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In this first section we attempt to give a brief overview of mathematical work
related to Yang-Mills (at least as it seeems from the authors perspective). We
do not go into any technical details or definitions here: most of these are well
represented in the literature, for example [17]. (We also mention a survey article
[15] of the author, in a somewhat similar vein, which contains more detail.) In
the following two sections we take up some of the ideas again, at a slightly more
technical level.

Yang-Mills theory had a profound effect on the development of differential
and algebraic geometry over the last quarter of the twentieth century, and it is
now clear that this should be seen as part of a larger phenomenon: novel and
profound interactions between theoretical physics and pure mathematics. The
focus of mathematicians interest in Yang-Mills theory evolved over this period.
To begin with, the emphasis was on the theory over four-dimensional Euclidean
space, and its compactification the four-sphere (as well as the related theory of
monopoles in three-space). The main lines of work were:

• Questions in the calculus of variations associated with the Yang-Mills func-
tional. Here the emphasis was on analytical aspects, notably the founda-
tional results of Uhlenbeck [47], and differential geometric aspects, as for
example in the stability results of Bourguignon and Lawson [5].

• Algebro-geometric aspects, involving Ward’s description of the Yang-Mills
instantons in terms of holomorphic bundles over Penrose’s twistor space,
leading to the description of solutions via the ADHM construction [2].

It is important to ephasise however that, while can distinguish these different
lines of work—involving very different mathematical techniques—the activities
were closely related. Thus one notable feature of the impact of Yang-Mills theory
within mathematics has been to increase the unity of the subject, throwing
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bridges between mathematical areas (e.g. PDE theory, vector bundles over
complex projective space) which might have been seen before as having little
connection. Another important strand was furnished by topology, notably in
the paper of Atiyah and Jones [4]. The issue which this brought to the fore was
that the Yang-Mills functional can be regarded as a function defined on a space
with a rich topology (the space of connections on a fixed bundle, modulo gauge),
so one could hope that this would be reflected (on the lines of Morse Theory)
in the topology of the critical set. On the other hand this critical set consists
of the moduli space of instantons (the absolute minimum) and higher critical
points, so leading to a circle of questions involving the homotopy groups of the
instanton moduli spaces and the existence of higher critical points (and their
Morse indices). These topological aspects were also important in connection
with “anomalies” and Atiyah-Singer index theory.
From the early 1980’s the centre of activity evolved in roughly the following

ways.

• Taubes introduced novel and deep techniques to attack the questions in
the calculus of variations sketched above [43]. In a different direction,
Taubes took the natural but critical step of studying Yang-Mills instantons
over general Riemannian four-manifolds [42] (in contrast to earlier work
which had concentrated on special classes of Riemannian manifolds such
as symmetric spaces or “self-dual” manifolds [3]). In both cases, the work
centred on the fact that one can have small, highly concentrated “bubble-
like” instantons; related to the conformal invariance of Yang-Mills theory
in four dimensions.

• The instanton equations, and the moduli spaces of their solutions, were
applied to solve outstanding problems in four-manifold topology. The two
themes here were first to show that certain intersection forms could not be
realised by smooth four-manifolds and second, complementary, to define
new invariants distinguishing smooth manifolds with the same intersection
forms. Fortuitously, this development occurred at almost the same time
as, coming from a completely different direction, Freedman produced his
theory of topological four-manifolds.

• The Hitchin-Kobayshi conjecture (which was established in different forms
in [10], [11], [48]) set out a very general relation between Yang-Mills the-
ory over complex Kahler manifolds and holomorphic bundles, specifically
Mumford’s theory of “stability”.

It is important to emphasise again that these different strands were tightly
interwoven. For example, Taubes’ techniques for constructing solutions lead
to the description of the “boundary” of the instanton moduli space which was
the key to the first differential-topological applications, and the solution of the
Hitchin-Kobayshi conjecture allowed the first calculations of the new invariants,
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in the case of algebraic surfaces. There was an exciting period (in the late 1980’s
and early 1990’s) when developments in the analysis of the instanton equations
(as for example in the work of Mrowka [27]) and in the algebraic geometry of
holomorphic bundles (as for example in the work of Friedman [24]) fed directly
into new results in four-manifold topology.

