σ to the summand D(in−1) corresponding to σ(n), and
the map we use here is the map D(in)→ D(in−1) induced by the last map in σ.

The degeneracy maps sj : srep(D)n → srep(D)n+1, 0 ≤ j ≤ n, are a bit easier
to describe. Each sj sends the summand D(in) corresponding to the chain σ =
[i0 ← i1 ← · · · in] to the identical summand D(in) corresponding to the chain σ[j]
in which one has inserted the identity map ij ← ij.

Example 4.1. The nerve of a small category I is the simplicial set NI which in
dimension n consists of all strings [i0 → i1 → · · · → in] of n composable arrows. The
face map dj corresponds to ‘covering up’ the object ij , as above. The classifying

space of I is the geometric realization of the nerve; it will be denoted BI.
The nerve of the opposite category Iop may be identified with the simplicial set

which in dimension n consists of all strings [i0 ← i1 ← · · · ← in] of n composable
arrows, where the face map dj again corresponds to covering up the object ij . This
is very similar to the nerve of I, but not identical—the order of the faces and
degeneracies have been reversed. These simplicial sets are not isomorphic, but they
are naturally weakly equivalent.

Suppose D : I → Top is the diagram for which D(i) = ∗ for all i ∈ I. Then
srep(D) is just the nerve of the category Iop.

Remark 4.2. Note that we have made a choice when defining the simplicial re-
placement. We could have defined the nth object to be

∐

i0→i1→···→in

D(i0)(4.3)

and again defined the degeneracy dj to be the map associated to ‘covering up’ ij.
This is related to the distinction between the nerve of a category I and the nerve of
its opposite. The simplicial space from (4.3) is not isomorphic to srep(D), although
their geometric realizations are homeomorphic.
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So there are two natural definitions of the simplicial replacement (as well as for
the nerve of a category), and one is forced to choose. Our choices were made to
agree with the conventions in [H].

It turns out to be useful to have both definitions around at the same time. They
are brought together in the two-sided bar construction which we will talk about in
Section 10.

Remark 4.4. Note that if each D(i) is a cofibrant space, then the simplicial re-
placement is automatically Reedy cofibrant. This is because the nth latching object
of srep(D) is just the subspace of srep(D)n consisting of all summands correspond-
ing to chains which have identity maps in them. So the latching object is just a
summand inside the whole space, and the complementary summand is cofibrant
(being a disjoint union of cofibrant spaces). Thus, Ln(srep(D)) → srep(D)n is a
cofibration.

Definition 4.5. The homotopy colimit of a diagram D : I → Top is the geometric
realization of its simplicial replacement. That is,

hocolimD = | srep(D)|.

Sometimes we will write hocolimI D to remind us of the indexing category.

4.6. Homotopy invariance of the homotopy colimit.

Proposition 4.7. If D, D′ : I → Top are two diagrams consisting of cofibrant
objects and α : D → D′ is a natural weak equivalence, then the induced map
hocolimD → hocolimD′ is a weak equivalence.

Proof. We get a map of simplicial spaces srep(D) → srep(D′), and this is an ob-
jectwise weak equivalence. Since srep(D) and srep(D′) are both Reedy cofibrant,
it follows that the induced map of realizations is also a weak equivalence. �

Remark 4.8. Note that we could have instead defined hocolimD to be || srep(D)||.
That is, we could have used the fat realization instead of the usual geometric
realization. This would still give a homotopy invariant construction, and would
be weakly equivalent to the definition of hocolimD adopted above. This is further
demonstration that there is not really a single homotopy colimit construction; there
are many such constructions, all weakly equivalent to each other.

Remark 4.9 (Cofibrancy assumptions). Proposition 4.7 is perhaps weaker than
one would hope for, because of the cofibrancy conditions on the objects of D and
D′. There are two things to say about this. In a general model category, to get the
‘correct’ homotopy colimit of a diagram D one should first arrange things so that all
the objects are cofibrant—for instance, by applying a cofibrant-replacement functor
to all the objects of D. Then one can apply specific formulas for the hocolim, such
as the one above.

In the category Top, though, an ‘accident’ occurs, in that the cofibrancy con-
ditions on the objects are not necessary at all! That is to say, Proposition 4.7 is
true even without these conditions. A proof can be found in [DI, Appendix]. We
will tend to ignore this, however, and continue to state results with the objectwise
cofibration hypotheses in them. This is because we want to state the results so that
they generalize to other model categories.
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4.10. The natural map from the homotopy colimit to the colimit. Note
that colimD is the coequalizer of d0 and d1 in srep(D): that is, it is the quotient
space [∐iD(i)]/∼ where for every map σ : i → j in I we identify points x ∈ D(i)
with σ∗(x) ∈ D(j). The canonical map

| srep(D)| → coeq
[

srep(D)1 ⇉ srep(D)0

]

from Section 3.7 therefore can be written as a map hocolimD → colim D.

Example 4.11. Let’s return to our most basic example, where I is the pushout

category and D is a diagram X
f
←− A

g
−→ Y . The simplicial replacement has

X ∐ A ∐ Y in dimension 0, and X ∐ A ∐ A ∐ Y in dimension 1; everything in
dimensions 2 and higher is degenerate. So by the discussion in Section 3.9, when
forming | srep(D)| we only have to pay attention to the spaces in dimensions 0 and
1.

It’s perhaps better to write srep(D)1 = Xid ∐Af ∐Ag ∐ Yid, where we are now
keeping track of the maps in I indexing the summands (thus, “Af” is the copy of
A indexed by the map f). We see that the X and Y are degenerate, and a little
thought shows that | srep(D)| is the quotient space

[X ∐ A ∐ Y ∐ (Af ×∆1)∐ (Ag ×∆1)]/ ∼

in which the following identifications are made:

(1) (a, 0) ∈ Af × ∆1 is identified with f(a) ∈ X , whereas (a, 1) ∈ Af × ∆1 is
identified with a ∈ A.

(2) (a, 0) ∈ Ag × ∆1 is identified with g(a) ∈ Y , whereas (a, 1) ∈ Af × ∆1 is
identified with a ∈ A.

We thus get something like the following picture (but where the two cylinders do
not really intersect except at their ends):

X YA

A× IA× I

Note that this is homeomorphic to the space from Example 2.2.

Exercise 4.12. Work through the definition of hocolimD when D is the diagram
A→ X → Y , and check that it is homeomorphic to the space W ′ from our example
in Section 2.4.

4.13. A different formula. Here is another formula for the homotopy colimit.
Although it looks quite different at first, the space it describes is homeomorphic to
that of our previous definition (we will explain why below). The new formula is:

hocolim
I

D = coeq

[

∐

i→j

Di ×B(j ↓ I)op
⇉
∐

i

Di ×B(i ↓ I)op

]

.(4.14)
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There are a few things to say about this formula. If C is a category, then BC is
its classifying space—the geometric realization of its nerve. And Cop denotes the
opposite category. The op’s are needed in the above formula only to make it conform
with the choices we made in defining the simplicial replacement. Finally, if i → j
is a map in I then there is an evident induced map of categories (j ↓ I)→ (i ↓ I),
and this is being used in one of the maps from our coequalizer diagram.

The formula in (4.14) gives a more direct comparison between the homotopy
colimit and the ordinary colimit. The colimit is, after all, the coequalizer

colim
I

D = coeq

[

∐

i→j

Xi ⇉
∐

i

Xi

]

.

One finds a map from the previous coequalizer diagram to this one simply by
collapsing the spaces B(i ↓ I)op to a point; thus, one gets the map hocolimD →
colimD.

Below we will prove rigorously that the space defined in (4.14) is homeomorphic
to the space | srep(D)|, but let’s pause to explain the general idea. In constructing
| srep(D)|, for every chain in ← in−1 ← · · · ← i0 we have added a copy of Di0×∆n.
So if we fix a particular spot Di of the diagram, this means that we are adding a
copy of Di ×∆n for every string in ← in−1 ← · · · ← i1 ← i. Such a string gives an
n-simplex in B(i ↓ I)op, corresponding to the chain

[i, in ← i]← [i, in−1 ← i]← · · · ← [i, i1 ← i]← [i, i← i : id]

(which is a chain in (i ↓ I)). In the formula (4.14) we are simply grouping all these
Di × ∆n’s together—fixing i and letting n vary—into the space Di × B(i ↓ I)op.
In other words, the space B(i ↓ I)op is parameterizing all the ‘Di-homotopies’ that
are being added into the homotopy colimit.

Here is a simple example:

Example 4.15. Consider again the case where I is the pushout category 1← 0→ 2
and D is a diagram X ← A → Y . Then (1 ↓ I) and (2 ↓ I) are both the trivial
category, whereas (0 ↓ I) is the category a ← b → c (isomorphic to I again). So
B(0 ↓ I) is the space consisting of two intervals joined at one endpoint:

• • •.

The above formula says

hocolim
I

D =
[

X ∐
(

A×B(0 ↓ I)op
)

∐ Y
]/

∼

and one checks that the quotient relations give the same space we saw in Exam-
ple 4.11.

If one is willing to learn some more machinery, there is a very slick proof that our
two formulas for hocolimD are naturally homeomorphic. We give this in Section 10.
For the moment we will be content with an argument which is more longwinded,
but requires less background.

A couple of observations are needed. First, if K is a simplicial set than X × |K|
can be identified with the geometric realization of the simplicial space

[n] 7→ X ×Kn =
∐

Kn

X.
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Consider the following big diagram:

· · ·

������

· · ·

������

· · ·

������
∐

i,k1←k0←j←i

Xi
////

����

∐

i,j1←j0←i

Xi //

����

∐

j0←j1

Xj1

����
∐

i,k0←j←i

Xi
////
∐

i,j0←i

Xi //
∐

j0

Xj0

Each column is a simplicial space. The rightmost column is srep(X), the middle
column is

∐

i(Xi×N(I ↓ i)op), and the leftmost column is
∐

i→j(Xi×N(I ↓ j)op).
We have a map of simplicial spaces from the middle column to the right column.

In dimension n this sends the summand Xi corresponding to the string [j0 ←
j1 ← · · · jn ← i] to the summand Xjn

corresponding to [j0 ← · · · jn] via the map
Xi → Xjn

induced by i→ jn. This is clearly compatible with face and degeneracies.
We have two maps of simplicial spaces from the left column to the middle column.

In dimension n, one map sends the summand Xi corresponding to the index [i, kn ←
kn−1 ← · · · ← k0 ← j ← i] to the summand Xi indexed by [i, kn ← · · · ← k0 ← i]
(forget about j). The other map sends our summand Xi to the summand Xj

indexed by [j, kn ← · · · ← k0 ← j] (forget about i).
Now, it’s easy to check that each horizontal level of our diagram is a coequalizer

diagram; that is to say, the objects in the right column are the coequalizers of
the objects in the other two columns. Geometric realization is a left adjoint, and
therefore will commute with coequalizers. So this identifies | srep(D)| with the
coequalizer of

∐

i→j

|Xi ×N(I ↓ j)op|⇉
∐

i

|Xi ×N(I ↓ i)op|.

This is the identification that we wanted.
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5. Homotopy limits and some useful adjunctions

We haven’t yet talked about homotopy limits . The story is completely dual to
that for homotopy colimits, the main difference being that the pictures are not
quite as easy to draw. We will just outline the basic constructions, accentuating
the small differences.

Example 5.1. We again start with the most basic example, generalizing slightly
the notion of a homotopy fiber. Let I be the pullback category 1 → 0 ← 2, and

let D : I → Top be a diagram X
p
−→ B

q
←− Y . A point in the pullback X ×B Y

consists of a point x ∈ X and a point y ∈ Y such that p(x) = q(y). A point in the
homotopy pullback will consist of a point x ∈ X , a point y ∈ Y , and a path from
p(x) to q(y).

Formally, we define holimD to be the pullback of the diagram

BI

��
X × Y

p×q // B ×B

where BI is the space of maps γ : I → B and the map BI → B sends γ to
(γ(0), γ(1)). It is sometimes useful to depict a point in holimD via a picture
like the following:

X
B

Y

x

y

q(y)

p(x)

Note that if X
p
−→ B is a map and ∗ ∈ B is a basepoint, then the homotopy

fiber of p, as classicaly defined, is just the homotopy pullback of the diagram X −→
B ←− ∗.

Generally speaking, if I is any indexing category and D : I → Top is a diagram,
then a point in limD consists of points in each D(i) which ‘match up’ as you
move around the diagram. A point in holimD will consist of points in each D(i),
together with paths connecting their images as you move around the diagram, as
well as ‘higher homotopies’ connecting the paths, and paths of paths, etc. It is a
bit hard to describe, but here is one more example.

Example 5.2. Consider a diagram D of the form A
f
−→ X

g
−→ Y . A point in

holimD will consist of points a ∈ A, x ∈ X , y ∈ Y , together with the following
extra data. First, we need a path α from f(a) to x, a path β from g(x) to y, and
a path γ from g(f(a)) to y. Applying g to α gives a path from g(f(a)) to g(x),
and so now we have a map ∂∆1 → Y consisting of the three paths g(α), β, and γ.
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Finally, we also require a map ∆2 → Y extending our map ∂∆1 → Y . This is a
‘higher homotopy’.

5.3. Tot of a cosimplicial space. A cosimplicial space is a functor X : ∆→ Top,
drawn as follows:

X0
// // X1

////// X2
////////// · · ·

(and here we are omitting the codegeneracy maps for typographical reasons). Let
∆∗ denote the cosimplicial space corresponding to the standard inclusion ∆ →֒ Top.
As a cosimplicial space, ∆∗ is

∆0 //// ∆1 ////// ∆2
// //////// · · ·

If X is any cosimplicial space we can talk about the space of maps from ∆∗ to X :
the points are the natural transformations ∆∗ → X , and they are topologized as a
subspace of

∏

n X∆n

n . This space of maps is sometimes denoted Map(∆∗, X), but
is more commonly denoted TotX . It is called the totalization of X , or usually
just “Tot of X”, for short. We can also describe it as an equalizer:

TotX = eq

[

∏

n

X∆n

n ⇉
∏

[n]→[k]

X∆n

k

]

.

The two maps in the equalizer can be defined as follows, using that any map
σ : [n] → [k] induces a corresponding map σ∗ : ∆n → ∆k. Given a sequence of
elements sn ∈ X∆n

n , one of our maps sends this sequence to the collection σ 7→
sk ◦ σ∗ ∈ X∆n

k . The other map sends the sequence sn to the collection σ 7→
X(σ) ◦ sn ∈ X∆n

k , where X(σ) is the induced map Xn → Xk.
In words, a point in TotX consists of a point x0 ∈ X0, an edge x1 in X1, a

2-simplex x2 in X2, and so on, which are ‘compatible’ in the following two ways:

(1) The two images of x0 under X0 ⇉ X1 are the two endpoints of x1; the three
images of x1 under the maps d0, d1, d2 : X1 → X2 are the three faces of the
2-simplex x2; and so on.

(2) The image of x1 under the codegeneracy X1 → X0 is the map ∆1 → X0

collapsing everything to x0; the image of x2 under the two codegeneracies

X2 ⇉ X1 are the two maps ∆2 ⇉ ∆1 x1−→ X1, etc.

There doesn’t seem to be a particularly simple way to think about all this! Usually
I think of a point in TotX as being a point x0 ∈ X0 plus an edge connecting its
two images in X1, plus a 2-simplex connecting the three images of this edge in
X2, and so on, with the proviso that all this data must be compatible under the
codegeneracies.

Note that there is an evident map eq(X0 ⇉ X1)→ TotX defined as follows. If
x0 ∈ X0 is equalized by the two maps to X1, then we can choose our 1-simplex x1

in X1 to be constant. Then we can also choose our 2-simplex in X2 to be constant,
and so on down the line. All of these choices are automatically compatible under
codegeneracies, so we get a point in TotX .

5.4. Reedy fibrancy. It is not true that if X → Y is an objectwise weak equiva-
lence between cosimplicial objects then TotX → TotY is a weak equivalence. It is
true if X and Y satisfy some conditions, which we now explain.

Let X be a cosimplicial object and let a ∈ Xn. Applying the codegeneracy maps
to a gives an n-tuple (s0a, s1a, . . . , sn−1a) ∈ (Xn−1)

n. This is not an arbitrary
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n-tuple, as the cosimplicial identities give us some relations among the coordinates.
If we relabel this n-tuple as (x0, . . . , xn−1), we find that sixi = sixi+1 for each i in
the range 0 ≤ i ≤ n − 2. The nth matching object of X is the subspace of all
n-tuples satisfying these relations; that is,

MnX = {(y0, y1, . . . , yn−1) ∈ (Xn−1)
n | siyi = siyi+1 for 0 ≤ i ≤ n− 2}.

The map Xn → MnX sending a to (s0a, . . . , sn−1a) is called the nth matching

map.

Definition 5.5. A cosimplicial space is Reedy fibrant if the matching maps Xn →
MnX are fibrations, for all n ≥ 0.

Proposition 5.6. Let X → Y be an objectwise weak equivalence between cosim-
plicial spaces, each of which is Reedy fibrant. Then TotX → TotY is a weak
equivalence of spaces.

