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61. Poincaré’s index formula for surfaces 176
Problems 177
62. The Gauss-Bonnet theorem 177



viii CONTENTS

63. The Euler class 179
Problems 182

Chapter 12. Elements of Analysis 185
64. Sobolev spaces 185
Problems 185
Problems 187
65. Compact operators 188
Problems 188
66. The Rellich lemma 188
67. The regularity theorem 189
68. Solvability criterion for elliptic equations 190
69. The Hodge-de Rham decomposition theorem 190

Appendix A. Some Linear Algebra 191
69. Affine spaces 191
Problems 191
70. Orientation in real vector spaces 192
Problems 192
71. Complex lines versus real planes 194
72. Indefinite inner products 194

Appendix B. Facts from Topology and Analysis 195
73. Banach’s fixed-point theorem 195
Problems 196
74. The inverse mapping theorem 197
Problems 198
75. The Stone-Weierstrass theorem 199
76. Sard’s theorem 201
Problems 201

Appendix C. Ordinary Differential Equations 203
78. Existence and uniqueness of solutions 203
Problems 205
79. Global solutions to linear differential equations 206
Problems 209
80. Differential equations with parameters 211

Appendix D. Some More Differential Geometry 215
81. Grassmann manifolds 215
Problems 215
82. Affine bundles 216
Problems 217
83. Abundance of cut-off functions 217
Problems 217
84. Partitions of unity 217
Problems 218
85. Flows of vector fields 219
Problems 221
86. Killing fields 222



CONTENTS ix

87. Lie brackets and flows 222
Problems 224
88. Completeness of vector fields 224
Problems 225

Appendix E. Measure and Integration 229
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Preface

The present text evolved from differential geometry courses that I taught at
the University of Bonn in 1983-1984 and at the Ohio State University between 1987
and 2005.

The reader is expected to be familiar with basic linear algebra and calculus
of several real variables. Additional background in topology, differential equations
and functional analysis, although obviously useful, is not necessary: self-contained
expositions of all needed facts from those areas are included, partly in the main
text, partly in appendices.

This book may serve either as the basis of a course sequence, or for self-study.
It is with the latter use in mind that I included over 600 practice problems, along
with hints for those problems that seem less than completely routine.

The exposition uses the coordinate-free language typical of modern differential
geometry. However, whenever appropriate, traditional local-coordinate expressions
are presented as well, even in cases where a coordinate-free description would suffice.
Although seemingly redundant, this feature may teach the reader to recognize when
and how to take advantage of shortcuts in arguments provided by local-coordinate
notation.

I selected the topics so as to include what is needed for a reader who wishes to
pursue further study in geometric analysis or applications of differential geometry
to theoretical physics, including both general relativity and classical gauge theory
of particle interactions.

The text begins with a rapid but thorough presentation of manifolds and dif-
ferentiable mappings, followed by the definition of a Lie group, along with some
examples. A list of all the topics covered can best be glimpsed from the table of
contents.

One topic which I left out, despite its prominent status, is complex differen-
tial geometry (including Kähler manifolds). This choice seems necessary due to
limitations of space.

Finally, I need to acknowledge several books from which I first learned differ-
ential geometry and which, consequently, influenced my view of the subject. These
are Riemannsche Geometrie im Großen by Gromoll, Klingenberg and Meyer, Mil-
nor’s Morse Theory, Sulanke and Wintgen’s Differentialgeometrie und Faserbündel,
Kobayashi and Nomizu’s Foundations of Differential Geometry (both volumes), Le
spectre d’une variété riemannienne by Berger, Gauduchon and Mazet, Warner’s
Foundations of Differentiable Manifolds and Lie Groups, and Spivak’s A Compre-
hensive Introduction to Differential Geometry.

Andrzej Derdzinski

xi
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CHAPTER 1

Differentiable Manifolds

1. Manifolds

Topics: Coordinate systems; compatibility; atlases; topology; convergence; maximal atlases; the

Hausdorff axiom; manifolds; vector spaces as manifolds.