In parallel with this activity in the mathematical aspects of Yang-Mills the-
ory, another prominent development in mathematics arose in the field of sym-
plectic geometry. This emerged as a major area over much the same period,
seminal influences coming from Arnold, and in particular the “Arnold conjec-
ture”, and Gromov. This contemporaneous development was tightly bound
up with that in Yang-Mills theory, in two different ways. On the one hand,
there is a detailed analogy between Yang-Mills theory over 4-manifolds and the
geometry of maps from a Riemann surface to a symplectic manifold. The Yang-
Mills functional is analogous to the harmonic maps “energy functional” and the
Yang-Mills instantons to the pesudo-holomorphic maps (defined after a choice
of a compatible almost-complex structure on the symplectic manifold). On the
other hand, symplectic geometry and the idea of a “moment map” provide an
important motivation for the Kobayshi-Hitchin conjecture. This goes back to
Atiyah and Bott [1] who pointed out, in particular, that the moduli spaces of flat
connections over surfaces have natural symplectic structures. In the first direc-
tion, the analogy with harmonic maps was prominent in Uhlenbeck’s work and
also in Atiyah and Jones’ formulation of their conjecture on the stabilistion of
the homotopy groups of the instanton moduli spaces for large Pontrayagin class
(analogous to a theorem of Segal for holomorphic maps). Gromov’s celebrated
paper [28] began the use of pseudo-holomorphic maps as a tool in symplectic
geometry in analogy with the use of instantons in four-manifold theory. This
was followed by the work of Floer, who introduced the Floer cohomology groups
in both the the symplectic and Yang-Mills settings [22], [23]. In the second di-
rection, the “moment map” point of view served as a guide to the introduction
of many extensions of the Hitchin-Kobayshi conjecture to “augmented bundles”:
holomorphic bundles with some additional structure such as a section (or Higgs
field)[7]. The symplectic structure on moduli spaces of flat connections was a
vital feature of Witten’s work on 3-manifold and knot invariants [49].
It is less easy to summarise developments over, roughly, the past decade.

Partly, perhaps, this is because the author has been less actively involved in the
area over this period. Partly, because the activity which could be immediately
classified as “the mathematics of Yang-Mills theory” has, perhaps, abated some-
what. Some of the motivating questions sketched above have been answered:
for example, in the proof of the Atiyah-Jones conjecture [6], and the existence
of non-minimal solutions [39]. The theory of four-manifold invariants was revo-
lutionised in 1994 with the work of Seiberg and Witten[50] (and the earlier work
of Kronheimer and Mrowka [33]). Thus the theory of these new invariants for
closed four-manifolds appears now in rather complete shape: we have a collec-
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tion of distinguished “basic classes” in the two dimensional cohomology of the
four-manifold, with associated multiplicities. Moreover these invariants can be
calculated in many cases of interest. The basic classes can be thought of, very
roughly, as generalisations of the first Chern class, in the case of a complex sur-
face. For four-dimensional symplectic manifolds the invariants coincide with the
Gromov-Witten pseudo-holomorphic curve invariants, by the renowned results
of Taubes [44]. Many of the most interesting recent developments have involved
the Floer Theory and interactions with three-manifold topology. A highlight
here is the proof by Kronheimer and Mrowka of “Property P”[34]; involving a
wonderful synthesis of instanton theory, Seiberg-Witten theory, symplectic and
contact geometry.

The remarks above are not meant to suggest that the impact of Yang-Mills
theory on mathematics has been a transient phenomenon. Rather, the ideas
have diffused to stimulate a whole variety of fields and have thus merged with
other strains, as opposed to forming a clearly defined research area. For one
example, Hitchin’s work on bundles with Higgs fields over Riemann surfaces [29]
is important in Drinfeld’s Geometric Langlands correspondence. For another,
analogues of the instanton invariants for connections over manifolds with special
holonomy seem to be coming into prominence in the context of M-theory.

2

In this section we discuss some ideas which have been particularly important in
the mathematical work on Yang-Mills theory, and which have subsequently had
a wider influence in geometry.

2.1 Gauge invariance

One point to make is that Yang-Mills theory provides a relatively simple testing
ground for various constructions. At the most naive level one can say that
the Yang-Mills equations themselves can be written down in a comparatively
compact shape. For example, the Yang-Mills instanton equations over R4 are:

F12 = F34 , F13 = F42 , F14 = F23,

where

Fij =
∂Aj

∂xi
−
∂Ai

∂xj
− [Ai, Aj ],

is the curvature expressed in terms of the (local) connection form Ai. Compare
this with the complexity of the Einstein equations, say, for a Riemannian metric.
(One important line of work, which we have not mentioned above, is that which
casts most of the known integrable PDE as special reduced forms of these elegant
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instanton equations [35].) A more significant point is that we encounter gauge
symmetry in the Yang-Mills equations

A 7→ gAg−1 − (dg)g−1.