Proof. See [BK, ????]. �

5.7. Construction of homotopy limits. Let I be a small category and D : I →
Top a diagram. The cosimplicial replacement of D is the cosimplicial space
crep(D) defined as

crep(D)n =
∏

i0→i1→···→in

D(in).

The cofaces and codegeneracies are the evident ones, defined analogously to the
case of simplicial replacements.

The cosimplicial replacement of a diagram is always Reedy fibrant, provided that
the diagram was objectwise fibrant (which is always true in Top, since all spaces
are fibrant). So one defines the homotopy limit of D by

holimD = Tot[crep(D)].

It readily follows from Proposition 5.6 that this construction is homotopy invariant.
The equalizer of crep(D)0 ⇉ crep(D)1 is just lim D; a point in this equalizer

consists of a choice of point in each Di which are compatible as one moves around
the diagram. The natural map from this equalizer into Tot(crep(D)) gives us a
natural map limD → holimD.

Just as for homotopy colimits, we can describe holimD via another formula—this
time an equalizer formula:

holimD ∼= eq

[

∏

i

Xi ×B(i ↓ I) ⇉
∏

i→j

Xj ×B(i ↓ I)

]

.

5.8. Adjunctions. If D : I → Top and X ∈ Top, there is a useful adjunction
formula

Top(colim
I

D, X) ∼= lim
I

Top(D(i), X).

Here Top(A, B) denotes the set of maps from A to B in the category Top. The
formula just says that giving a map colimD → X is the same as giving a bunch of
maps D(i)→ X which are compatible as i changes. There is a similar formula

Top(A, lim
I

D) ∼= lim
I

Top(A, D(i))

which has an analogous interpretation.
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When generalizing to homotopy limits and colimits, the difference is that one
replaces the set of maps in Top with the mapping space. For this we need to
assume we are working in a ‘good’ category of spaces where the mapping space is a
true right adjoint (like the category of compactly-generated spaces). We then have
natural maps

Map(hocolim
I

D, X)→ holim
Iop

Map(D(i), X)(5.9)

and

Map(A, holim
I

D)→ holim
I

Map(A, D(i)).(5.10)

We’ll explain the map in (5.9), as the other one is similar. Using the description
of hocolimD from (4.14), we have maps

Map(hocolimD, Z)

∼=��

eq

[

Map

(

∐

i Di ×B(i ↓ I)op, Z

)

⇉ Map

(

∐

i→j Di ×B(j ↓ I)op, Z

)

]

∼=

��

eq

[

∏

i Map
(

Di ×B(i ↓ I)op, Z
)

⇉
∏

i→j Map
(

Di ×B(j ↓ I)op, Z
)

]

∼=

��

eq

[

∏

i Map
(

Di, Z
)B(i↓I)op

⇉
∏

i→j Map
(

Di, Z
)B(j↓I)op

]

∼=

��

eq

[

∏

i Map
(

Di, Z
)B(Iop↓i)

⇉
∏

i→j Map
(

Di, Z
)B(Iop↓j)

]

holim
Iop

Map(D(i), Z).

In the first two maps we are using that Map(−, Z) takes colimits to limits, which
follows from the adjointness properties. The third map just uses the adjunction,
and in the fourth map we have used the identification (i ↓ I)op = (Iop ↓ i).
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6. Changing the indexing category

As mentioned briefly in Section 2.3, one is often in the situation of wanting to
prove that the homotopy colimits of two different diagrams are weakly equivalent.
There are a variety of techniques for this, and we will describe a few in this section.
Unfortunately, the proofs of these results require more technology than is yet at
our disposal—so we will defer the proofs until Section 9.

Let α : I → J be any functor between small categories. Then given any diagram
X : J → Top, one obtains a new diagram α∗X : I → Top by α∗X = X ◦α. We wish
to compare hocolimJ X with hocolimI(α

∗X). In particular, under what conditions
will they be weakly equivalent?

6.1. The classical problem for colimits. The corresponding problem in the case
of ordinary colimits is probably familiar. There is a canonical map

colim
I

(α∗X)→ colim
J

X

and one wants to know when this is an isomorphism. A common situation is that I
is a subcategory of J , and one usual definition for I to be ‘cofinal’ in J is something
like:

(1) For each j ∈ J , there is an i ∈ I and a map j → i.
(2) For any two parallel maps j ⇉ i where i ∈ I, there is a map i → i′ in I such

that the two composites j → i′ are the same.

This is actually a special case of a much more general definition. Reall that for
any j ∈ J , the overcategory (j ↓ α) is the category whose objects are pairs (i, f)
consisting of an object i ∈ I and a map f : j → α(i) in J . A map from (i, f) to
(i′, f ′) consists of a map i→ i′ in I making the diagram

j
f //

f ′

  A
AA

AA
AA

A α(i)

��
α(i′)

commute.

Definition 6.2. The functor α : I → J is terminal (or final, or left cofinal) if
for each j ∈ J the overcategory (j ↓ α) is non-empty and connected.

Theorem 6.3. If α is terminal then for every diagram X : J → Top, the map
colimI(α

∗X)→ colimJ X is an isomorphism.

Proof. See [ML, Thm. IX.3.1]. �

Remark 6.4. There is a nice way to remember the above definition and theorem.
One particularly simple case is when J has a terminal object w, and I = {w} is the
subcategory consisting of this single object. In this case it’s clear that colimJ X
should just be X(w), which is colimI(α

∗X).
The condition for being a terminal object is that the overcategories (j ↓ {w})

are trivial categories consisting of one object and an identity map. This is a very
special case of the connectedness condition above.
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6.5. Extension to the case of homotopy colimits. Let α : I → J be a functor
between small categories. We first note that for diagrams X : J → Top there is a
natural map of simplicial spaces

srep(α∗X)→ srep(X).

In dimension n this is the map
∐

i0←i1←···←in

(α∗X)(in) −→
∐

j0←j1←···←jn

X(jn)

which sends the summand (α∗X)(in) corresponding to the chain [i0 ← · · · ← in] to
the summand X(i0) corresponding to the chain [α(i0) ← · · · ← α(in)]. Note that
(α∗X)(in) = X(α(in)), and the map is really just the identity on these summands.
This is clearly compatible with the face and degeneracy maps, and so gives a map
of simplicial spaces.

Taking realizations gives us a natural map

hocolim
I

α∗X → hocolim
J

X.

Definition 6.6. The functor α : I → J is homotopy terminal (or homotopy

final, or homotopy left cofinal) if for each j ∈ J the overcategory (j ↓ α) is
non-empty and contractible (meaning that its nerve is contractible).

See Remark 6.13 for more about the above choices in terminology.

Theorem 6.7 (Cofinality Theorem). If α is homotopy terminal then for every di-
agram X : J → Top, the map hocolimI(α

∗X)→ hocolimJ X is a weak equivalence.

Proof. See Sections 9.6 and 10. �

There is one special case of Theorem 6.7 which we will prove now, both because
the proof is simple and because we will need it later.

Lemma 6.8. Suppose that J has a terminal object z. Then for every diagram
X : J → Top, the map hocolimJ X → colimJ X → X(z) is a weak equivalence.

Proof. Consider the simplicial space srep(X). There is an evident augmentation
srep(X)→ X(z), and we claim that this augmented simplicial space admits a back-
wards contracting homotopy (see Definition 3.11). The contraction S : srep(X)n →
srep(X)n+1 will send the summand X(in) labelled by i0 ← i1 ← · · · ← in to the
summand X(in) labelled by z ← i0 ← i1 ← · · · ← in. It is routine to check that this
satisfies the identities for a contracting homotopy, and therefore by Proposition 3.12
we find that | srep(X)| → X(z) is a homotopy equivalence. �

It is often useful to know how the maps α∗ behave under composition. Suppose

now that I1
α
−→ I2

β
−→ I3 are two functors between categories, and that X : I3 →

Top is a diagram. We have three natural maps of cosimplicial spaces, forming a
triangle which is readily checked to commute:

crep[(βα)∗X ] //

''PPPPPPPPPPP
crep(β∗X)

��
crep(X).
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This yields a commutative triangle of homotopy colimits:

hocolimI1(βα)∗X
α∗ //

(βα)∗ ))SSSSSSSSSSSSS
hocolimI2 α∗X

β∗

��
hocolimI3 X.

Here is another result about changing the indexing category. Suppose again that
α : I → J is a functor and X : J → Top. For each j ∈ J , let uj : (α ↓ j)→ J be the
map sending [i, α(i)→ j] 7→ α(i). Notice that there is a canonical map

colim
(α↓j)

u∗jX → Xj .

Theorem 6.9. Let α : I → J be a functor, and let X : J → Top. Suppose that for
each j ∈ J the composite map

hocolim
(α↓j)

u∗X → colim
(α↓j)

u∗jX → Xj

is a weak equivalence. Then the map hocolimI α∗X → hocolimJ X is a weak equiv-
alence.

Proof. See Section 9.6. �

6.10. Dual results for homotopy limits. Suppose α : I → J and X : J → Top.
There is a natural map of cosimplicial spaces

crep(X)→ crep(α∗X),

and after taking Tot this gives a map α∗ : holimJ X → holimI(α
∗X).

Definition 6.11. The functor α : I → J is homotopy initial (or homotopy

cofinal, or homotopy right cofinal) if for each j ∈ J the overcategory (α ↓ j) is
non-empty and contractible (meaning that its nerve is contractible).

Theorem 6.12. If α is homotopy initial then for every diagram X : J → Top, the
map holimJ X → holimI(α

∗X) is a weak equivalence.

Remark 6.13. The terms ’final/cofinal’ and—even worse—’left/right cofinal’ are
easily mixed up, and it’s also easy to mix up which one goes with colimits and which
one goes with limits. The terms ’homotopy initial’ and ’homotopy terminal’ are
better in this regard, as they fit naturally with the notions of initial and terminal
object.

If a category has a terminal object, it is easy to compute the homotopy colimit .
The condition that a category I has a terminal object ω says something about the
overcategories (i ↓ ω); likewise, the condition that a functor α : K → I be homotopy
terminal says something about the overcategories (i ↓ α). So the adjective ’terminal’
lets one remember how to connect all these concepts (and likewise for ’initial’).

One also has the following analog of Theorem 6.9:

Theorem 6.14. Let α : I → J be a functor, and let X : J → Top. Suppose that
for each j ∈ J the composite map

Xj → lim
(j↓α)

u∗jX → holim
(j↓α)

u∗X

is a weak equivalence. Then the map holimJ X → holimI α∗X is a weak equivalence.
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6.15. Further techniques. We give one more result related to changing the in-
dexing category. We’ll only state the hocolim version; the holim version is entirely
analogous.

Suppose that α, α′ : I → J are two functors and η : α → α′ is a natu-
ral transformation. If X : J → Top then η induces a natural transformation
η∗ : α∗X → (α′)∗X . The following triangle commutes in the homotopy category
Ho (Top):

hocolimI α∗X
α∗ //

η∗

��

hocolimJ X

hocolimI(α
′)∗X.

α′

∗

66mmmmmmmmmmmm

Proposition 6.16. Let α : I → J be a functor between small categories, and let
X : J → Top be a diagram. Suppose that there is a functor β : J → I together with
natural transformations η : αβ → idJ and θ : βα→ idI such that the following two
conditions hold:

(1) Applying X to the maps η(j) : αβ(j)→ j yields weak equivalences, for all j ∈ J ;
and

(2) Applying α∗X to the maps θ(i) : βα(i) → i also yields weak equivalences, for
all i ∈ I.

Then the induced map hocolimI α∗X → hocolimJ X is a weak equivalence.
Moreover, the same conclusion holds if there are zig-zags of natural transfor-

mations between βα and idI , and between αβ and idJ , provided each step in the
zig-zags induces weak equivalences after applying X and α∗X, respectively.

Proof. See [D, Proposition A.4]. �
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Part 2. A closer look

So far we have understood the homotopy colimit as a ’fattened up’ version of the
colimit. Whereas taking a colimit can be thought of as gluing objects together, tak-
ing a homotopy colimit amounts to indirectly gluing them together via homotopies
and higher homotopies. We saw that this process can be described by a certain
formula (the geometric realization of the simplicial replacement), which is not hard
to describe but perhaps not so easy to manipulate.

In the next few sections we will take a closer look at this ’formulaic’ approach
to homotopy colimits, and we’ll encounter several variations of the main idea. The
ostensible goal will be to learn some clever techniques for manipulating these for-
mulas, but along the way we will make discoveries which slowly take us further and
further away from the formulaic perspective. In Part 3 we will then take up those
discoveries from a more abstract point-of-view.

There is a central theme which drives most of what follows. Given a diagram
D : I → Top, there is a way of constructing the homotopy colimit by first replacing
D with an ‘equivalent’ diagram QD : I → Top (having QDi ≃ Di for each i)
and then taking the ordinary colimit of QD. The diagram QD is in some sense
a resolution of D, and this leads us to view the homotopy colimit as a derived
functor of the colimit. When we first encounter this idea in Section 8 it might seem
like there’s not much content to it—-we are just rewriting the old formula for the
homotopy colimit in a different way. But the power of homological (or homotopical)
algebra comes in realizing that one doesn’t have to use the same resolution every
time; any nice enough resolution will do the job. So in the end this new way of
looking at things will prove very useful.

7. Brief review of model categories

Model categories will weave their way in and out of the next few sections. They
have proven themselves to be a valuable ally when dealing with derived functors
and homotopical algebra.

We will not recall the notion of a model category here. The reader may consult
[DS], [H], or [Ho] for nice overviews. Suffice it to say that a model category M

is a category equipped with three collections of maps—the cofibrations, fibrations,
and weak equivalences—which are required to satisfy five basic axioms. A map is
called a ‘trivial cofibration’ if it is both a cofibration and a weak equivalence, and
similarly for ‘trivial fibration’.

The basic examples are as follows:

(1) Top, where the weak equivalences are weak homotopy equivalences, the fibra-
tions are Serre fibrations, and the cofibrations are retracts of cellular inclusions.

(2) sSet, where the weak equivalences are the maps which become weak homotopy
equivalences after geometric realization. The fibrations are the Kan fibrations,
and the cofibrations are the monomorphisms.

(3) Ch≥0(R), where R is a ring. This is the category of non-negatively graded chain
complexes. The weak equivalences are the quasi-isomorphisms, the fibrations
are maps which are surjective in positive dimensions, and the cofibrations are
the monomorphisms which in each level are split with projective cokernel.

(4) Ch≤0(R), where R is a ring. This is the category of non-positively graded chain
complexes (or cochain complexes, after re-indexing). The weak equivalences
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are the quasi-isomorphisms, the cofibrations are the monomorphisms, and the
fibrations are the surjections which in each level are split with injective kernel.

There are many other examples, for instance several different model categories
of spectra.

7.1. Quillen functors. If M and N are two model categories, a Quillen pair is
an adjoint pair

L : M ⇄ N : R

which satisfies the following two equivalent conditions:

(1) L preserves cofibrations and trivial cofibrations—that is so say, if f is a cofi-
bration (resp. trivial cofibration) in M then L(f) is a cofibration (resp. trivial
cofibration) in N.

(2) R preserves fibrations and trivial fibrations.

The most familiar example is the adjoint pair

| − | : sSet ⇄ Top : Sing

where | − | is geometric realization and Sing is the functor which sends a space X
to the simplicial set [n] 7→ Top(∆n, X).

One can prove that when (L, R) is a Quillen pair, L preserves weak equivalences
between cofibrant objects and R preserves weak equivalences between fibrant ob-
jects. The ‘derived functor’ of L applied to an object A ∈ M is obtained by
choosing a weak equivalence QA→ A in which QA is cofibrant, and then applying
L to QA. If Q′A→ A is another weak equivalence in which Q′A is cofibrant, then
the model category axioms show that there is a weak equivalence QA→ Q′A; thus,
L(QA)→ L(Q′A) is also a weak equivalence. This tells us that the derived functor
of L gives a well-defined homotopy type.

Similarly, the derived functor of R applied to an object Z ∈ N is obtained by
choosing a weak equivalence Z → FZ in which FZ is fibrant, and then applying R
to FZ.
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8. The derived functor perspective

In this section we explain a sense in which the homotopy colimit is the derived
functor of the colimit functor. We also discuss a universal property (of sorts)
enjoyed by the homotopy colimit.

Example 8.1. To motivate what follows, we return to our basic example of a

pushout diagram X
f
←− A

g
−→ Y . Recall that the homotopy pushout consists

of a copy of X , a copy of Y , and a cylinder A × I in which the two ends of the
cylinder have been glued to X and Y via the maps f and g. We can arrive at this
construction in a different way, as follows.

Let Cyl(f) and Cyl(g) denote the mapping cylinders of f and g; for example, the
former is the quotient space [X∐(A×I)]/∼ where (a, 0) ∼ f(a). Let i : A →֒ Cyl(f)
denote the inclusion a 7→ (a, 1), and let j : A →֒ Cyl(g) be defined similarly. We

have the new pushout diagram of the form Cyl(f)
i
←− A

j
−→ Cyl(g); let’s call this

new diagram QD. Note that there is a natural weak equivalence QD→ D obtained
by collapsing the cylinders, and that the colimit of QD is hocolimD.