Let r be a natural number (r = 0, 1, 2, . . . ), or infinity (r = ∞), or an addi-
tional symbol ω (r = ω). We order these values so that 0 < 1 < . . . <∞ < ω. A
mapping F between open subsets of Euclidean spaces is said to be of class Cr if
r = 0 and F is continuous, or 0 < r <∞ and F has continuous partial derivatives
up to order r, or r = ∞ and F has continuous partial derivatives of all orders
or, finally, r = ω and F is real-analytic. (Each of the regularity properties just
named for F means the corresponding property for every real-valued component
function of F .)

An n-dimensional coordinate system (or chart) in a set M is a pair (U,ϕ),
where U (the chart’s domain) is a nonempty subset of M and ϕ : U → ϕ(U) is
a one-to-one mapping of U onto an open subset ϕ(U) of Rn.

Two n-dimensional coordinate systems (U,ϕ), (Ũ , ϕ̃) in M are Cr compatible,
0 ≤ r ≤ ω, if

a. The images ϕ(U ∩ Ũ), ϕ̃(U ∩ Ũ) are both open in Rn,

b. The (bijective) composite mapping ϕ̃ ◦ϕ−1 : ϕ(U ∩ Ũ)→ ϕ̃(U ∩ Ũ), and its
inverse, are of class Cr.

We call ϕ̃ ◦ ϕ−1 the transition mapping between (U,ϕ) and (Ũ , ϕ̃).
An n-dimensional Cr atlas A on a set M is a collection of n-dimensional

coordinate systems in M which are mutually Cr compatible and whose domains
cover M . When A is fixed, a set Y ⊂ M is said to be open if ϕ(U ∩ Y ) is open
in Rn for each (U,ϕ) ∈ A. The family of all open sets is called the topology in M
determined by the Cr atlas A. By a neighborhood of a point x ∈M we mean any
open set containing x. A sequence xk, k = 1, 2, . . . of points in M then is said to
converge to a limit x ∈M if every neighborhood of x contains the xk for all but
finitely many k.

An n-dimensional Cr atlas A on M is called maximal if it is contained in
no other n-dimensional Cr atlas. Every n-dimensional Cr atlas A on M is
contained in a unique maximal Cr atlas Amax. The topologies in M determined
by A and Amax coincide (Problem 2).

The topology determined by an atlas A on M is said to satisfy the Hausdorff
axiom (or, to be a Hausdorff topology) if any two different points x, y ∈ M have
disjoint neighborhoods.

An n-dimensional Cr manifold , 0 ≤ r ≤ ω, consists of a nonempty set M
along with a fixed n-dimensional maximal Cr atlas A that determines a Hausdorff

1



2 1. DIFFERENTIABLE MANIFOLDS

topology. We will often suppress A from the notation and simply speak of “the n-
dimensional manifold M”. For instance, we will write n = dimM . The coordinate
systems (U,ϕ) ∈ A will be referred to as local coordinate systems (or local charts)
in the manifold M , or simply coordinate systems (charts) in M ; those among them
having the domain U = M will be called global (rather than local).

Rather than C0 manifolds, one often uses the term topological manifolds.
Any real vector space V with dimV = n < ∞ is an n-dimensional Cω

manifold, with the atlas

(1.1) A = {(V, ϕ) : ϕ is a linear isomorphism of V onto Rn} .

The charts forming A are global, so just one of them would suffice to define the
corresponding maximal atlas (Problem 9); however, our choice of A emphasizes
that the manifold structure is determined by the vector space structure alone.

Problems
1. Call two n-dimensional Cr atlases A, A′ on a set M equivalent if their union
A ∪ A′ is a Cr atlas. Show that A, A′ are equivalent if and only if they are
contained in the same maximal Cr atlas. (This establishes a natural bijective
correspondence between the set of all maximal Cr atlases on M , and the set of
equivalence classes of Cr atlases.)

2. Prove that equivalent Cr atlases (Problem 1) lead to the same topology.
3. For an n-dimensional Cr atlas A on a set M , show that the following two

conditions are equivalent:
(i) the topology determined by A satisfies the Hausdorff axiom,
(ii) the limit of any convergent sequence of points in M is unique.

4. Given an n-dimensional Cr atlas A on a set M , a coordinate system (U,ϕ) ∈
A, and a point x ∈ U , verify that a sequence xk of points in M converges to
x if and only if xk ∈ U for all sufficiently large k and ϕ(xk)→ ϕ(x) in Rn as
k →∞.