Globally, we construct the “moduli space” of instantons (say) as a subset of a
quotient A/G where A is the affine space of all connections and G is the gauge
group and (modulo technical details) we model this quotient on local slices using
the Coulomb constraint

{A0 + a : d
∗
A0
a = 0, ‖a‖ < ε}.

Locally, working with connections over a ball, the existence of a representative
in the gauge group orbit which satisfies the Coulomb condition is at the core of
Uhlenbeck’s basic result [47]. All of these ideas are now well known and have
been widely used. The point we wish to bring out is the comparatively sim-
ple nature of the gauge group, when compared with other infinite dimensional
groups such as diffeomorphism groups. Yang-Mills theory thus provides perhaps
the simplest step beyond linear theory (such as the Hodge theory to which Yang-
Mills theory reduces in the abelian case). Similar ideas have since been applied
in the context of Riemannian geometry and diffeomorphism groups: for exam-
ple in the study of compactness of moduli spaces of Einstein four-manifolds,
where the existence of harmonic coordinate systems takes the place of Uhlen-
beck’s Coulomb gauge fixing [36]. This is not to suggest that such ideas had
not entered geometry before—for example, many occur in the Kodaira-Spencer
theory of deformations of complex structures—but their success and imporatnce
in Yang-Mills theory has certainly made them more of a standard tool.

2.2 Fredholm differential topology

The invariants of a compact four-manifold X defined by the Yang-Mills instan-
ton equations can be put in the following conceptual picture. The self-dual part
of the curvature furnishes a map

F+ : A → Ω
2
+(adP ),

from the space A of connections to the self-dual 2-forms with values in the
bundle associated to the adjoint representation. Passing down to the quotient
A/G, as above (and again ignoring some technicalities) we get a section f+ of
an infinite-dimensional vector bundle say E → A/G. The invariant we have is
then, at least formally, the Euler class of this infinite-dimensional vector bundle,
taking values in the homology of A/G. The reason that this makes any kind of
sense is that f+ is a “Fredholm section”. That is to say, the derivative of f+ is
a Fredholm linear map from the tangent space A/G to the fibre of E . This boils
down to the fact that the differential operator

d∗A ⊕ d
+
A : Ω

1(adP )→ Ω0(adP )⊕ Ω2+(adP ),
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over X is elliptic, hence a Fredholm operator between suitable Sobolev spaces.
(Here d+ denotes the self-dual part of the exterior derivative.) It has been
known for a long time (as least as far back as Smale’s paper [40]) that some of
the familiar constructions of differential topology can be transferred to infinite
dimensions in the presence of such a Fredholm condition. Thus one can attempt
to define the Euler class by perturbing f+ (if necessary) to a suitably generic
section which will will vanish along a finite-dimensional manifold Z in A/G,
of dimension equal to the index of the operator above. Then, provided Z is
compact, the Euler class is defined to be the fundamental class of Z, just as in
finite dimensional differential topology. In the case of the instanton equation
compactness is a crucial technical issue, but the point we want to bring out
here is that while the general context for this construction has been around for
some time, Yang-Mills instantons provided perhaps the first decisive application
of the ideas. Nowadays, these ideas have entered the mainstream and become
familiar. A parallel discussion applies to Gromov-Witten invariants defined by
holomorphic maps into symplectic manifolds and this has grown into an enor-
mous research area. The ideas are intimately connected with classical problems
of enumerative geometry. The ideas have also been applied to, for example,
Special Lagrangian submanifolds [31].
We would like to make two remarks about the applications of these notions