To summarize, we have found the following prescription for constructing the
homotopy colimit. First replace the diagram D by a new one QD in which one
adds homotopies to the objects in a certain way, without affecting their homotopy
type. Sometimes this is called ‘fattening up’ the diagram D. The homotopy colimit
of D is then just the colimit of the new diagram QD.

8.2. Construction of QX. We’ll next explain how to adapt the above example to
the general case. Let X : I → Top be a diagram. Basically what we want to do is
replace each object Xi with the homotopy colimit of all the objects in the diagram
mapping to Xi. To say this precisely, for each i ∈ I consider the classifying space
(I ↓ i) and the forgetful functor ui : (I ↓ i)→ I sending the map [j → i] to j. Write

(QX)i = hocolim
(I↓i)

u∗i X.

Note that (I ↓ i) has a terminal object, namely the identity map [i→ i]. It follows
from the Cofinality Theorem (6.7) that the induced map Xi → (QX)i is a weak
equivalence.

Now suppose that we have a map f : i → j, and let uf denote the functor
(I ↓ i)→ (I ↓ j) sending [k → i] to [k → j] (obtained by composing with f). This
functor induces a map

(uf )∗ : (QX)i = hocolim
(I↓i)

u∗i X → hocolim
(I↓j)

u∗jX = (QX)j

If i
f
−→ j

g
−→ k are two maps in I then we have a commutative diagram

(I ↓ i)
uf //

ugf $$I
II

II
II

II
(I ↓ j)

ug

��
(I ↓ k)
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and therefore get a commutative triangle

(QX)i

(uf )∗ //

(ugf )∗ $$J
JJJJJJ

JJ
(QX)j

(ug)∗

��
(QX)k.

So QX is a new diagram I → Top.
The natural maps hocolim(I↓i) u∗i X → colim(I↓i) u∗i X

∼= Xi compile to give a
map of diagrams QX → X . We observed above that we have weak equivalences
Xi → QXi coming from the terminal object of (I ↓ i), but these are not compatible
as i varies. But the composite Xi → (QX)i → Xi is the identity, and so it follows
that (QX)i → Xi is a weak equivalence as well. Thus, QX → X is an objectwise
weak equivalence.

Our final claim is that colimI(QX) ∼= hocolimI X . It is not so hard to just think
about it and see that this must be true. We will be able to explain it better after
a brief detour, though.

8.3. Homotopy coherent maps and the universal property. Let X, Y : I →
Top be two diagrams. A map of diagrams X → Y consists of a collection of maps
Xi → Yi which are compatible as i varies. A homotopy coherent map X → Y
consists of a collection of maps Xi → Yi (which might not be compatible as i varies),
together with the following data:

(1) For every map i→ j in I, a homotopy Xi ×∆1 → Yj between the composites
Xi → Xj → Yj and Xi → Yi → Yj .

(2) For every composable pair i→ j → k, a map Xi×∆2 → Yk whose restriction to
Xi × ∂∆1 gives the three homotopies corresponding to the maps i→ j, i→ k,
and j → k.

(3) For every chain of n morphisms i0 → i1 → · · · → in, a map Xi0 ×∆n → Yin

which extends previous data on the subspace Xi0 × ∂∆n.

Of course we have been very sloppy in writing down the third condition. One
way to be more rigorous is as follows. One can form a cosimplicial space Map(X, Y )

∏

i

Map(Xi, Yi) // //
∏

i0→i1

Map(Xi0 , Yi1)
// ////

∏

i0→i1→i2

Map(Xi0 , Yi2)
// ////// · · ·

and a homotopy coherent map X → Y is precisely a point in Tot of this cosimplicial
space.

Remark 8.4. Let Z be a space. To give a map colim X → Z is equivalent to
giving a map of diagrams X → cZ, where cZ is the constant diagram containing
Z at every spot (and all identity maps). The reader may check that to give a
map hocolimX → Z is the same as giving a homotopy coherent map of diagrams
X → cZ. This can be thought of as the ‘universal property’ for homotopy colimits.

Let hc(X, Y ) denote the set of homotopy coherent maps from X to Y . Note
that maps X ′ → X and Y → Y ′ give maps hc(X, Y )→ hc(X ′, Y ) and hc(X, Y )→
hc(X, Y ′) in the evident way.

Let QX denote the diagram constructed in the previous section. We claim that
to give a map of diagrams QX → Y is the same as giving a homotopy coherent
map X → Y :
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Proposition 8.5. There is a natural bijection between TopI(QX, Y ) and hc(X, Y ).

Proof. This is just a matter of chasing through the definitions. �

Remark 8.6. We can now explain why colimI QX ∼= hocolimI X . To give a map
colimI QX → Z is to give, for each i ∈ I, maps hocolim(I↓i) X → Z which are
compatible as i varies. This is the same as giving, for each i ∈ I, a homotopy
coherent map X |(I↓i) → (cZ)|(I↓i), which are again compatible as i varies. But
clearly this is the same thing as just giving a homotopy coherent map X → cZ!
Since this is in turn the same as giving a map hocolimI X → Z, it follows that
colimI QX ∼= hocolimI X .

Said differently, for any space Z we have a sequence of natural bijections

Top(colim QX, Z) ∼= TopI(QX, cZ) ∼= hc(X, cZ) ∼= Top(hocolimX, Z).

This implies that colimQX ∼= hocolimX .

For future reference we make the following observation.

Proposition 8.7. Let E → E′ be an objectwise trivial fibration of I-diagrams,
and let D be an objectwise cofibrant I-diagram. Then hc(D, E) → hc(D, E′) is
surjective.

Proof. The proof is a straightforward induction. Suppose D → E′ is a homotopy
coherent map. The maps Di → E′i lift to maps Di → Ei. Then for each map i→ j
in I we have a diagram

Di × ∂∆1 //

��

Ej

��
Di ×∆2 // E′j

and we get a lifting because the left vertical map is a cofibration and the right
vertical map is a trivial fibration. And so on. �

8.8. Model categories of diagrams. Model categories provide a very useful way
for understanding the derived functor perspective on homotopy colimits. Let TopI

denote the category of diagrams I → Top, where the maps are natural transfor-
mations. It turns out that TopI has a model category structure in which a map
X → Y is a

(1) weak equivalence if and only if each Xi → Yi is a weak equivalence, and
(2) a fibration if and only if each Xi → Yi is a fibration.

The cofibrations are a bit awkward to describe, but they are the maps with the
left-lifting-property with respect to the trivial fibrations. We will talk more about
the cofibrant objects in Section ?????.

There are adjoint functors

colim: TopI
⇄ Top : c

where c is the constant diagram functor. Clearly c preserves fibrations and trivial
fibrations, so this is a Quillen pair. To compute the derived functor of colim applied
to a diagram X , one first chooses a weak equivalence X̂ → X where X̂ is cofibrant,
and then L colim(X) is just colim X̂.

We claim that QX is precisely a cofibrant-replacement for X in TopI . Since
colimQX ∼= hocolimX , this identifies hocolim with the derived functor of colim.
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We have already remarked that QX → X is an objectwise weak equivalence,
so we just need to prove that QX is cofibrant. Let W → Z be an objectwise
trivial fibration. Then the map TopI(QX, W ) → TopI(QX, Z) is isomorphic to
hc(X, W ) → hc(X, Z). By Proposition 8.7, this is surjective; so we have a lift
QX →W as desired.

Remark 8.9. Below it will be useful to have a name for a construction parallel to
QX . Namely, if D : I → Top is a diagram let

hocolim’
I

D = coeq

[

∐

i→j

Di ×B(j ↓ I) ⇉
∐

i

Di ×B(i ↓ I)

]

(this is the same formula as (4.14), but without the “op”’s on the overcategories).
Then, if X : I → Top is a diagram define Q′X to be the diagram

i 7→ hocolim’
(I↓i)

(u∗i X).

Repeating the arguments from above, one finds that Q′X is also a cofibrant-
replacement for X in TopI .

Note that if ∗ denotes the constant diagram I → Top whose value is a single
point, then Q′(∗) is the diagram i 7→ B(I ↓ i).

8.10. Tensor products of diagrams. Suppose X : I → Top and Ω: Iop → Top.
The tensor product X ⊗ Ω is defined to be

X ⊗ Ω = coeq

[

∐

i→j

Xi × Ωj ⇉
∐

i

Xi × Ωi

]

.

This kind of construction is called a coend, and we have seen it several times
already.

Example 8.11. A simplicial space is a functor X : ∆op → Top. If j : ∆ →֒ Top is
the canonical functor, then |X | is just X ⊗ j.

If X ′ : ∆op
f → Top denotes the restriction of X to ∆op

f , and j′ : ∆f → Top is the

restriction of j, then ||X || is X ′ ⊗ j′.

Example 8.12. Let X : I → Top be a diagram. Let B(− ↓ I)op : Iop → Top denote
the functor i 7→ B(i ↓ I)op. Then hocolimI D ∼= X ⊗B(− ↓ I)op.

If we fix X , the functor X ⊗ (−) has a nice adjointness property. Namely, it

is the left adjoint to the functor Top → TopIop

which sends Z to the diagram
i 7→ Top(Xi, Z). We’ll call this functor Hom(X,−). Our adjoint pair is therefore

X ⊗ (−) : TopIop

⇄ Top : Hom(X,−).

Assuming X is objectwise cofibrant, then Hom(X,−) takes fibrations to object-
wise fibrations, and trivial fibrations to objectwise trivial fibrations. So the above
is a Quillen pair. One useful consequence is that the left adjoint preserves weak
equivalences between cofibrant objects.

Let BI denote the diagram Iop-diagram i 7→ B(i ↓ I)op. There is of course a
map BI → ∗, and this is an objectwise weak equivalence because each category
(i ↓ I) has an initial object and is therefore contractible. What’s more, BI is

actually cofibrant in TopIop

. This is because BI is none other than the diagram
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Q′(∗), where ∗ denotes the constant Iop-diagram consisting of a point in every spot
(see Remark 8.9 for Q′). That is to say, for each i ∈ I one has

Q′(∗)i = B(Iop ↓ i) ∼= B(i ↓ I)op.

The second isomorphism is canonical, and so gives an isomorphism of diagrams.
So now we understand the formula for the homotopy colimit from another per-

spective: it came from taking a cofibrant approximation to ∗ in TopIop

. But model
category theory now tells us that we could have used any cofibrant approximation to
∗, and we would have gotten something weakly equivalent (since any two cofibrant
approximations are weakly equivalent, and X ⊗ (−) preserves weak equivalences
between cofibrant objects). This is useful for obtaining other models for homotopy
colimits.

Example 8.13. Recall that ∆f denotes the subcategory of ∆ consisting only of
inclusions. Let D : ∆f → Top denote the diagram [n] 7→ ∆n, obtained by restricting
the canonical diagram ∆→ Top. The map D → ∗ is obviously an objectwise weak
equivalence, and we claim additionally that D is cofibrant in Top∆f . This is easy

to see because if X
∼
−։ Y is an objectwise trivial fibration and D → Y is a map,

then one can inductively product a lifting D → X .
We conclude that if X : ∆op

f → Top is any diagram, then X ⊗ D is weakly

equivalent to hocolimX (naturally in X). But X ⊗ D is just the fat realization
||X ||.

This justifies our claim—from way back in Remark 3.6—that if X → Y is an
objectwise weak equivalence between objectwise cofibrant simplicial spaces, that
||X || → ||Y || is necessarily a weak equivalence.
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9. More on changing the indexing category

We discuss relative homotopy colimits (also called homotopy left Kan exten-
sions), and use these to revisit the problem of changing the indexing category.
Combining these new ideas with the techniques from the last section, we will be
able to give proofs of two results we skipped in Part 1.

9.1. Relative homotopy colimits. Let α : I → J be a functor. Let α∗ : TopJ →
TopI denote the functor sending a diagram X : J → Top to the composition I →
J → Top. We call this functor ‘restriction along α’. It has a left adjoint called
the relative colimit or left Kan extension, denoted colimI→J or colimα. In the
case where J = ∗, the trivial category, this is the usual colimit functor.

There is a simple formula for colimI→J(A), where A ∈ TopI . Namely, it is the

diagram in TopJ given by
j 7→ colim

(α↓j)
(u∗jA)

where uj : (α ↓ j)→ I is the forgetful functor.
The adjoint pair

colim
I→J

: TopI
⇄ TopJ : α∗

is a Quillen pair, as the right adjoint α∗ clearly preserves fibrations and trivial fibra-
tions. If A : I → Top one defines the relative homotopy colimit (or homotopy
left Kan extension) to be the J-diagram given by

hocolim
I→J

A = colim
I→J

QA.

Observe that this is the derived functor of colimI→J .
We can also give a more explicit description of the relative homotopy colimit:

Proposition 9.2. For A ∈ TopI , hocolimI→J A is the J-diagram

j 7→ hocolim
(α↓j)

(u∗jA).

Proof. Notice that

[hocolim
I→J

A]j = [colim
I→J

QA]j = colim
(α↓j)

u∗j (QA) and hocolim
(α↓j)

u∗jA = colim
(α↓j)

Q(u∗jA).

So it suffices to prove that Q(u∗jA) = u∗j (QA). The former is the (α ↓ j)-diagram
sending

[i, α(i)→ j] 7→ hocolim
(α↓j)↓[i,α(i)→j]

u∗jA.

One readily checks that the category
(

(α ↓ j) ↓ [i, α(i) → j]
)

may be identified
with (I ↓ i), and so we are looking at the diagram

[i, α(i)→ j] 7→ hocolim
(I↓i)

u∗i A.

But this is just u∗j (QA), so we are done. �
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9.3. Changing the indexing category. Let α : I → J be a functor. Our next
goal will be to relate hocolimI α∗X to relative homotopy colimits. Let αop : Iop →
Jop be the associated functor of opposite categories. Finally, let B(− ↓ α)op denote
the diagram Jop → Top sending j 7→ B(j ↓ α)op.

The following proposition uses the functor Q′ discussed in Remark 8.9.

Proposition 9.4. For any α : I → J one has:

(a) B(− ↓ α)op ∼= colim
Iop→Jop

Q′(∗), where ∗ is the constant Iop-diagram whose value

is ∗.
(b) For any X : I →M, there is a natural isomorphism hocolimI X ∼= X⊗Iop Q′(∗).

(c) B(− ↓ α)op is cofibrant in TopJop

.
(d) There is a natural isomorphism

X ⊗B(− ↓ α)op ∼= hocolim
I

α∗X.

Proof. For part (a) we begin by applying Proposition 9.2—or more precisely, the
analogous result where every hocolim is relaced with hocolim’. This tells us that
for every object j in J ,

[

colim
Iop→Jop

Q′(∗)
]

j

∼= hocolim’
(αop↓j)

∗ ∼= B(αop ↓ j) = B(j ↓ α)op.

Part (b) is an immediate consequence of (a) (using α = id) and formula (4.14).

Part (c) is also an immediate consequence of (a), since Q′(∗) is cofibrant in TopIop

and colimIop→Jop is a left Quillen functor.
Part (d) is an argument with adjunctions. For all spaces Z we have

Top
(

X ⊗B(− ↓ α)op, Z) ∼= Top
(

X ⊗ colim
αop

Q′(∗), Z
)

∼= TopJop
(

colim
αop

Q′(∗), Hom(X, Z)
)

∼= TopIop
(

Q′(∗), α∗Hom(X, Z)
)

= TopIop
(

Q′(∗), Hom(α∗X, Z)
)

= Top
(

α∗X ⊗Q′(∗), Z
)

.

Since these isomorphisms are natural and hold for all spaces Z, it follows that

X ⊗B(− ↓ α)op ∼= α∗X ⊗Q′(∗).

But by (b) the object on the right is precisely hocolimI α∗X . �

Remark 9.5. Note that in part (a) we could also have written

B(− ↓ α)op ∼= hocolim
Iop→Jop

∗.

9.6. Proof of the cofinality theorem. We can now give two of the proofs we
skipped over in Part 1.

Proof of Theorem 6.7. First note that if α : I → J is a functor then there is a map
of Jop-diagrams

B(− ↓ α)op → B(− ↓ J)op.

So for any diagram X : J → Top there is an induced map

X ⊗B(− ↓ α)op → X ⊗ B(− ↓ J)op.
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The right object is hocolimJ X , and by Proposition 9.4(c) the left object is
hocolimI α∗X . One checks that the above is the natural map hocolimI α∗X →
hocolimJ X .

Suppose now that α : I → J is homotopy terminal. This means that for all j ∈ J ,
the space B(j ↓ α) is contractible. So the map of Jop-diagrams

B(− ↓ α)op → B(− ↓ J)op

is an objectwise weak equivalence, since both diagrams are objectwise contractible.
As X ⊗ (−) is a left Quillen functor, it necessarily preserves weak equivalences
between cofibrant objects. So

X ⊗B(− ↓ α)op → X ⊗B(− ↓ J)op

is a weak equivalence of spaces, which is what we wanted. �

Proof of Theorem 6.9. Recall that α : I → J , X : J → Top, and we assume that for
each j ∈ J the composite

hocolim
(α↓j)

u∗jX → colim
(α↓j)

u∗jX → Xj(9.7)

is a weak equivalence. Consider the two adjoint pairs

TopI
colimα //

TopJ
colim //

α∗

oo Top.
c

oo

The composite of the right adjoints is the constant diagram functor, so the com-
posite of the left adjoints is the colimit functor.