5. A subset K of a manifold M is called closed if its complement M \K is open.
Show that the class of all closed subsets of M contains M and the empty set,
and is closed under finite unions and arbitrary intersections.

6. Verify that a subset K of a manifold M is closed if and only if K contains all
limits of all sequences of points in K that converge in M .

7. Let 0 ≤ r ≤ s ≤ ω. Verify that every Cs manifold M is naturally a Cs

manifold, that is, the maximal Cs atlas of M is contained in a unique maximal
Cr atlas on the set M .

8. Show that any linear operator F : Rn → Rm is of class Cω.
9. Given an n-dimensional coordinate system (U,ϕ) on a set M that is global

(i.e., U = M), verify that A = {(U,ϕ)} is an n-dimensional Cω atlas on M .
10. Let (U,ϕ) be a coordinate system in a Cr manifold M . Show that a subset Y

of U is open if and only if ϕ(Y ) is open in Rn.

2. Examples of manifolds

Topics: Affine spaces as manifolds; cosets and nonhomogeneous linear equations; open subman-

ifolds; Cartesian products; the gluing construction; real and complex projective spaces; spheres;

tori; local geometric properties; compactness.
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Any real affine space (M,V,+) of dimension n <∞ (see the appendix below)
can naturally be turned into an n-dimensional Cω manifold, with the atlas formed
by all affine coordinate systems in M , that is, those global charts (M,ϕ) for which
ϕ : M → Rn satisfies ϕ(y) = ψ(y − x) for some “origin” x ∈ M , some linear
isomorphism ψ : V → Rn, and all y ∈M .

From now on, defining a specific atlas A on a set M , we will allow the coor-
dinate mappings ϕ : U → ϕ(U) of the n-dimensional coordinate systems forming
(U,ϕ) with U ⊂ M to be one-to-one mappings of U onto open subsets ϕ(U) of
various n-dimensional affine spaces M ′ rather than just Rn. These ϕ then have to
be composed with all possible affine coordinate mappings ϕ′ : M ′ → Rn as defined
above; since linear (and affine) mappings between Rn’s are analytic (Problem 8 in
§1, and Problem 15 below), compatibility for the resulting Rn-valued charts does
not depend on how the ϕ′ were chosen.

Let V be a Euclidean space, i.e., a finite-dimensional real vector space endowed
with a fixed inner product 〈 , 〉. The unit sphere

S(V ) = {v ∈ V : |v| = 1}

of V (where | | is the Euclidean norm with |v| =
√
〈v, v〉) then carries a natural

structure of a Cω manifold with dimS(V ) = dimV − 1, defined by the atlas
A = {(Uv, ϕv) : v ∈ S(V )}, ϕv : Uv → Av being the stereographic projection
with the “pole” v. More precisely, Uv = S(V )\{v}, while Av = v⊥ − v, that is,
Av = {y ∈ V : 〈y, v〉 = −1}, is an affine space with the translation space v⊥ (the
coset of v⊥ through −v ; see the preceding paragraph), and, for x ∈ Uv, ϕv(x) is
the unique intersection point of the line through v and x with Av. Compatibility
is easily seen even without computing the transition mappings explicitly; their
components are rational functions of the coordinates. When V = Rn+1 with the
standard Euclidean inner product, we write Sn instead of S(V ).

The 1-dimensional sphere S1 is usually called the circle. By the n-dimensional
torus we mean the manifold Tn = S1× . . .×S1 obtained as the Cartesian product
(Problem 3 in §2) of n copies of the circle S1. Thus, dimTn = n and T 1 = S1,
while T 2 = S1×S1 can be visualized as a surface shaped like a donut (or an inner
tube):

Fig. 1. The 2-dimensional torus

Consider now a real or complex vector space V of dimension n <∞ ; thus, its
real dimension is dn, where d ∈ {1, 2} is the dimension of the scalar field over R.
We define the projective space of V to be the Cω manifold of dimension d(n− 1)
with the underlying set

P (V ) = {L : L is a 1-dimensional vector subspace of V } .
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Its manifold structure is determined by the atlas A = {(Uf , ϕf ) : f ∈ V ∗ \ {0}}
indexed by all nonzero scalar-valued linear functions on V , and defined as follows.
Set Uf = {L ∈ P (V ) : L is not contained in Ker f} and Af = f−1(1) (this is an
affine space with the translation space Ker f , namely, a coset of Ker f), and let
ϕf : Uf → Af send each L ∈ Uf onto its unique intersection point with Af ; thus,
if L = Rv or L = Cv, then ϕf (L) = v/f(v). Compatibility follows since, for

f, h ∈ V ∗ \ {0}, ϕf (Uf ∩ Uh) = Af \ Kerh and (ϕf ◦ ϕ−1
h )(w) = w/f(w).