of “Fredholm differential topology”. The first is that their use in Yang-Mills
theory required a significant change in viewpoint. The theory of deformations
of Yang-Mills instantons was developed by Atiyah, Hitchin and Singer in anal-
ogy with the Kodaira-Spencer theory of deformation of complex structures, in
turn reaching back into the general notion of moduli in complex geometry. In
traditional moduli problems one quite often obtains a moduli space which has
very “nongeneric” properties; for example, with singularities, or of a dimension
greater than that predicted by the index calculation: in other words transver-
sality fails for the original map defining the geometric problem. Nevertheless, in
the classical setting, the moduli space is what it is, singularities and all. From
the Fredholm differential topology point of view one wants to think rather differ-
ently: discarding the original moduli space and considering instead the solutions
of a perturbed problem. Nowadays, this all seems familiar. In fact an extensive
theory has been developed of “virtual moduli cycles” which associates a class μ
in the homology of the original moduli space M to the infinitesimal data gov-
erning the deformation problem, in such a way that (in the Yang-Mills setting
above) the homology class [Z] of the zero set of a generic perturbed section
is the image of μ under the inclusion M → A/G. For example, in a simple
case when the moduli space M is smooth but of dimension greater than that
predicted by the index calculation the class μ will be the Poincaré dual of the
Euler class of a finite dimensional vector bundle over M defined by the cokernel
of the linearised operator.
The second remark concerns the general context in which these ideas can be

applied in geometric problems. Consider, for example, the theory of holomorphic
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vector bundles over a compact complex manifold Y . Whatever the dimension of
Y there is a deformation theory, describing (roughly speaking) a neighbourhood
of a point [E] in the moduli space of all holomorphic bundles in terms of data
involving the cohomology groups Hi(End(E)) for i = 0, 1, 2. When i = 1
we have the space of infinitesimal deformations and when i = 2 the space of
obstructions. In the case when Y is a complex surface this moduli space can
be interpreted (roughly speaking) as a moduli space of instantons, and one can
imagine generic perturbations as described above. The fundamental reason why
this works (ignoring issues of compactness etc.) is that—for trivial dimensional
reasons—there are no other cohomology groups Hi(End(E)) for i > 2. Similarly
for moduli spaces of maps from one complex manifold U to another V : the
deformation theory about a given map f : U → V is governed by the cohomology
groups Hi(U ; f∗(TV )) for i = 0, 1. (Now i = 0 gives the space of infinitesimal
deformations and i = 1 the space of obstructions.) When U is a complex curve
there are again no higher cohomology groups, for trivial dimensional reasons.
In general one can hope to apply the “Fredholm differential topology” idea
(leading to virtual moduli cycles etc.) in any deformation problem where the
higher cohomology groups, beyond the obstruction space are zero. An example
of this is Thomas’ theory of “counting” holomorphic bundles over Calabi-Yau
threefolds [46]. The general setting of that theory applies equally well to bundles
over threefolds where the anticanonical bundle K−1 has a holomorphic section
[18], since in that case the higher cohomology group H3(End(E)) vanishes for
a stable bundle E.
These remarks suggest two questions.

• Is there some useful way of extending the ideas to problems in which
higher cohomology groups enter in the deformation theory (for example
to holomorphic bundles over complex manifolds of dimension bigger than
3)?

• Are there other interesting applications of the idea, to cases where the
higher cohomology vanishes? For example in the case of moduli spaces of
complex surfaces the deformations are governed by the cohomology groups
of the tangent bundle, and the desired vanishing holds for dimensional
reasons.(In other words, the theory is described by a two step elliptic
complex.) So one could hope to define a virtual moduli cycle in that case,
but it is not clear what this could be good for.

2.3 Glueing techniques

Probably the most influential idea on the PDE and analysis side of the work on
Yang-Mills theory in differential geometry, is Taubes’ approach to the construc-
tion of solutions by “glueing”. The general strategy is to construct an explicit
approximate solution, built out of standard models and appropriate cut-off func-
tions, and then to deform this to a true solution by means of an implicit function
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theorem. The main technical work frequently comes down to estimates for the
inverse of the differential operator defining the linearised problem. Taubes ap-
plied this strategy to a variety of problems in Yang-Mills theory (instantons on
four-manifolds, monopoles on R3, the Seiberg-Witten equations). Since then
the same kind of strategy has also been applied to other differential geometric
problems, for example constant mean curvature surfaces [32] and manifolds of
exceptional holonomy [30]. Quite possibly the same general strategy may have
been used by other, earlier, writers in other problems, but in any case the work
of Taubes in Yang-Mills theory has made this into something close to a standard
tool in differential geometry. Of course the success of the method depends on
having an appropriate approximate solution and this is connected to the “parti-
cle like” nature of the standard instantons and monopoles. (In the applications
of this strategy there is also typically a real parameter in the problem— for
example, monopole separation or instanton size.)
The remark we would like to make here is that Taubes’ gluing technique

gives a new point of view on results such as the classical Runge Theorem in
complex analysis (approximation of holomorphic functions on a domain by ra-
tional functions). This is explained in [13]; written in response to questions of
Gromov. The analogue of the Runge theorem for instantons is that any solution
of the instanton equations on a domain Ω in S4 can be approximated by global
solutions (where the Pontrayagin number will usually need to tend to infinity as
the approximation becomes better and better). The method of proof is first to
choose an arbitrary extension of the instanton then to modify this to an aproxi-
mate solution by gluing in many small standard “bubbles” in S4 \Ω and finally
to deform to a global solution. This approach should be applicable to other
problems: for example it suggests that there may be a “Runge Theorem” for
holomorphic maps into a complex manifold V provided that all tangent vectors
in V arise as tangents to holomorphic spheres.