We are starting with a diagram X ∈ TopJ . Consider the composite

colim
α

(Q(α∗X))→ colim
α

(α∗X)→ X.

This is a map of J-diagrams, and in spot j it is precisely the map from (9.7). So
our assumption is that this map is an objectwise weak equivalence.

Now, the diagram Q(α∗X) is cofibrant in TopI . So colimα[Q(α∗)] is cofibrant in

TopJ , as colimα is a left Quillen functor. So

colim
α

Q(α∗X)→ QX

is an objectwise weak equivalence between cofibrant diagram. Applying colim to
this, have the map

hocolim
I

α∗X → hocolim
J

X.

Since left Quillen functors preserve weak equivalences between cofibrant objects,
this map is a weak equivalence and we are done. �
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10. The two-sided bar construction

The material in this section is from the beautiful paper [HV]. We will see that
there is a single construction which unifies almost everything we have talked about
so far. Using this, one obtains very slick proofs of most of the main theorems.

10.1. Basic definitions. Let M be a simplicial model category (the reader is free
to assume M = Top, but we have reason for the extra generality).

Let I be a small category and let X : I → M and W : Iop → M. Define
B•(W, I, X) to be the simplicial object

[n] 7→
∐

i0←i1←···←in

W (i0)×X(in).

The face map dj corresponds to ‘covering up ij’, with two provisos. In
dn : Bn(W, I, X) → Bn−1(W, I, X) one must use the map X(in) → X(in−1),
whereas in d0 one must use the map W (i0)→W (i1). The degeneracies correspond
to insertion of identity maps, as we are used to. The simplicial object B•(W, I, X)
is called the two-sided bar construction.

Example 10.2. For the case W = ∗ (the constant diagram) one has B•(∗, I, X) =
srep(X). We can also regard X as a functor (Iop)op →M and thereby consider the
object B•(X, Iop, ∗). This is not srep(X) but rather the ‘other’ simplicial replace-
ment that was defined in Remark 4.2.

Let B(W, I, X) = |B•(W, I, X)|. Note that one has a natural map

B(W, I, X)→ coeq

[

B1(W, I, X) ⇉ B0(W, I, X)

]

= W ⊗I X.

One thinks of B(W, I, X) as a fattened up version of the tensor product; or some-
times as the ‘homotopy tensor product’. Note that if X → X ′ and W → W ′ are
objectwise weak equivalences of objectwise-cofibrant diagrams, then the induced
maps

B(W, I, X)→ B(W ′, I, X) and B(W, I, X)→ B(W, I, X ′)

are both weak equivalences. This uses the fact that B•(W, I, X) is a Reedy cofi-
brant simplicial object, which is true for the same reason as for the simplicial
replacement—the nth latching object sits inside Bn(W, I, X) as a summand of the
coproduct.

Note that if S is a set and X ∈ M then the notation S × X makes sense:
it means the coproduct of copies of X , one for each element s ∈ S. If S → T
and X → Y there are natural maps S × X → T × X and S × X → S × Y .
Using this observation, the construction B•(Y, I, X) makes sense if X : I → M

and Y : Iop → Set, or if X : I → Set and Y : Iop → M. It even makes sense if
X : I → Set and Y : Iop → Set, in which case it produces a simplicial set.

Example 10.3. B•(∗, I, ∗) is the nerve of Iop.

As explained in [HV], it is useful to think of the theory of diagrams as being a
generalization of the theory of modules. One should think of a diagram X : I →M

as a ‘left I-module’, and a diagram W : Iop → M as a right I-module. This is
particularly satisfying if M is a subcategory of Set: for an x ∈ X(i) and a map
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f : i→ j, write f.x for the image of x under X(i)→ X(j); for w ∈W (j) right w.f
for the image of w under W (j)→W (i).

If I and J are small categories, then an I −J bimodule is a diagram I×Jop →
M. If W is an I − J bimodule and X is a J −K bimodule, then by B(W, J, X) we
mean the I −K bimodule defined as

(i, k) 7→ B(Wi, J, Xk).

Here Wi is the Jop-diagram j 7→ W (i, j), and Xk is the J-diagram j 7→ X(j, k).
Note that the construction of B(W, J, X) makes sense even if the target of X is Set,
or if the target of W is Set.

Example 10.4. If I is a category then for each i ∈ I we obtain a left I-module
I(−, i) and a right I-module I(−, i). These are free modules, in the following
sense. For any object Z ∈ M, consider the left I-module I(−, i) × W sending
j 7→ I(j, i)×W . Then there is a bijection

HomI−Mod(I(−, i)⊗ Z, X) ∼= HomM(Z, Xi)

obtained by restricting to the canonical copy of Z in the ith spot of the diagram.
Similarly, there are bijections

HomMod−I(I(i,−)× Z, W ) ∼= HomM(Z, Wi)

for each right I-module W .
An easy adjointness argument now shows that I(−, i) ⊗I X ∼= Xi and W ⊗

I(i,−) ∼= Wi.

Example 10.5. Putting the left and right modules I(−, i) and I(j,−) together, we
have an I − I bimodule given by the functor I × Iop → Set sending (i, j) 7→ I(j, i).
We will call this functor I, by abuse. [The switching in the order of i and j is
annoying, but seems unavoidable; the problem is that the notation in mathematics
always wants to be right to left, so that to talk about maps from a to b we should
really write “Hom(b, a)”; but we don’t.]

By the above observations, for any left I-module X (that is to say, for any
diagram X : I → M) we get a left I-module B(I, I, X). Similarly, for any right
I-module W we get another right I-module B(W, I, I). We will see in a moment
that these are precisely the diagrams QX and Q′W defined in Section 8.

Exercise 10.6. If X : I → Set, then B•(I, I, X) is an I-diagram of simplicial
sets. Check that B•(I, I, ∗) is the diagram i 7→ N(I ↓ i)op. Similarly, check that
B•(∗, I, I) is the diagram i 7→ N(i ↓ I)op.

Exercise 10.7. Let α : I → J be a functor. There there is a functor J× Iop → Set
given by (j, i) 7→ J(α(i), j). This is really obtained by starting with the J − J
bimodule J and restricting the right action along α. We will still call this bimodule
J , but now regard it as a J − I bimodule.

Check that B•(J, I, ∗) is the left J-module given by j 7→ N(α ↓ j)op. Similarly,
B•(∗, I, J) is the right J-module given by j 7→ N(j ↓ α)op.

10.8. Main properties and applications. The central result of [HV] is the fol-
lowing:
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Theorem 10.9. Let I, J , K, and L be small categories. Suppose given an I − J
bimodule X, a J − K bimodule Y , and a K − L bimodule Z. Then there is a
canonical isomorphism

B(X, J, Y )⊗K Z ∼= B(X, J, Y ⊗K Z)

of I − L bimodules.
Similarly, if W is an H − I bimodule then there is a canonical isomorphism

W ⊗I B(X, J, Y ) ∼= B(W ⊗I X, J, Y )

of H −K bimodules.

Remark 10.10. The above theorem has an open-ended interpretation, as we have
not specified the target categories for the bimodules X , Y , and Z. For instance, X
and Y could take their values in Set and Z could take its values in M; or X and Z
could take their values in Set and Y could take its values in M; or all three functors
could take their values in Set. The isomorphism of the theorem is valid in all these
cases.

The proof of Theorem 10.9 is a simple exercise in adjoint functors. We will give
it at the end of the section. What we will do now is point out that the theorem
allows one to give very slick proofs of many of our results about homotopy colimits.

Example 10.11 (The two formulas for hocolim). Recall that if X : I → Top then
B(∗, I, X) = | srep(X)|. By the theorem, we can also write

B(∗, I, X) ∼= B(∗, I, I ⊗I X) ∼= B(∗, I, I)⊗I X.

But B(∗, I, I) is the diagram i 7→ N(i ↓ I)op, and so the right-most object is the
formula from (4.14). This seems to be the slickest proof that the two formulas for
hocolimX are isomorphic.

Example 10.12 (The diagrams QX). Let X : I → M and consider the left I-
module B(I, I, X). This is the diagram

i 7→ B(I(−, i), I, X) = B(I(−, i), I, I)⊗I X.

But it’s easy to check that B•(I(−, i), I, I) = B•(∗, I ↓ i, I). So we are really
looking at the diagram

i 7→ B(∗, I ↓ i, I)⊗I X = B(∗, I ↓ i, X) = hocolim
I↓i

u∗i X.

Therefore B(I, I, X) is the I-diagram QX defined in Section 8.
Recall that we have a natural map of I-diagrams B(I, I, X) → I ⊗I X = X .

This is our map QX → X .
Finally, note that one has

colim
I

QX = colim
I

B(I, I, X) = ∗ ⊗I B(I, I, X) ∼= B(∗, I, X) ∼= hocolim
I

X.

Example 10.13 (The diagrams Q′X). We again start with X : I → M, but now
we regard X as a right Iop-module. It is easy to see that B•(X, Iop, ∗) is the ‘other’
simplicial replacement for X considered in Remark 4.2; and so B(X, Iop, ∗) is what
we called hocolim’ X in Remark 8.9.

The object B(X, Iop, Iop) is a right Iop-module, or equivalently a left I-module;
in other words, it is a diagram I → M. An analysis similar to the one in the
previous example shows that this is precisely the diagram Q′X defined in (8.9).
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Just as in the previous example, we find that

colim
I

Q′X = B(X, Iop, Iop)⊗I ∗ ∼= B(X, Iop, ∗) = hocolim’
I

X.

Example 10.14 (Changing the indexing category). Suppose α : I → J is a functor
and X : J →M. Then we can write

hocolim
I

α∗X = B(∗, I, X) ∼= B(∗, I, J ⊗J X) ∼= B(∗, I, J)⊗J X.

Note that the natural map hocolimI α∗X → hocolimJ X is the map

α∗ : B(∗, I, J)⊗J X → B(∗, J, J)⊗J X.

Observe that B(∗, I, J) is the Jop-diagram given by j 7→ N(j ↓ α)op. So the
above formula for hocolimI α∗X recovers Proposition 9.4(d).

We can also recover the other parts of Proposition 9.4. For instance, let us
consider part (a). For any diagram X : I → M, we have already remarked that
Q′X = B(X, Iop, Iop). So if we want to apply Q′ to the constant Iop-diagram
whose value is a point, then we have

Q′(∗) = B(∗, I, I).

It follows that

colim
Iop→Jop

Q′(∗) = Q′(∗)⊗I J = B(∗, I, I)⊗I J = B(∗, I, I ⊗I J) = B(∗, I, J).

But we have already identified B(∗, I, J) with the Jop-diagram j 7→ N(j ↓ α)op, in
Example 10.7 above.

This completes our examples. Hopefully they demonstrate the power of learning
to manipulate the two-sided bar construction. After proving just a few basic results,
many significant corollaries come along almost for free.

For ease of future reference, we now summarize the relations between the two-
sided bar construction and other objects considered in this paper. In the following,
I → J is a map of small categories and X is a diagram I →M.

B(∗, I, ∗) = BIop

B(I, I, X) = QX = B(I, I, I)⊗I X

B(X, Iop, Iop) = Q′X = X ⊗Iop B(Iop, Iop, Iop)

B(∗, I, X) = hocolim
I

X = B(∗, I, I)⊗I X

B(J, I, X) = hocolim
I→J

X = B(J, I, I)⊗I X

B(X, Iop, ∗) = hocolim′I X = X ⊗Iop B(Iop, Iop, ∗)

B(X, Iop, Jop) = hocolim′I→J X = X ⊗Iop B(Iop, Iop, Jop)
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11. Function spaces and the cobar construction

Let I be a small category, and let X and Y be left I-modules. One defines

FI(X, Y ) = eq

(

∏

i

Map(X(i), Y (i)) ⇉
∏

i→j

Map(X(i), Y (j))

)

.

Note that this is a simplicial set.
If X is an I −K bimodule, then the natural extension of this definition gives a

left K-module FI(X, Y ). Likewise, if Y is an I −K bimodule then FI(X, Y ) is a
right K-module.

Proposition 11.1. Let Z be a left K-module, X an I −K bimodule, and Y a left
I-module. Then there are natural adjunction isomorphisms

(a) HomK−Mod(Z, FI(X, Y )) ∼= HomI−Mod(X ⊗K Z, Y ), and
(b) FK(Z, FI(X, Y )) ∼= FI(X ⊗K Z, Y ).

Just as the tensor product (−)⊗I (−) can be expanded to a homotopical version
B(−, I,−), its adjoint FI(−,−) also has a homotopical version which we denote
ΩI(X, Y ). We define ΩI(X, Y ) to be the cosimplicial object

[n] 7→
∏

i0→i1→···→in

Map(X(i0), Y (in))

and we define Ωtot
I (X, Y ) = TotΩI(X, Y ). Note that there is a natural map

FI(X, Y )→ Ωtot
I (X, Y ).

Theorem 11.2. There are natural isomorphisms

(a) FK(Z, Ωtot
I (X, Y )) ∼= Ωtot

I (X ⊗K Z, Y ),
(b) Ωtot

K (Z, FI(X, Y )) ∼= FI(B(X, K, Z), Y ), and
(c) Ωtot

K (Z, Ωtot
I (X, Y )) ∼= Ωtot

I (B(X, K, Z), Y ).
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Part 3. The homotopy theory of diagrams

12. ???
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13. Cofibrant diagrams

There are often geometrically natural ways for expressing a certain topological
space as a colimit—perhaps because the space comes to us with a stratification
or polyhedral decomposition. If these colimit diagrams are also homotopy colimit
diagrams, then we immediately have spectral sequences for computing the homology
and cohomology, by the results of Section 15. So this leads us to the following
problem. Given a diagram D : I → Top, we have seen that there is a natural
map hocolimI D → colimI D. Under what conditions will this map be a weak
equivalence? In this section we develop some basic results addressing this issue.

Recall that the category of diagrams TopI has a model category structure in
which a map X → Y is a fibration (resp. weak equivalence) if each map Xi → Yi is
a fibration (resp. weak equivalence) of topological spaces. We have adjoint functors

colim: TopI
⇄ Top : c

where c is the “constant diagram” functor, and these are a Quillen pair because c
preserves fibrations and trivial fibrations.

We have seen that hocolimI X = colimI(QX), where QX → X is a certain

cofibrant-replacement in TopI . This identifies hocolim as the derived functor of
colim.

Recall that left Quillen functors preserve all weak equivalences between cofibrant
objects. So if X was a cofibrant diagram, then QX → X would be such a weak
equivalence, and it would follow that

hocolimX = colim(QX)→ colimX

would be a weak equivalence. So this gives us a certain kind of answer to our
original question: the map from the homotopy colimit to the colimit is a weak
equivalence provided that the diagram X is cofibrant in TopI .

So how do we recognize when a diagram is cofibrant? In general, this is not an
easy thing to do. One way is to test this directly in terms of the lifting property: a
diagram X is cofibrant if every diagram

Y

∼
����

X

>>

// Z

has a lifting, where Y → Z is a trivial fibration. This can be difficult to check, but
it is manageable in some simple cases which we’ll describe next.

Definition 13.1. A category I is a directed Reedy category if there is a degree
function assigning each object of I a non-negative integer such that all non-identity
maps in I strictly raise the degree.

Example 13.2.

(1) The pushout category 1← 0→ 2 is a directed Reedy category. For instance,
we can have deg(0) = 0 and deg(1) = deg(2) = 1.

(2) The coequalizer category 0 ⇉ 1 is a directed Reedy category.
(3) The subcategory ∆f →֒ ∆ consisting of all the monomorphisms is a directed

Reedy category.
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(4) Let S be a set, and consider the poset of finite subsets of S, ordered by inclusion.
Regard this poset as a category in the usual way, so that any two objects have
at most one map between them. Then this poset, as well as any subcategory,
is a directed Reedy category.

Let I be a directed Reedy category, and let i ∈ I. Let (I ↓ i)′ be the full
subcategory of (I ↓ i) consisting of all objects except the identity map i→ i. Write
u : (I ↓ i)′ → I for the forgetful functor sending [d, d→ i] to d. If X : I → Top is a
diagram, then the latching object of X at i is the space

Li(X) = colim
(I↓i)′

(Xu).

Intuitively, Li(X) is the colimit of all the objects “below” Xi in the diagram. Note
that there is a natural map Li(X)→ Xi; this is called the latching map of X at
i.

Example 13.3.

(1) Suppose X1 ← X0 → X2 is a pushout diagram. Then L0(X) = ∅, L1(X) = X0,
and L2(X) = X0.