When V = Rn+1 or V = Cn+1, rather than P (V ) one speaks of the real
projective space RPn and the complex projective space CPn. The 1-dimension-
al subspace L ∈ P (V ) spanned by a nonzero vector (x0, . . . , xn) in V then is
denoted by [x0, . . . , xn] ∈ P (V ). (One then refers to x0, . . . , xn as homogeneous
coordinates of L = [x0, . . . , xn].)

We say, informally, that a property pertaining to (subsets of) manifolds has
a local geometric character if it can be defined/verified using just any particular
collection of coordinate systems covering the set in question, without resorting
to studying all charts in the maximal atlas of the manifold. Examples of such
properties are: openness of sets (just cover the set U in question with any family
of charts and see if each of them makes U appear open), and convergence of
sequences: to see if xk → x as k →∞, fix just one chart (U,ϕ) with x ∈ U and
ask if ϕ(xk)→ ϕ(x) (Problem 4 in §1).

Another important example of this kind is compactness of sets. (We say that a
subset K of a manifold M is compact if every sequence xk, k = 1, 2, . . . , of points
in K has a subsequence that converges in M to a point x ∈ K.)

Problems
1. Let there be coordinate systems (U,ϕ) in a set M and (U ′, ϕ′) in a set M ′,

of dimensions n and n′, respectively. Verify that (U × U ′, ϕ × ϕ′) with (ϕ ×
ϕ′)(x, x′) = (ϕ(x), ϕ′(x′)) then is an (n+ n′)-dimensional coordinate system in
the Cartesian product M ×M ′ = {(x.x′) : x ∈M , x′ ∈M ′}.

2. Given coordinate systems (U1, ϕ1), (U2, ϕ2) in a set M and coordinate systems
(U ′1, ϕ

′
1), (U ′2, ϕ

′
2) in a set M ′, such that the first two and the last two are Cr

compatible, show that the coordinate system (U1 × U ′1, ϕ1 × ϕ′1) in M ×M ′ is
Cr compatible with (U2 × U ′2, ϕ2 × ϕ′2).

3. Given manifolds M , M ′ of class Cr, prove that the set M×M ′ carries a unique
manifold structure of dimension dimM+ dimM ′ and class Cr, whose maximal
atlas contains all (U ×U ′, ϕ×ϕ′) such that (U,ϕ) and (U ′, ϕ′) belongs to the
maximal atlas of M and M ′, respectively. (With this structure, M ×M ′ is
called the product manifold of M and M ′.) Generalize this to the product
M1 × . . .×Mk of k factors.

4. Verify that the class of all open subsets of a manifold M (also called the topology
of M) contains M and the empty set, and is closed under finite intersections
and arbitrary unions.

5. Verify that every subset A of M is contained in a unique set clos(A) such that
clos(A) is closed and clos(A) ⊂ K for any closed set K ⊂ M containing A.
(We call clos(A) the closure of A.)

6. Suppose we are given four open sets Y1, Y2, Z1, Z2 in Rn with Zα ⊂ Yα for
α ∈ {1, 2}, and a mapping h : Z1 → Z2 which is a Cr diffeomorphism, 0 ≤ l ≤
r ≤ ω (that is, h is one-to-one and onto, and h and its inverse h−1 are both
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of class Cr). Define M to be the set obtained from the disjoint union of Y1

and Y2 by identifying Z1 with Z2 along h. Specifically, M is the quotient of
(Y1 ×{1})∪ (Y2 ×{2}) under the equivalence relation ∼, with (y, α) ∼ (y′, α′)
if and only if (y, α) = (y′, α′), or α 6= α′, y ∈ Zα, y′ ∈ Z ′α and either y′ = h(y)
with α = 1, or y = h(y′) with α = 2.

(i) Verify that the quotient projection π : (Y1×{1})∪(Y2×{2})→M , sending
each (y, α) onto its ∼ equivalence class, is injective when restricted to
either of Yα × {α}.