2.4 Moment maps and stability

The link between the Yang-Mills equations and the algebro-geometric notion of
“stability” which appears in the Kobayshi-Hitchin conjecture has become influ-
ential in complex differential geometry as a whole. (Of course the Kobayashi-
Hitchin conjecture was predated by the work of Narasimhan and Seshadri [38],
which covers the special case of bundles over complex curves, but the wider
significance of the ideas did not emerge until later.) It leads in to a general
setting for many important links between complex geometry and “metrical”
structures. In finite dimensions this is the “Kempf-Ness principle”: if a group—
say GL(n,C)—acts linearly on CN then a criterion for picking out a preferred
representative in each orbit is to choose a vector of minimal length. If the orbit
is closed (or “stable”) such a representaive exists and is unique up to the action
of the unitary group U(n). In the projective space CPN−1 = P(CN ) these rep-
resentatives yield zeros of the “moment map” for the U(n) action. Even in this
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simple setting, these preferred representives often have geometric interest. For
example, the basic fact that any semisimple complex Lie group has a compact
real form can be proved in this way. However the real impact of these ideas has
arisen from the realisation (going back to Atiyah and Bott [1]) that the same
notions can usefully be applied in cases where the finite-dimensional Lie groups
GL(n,C), U(n) are replaced by infinite-dimensional groups. In the case of the
Kobayashi-Hitchin conjecture, the analogue of the group U(n) is the group G of
gauge transformations of a unitary bundle over a compact Kahler manifold. The
analogue of the projective space CPN−1 is the space A of connections, and the
vanishing of the moment map is precisely the Yang-Mills equation ocurring in
the Kobayashi-Hitchin conjecture. The analogue of the vector space CN is more
esoteric: it is essentially the total space of a “determinant line bundle”. The
functional which corresponds to the length of vectors in CN is the Quillen norm
in this determinant line bundle, defined via zeta-function regularisation of the
determinants of Laplace operators. Thus there is a significant contact with the
Arakelov theory of Bismut, Gillet, Soulé et al [41], which was developed—from
quite a different direction—at about the same time.
This picture is essentially a formal one, and does not by itself lead directly

to a proof of the Kobayashi-Hitchin conjecture. Such proofs require some in-
put from PDE theory: elliptic estimates etc. However the formal picture is
an important guide. In the past decade there has been considerable activity
developing the analogue of these ideas for Kahler metrics on complex mani-
folds, rather than on auxiliary bundles as in the Yang-Mills case. For example,
the fact that any compact Riemann surface has a metric of constant curvature
appears as another instance of this general picture [16]. For the Kahler met-
ric problem, the gauge group is replaced by the group of symplectomorphisms
of the manifold (in line with the remarks in (2.1) above). The moment map
condition is that a metric has constant scalar curvature: a condition discussed
extensively by Calabi [8] (also motivated in part by Yang-Mills theory, although
following a different route to the one we have discussed here). The analogue of
the Kobayashi-Hitchin conjecture has not been proved yet, largely because of
the formidable nature of the nonlinear, fourth order, PDE involved, but this is
an important goal in current research.

9



3

In this section we will discuss a selection of problems involving mathematical
aspects of Yang-Mills theory.