(2) Suppose X0 ⇉ X1 is a diagram. Then L0(X) = ∅ and L1(X) = X0 ∐X0.
(3) Let I be the category 0 ⇉ 1→ 2 where the two maps 0 → 2 are the same. If

X : I → Top then L0(X) = ∅, L1(X) = X0∐X0, and L2(X) = coeq(X0 ⇉ X1).
(4) Define Pn to be the poset of subsets of {1, 2 . . . , n} excluding the set {1, . . . , n}

itself, ordered by inclusion. So P2 is just the pushout category, for instance.
Suppose X : Pn → Top is a diagram. For any S ⊆ {1, 2, . . . , n}, we can write

LS(X) =
[

∐

T⊂S

XT

]/

∼

where the quotient relation says that for any two proper subsets T, T ′ ⊂ S
and any x ∈ XT∩T ′ , the images of x under XT∩T ′ → XT and XT∩T ′ → XT ′

are identified. Note that we could also describe LS(X) as a quotient space
[
∐

XU ]/ ∼ where U runs over the proper subsets of S with |U | = |S| − 1.

Proposition 13.4. Let I be a directed Reedy category. Then a diagram X : I →
Top is cofibrant in TopI if for every i ∈ I the latching map Li(X) → Xi is a
cofibration.

Proof. First, choose a degree function for the category I. Let Y → Z be a trivial
fibration in TopI , and let X → Z be any map. We will inductively construct a
lifting X → Y .

Suppose that we have inductively produced a partial map of diagrams X → Y ,
defined on all objects of I having degree less than n. (The base case is n = 0, which
is trivial because there are no objects of I having degree less than 0). For each
object i of degree n, consider the diagram

Li(X)

��

// Yi

∼
����

Xi
// Zi.

Since Li(X)→ Xi is a cofibration, we can choose a lifting Xi → Yi. Doing this for
all objects of degree n now gives us a partial map of diagrams X → Y defined on all
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objects of degree less than n + 1. Continuing by induction, we produce the desired
map X → Y . (For more details, the reader may consult [H, Theorem 15.2.1]). �

Remark 13.5. It is worth mentioning that the above proposition can be set in
a broader context. When I is a Reedy category, there is a so-called Reedy model
category structure on TopI . The weak equivalences are the objectwise weak equiva-
lences, but the cofibrations and fibrations are different from the ‘projective’ model
structure we have used up until now. We refer the reader to [H, Chapter 15] for a
thorough discussion. When I is a directed Reedy category, however, it is easy to
see that the Reedy fibrations are precisely the objectwise fibrations. It follows that
the Reedy and projective model category structures coincide in this case.

13.6. An application. Here is a simple application of what we have learned so
far. Let X be a topological space, and let {A1, . . . , An} be a collection of closed
sets which cover X . Let Qn denote the poset of all subsets of {1, 2, . . . , n} except
the emptyset, ordered by reverse inclusion (note that this is basically the same as
Pn). There is a diagram A : Qn → X sending a subset σ = {i1, . . . , ik} to

Aσ = Ai1 ∩Ai2 ∩ · · · ∩Aik
.

The map colimQn
A → X is clearly a bijection, and it is easy to check that it is

actually a homeomorphism (but note that this uses that we have a finite cover).
Since Qn is a directed Reedy category, we know that hocolimQn

A → colimQn
A

will be a weak equivalence provided that the latching maps in A are cofibrations.
So we obtain the following corollary:

Corollary 13.7. Assume that for every proper subset S ⊂ {1, . . . , n}, the inclusion
⋃

T⊂S AT →֒ AS is a cofibration. Then hocolimQn
A → X is a weak equivalence.

As a result, for any cohomology theory E∗ there exists a spectral sequence

Ep,q
2 = Hp(Qop

n ; Eq(A))⇒ E
p+q(X).

Proof. One simply checks that the latching maps are the maps
⋃

T⊂S AT → AS .
The spectral sequence is then a result of Proposition 15.9. �

Exercise 13.8. For the above spectral sequence to be useful, one has to be able to
compute the groups Hp(Qop

n ; D) for diagrams D : Qop
n → Ab. Prove that this group

is the same as the pth cohomology of the chain complex
∏

#S=1

D(S) −→
∏

#S=2

D(S) −→
∏

#S=3

D(S) −→ · · ·

Each product ranges over all nonempty subsets S ⊆ {1, . . . , n} of the specified size,
and the differential is described as follows. For any subset T ⊆ {1, . . . , n}, let ∂i(T )
denote the subset obtained by removing the ith element of T (where the elements
are ordered in the usual way). Then if x = (xS) is a tuple in

∏

#S=k D(S), we

define d(x) to be the tuple y = (yT ) ∈
∏

#T=k+1 D(T ) given by

yT =
∑

i

(−1)ix(∂iT ).
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13.9. Pushout diagrams. Suppose that X1 ← X0 → X2 is a pushout diagram of
spaces. Based on the work from the last section, we know that if X0 is cofibrant and
both X0 → X1 and X0 → X2 are cofibrations, then the map hocolimX → colimX
is a weak equivalence. We can actually do somewhat better, however, and this
improvement is useful enough that it is worth noting.

Proposition 13.10. Let X1 ← X0 → X2 be a pushout diagram in which every
object is cofibrant and X0 → X1 is a cofibration. Then the map hocolimX →
colimX is a weak equivalence.

Proof. Factor X0 → X2 as X0 ֌ Z
∼
−։ X2. Then we have two pushout diagrams

X1 X0
oooo // X2

X1 X0
oooo // // Z

∼

OO

and the resulting square

hocolim(X1 ← X0 → X2) // colim(X1 ← X0 → X2)

hocolim(X1 ← X0 → Z)

∼

OO

∼ // colim(X1 ← X0 → Z).

OO

Hence, it will be enough to show that X1∐X0
Z → X1∐X0

X2 is a weak equivalence.
A map A → B between cofibrant objects is a weak equivalence if and only if

Map(B, W ) → Map(A, W ) is a weak equivalence of simplicial sets for every space
W . Applying this to X1 ∐X0

Z → X1 ∐X0
X2, we must show that

Map(X1, W )×Map(X0,W ) Map(X2, W )→ Map(X1, W )×Map(X0,W ) Map(Z, W )

is a weak equivalence of simplicial sets. That is to say, we must show that the map
of pullback diagrams

Map(X1, W ) // // Map(X0, W ) Map(X2, W )oo

Map(X1, W ) // //

∼

OO

Map(X0, W )

∼

OO

Map(Z, W )oooo

∼

OO

induces a weak equivalence on the pullbacks. Using that all the objects are fibrant
and the indicated maps fibrations, this follows from the right properness of sSet
(and it’s also a fairly easy exercise). �

Remark 13.11. Recall that the pushout category is equal to P2, the poset of
proper subsets of {1, 2}. It seems likely that there is an analog of Proposition 13.10
for Pn-diagrams—that is to say, a condition for the map hocolimX → colim X to
be a weak equivalence that is weaker than the requirement that all latching maps
are cofibrations. I don’t know results along these lines, however.
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14. Simplicial diagrams and homotopy coherence

Let Cat denote the category of small categories. By a simplicial category we
mean a simplicial object in Cat where the categories in each level have the same
object set. Alternatively, we may regard such a think as a category enriched over
sSet. To be concrete, a (small) simplicial category I consists of

(1) A set of objects (denoted I by abuse);
(2) For each i, j ∈ I, a simplicial set I(i, j);
(3) For each i ∈ I, a distinguished 0-simplex idi ∈ I(i, i);
(4) For each i, j, k ∈ I, composition maps I(j, k) × I(i, j) → I(i, k) which satisfy

associativity and unital axioms.

One defines functors between simplicial categories in the evident manner.
If C is another simplicial category, then an I-diagram in C is just a functor

X : I → C. Concretely, this consists of a collection of objects Xi ∈ C together with
maps of simplicial sets I(i, j)→ C(Xi, Xj) for each i, j ∈ I such that

(1) idi maps to idXi
, and

(2) for each i, j, k ∈ I, the diagram

I(j, k)× I(i, j) //

��

I(i, k)

��
C(Xj, Xk)× C(Xi, Xj) // C(Xi, Xk)

commutes.

Now let M be a simplicial model category, and let X : I →M be a diagram. Note
that the maps I(i, j)→M(Xi, Xj) yield maps I(i, j)⊗Xi → Xj via adjointness. So
an I-diagram in M can be thought of as a collection of objects Xi and a collection
of ‘action’ maps I(i, j) ⊗ Xi → Xj satisfying the evident associativity and unital
conditions. Just as we did for diagrams indexed by ordinary categories, we will
think of diagrams I →M as ‘left I-modules’.

14.1. Resolutions of categories. Let I be an ordinary category. We can regard
I as a simplicial category by regarding all its mappings sets as discrete simplicial
sets. By a resolution of I we mean a simplicial category Ĩ with the same set of
objects as I, together with a map of simplicial categories Ĩ → I with the property
that for every i, j ∈ I the map Ĩ(i, j)→ I(i, j) is a weak equivalence.
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Part 4. Other useful tools

15. Spectral sequences for holims and hocolims

If D : I → Top is a diagram, there is a spectral sequence for computing
π∗(holimD) from knowledge of π∗(Di) for each i. Actually, this is not always
a true spectral sequence due to the fact that π0 may not be a group, and π1 may
not be an abelian group. So one has these problems on the ‘fringe’. There are ways
to deal with these problems, but very often one is in a situation where they actually
aren’t there. One way this can happen is if one is really dealing with spectra rather
than spaces. Another way is if one is dealing with spaces which are all connected
with abelian fundamental groups. We will develop things in these two special cases.

If E is a cohomology theory, then there is a related spectral sequence for com-
puting E∗(hocolimD) from knowledge of E∗(Di), for all i. In fact this is a special
case of the above, using the adjunctions in the category of spectra

En(hocolimD) = π−n Map(hocolimD, E) = π−n

[

holim
I

Map(D(i), E)
]

.

Here we are writing E also for some spectrum representing our given cohomology
theory.

15.1. Cohomology of a category with coefficients in a functor. Fix an
abelian category A. In our applications below this will always be the category
of abelian groups.

Let C be a small category, and let F : C → A be a functor. We will define
objects Hp(C; F ) in A, for each p ≥ 0. One approach starts by writing down the
cosimplicial replacement for F :

∏

c

F (c) // //
∏

c0→c1

F (c1) // ////
∏

c0→c1→c2

F (c2)
// ////// · · ·

This is a cosimplicial object over A. Taking the alternating sum of the coface maps
gives a cochain complex over A, and we define Hp(C; F ) to the the pth cohomology
group of this complex.

Note that H0(C; F ) is just the equalizer of the first two arrows in our cosimplicial
object, which is precisely limF . So in this sense the groups Hp(C; F ) are ‘higher
limit functors’. One somtimes writes

Hp(C; F ) = limp F.

Here is another description of the same groups, assuming that A has enough
injectives. Note that the diagram category AI is another abelian category, and
also has enough injectives. The functor lim: AI → A is readily seen to be left
exact, and Hp(C; F ) is just the pth right derived functor. The specific complex for
computing this which we gave above comes from a kind of ‘bar resolution’ for the
object F ∈ AI .

Consider the category of cochain complexes over A. By this we mean complexes
of the form

X0 → X1 → X2 → · · ·

Denote the category of cochain complexes as Ch≥0(A). Under mild hypotheses this
has a model category structure where the weak equivalences and cofibrations are
determined levelwise; complexes of injectives are fibrant. There is an embedding
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A →֒ Ch≥0(A) obtained by regarding each X ∈ A as a cochain complex con-
centrated in degree 0. Then our functor F : C → A can be regarded as a diagram
C → Ch≥0(A). We can therefore consider its homotopy limit, which will be another
cochain complex. It’s easy to see that Hp(C; F ) is just Hp(holimF ).

Finally, we give one more description—although this is more of a related fact.
If X is any object in A, let cX denote the constant diagram I → A which has X
at every spot, and where every map is the identity map. One can talk about Ext
groups in the category AI , and there is an isomorphism

Extp(cX, F ) ∼= A(X, Hp(C; F )).

Here is one way this is sometimes useful. If A has enough projectives, then so does
AI . So one can compute Extp(cX, F ) either via an injective resolution for F or via
a projective resolution for cX .

Remark 15.2. One should note that the above constructions are interesting even
when A is the category of vector spaces over a field. That is to say, even in this
‘simple’ case one can have nontrivial objects Hp(C; F ) for p > 0.

In fact, let A be the category of vector spaces over a field k. Let G be a group,
and let C be the category with one object whose endomorphism group is G. Then a
functor F : C → A is just a representation of G over k, and H∗(C; F ) is just classical
group cohomology.

15.3. Homology of a category with coefficients in a functor. There are dual
definitions for the homology of C with coefficients in F : C → A. One writes down
the simplicial replacement for F , and then Hp(C; F ) is the pth homology group of
the associated chain complex over A (obtained by taking the alternating sum of
the face maps).

15.4. The spectral sequence for a homotopy limit. Let D : I → Top be a
diagram. Assume that each D(i) is connected, with abelian fundamental group.
Then for each n, one obtains an associated diagram πnD : I → Ab sending i 7→
πnD(i). Here is our theorem:

Theorem 15.5. There is a spectral sequence Ep,q
2 = Hp(I; πqD)⇒ πq−p(holimD).

The differentials have the form dr : Ep,q
r → Ep+r,q+r−1

r .

This is an immediate consequence of the following result about cosimplicial
spaces. If X is a cosimplicial pointed space, one may form a cosimplicial abelian
group by applying πn(−, ∗) to each level (assuming that n ≥ 2, or that the spaces
Xi are connected with abelian fundamental group). After taking the alternating
sum of the coface maps, the cosimplicial abelian group becomes a cochain complex.
Let Hp(πq(X)) denote the pth cohomology group.

Theorem 15.6. Let X be a Reedy fibrant simplicial space, such that each Xn is
connected with abelian fundamental group. Then there is a spectral sequence of
the form Ep,q

2 = Hp(πq(X)) ⇒ πq−p(TotX), where the differentials have the form
dr : Ep,q

r → Ep+r,q+r−1
r .

Remark 15.7. There is an easy way to remember how the differentials work in
the above spectral sequence, at least if one understands the two spectral sequences
associated to a double chain complex. Suppose that, instead of X being a cosim-
plicial space, X were a cosimplicial chain complex. That is, suppose that instead of
working in the model category Top we were working in the model category Ch(Z).
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Now each Xn is a chain complex, which we draw vertically with the differentials
going down. We are now looking at a cosimplicial chain complex, which after taking
the alternating sum of coface maps becomes a double complex. In this case TotX
“is” the totalization of this double complex, and the spectral sequence “is” the
spectral sequence obtained by first taking homology groups in the vertical direction
and then in the horizontal direction. So if one knows how the indexing works in
the latter spectral sequence, one also knows how it works in the former.

15.8. Spectral sequences for homotopy colimits. Suppose D : I → Top, and
that E∗ is a cohomology theory represented by a spectrum E. Note that for each
n one obtains an Iop-diagram of abelian groups by i 7→ E

n(D(i)). We’ll call this
diagram En(D), for short.

Proposition 15.9. There is a spectral sequence Ep,q
2 = Hp(Iop; Eq(D)) ⇒

Ep−q(hocolimD). The differentials have the form dr : Ep,q
r → Ep+r,q−r+1

r .

Proof. This is obtained by dualizing the spectral sequence for a homotopy limit. �

One can also derive a spectral sequence for computing the E-homology of a ho-
motopy colimit. This is based on the following spectral sequence for the homotopy
groups of a geometric realization of spectra:

Proposition 15.10. Let [n] 7→ Gn be a simplicial spectrum. Then there is a
spectral sequence

E1
p,q = πpGq ⇒ πp+q |G|

where the differentials have the form dr : Er
p,q → Er

p+r−1,q−r. The differential d1 is
the alternating sum of the face maps in the cosimplicial abelian group [n] 7→ π∗Gn.

Proof. This is the homotopy spectral sequence associated to the tower of homotopy
cofiber sequences

∗ // | Sk0 G| //

��

| Sk1 G| //

��

| Sk2 G| //

��

· · ·

G0 ΣG1 Σ2G2 · · ·

In spectra, homotopy cofiber sequences are also homotopy fiber sequences—so each
layer in the tower gives a long exact sequence in homotopy groups, resulting in an
exact couple. �

Remark 15.11. Again, there is a nice way to remember how the differentials go
in the above spectral sequence. Imagine the parallel situation in which the Gi are
chain complexes rather than spectra. Then what we really have is a double complex,
and we are looking at the spectral sequence whose G2-term is obtained by first
taking the homology of the Gi’s and then taking homology in the other direction.
Provided one can remember how the differentials work in the spectral sequence
of a double complex, one also knows how they work in the spectral sequence of
Proposition 15.10.

Proposition 15.12. Let E be a spectrum and let X : I → Top be a diagram of
spaces. Then for each p one gets a diagram of abelian group i 7→ Ep(Xi); call this
diagram EpX.
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There is a spectral sequence

E2
p,q = Hq(I; EpX)⇒ Ep+q(hocolim

I
X).

The differentials have the form dr : Er
p,q → Er

p+r−1,q−r.

Proof. Consider the simplicial spectrum [n] 7→ E ∧ Σ∞(srep(X)n). The geometric
realization of this simplicial spectrum is hocolimI(E∧Σ∞(Xi)+), which is the same
as

E ∧Σ∞(hocolim
I

Xi).

The spectral sequence of Proposition 15.10 converges to the (p + q)th homotopy
group of this geometric realization, which is therefore Ep+q(hocolimI X). �
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16. Homotopy limits and colimits in other model categories

So far we have been almost exclusively working in the model category of topolog-
ical spaces. In this section we will explain some of the ways in which our methods
adapt to more general model categories. In many cases this takes the form, “If a
model category satisfies P and Q then everything we did before works exactly the
same. However, if the model category does not satisfy P or Q then one can still
get the same basic results, but it requires harder work.”

We also make some remarks particular to the case where the model category is
chain complexes over an abelian category. Here, the study of homotopical algebra
is really just ordinary homological algebra. So the theory of homotopy colimits can
be phrased in somewhat more algebraic terms. We make some of this explicit.

16.1. Simplicial model categories. A model category M is called simplicial if
for every X, Y ∈M and K ∈ sSet one has functorial constructions

X ⊗K ∈M, F (K, X) ∈M, and Map(X, Y ) ∈ sSet

together with adjunction isomorphisms

Map(X ⊗K, Y ) ∼= Map(X, F (K, Y )) ∼= sSet(K, Map(X, Y ))

(note that these are isomorphisms of simplicial sets). One assumes there is
a composition law Map(Y, Z) × Map(X, Y ) → Map(X, Z) and identity maps
∗ → Map(X, X) satisfying the expected properties, and also an isomorphism
Map(X, Y )0 ∼= M(X, Y ) that commutes with composition. Finally, one assumes
the pushout-product axiom SM7; there are several equivalent versions, but we will
use the one saying that if i : A ֌ B is a cofibration in M and j : K →֒ L is a
cofibration in sSet, then the map

i�j : (A⊗ L) ∐(A⊗K) (B ⊗K)→ B ⊗ L

is a cofibration which is a weak equivalence if either i or j is so. A detailed treatment
of simplicial model categories can be found in [H, Chapter 9].

Example 16.2. The model category Top is a simplicial model category, where one
defines

X ⊗K = X × |K|, F (K, X) = X |K|

and where Map(X, Y ) is the simplicial set [n] 7→ Top(X ×∆n, Y ).
Similarly, sSet is a simplicial model category where one defines

X ⊗K = X ×K, F (K, X) = sSet(K, X), and Map(X, Y ) = sSet(X, Y ).

In a simplicial model category, one can give formulas for homotopy limits and
colimits exactly like what we have described for Top. One uses exactly the same
definitions, and all the same results hold.

16.3. The homotopy theory of diagrams. Let M be any model category, and
let I be a small category. Let MI denote the category of I-diagrams and natural
transformations.

One would like there to be a model category structure on MI where the weak
equivalences are the objectwise weak equivalences. Unfortunately this probably
doesn’t exist in general. However, it does exist if I is a so-called Reedy category,
and for all I if M is a cofibrantly-generated model category.
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Theorem 16.4. Assume M is a cofibrantly-generated model category. Then for
any small category I there is a model category structure on MI where the weak
equivalences and fibrations are determined objectwise. This is commonly called the
projective model category structure on MI .

Proof. See [H, Section 11.6]. �

If M is cofibrantly-generated, we can again consider the adjoint functors

colim: M
I

⇄ : M : c

and these are again a Quillen pair. One can define the homotopy colimit of a
diagram as the derived functor of the colimit, just as we did in Top. Notice that
this works even if M is not simplicial! Relative homotopy colimits can also be
defined, and the whole theory is exactly the same as for Top.

The dual story for homotopy limits is also a little different. Here one wants
a model category structure on M

I where the weak equivalences and cofibrations
are defined objectwise. For the following, recall that a model category is called
combinatorial if it is cofibrantly-generated and the underlying category is locally
presentable.

Theorem 16.5 (J. Smith, unpublished). Assume that M is a combinatorial model
category. Then for any small category I there is a model category structure on MI

in which the weak equivalences and cofibrations are determined objectwise. This is
commonly called the injective model category structure on MI .

If M is a combinatorial model category one can then consider the adjoint functors

c : M ⇄ M
I : lim

(where c is the left adjoint), and observe that c preserves cofibrations and trivial
cofibrations. To this is a Quillen pair, and one can define the homotopy limit of a
diagram to be the derived functor of lim.

Remark 16.6. Even if the appropriate model category structure on MI does not
exist, there are other techniques for making the derived functor perspective work.
One can still define a homotopy category of diagrams Ho (MI), even though an
underlying model category structure may not exist. And one can still talk about
the derived functors of colim and lim. See [DHKS] for this approach.

For yet another approach to homotopy limits and colimits in general model
categories, see [CS].

16.7. Non-simplicial model categories. Formulas for homotopy limits and col-
imits can also be given without assuming a simplicial structure on the model cat-
egory; one just has to work a little harder. This is due to Dwyer-Kan, and it is
described in detail in [H, Chapters 16, 19].

If X is a cofibrant object in a simplicial model category, then one can obtain
a cylinder object for X by looking at X ⊗ ∆1. One also has cylinder objects in
non-simplicial model categories: they can be constructed by factoring the fold map
∇ : X ∐X → X into a cofibration followed by a trivial fibration:

X ∐X ֌ Cyl(X)
∼
−։ X.

These are even functorial, using that our factorizations are functorial.
In the same way, in any model category one can construct objects which “look

like” X ⊗ ∆2, X ⊗ ∆3, etc. This is due to Dywer-Kan and is referred to as the
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theory of framings . For instance, to construct an object that looks like X⊗∆2 one
does the following. Recall that our cylinder object Cyl(X) came with two maps
d0, d1 : X → Cyl(X). One can make an object that looks like X ⊗ ∂∆1 by forming
the colimit of the diagram

X

d0

��
d1 ((RRRRRRRRRRRRRR X

d0

vvllllllllllllll
d1

((RRRRRRRRRRRRRR X

d1

��d0vvllllllllllllll

Cyl(X) Cyl(X) Cyl(X).

This corresponds to gluing three copies of Cyl(X) to make the picture

•

•

Cyl(X) ~~~~~~~

Cyl(X)
•

Cyl(X)

corresponding to ∂∆1. Let Z denote this colimit.
Our canonical map Cyl(X) → X coequalizes d0 and d1, and therefore induces

a map Z → X . Factoring this again as a cofibration followed by trivial fibration
gives

Z ֌ X [2]
∼
−։ X

and this X [2] is our object which “looks like” X⊗∆2. Note that it is also functorial
in X , due to the functoriality of our factorizations.

For an object X ∈M, let cX denote the constant cosimplicial object which is X
in every dimension. Briefly, a cosimplicial frame on X is a cosimplicial object X̂ in
M, together with an objectwise weak equivalence X̂ → cX which is an isomorphism
in level 0. When X is cofibrant, one also requires that X̂ satisfy a certain Reedy
cofibrancy condition having to do with latching maps being cofibrations—we will
not write this down. The nth object of X̂ is our object which “looks like” X ⊗
∆n. Dwyer and Kan showed that cosimplicial frames exist in any model category,
essentially by inductively continuing the procedure we began above.

Let I be a small category. Given a diagram D : I → M, a cosimplicial frame
on D is a diagram D̂ : I → cM (a diagram of cosimplicial objects on M) together

with natural weak equivalences D̂(i)→ c[D(i)] which make each D̂(i) a cosimplicial
frame on D(i). Again, cosimplicial frames on diagrams always exist.

Once one has a cosimplicial frame on D, one can again write down explicit
formulas for the homotopy colimit. (For the homotopy limit one needs a simplicial
frame on D—we have not defined this but it is completely dual). The formulas are
exactly what we wrote down in the simplicial case, one just has to develop enough
machinery to realize that they really do make sense.

There is no point in us describing this theory in more detail because the reader
should just go read [H]. The theory of frames and homotopy limits/colimits in
general model categories is wonderfully presented there.

16.8. Abelian categories. Let A be an abelian category with enough projectives
and injectives. Then there are model categories on Ch≥0(A) and Ch≤0(A) which
exactly parallel the two model category structures described at the beginning of
this section, when A is the category of modules over a ring. In these categories



56 DANIEL DUGGER

the theory of homotopy limits and colimits becomes somewhat simpler and more
familiar.

Recall that if B is an additive category then there is an equivalence between the
category of simplicial objects in B and the category Ch≥0(B). In one direction
one replaces a simplicial object by its normalized chain complex; up to quasi-
isomorphism, this is the same as the chain complex obtained by just taking the
alternating sum of face maps.

Also, recall that if D∗,∗ is a double chain complex then one may form a total

chain complex in two ways. One way has Tot⊕(D)n =
⊕

p+q=n Dp,q and the other

has Tot⊗(D)n =
⊗

p+q=n Dp,q. We will have need for both of these.

Suppose given a simplicial object X∗ of Ch≥0(A). Since the category of chain
complexes is additive, we may take the alternating sum of face maps. . .and what
we get is a double complex! Let Xalt

∗ denote this double complex. The result we
are after is the following:

Proposition 16.9. The two chain complexes hocolimX∗ and Tot⊕(Xalt
∗ ) are

quasi-isomorphic.

Similarly, suppose Z∗ is a cosimplicial object in Ch≤0(A). Let Z∗alt denote the
double complex obtained by taking the alternating sum of coface maps. Then

Proposition 16.10. The complexes holimZ∗ and Tot⊗(Z∗alt) are quasi-isomorphic.

What these propositions say is that the theory of homotopy colimits in Ch≥0(A)
(and of homotopy limits in Ch≤0(A)) can be drastically simplified by using to-
tal complexes. For instance, if D : I → Ch≥0(A) is a diagram then to construct
hocolimD one can form the simplicial replacement, take the alternating sum of
faces, and then apply Tot⊕. No geometric realization (or Tot) is needed.

What about homotopy limits in Ch≥0(A)? Here the story is a little more com-
plicated, but only barely. The difficulty is as follows. Suppose Z∗ is a cosimplicial
object in Ch≥0(A). Taking alternating sums of coface maps gives a double complex
Z∗alt. But taking the total complex now gives a complex which has terms in nega-
tive degrees, so it does not lie in Ch≥0(A). How does one fix this? Well, for any
Z-graded chain complex C∗ one can obtain a non-negatively graded chain complex
by considering the truncation τ≥0(C∗) given by

Z0 ← C1 ← C2 ← · · ·

where Z0 is the subobject of cycles in degree 0.

Proposition 16.11. If Z∗ is a cosimplicial object in Ch≥0(A), then holimZ∗ is

quasi-isomorphic to τ≥0 Tot⊗[Z∗alt].

Similarly, we have

Proposition 16.12. If X∗ is a simplicial object in Ch≤0(A), then hocolimX∗ is

quasi-isomorphic to τ≤0 Tot⊕[X∗alt]. Here, if C∗ is a Z-graded chain complex then
τ≤0(C∗) is the non-positively graded chain complex given by

C0/B0 → C−1 → C−2 → C−3 → · · ·

where B0 is the subobject of boundaries in degree 0.

Again, the above propositions show that the theory of homotopy limits and
colimits in Ch≥0(A) and Ch≤0(A) can be drastically simplified by using total
complexes in place of geometric realizations or Tot.
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17. Various results concerning simplicial objects

This section is under construction!

Let I and J be two small categories, and let X → I × J → Top be a diagram.
Note that for any i ∈ I we get a J-diagram by j 7→ X(i, j), and likewise for any
j ∈ J we get an I-diagram

Proposition 17.1. There are canonical zig-zags of weak equivalences between the
three objects

hocolim
I

[i 7→ hocolim
J

X(i,−)], hocolim
J

[j 7→ hocolim
I

X(−, j)],

and hocolimI×J X.

17.2. Homotopy colimits and realizations. Let X : ∆op → Top. We have al-
ready talked about the geometric realization |X |, but we can also form the ho-
motopy colimit hocolimX . These are both homotopy invariant constructions, but
they are usually different. We can compare them, though:

Proposition 17.3. There is a natural map hocolimX → |X | called the Bousfield-

Kan map. It is a weak equivalence when X is Reedy cofibrant.

Similarly, if Z : ∆ → Top is a cosimplicial space then there is a natural map
TotZ → holimZ; this is a weak equivalence if Z is Reedy fibrant.

The proof of the above proposition requires more techniques than we have at the
moment. However, we can at least describe the map. Recall that

hocolim
∆op

X = coeq

[

∐

[n]→[k]

Xk ×B([n] ↓ ∆op)op
⇉
∐

n

Xn ×B([n] ↓ ∆op)op

]

= coeq

[

∐

[n]→[k]

Xk ×B(∆ ↓ [n]) ⇉
∐

n

Xn ×B(∆ ↓ [n])

]

.

Likewise, we have

|X | = coeq

[

∐

[n]→[k]

Xk ×∆n
⇉
∐

n

Xn ×∆n

]

.

We can produce a map hocolimX → |X | by finding maps αn : B(∆ ↓ [n]) 7→ ∆n

having the property that for every σ : [n]→ [k] one gets a commutative square

B(∆ ↓ [n])

��

σ∗ // B(∆ ↓ [k])

��
∆n

σ∗ // ∆k.

We’ll actually produce maps of simplicial sets N(∆ ↓ [n]) 7→ ∆n. Recall that ∆n is
the simplicial set [k] 7→ ∆([k], [n]). A k-simplex in N(∆ ↓ [n]) is a string

[i0]→ [i1]→ · · · → [ik]→ [n].

We can produce a map [k]→ [n]—that is, a k-simplex in ∆n—by sending an element
j ∈ [k] to the image in [n] of the last vertex of [ij ] under the above composition of
maps. Note that this gives a monotone increasing function [k] → [n], as desired.
The resulting map N(∆ ↓ [n]) → ∆n is called the last vertex map. The reader
may easily check that it gives the necessary commutative squares.
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17.4. Fat vs. non-fat. Recall that ∆f ⊆ ∆ is the subcategory consisting of all
the co-face maps. A ‘∆-complex’ is a functor ∆op

f → Top—it is a simplicial set
without the degeneracy maps. If Z is a ∆-complex then the above Bousfield-Kan
construction gives a natural map hocolim∆f

Z → ||Z||.
So if X is a simplicial space one has the following square:

hocolim
∆op

X // |X |

hocolim
∆op

f

X

OO

// ||X ||

OO

Proposition 17.5. If X is objectwise cofibrant, the two maps with domain
hocolim∆op

f
X are weak equivalences. If X is also Reedy cofibrant, the other two

maps are weak equivalences as well.
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Part 5. Examples

18. Homotopy initial and terminal functors

In this section we present several specific examples of functors which are homo-
topy initial or terminal.

Our first example is a functor which is merely initial, not homotopy initial:

Example 18.1. Let J →֒ ∆ denote the subcategory consisting of the objects [0],
[1], and the two maps d0, d1 between them. We claim that J →֒ ∆ is initial; this is
equivalent to saying that Jop → ∆op is terminal. This will justify our claim from
Section 3.7 that if X is a simplicial space then colim∆op X is homeomorphic to the
coequalizer of d0, d1 : X1 ⇉ X0.

To see that i : J →֒ ∆ is initial, we must verify that for every n ≥ 0 the category
(i ↓ [n]) is connected. The objects in this category consist of all maps [0] → [n]
and all maps [1]→ [n]. Let ek : [0]→ [n] denote the map whose image is {k}. Let
fk : [1]→ [n] denote the map whose image is {k}. Finally, if k < l let gk,l : [1]→ [n]
be the map sending 0 7→ k and 1 7→ l. These are all the objects in (i ↓ [n]).

One readily checks that there are maps in (i ↓ [n]) from ek to gk,l, el to gk,l, and
from ek to fk. This proves that (i ↓ [n]) is connected.

Example 18.2. Let ∆f →֒ ∆ be the subcategory consisting of all maps which are
monomorphisms (that is, all coface maps). We claim that the inclusion functor
i : ∆f →֒ ∆ is homotopy initial. As a consequence, iop is homotopy terminal; so
the homotopy colimit of a simplicial object can be obtained by instead taking the
homotopy colimit of the object obtained by forgetting all degeneracies.

We must prove that for every n ≥ 0, the overcategory (i ↓ [n]) is contractible.
To do this, consider the functor

F : (i ↓ [n]) −→ (i ↓ [n])

which sends a map σ : [k]→ [n] to the map Fσ : [k + 1]→ [n] given by

(Fσ)(0) = 0, (Fσ)(i) = σ(i− 1) if i ≥ 1.

This becomes a functor in the evident way.
Let e : [0]→ [n] denote the map whose image is 0, and let E : (i ↓ [n])→ (i ↓ [n])

be the functor which sends every object to e and every map to the identity. We
thus have three functors

F, id, e : (i ↓ [n]) −→ (i ↓ [n]).

The reader can check that there are natural transformations id → F and e → F .
This shows that upon taking classifying spaces the maps induced by F , id, and e
are all homotopic. In particular, the identity map is null-homotopic—so (i ↓ [n]) is
contractible.