3.1 Four-manifolds and invariants

The classification of smooth four-manifolds
This is a very large problem–not to be taken literally. It is also one which

may have little to do with Yang-Mills theory. The current state of the theory
is illustrated well by the paper [21] of Fintushel and Stern. They construct
a large family of four-manifolds—one for each knot in R3—all homeomorphic
to the standard complex K3 surface. Many of these can be distinguished by
their Seiberg-Witten invariants, which reduce in this case to the Alexander
polynomials of the knots (and presumeably the Yang-Mills instanton invariants
contain just the same information). On the other hand, there are many different
knots with same Alexander polynomials, and for these it is completely unclear
whether the correspoding four-manifolds are diffeomorphic. There are at present
no techniques to either distinguish the manifolds or to establish the existence
of diffeomorphisms between them (beyond, in the latter case, some inspired
explicit construction). It is thus impossible to prediuct how the theory will
develop in the future, but in any case since the known invariants (instanton,
Seiberg-Witten) come from Yang-Mills theory, it is reasonable to hope that any
developments in the understanding of four-manifolds will have some bearing on
that theory.
Aside from the overall classification problem, there are various questions

having more to do with the internal structure of the invariants for general four-
manifolds. For example
Do all compact four-manifolds have “simple type” in the sense of Witten

[50] and Kronheimer and Mrowka [33]?

An obvious outstanding problem is:
Prove Witten’s conjecture [50] relating the instanton and Seiberg-Witten in-

variants.
There is little doubt that the result is true and a proof under some additional

hypotheses has been given by Feehan and Leness [20]. The development of
Feehan and Leness’ approach would seem to require advances in the technique
for describing the compactification of instanton moduli spaces. The description
of these compactifications, in a form in which one can carry out the appropriate
topological calculations (i.e evaluation of cohomology classes on the “links” of
points at infinity) has been a long-running issue and it seems that new ideas
are required to cut through the complexity of the phenomena that occur when
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the Pontrayagin class becomes large. Perhaps more significant than the actual
proof of Witten’s conjecture is the search for a mathematical understanding
of the structural relationship between the theories: the appearance of elliptic
curves etc. The work of Nakajima and Yoshioka [37] seems to have gone furthest
in this direction.

3.2 Floer Theory

Understand the relation between the instanton and Seiberg-Witten Floer theories
for three-manifolds
The Floer theories for three-manifolds, connected with the instanton and

Seiberg-Witten equations over four-manifolds with boundaries, seem to be con-
siderably more intricate and subtle than the theories for closed 4-manifolds. It is
not clear how the two theories are related. In this direction we note the follow-
ing. Let Y be a compact oriented three-manifold and consider the question of
what negative-definite intersection forms can be realised by 4-manifolds X with
boundary Y . One obtains restrictions on the intersection forms in either the
instanton or Seiberg-Witten Floer theories (see [25], [14]). The general shape
of these restrictions is that certain elements of the Floer group HF ∗(Y ), deter-
mined by X, must be nonzero if the intersection form of X satisfies appropriate
conditions (for example having no elements of length −1). In particular the
Floer group itself must be nonzero. A natural question is whether the restric-
tions on the intersection forms obtained in the two theories are equivalent. This
might give a guide to the general relation between the Floer theories.

A moduli space M(S) of flat connections over a compact oriented surface
S has a canonical sympletic form ω. Thus the mapping class group ΓS of the
surface acts by symplectomorphisms onM(S). Dynamical aspects of this action
have been studied by Goldman [26]. The action is also an important ingredient
in Witten’s theory of knot and 3-manifold invariants. One can ask about the
composite map from ΓS to the group Γ(M(S), ω)) of symplectomorphisms of
M(S) modulo symplectic isotopy.
Does this map give an injection, or even an isomorphism from ΓS to Γ(M(S), ω)?
Floer theory provides one tool for attacking this question. By the result of

Dostoglou and Salamon [19] the symplectic Floer groups—which are invariants
of classes in Γ(M(S), ω)—coincide with the instanton Floer groups of the three-
manifolds obtained as mapping tori. Some results in this direction were obtained
in the early 1990’s by M. Callahan, but unfortunately Callahan left mathematics
before writing up his work.

3.3 Gauge theory in higher dimensions

There are analogues of the instanton equation for connections on bundles over
manifolds of dimension 7 or 8 with the exceptional holonomy groups G2, Spin(7)
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respectively [18], together (potentially) with the attendant Floer theories etc.
The overriding problem in developing a complete theory (i.e a theory of in-
variants in the Fredholm differential topology setting discussed in (2.2) above),
is that of compactness. There are important results of Tian [45] here, but it
seems that the theory depends on a corresponding (and currently absent) theory
for the relevant codimension-4 calibrated submanifolds. Nevertheless there are
many interesting questions which should be accessible such as
Construct non-trivial solutions of the G2 and Spin(7) instanton equations

over the manifolds constructed by Joyce and Kovalev.
The obvious approach here is to use some variant of Taubes’ gluing strategy.
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