The argument from the above example actually shows the following. For each
σ : [k] → [n] in ∆, let sh(σ) denote the map [k + 1] → [n + 1] which sends 0 7→ 0
and i 7→ σ(i− 1) + 1 for i ≥ 1. So sh(σ) is a ‘shift’ of the map σ.

Proposition 18.3. Let J →֒ ∆ be a subcategory satisfying the following:

(1) For each map σ ∈ J , sh(σ) is also in J ;
(2) For each n ≥ 0, the ‘add 1 map’ [n]→ [n + 1] given by i 7→ i + 1 belongs to J .
(3) For each n ≥ 0, the map [0]→ [n] whose image is {0} belongs to J .
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Then J →֒ ∆ is homotopy initial.

The reader may check that ∆f is the smallest subcategory of ∆ satisfying the
three conditions in the above proposition.

Exercise 18.4. Let Ω be the full subcategory of Set consisting of the objects
[0], [1], [2], . . .. Recall that [n] = {0, 1, . . . , n}. Note that ∆ is a subcategory of Ω,
with the only maps in ∆ being the monotone increasing functions.

Adapt the method used in Example 18.2 to prove that the inclusion ∆ →֒ Ω is
homotopy initial.

Example 18.5. Consider the product category ∆×∆. Objects are pairs ([n1], [n2]),
and a map ([k1], [k2]) → ([n1], [n2]) simply consists of two maps k1 → n1 and
k2 → n2.

Let d : ∆→ ∆×∆ denote the diagonal functor. We claim that this is homotopy
initial. As a consequence, dop is homotopy terminal; so if X∗,∗ is a bisimplicial
space then its homotopy colimit is weakly equivalent to the homotopy colimit of
the simplicial space [n] 7→ Xn,n.

To justify the claim, we prove that
(

d ↓ ([p], [q])
)

is contractible for any p and
q. The method is similar to that of the previous example. Recall that an object
of
(

d ↓ ([p], [q])
)

consists of an object [n] in ∆ and a map d([n]) → ([p], [q]). So
we have an [n] and two maps [n]→ [p] and [n]→ [q]. Given an [n′] and two maps
[n′]→ [p] and [n′] → [q], a map from the first object to this one consists of a map
[n]→ [n′] making the two evident triangles commute.

Let
F :
(

d ↓ ([p], [q])
)

−→
(

d ↓ ([p], [q])
)

be the functor which sends ([n], σ1 : [n] → [p], σ2 : [n] → [q]) to the object ([n +
1], [n+1]→ [p], [n+1]→ [q]) where the first map sends 0 7→ 0 and i 7→ σ1(i−1) for
i ≥ 1, while the second map sends 0 7→ 0 and i 7→ σ2(i− 1) for i ≥ 1. The functor
F has the evident behavior on maps.

Let e : (d ↓ ([p], [q])) −→ (d ↓ ([p], [q])) denote the functor which sends all objects
to ([0], e0, e0) where e0 : [k]→ [n] always denotes the map whose image is {0}.

The reader can check that there are natural transformations id→ F and e→ F .
So after taking classifying spaces one finds that the identity is null-homotopic, and
therefore (d ↓ ([p], [q])) is contractible.

18.6. Truncated simplicial objects. Let ∆≤n be the subcategory of ∆ consisting
of all objects [k] where k ≤ n. A functor (∆≤n)op → X is called an n-truncated

simplicial space, or an n-skeletal simplicial space.
When taking homotopy colimits of an n-truncated simplicial space, one can no

longer throw away the degeneracies and be guaranteed the same answer. That is,
the subcategory of (∆≤n)op consisting of the face maps is no longer homotopy final.
One can see that the proof in Example 18.2 breaks down, as that proof used the
infinite nature of the category ∆. Still, there is a nice reduction one can make.

Let Subn be the poset of subsets of {0, 1, . . . , n}, ordered by inclusion, regarded
as a category in the usual way. A picture of this category would look like an n-cube,
hence the name. Note that Subn can also be thought of as the category of sub-
simplices of ∆n—so the sub-simplices of a simplex form a cube! Let iSubn be the
full subcategory consisting of all objects except {0, 1, . . . , n} (the ’i’ is for ’initial’).

Notice that there is a functor Γ: iSubn → ∆≤n, defined as follows. For any
subset S = {i0, . . . , ik} of [n], there is a unique order-preserving bijection between
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S and [k]. Using this, an inclusion of subsets gives rise to an inclusion in ∆≤n. The
map Γ just sends the subset S to [k], and has the evident behavior on maps. For
instance, the inclusion {1} →֒ {0, 1} is sent to the map [0] 7→ [1] whose image is 1;
the inclusion {1, 3} →֒ {1, 2, 3} is send to the map [1]→ [2] whose image is {0, 2}.

Proposition 18.7. The functor Γ: iSubn → ∆≤n is homotopy initial. So
Γop : (iSubn)op → (∆≤n)op is homotopy terminal.

Remark 18.8. Let X be an n-truncated simplicial object. The above proposition
shows that when computing hocolimX the degeneracies don’t really matter—in
the sense that one can write down a cubical diagram, using only face maps, whose
homotopy colimit is hocolimX . However, this does not say that if you look at the
subdiagram of X consisting only of face maps that the homotopy colimit of that
diagram is also the same as hocolim X . The subcategory of (∆≤n)op consisting of
the face maps is not homotopy final!

The proof of the above proposition is more involved than what we have done
so far. The classifying spaces of the overcategories are somewhat complicated, and
their contractibility has to be proven by a combinatorial argument. A nice reference
in the literature is [Si, Section 6].

Let In,k denote the overcategory (iSubn ↓ [k]), where k ≤ n. Note that an object
of In,k is a pair (σ, φ) where σ ⊆ [n] and φ : Γ(σ)→ [k] is an order-preserving map.
It is useful to drop the ‘Γ’, and regard φ just as an order-preserving map σ → [k].
To have a map (σ, φ) → (σ′, φ′) means that σ ⊆ σ′ and φ is the restriction of φ′.
From this it is easy to see that In,k is a poset.

We wish to ultimately show that each In,k is contractible, but we’ll start by
describing a certain stratification of In,k. For each order-preserving map α : [n]→
[k], let Jα denote the full subcategory of In,k consisting of pairs (σ, φ) such that
φ is the restriction of α. It’s easy to check that Jα is isomorphic to the category
iSubn (in effect, the data in φ is redundant), and so the nerve of Jα is sd ∆n.

If α and β are maps [n] → [k] in ∆, then Jα ∩ Jβ consists of pairs (σ, φ) such
that φ is the restriction of both α and β. If we let S denote the maximal subset of
[n] on which α and β agree, then Jα ∩ Jβ is isomorphic to the category of subsets
of S; hence Jα ∩ Jβ is sd ∆i for some i (or empty). This same reasoning applies to
any iterated intersection Jα1

∩ Jα2
∩ . . . ∩ Jαl

.
Order-preserving maps [n]→ [k] are in bijective correspondence with monotone

increasing sequences of length n+1, with values in {0, 1, . . . , k}. There are
(

n+k+1
k

)

such sequences (they are in bijective correspondence with monomials of degree n+1
in the variables X0, X1, . . . , Xk, where the exponent of Xi is the number of times
i appears in the sequence). So we have seen how to decompose the nerve of In,k

into
(

n+k+1
k

)

copies of sd ∆n, and the intersection of any number of these copies is

a copy of sd ∆i for some i (or else empty).

Exercise 18.9. Using the above description, work out explicit pictures of I1,1, I2,1,
and I2,2. The first, for instance, is the union of 3 copies of sd ∆1, glued together in
a certain way.

The above description tells us that the nerve of In,k is the barycentric subdivision
of a certain complex we’ll call Ln,k. We can describe this complex as follows:

(1) The n-simplices correspond to monotone increasing sequences a0 . . . an

whose values are in {0, . . . , k} (i.e., to maps [n]→ [k]).
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(2) The (n − i)-simplices correspond to sequences as in (1) except where i of
the aj ’s have been replaced by the symbol ‘?’.

(3) The face-map di corresponds to replacing the ith entry of the sequence with
a ‘?’.

For instance, in L1,1 there are three 1-simplices, indexed by the sequences 00, 01,
and 11. We have that d1(00) = 0? and d1(01) = 0?, etc. So L1,1 consists of three
1-simplices which are glued together sequentially, with one pair head-to-head and
the other pair tail-to-tail: · → · ← · → ·

We need to show that Ln,k is contractible.

Lemma 18.10. Let X be a simplicial complex which is purely of dimension d
(meaning that every simplex is contained in a d-simplex). Suppose the d-simplices
can be ordered as F1, F2, . . . , FM in such a way that for each i ≥ 1

(a) the subcomplex Fi+1 ∪ Fi+2 ∪ · · · ∪ FM intersects Fi purely in dimension d− 1,
and

(b) Fi has at least one face which is not in Fi+1 ∪ · · · ∪ FM .

Then X is contractible.

Proof. The main point is that if σ is an n-simplex and S is any union of codimension
one faces forming a proper subset of ∂σ, then there is a deformation retraction of
σ onto S. Since the n-simplex F1 has a face which is not in F2 ∪ · · · ∪ FM , we
can therefore deformation-retract X down to F2 ∪ · · · ∪ FM . Now proceed by
induction, at each step choosing a deformation retration of Fk ∪ · · · ∪ FM down to
Fk+1 ∪ · · · ∪ FM . �

Proposition 18.11. If k ≤ n, the nerve of Ln,k is contractible.

Proof. We have already seen that Ln,k is purely n-dimensional. The n-simplices of
Ln,k are indexed by monotone increasing sequences of length n + 1 with values in
{0, 1, . . . , k}, and we can order these lexicographically. We claim that this ordering
satisfies the conditions of the lemma.

Let F be the n-simplex corresponding to a sequence a0a1 . . . an. If ai = ai+1 for
some i, then the face of F corresponding to a0a1 . . . ai−1?ai+1 . . . an only belongs to
n-simplices which come before F in the ordering (because such an n-simplex would
have the “?” replaced with a number j ≤ ai+1, and we would then have j ≤ ai as
well). On the other hand, if the sequence a0a1 . . . an has no repeats then it means
that n = k and we are looking at the sequence 0, 1, . . . , n. In this case, the face of
F corresponding to 0, 1, . . . , n− 1, ? only belongs to n-simplices which come before
F in the ordering. This proves property (b).

To prove property (a), suppose that F meets an n-simplex G corresponding to
the sequence b0b1 . . . bn, where {b} is lexicographically greater than {a}. We need
to find a sequence {c} which is also lexicographically greater than {a}, such that
the intersection of F with the {c}-simplex contains an (n− 1)-simplex which itself
contains F ∩G.

Let j be the smallest index for which aj 6= bj . Then F ∩G is contained entirely
in the (n − 1)-simplex a0 . . . aj−1?aj+1 . . . an. Note that we cannot have aj = k,
since aj < bj. If a0a1 . . . aj−1(aj + 1)aj+1 . . . an is a monotone increasing sequence
then we can take it as our {c}—the corresponding n-simplex intersects F in the
codimension 1 face a0 . . . aj−1?aj+1 . . . an, and this face contains F ∩G.
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If the sequence a0a1 . . . aj−1(aj + 1)aj+1 . . . an is not monotone increasing then
this means aj = aj+1 = · · · = aj+p for some p ≥ 1 (where we choose p as large as
possible). Since aj < bj we must have ai 6= bi for i ∈ [j, j+p]—in particular, aj+p 6=
bj+p. In this case take {c} to be the sequence a0a1 . . . aj+p−1(aj+p+1)aj+p+1 . . . an.
Then the intersection of F and the simplex corresponding to {c} contains the
codimension one face a0a1 . . . aj+p−1?aj+p+1 . . . an, which in turn contains F ∩ G.

�

18.12. Homotopical symmetric products. This will be the final example of this
section. Let (n) denote the finite set {1, 2, . . . , n}, and let I denote the category
whose objects are all such sets (with n ≥ 1) and where the maps are monomor-
phisms. The category I is similar to ∆f , except that we have now expanded the
morphisms to include permutations.

Let X be a pointed space. For every map σ : (n)→ (k) in I, there is an induced
map σ∗ : Xn → Xk sending (x1, . . . , xn) to the tuple with xi in spot σ(i) and the
basepoint in all other spots. This gives a diagram X∗ : I → Top.

Our first goal will be to show that the colimit of X∗ is isomorphic to something
more familiar, namely the infinite symmetric product of X . The latter is the space
SP∞(X) = X∞/Σ∞, where X∞ is the colimit of the sequence

X →֒ X2 →֒ X3 →֒ · · ·

in which each map sends (x1, . . . , xn) to (x1, . . . , xn, ∗). To see that colimI X∗ and
SP∞(X) are isomorphic, follow the steps in the exercise below.

Exercise 18.13. Let ω = {1, 2, 3, . . .}, and let I∞ be the subcategory of Set con-
sisting of the objects (n) (for all n ≥ 1) and ω, where the maps as follows:

• maps from (n) to (k) are the monomorphisms;
• maps from (n) to ω are the monomorphisms;
• maps from ω to ω are the elements of Σ∞.

Let j : I →֒ I∞ be the inclusion. Finally, let Istd be the subcategory of I consisting
of all objects (n) but where the morphisms are the standard inclusions (n) →֒ (k).

(a) If D : I → Top, let LjD = colimI→I∞ D be the relative colimit (or left Kan
extension) of D along j. Recall that [LjD](ω) ∼= colimn∈(j↓ω) Dn. Note that
there is an evident functor Istd → (j ↓ ω), and prove that this is terminal.
Deduce that [LjD](ω) ∼= colimIstd

D.
(b) Let BΣ∞ denote the category with one object and endomorphism set Σ∞. Note

that there is an evident functor BΣ∞ → Iω sending the unique object to ω.
Prove that this functor is terminal.

(c) If D : I → Top is any diagram, argue that colimD is isomorphic to colim[LjD].
Use (b) to deduce that the latter is is isomorphic to [LjD](ω)/Σ∞, and use (a)
to replace [LjD](ω) with colimIstd

D. When D = X∗, deduce that colimI X∗ ∼=
X∞/Σ∞.

We now wish to consider the homotopy colimit hocolimI X∗; it is natural to
call this the homotopical infinite symmetric product of X . We’ll use the notation
SPh(X) = hocolimI X∗. This construction was probably first considered by Jeff
Smith, who used it in the context of symmetric spectra—the first reference I know
in print is [Sh, Section 1]. The spaces SPh(X) were later intensively studied in

[Schl], where it was shown that if X is path-connected then SPh(X) ≃ Ω∞Σ∞X ;
this is related to the Barratt-Priddy-Quillen theorem.
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We proved in the previous exercise that colimI X∗ ∼= (X∞)/Σ∞, and from this
it would be a natural guess that hocolimI X∗ ≃ (X∞)hΣ∞ . However, this guess is
incorrect (for reasons which we will see below). To correct the guess, recall that
ω = {1, 2, 3, . . .}. Let M denote the injective self-maps of ω, which form a monoid
under composition. Clearly we have Σ∞ ⊆ M , and if X is a pointed space there
is a natural action of M on X∞ which extends the action of Σ∞. We have the
following nice result, which is [Schl, Proposition 3.7].

Proposition 18.14. If X is a well-pointed CW -complex, then SPh(X) ≃ (X∞)hM .

We’ll outline the proof of this following [Schl], leaving most steps as exercises for
the reader. First, let Iω denote the subcategory of Set whose objects are the sets
(n) together with ω, and where the maps are the monomorphisms. Let j : I →֒ Iω

denote the evident inclusion. Finally, let BM denote the category with one object
and endomorphism set M , and let i : BM → Iω denote the inclusion sending the
unique object of BM to ω.

The following exercise contains a key result due to J. Smith, which first appeared
in [Sh, Lemma 2.2.9]. I owe my understanding of this proof to Stefan Schwede, and
the proof we outline below is entirely from [Sch].

Exercise 18.15. Prove that j : BM →֒ Iω is homotopy terminal by following the
steps below.

(a) Define a functor c : M →M by the following formula: if f ∈M , then

(cf)(i) =

{

i if i is odd,

2 · f(i/2) if i is even.

Verify that c is a homomorphism of monoids, and therefore induces a functor
Bc : BMcat → BMcat.

(b) Construct a natural transformation id→ Bc, as well as a natural transforma-
tion Bc→ ∗ where ∗ is the functor which sends all morphisms to the identity.
Conclude that on classifying spaces one has id ≃ Bc ≃ ∗ as maps BM → BM ,
and therefore BM is contractible.

(c) Fix n ≥ 1. For any α ∈M , let α +n be the element of M which is the identity
on the numbers 1, 2, . . . , n and sends n+i to n+α(i) for i ≥ 1. Define a functor
BMcat → ((n) ↓ j) which sends the unique object to the standard inclusion
(n) →֒ ω and which sends the morphism α ∈ M to α + n. Verify that that
this is indeed a functor, that it is fully faithful, and that it is surjective on
isomorphism classes—so conclude that it as an equivalence of categories.

(d) Deduce that ((n) ↓ j) is contractible, for all n ≥ 1. Prove that (ω ↓ j) has an
initial object and is therefore also contractible. Conclude that j is homotopy
terminal.

Exercise 18.16. Now let D : I → Top be any diagram. Let LjD denote the
homotopy left Kan extension of D along the inclusion j : I →֒ Iω.

(a) Prove that there are weak equivalences

hocolim
I

D ≃ hocolim
Iω

(LjD) ≃ hocolim
BM

(LjD)(ω) = [(LjD)(ω)]hM .

(b) Prove that there is a weak equivalence (LjD)(ω) ≃ hocolimIstd
D.

(c) Prove that if the maps in D : Istd → Top are all cofibrations, then
hocolimIstd

D ≃ colimIstd
D.
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(d) Conclude that if X is a well-pointed CW -complex then hocolimI X∗ ≃
(X∞)hM .

Remark 18.17. The main difference between the work in Exercises 18.13 and 18.15
is that in the latter we must use Iω instead of I∞. The reason is that although
BΣ∞ → I∞ is terminal, it is not homotopy terminal; this is why the monoid M ,
rather than Σ∞, appears in Proposition 18.14.

Exercise 18.18. Prove that BΣ∞ → I∞ is not homotopy terminal.
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19. Homotopical decompositions of spaces

By a “homotopical decomposition” of a space X we mean a diagram D : I → Top
together with a map colimI D → X , such that the composite hocolimI D →
colimI D → X is a weak equivalence. Note that by Proposition 15.9 a homo-
topical decomposition yields, in particular, a spectral sequence for computing the
cohomology groups E∗(X) from the groups E∗(Di).

We have already seen one example of a homotopical decomposition, back in Sec-
tion 13.6. If {A1, . . . , An} is a closed cover of X then one can form the cubical
diagram A : Pn → Top sending a subset {i1, . . . , ik} to Ai1 ∩ · · · ∩ Aik

. Under the
condition of certain inclusions being cofibrations, this is a homotopical decomposi-
tion.

Note that giving a diagram D : I → Top together with a map colimI D → X
is the same as giving a diagram I → (Top ↓ X). If we let Γ: (Top ↓ X) → Top
denote the forgetful functor sending the pair [Y, Y → X ] to Y , then D is just the
composite

I −→ (Top ↓ X)
Γ
−→ Top.

In many applications I is actually a subcategory of (Top ↓ X).
Homotopical decompositions seem to be useful in a variety of situations. In this

section we will give a few examples of these decompositions.

Here is one example worth recording:

Proposition 19.1. Let {Uα} be an open cover of X. Let I be the subcategory of
(Top ↓ X) consisting of the Uα’s and all their finite intersections. Then

hocolim
I

Γ→ X

is a weak equivalence.

Proof. See [DI]. �

Before proceeding to another important example, we need a new tool. To set
this in context, all of the theorems we stated in Parts 1–3 about homotopy colimits
are actually generic results which work basically the same in any model category
(not just in Top). The following result is very particular to Top, however.

Let D : I → Top and suppose one has a map p : colimI D → X , where X is some
space. For each n and each map σ : ∆n → X , consider the category F (D)σ whose
objects are tuples

[i, α : ∆n → Di]

such that p ◦ α = σ. A map from this object to [j, β : ∆n → Dj ] is a map i → j
making the evident triangle commute. We call F (D)σ the fiber category of D
over σ.

Theorem 19.2. In the above setting, suppose that for each n ≥ 0 and each
σ : ∆n → X, the category F (D)σ is contractible. Then the composite hocolimI D →
colimI D → X is a weak equivalence.

Now assume in addition that there is a diagram D̃ : I → sSet and a natural
isomorphism φi : |D̃i| → Di. For each σ : ∆n → X we can define a new category

F̃ (D)σ as follows. Objects of this category are pairs [i, ∆n
s → D̃i] such that the

composite |∆n
s | → |D̃i| → Di → X is equal to α, and maps are the expected things.

Here ∆n
s denote the canonical n-simplex ∆n

s ∈ sSet. Note that there is a map of
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categories F̃ (D)σ → F (D)σ, but there’s no reason to suspect that this is a weak
equivalence.

We have the following refinement of the previous theorem:

Theorem 19.3. In the above setting, suppose that for each n ≥ 0 and each
σ : ∆n → X, the category F̃ (D)σ is contractible. Then the composite hocolimI D →
colimI D → X is a weak equivalence.

We will give the proofs of Theorems 19.2 and 19.3 in Section 19.8 below. But
first we record some useful applications. These are all inspired by the discussion in
[J, Section 2].

Proposition 19.4. Let ∆ ↓ X denote the overcategory (j ↓ X), where j : ∆→ Top
is the usual functor. The functor j gives us a map (∆ ↓ X)→ (Top ↓ X), and the
natural map

hocolim
(∆↓X)

j∗Γ→ colim
(∆↓X)

j∗Γ→ X

is a weak equivalence.

Proof. Note that the diagram j∗Γ lifts to a diagram Γ̃: (∆ ↓ X) → sSet. So we
can attempt to use Theorem 19.3.

Let I = (∆ ↓ X), and let σ : ∆n → X . An object of F̃ (Γ)σ consists of an object
[k], a map f : ∆k → X , and a simplicial map ∆n → ∆k whose composite with
f is σ. But note that this category has an initial object, given by [n], the map

σ : ∆n → X , and the identity map ∆n → ∆n. So F̃ (Γ)σ is contractible, and we are
done. �

Proposition 19.5. Let ∆c(X) be the full subcategory of Top ↓ X consisting of all
maps whose domain is a simplex. Then hocolim∆c(X) Γ→ X is a weak equivalence.

Proof. This is a consequence of Theorem 19.2. The same kind of argument as in
the previous proof shows that the fiber categories F (Γ)σ are all contractible. �

Now let p : E → B be a map, and let α : I → Top ↓ B be a functor. Let Γp

denote the diagram I → Top sending i to α(i)∗E, the pullback of E → B along
the map α(i). Clearly there is a map colimI Γp → E, and so we may consider the
composite

hocolim
I

Γp → colim
I

Γp → E.

Proposition 19.6. In the above setting, let I = (∆ ↓ B). Then the map
hocolimI Γp → E is a weak equivalence, for any map p which is a fibration.

Proof. Consider the diagram D : I → Top which sends a pair ([k], ∆k → B) to the
geometric realization of the simplicial set obtained as the pullback ∆k

s → SB ← SE,
where S(−) is the singular functor.

There is an evident map of diagrams |D| → Γp, and the fact that p is a fibration
implies that this map is an objectwise weak equivalence. One uses here that SE →
SB is a fibration of simplicial sets, and that in sSet a pullback of a weak equivalence
along a fibration is another weak equivalence.

So we are reduced to showing that hocolimI |D| → X is a weak equivalence. This
is an easy application of Theorem 19.3, very similar to the proof of Proposition 19.4.

�

The following corollary is now immediate from Proposition 15.9.
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Corollary 19.7. If p : E → B is a fibration, then for any cohomology theory E

there is a spectral sequence

Ep,q
2 = Hp(∆ ↓ B; Eq(Γp))⇒ E

p+q(E).

Note that for each simplex σ : ∆n → B, the space Γp(σ) = σ∗E is weakly
equivalent to the fiber F of p. So the diagram EqΓp is a diagram of abelian groups
where all the abelian groups are isomorphic. One can also check that every map in
the diagram is an isomorphism. So this is something which should be called a “local
coefficient system”. The above spectral sequence is a version of the generalized
Atiyah-Hirzebruch/Leray-Serre spectral sequence.

19.8. Proofs of the two main theorems. The two proofs are both based on an
analogous theorem about simplicial sets. Let D : I → sSet be a diagram of simplicial
sets, let X ∈ sSet, and suppose there is a map colimI D → X . For each simplex
σ ∈ Xn, let F (D)σ denote the category whose objects are pairs [i, α ∈ (Di)n] such
that the map Di → Xi sends α to σ. A map in F (D)σ from [i, α ∈ (Di)n] to
[j, β ∈ (Dj)n] is a map i→ j such that Di → Dj sends α to β. We call F (D)σ the
“fiber category” of D over σ.

The following result is a slight generalization of [J, Lemma 2.7]. The proof,
however, is exactly the same.

Proposition 19.9. Suppose that D : I → sSet and X are as above, and assume
that for every n ≥ 0 and every σ ∈ Xn, the fiber category F (D)σ is contractible.
Then the map hocolimI D → X is a weak equivalence of simplicial sets.

Proof. Consider the simplicial replacement srep(D), and observe that this is a
bisimplicial set. Let us write srep(D)p,q for the q-simplices in the pth level of
srep(D); that is so say,

srep(D)p,q =
∐

i0←···←ip

D(ip)q.

When drawing the bisimplicial set we draw the q-direction vertically and the p-
direction horizontally.

If B∗,∗ is a bisimplicial set, then there are two geometric realizations of B,
depending on whether we realize vertically or horizontally. Define

|B|h = coeq

[

∐

[n]→[k]

Bk,∗ ×∆n
⇉
∐

n

Bn,∗ ×∆n

]

and

|B|v = coeq

[

∐

[n]→[k]

B∗,k ×∆n
⇉
∐

n

B∗,n ×∆n.

]

Note that hocolimI D = | srep(D)|h in this notation.
Let d(B) denote the diagonal simplicial set of B. Then we know there are natural

maps |B|h → d(B)← |B|v and that these are both isomorphisms.
Let chX denote the bisimplicial set with (chX)p,q = Xq, where all the horizontal

faces and degeneracies are the identity map. This bisimplicial set is ‘horizontally
constant’.
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There is a natural map of bisimplicial sets srep(D) → chX . This gives a com-
mutative diagram

| srep(D)|h
∼= //

��

d(srep(D))

��

| srep(D)|v
∼=oo

��
|chX |h ∼=

// d(chX) |chX |v.∼=
oo

Our goal is to show that the left vertical map is a weak equivalence, and so it will
suffice to show that the right vertical map is a weak equivalence.

We will argue that each map of simplicial sets srep(D)∗,q → (chX)∗,q is a weak
equivalence. This will imply that we get a weak equivalence after applying the
vertical geometric realization.

Note that (chX)∗,q is just the discrete simplicial set corresponding to the set Xq.
So it will suffice to prove that the fiber of the map πq : srep(D)∗,q → Xq over any
point is contractible. But if σ ∈ Xq, then one readily checks that the fiber of πq over
σ is the nerve of the category F (D)σ, and hence is contractible by assumption. �

We can now give the proofs of our two theorems:

Proof of Theorem 19.2. Let Sing : Top → sSet denote the usual singular functor.
Applying this to D gives a diagram Sing D : I → sSet, together with an induced map
colim(Sing D) → Sing X . An n-simplex of Sing X is just a map σ : ∆n → X , and
the fiber category F (Sing D)σ from Proposition 19.9 is precisely the fiber category
F (D)σ from the statement of the theorem. Sincee these fiber categories are assumed
to be contractible, Proposition 19.9 says that hocolimI(Sing D)→ Sing X is a weak
equivalence of simplicial sets.

The final step is to apply geometric realization to the above map, and then to
use the following commutative diagram:

| hocolim(Sing D)| // | colim(Sing D)| // | Sing X |

hocolim | Sing D| //

∼=

OO

∼

��

colim | Sing D|

∼=

OO

��

// | Sing X |

∼

��
hocolimD // colimD // X.

We know from the previous paragraph that the composite across the top row is a
weak equivalence. The two-out-of-three property then shows that the composite
across the bottom row is also a weak equivalence. �

Proof of Theorem 19.3. This proof is similar to the preceeding one. The natural
maps |D̃i| → Di and Di → X allow us to consider the composites

D̃i → Sing |D̃i| → Sing Di → Sing X.

These are compatible as i varies, so we have a map colimI D̃ → Sing X . The
assumptions of the theorem say precisely that the fiber categories F (D̃)σ are con-
tractible, for every simplex σ of Sing X . By Proposition 19.9 we therefore have that
hocolimI D̃ → Sing X is a weak equivalence.
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To complete the proof one considers the following diagram:

| hocolim D̃|

∼=

��

∼ // | hocolim(Sing D)|

∼=

��

// | Sing X |

hocolim |D̃|
∼ // hocolim | Sing D| //

��

| Sing X |

∼

��
hocolimD // X.

We have proven that hocolimI D̃ → Sing X is a weak equivalence. Our assump-
tion that the maps |D̃i| → Di are weak equivalences implies that hocolim |D̃| →
hocolimD is a weak equivalence. The two-out-of-three property, applied several
times, now gives that hocolimDi → X is a weak equivalence. �



A PRIMER ON HOMOTOPY COLIMITS 71

20. A survey of other applications

20.1. Telescopes and the localization of spaces. ????

20.2. Homotopy decompositions of classifying spaces. ?????

20.3. Homotopical sheaf theory. ?????

20.4. Further directions. In this final section we mention aspects of the theory
of homotopy limits and colimits which we have not addressed here. We also suggest
some other references.

(1) A very general approach to homotopy limits and colimits, and particularly their
role as derived functors, can be found in [DHKS].

(2) Let I be a topological category—that is, a category where the morphism sets
have the structure of topological spaces, and where composition is continuous.
An enriched diagram X : I → Top consists of a topological space X(i) for
every i ∈ I, together with continuous maps of spaces I(i, j)→ Map(X(i), X(j))
which are compatible with composition and identities.

One important example of this is when G is a topological group, and I is the
topological category with one object whose endomorphisms are G. An enriched
diagram X : I → Top consists of a space X(∗) and a continuous group action
G×X(∗)→ X(∗).

One can ask for a theory of enriched homotopy colimits and limits. This has
been developed recently in [S].

(3) Section 5 of Thomason’s paper [T] contains a very compact and appealing
treatment of homotopy limits and colimits, their associated spectral sequences,
as well as a “Scholium of Great Enlightenment”. We highly recommend it.

References

[BK] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lect.
Notes in Math., vol. 304, Springer-Verlag, New York, 1972.

[CS] W. Chachólski and J. Scherer, Homotopy theory of diagrams, Mem. Amer. Math. Soc.
no. 736, 2002.

[C] E. Curtis, Simplicial homotopy theory , Advances in Math. 6 (1971), 107–209.
[D] D. Dugger, Combinatorial model categories have presentations, Adv. Math. 164 (2001),

177–201.
[DI] D. Dugger, D. C. Isaksen, Topological hypercovers and A

1-realizations, Math. Z. 246

(2004), 667–689.
[Dw1] W. G. Dwyer, Homology decompositions for classifying spaces of finite groups.
[Dw2] W. G. Dwyer, Classifying spaces and homology decompositions, ????
[DHKS] W. G. Dwyer, P. S. Hirschhorn, D. M. Kan, and J.H. Smith, Model categories and

homotopical categories, Mathematical Surveys and Monographs, vol. 113, Amer. Math.
Soc., 2004.

[DK] W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology 19

(1980), 427–440.
[DS] W. G. Dwyer and A. Spalinski, Homotopy theories and model categories. Handbook of

algebraic topology, 73–126, North-Holland, Amsterdam, 1995.
[H] P. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Mono-

graphs, vol. 99, Amer. Math. Soc., 2003.
[HV] J. Hollender and R. M. Vogt, Modules of topological spaces, applications to homotopy

limits and E∞ structures, Arch. Math. (Basel) 59 (1992), no. 2, 115–129.
[Ho] M. Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, Amer.

Math. Soc., 1999.



72 DANIEL DUGGER

[J] J.F. Jardine, Homotopical foundations of algebraic K-theory, Algebraic K-theory and
algebraic number theory (Honolulu, HI, 1987), 57–82, Contemp. Math., 83, Amer. Math.
Soc., Providence, RI, 1989.

[ML] S. MacLane, Categories for the working mathematician, Second edition, Springer, 1998.
[M] J.P. May, The geometry of iterated loop spaces. Lectures Notes in Mathematics, Vol.

271. Springer-Verlag, Berlin-New York, 1972.
[Schl] C. Schlichtkrull, The homotopy infinite symmetric product represents stable homotopy

theory, Algebr. Geom. Topol. 7 (2007), 1963–1977.
[Sch] S. Schwede, Untitled book project on symmetric spectra, preprint.
[Se] G. Segal, Categories and cohomology theories. Topology 13 (1974), 293–312.
[Sh] B. Shipley, Symmetric spectra and topological Hochschild homology, K-theory 19 (2000),

no. 2, 155–183.
[S] M. Shulman, Homotopy limits and colimits and enriched homotopy theory, preprint,

2006. arXiv:math.AT/0610194
[Si] D. P. Sinha, The topology of spaces of knots, preprint, available at

http://front.math.ucdavis.edu/0202.5287.

[T] R. W. Thomason, Algebraic K-theory and étale cohomology, Ann. Sci. École Norm. Sup.
(4) 18 (1985), no. 3, 437–552.

[V1] R. M. Vogt, Homotopy limits and colimits, Math. Z. 134 (1973), 11–52.
[V2] R. M. Vogt, Commuting homotopy limits, Math. Z. 153 (1977), no. 1, 59–82.
[W] N. Wahl, Infinite loop space structure(s) on the stable mapping class group, Toplogy 43

(2004), no. 2, 343–368.

Department of Mathematics, University of Oregon, Eugene, OR 97403

E-mail address: ddugger@math.uoregon.edu