(ii) Set Uα = π(Yα × {α}) ⊂ M , and let ϕα : Uα → Yα ⊂ Rn be the inverse
of π : Yα×{α} → Uα followed by the identification Yα×{α} → Yα. Show
that A = {(U1, ϕ1), (U2, ϕ2)} is an n-dimensional Cr atlas on M .

7. In Problem 6, let Z1 = Z2 be an open subset of Y1 = Y2 ⊂ Rn such that the
complement Y1 \Z1 is not an open set, and let h be the identity mapping. Show
that the resulting atlas A gives rise to a non-Hausdorff topology on M .

8. Construct M and the atlas A as in Problem 6, using n = 2, Y1 = Y2 = C
(the set of complex numbers, identified with R2), Z1 = Z2 = C\ {0} and h
given by h(z) = 1/z (in the sense of the complex multiplication). Prove that
A determines a Hausdorff topology on M . (The 2-dimensional Cω manifold
thus obtained is known as the Riemann sphere.)

9. Let M and A be again obtained as in Problem 6, with n = 2, Y1 = Y2 =
(−1, 1) × (−1, 1), Z1 = Z2 = {(x, y) ∈ Y1 : x 6= 0}, and with h given by
h(x, y) = (x + 1, y) for x < 0 and h(x, y) = (x − 1,−y) if x > 0. Show that
A determines a Hausdorff topology on M . (The resulting 2-dimensional Cω

manifold is called the Möbius strip. See Fig. 2 in §3.)
10. Suppose that (U,ϕ) be a coordinate system in a manifold M . For any open set

U ′ ⊂ M contained in U , let ϕ′ stand for the restriction of ϕ to U ′. Verify
that the pair (U ′, ϕ′) then also belongs to the maximal atlas of M .

11. Let U be an open subset of an n-dimensional Cr manifold M , and let AU be
the subset of the maximal Cr atlas A of M formed by all coordinate systems
whose domains are contained in U . Show that AU is an n-dimensional maximal
Cr atlas on the set U . (The n-dimensional Cr manifold thus obtained is said
to be an open submanifold of M .)

3. Differentiable mappings

Topics: Continuous mappings; homeomorphisms; differentiable mappings; functions; diffeomor-

phisms; compactness and continuity; curves; piecewise differentiability; connected sets; connec-

tivity and continuity; connected components; disjoint sums of manifolds; gluing constructions;

connected sums.

Given Cs manifolds M , N , a subset K of M and a mapping f : K → N ,
we say that f is continuous if f(xk) → f(x) in N as k → ∞ whenever xk,
k = 1, 2, . . . , is a sequence of points in K that converges in M to a point x ∈ K.
A continuous mapping f : K → N is called a homeomorphism between K and
the image f(K) ⊂ N (or, briefly, a homeomorphic mapping) if f is one-to-one and
the inverse mapping f−1 : f(K)→M is continuous.

A mapping f : M → N between Cs manifolds is said to be of class Cl, where
0 ≤ l ≤ s ≤ ω, if it is continuous and, for any coordinate systems (U,ϕ), (U ′, ϕ′)
in M and N , respectively, the composite ϕ′ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(U ′)) → Rn,
n = dimN , is of class Cl. (Note that ϕ(U∩f−1(U ′)) is open in Rm, m = dimM ;
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see Problems 2(i) below and 4 in §2.) When 0 ≤ l ≤ ∞, we will then also say
that f is Cl differentiable; in particular, C0-differentiability is nothing else than
continuity. On the other hand, Cω mappings will often be referred to as real-
analytic.

The Cl class of a given mapping will also be referred to as its regularity. Reg-
ularity of mappings between manifolds is another important example of a local
geometric property (see §2). In fact, to verify if a mapping is of class Cl, we only
need to use, in both manifolds involved, some simple atlases of our choice, rather
than the full maximal atlases. (Regularity of the transition mappings between
charts then guarantees the result for all the maximal atlases as well.)

We say that f : M → N is a Cl diffeomorphism if it is one-to-one and onto,
while both f and f−1 : N → M are of class Cl. Two Cl manifolds are called
diffeomorphic (or, Cl-diffeomorphic) if there is a Cl diffeomorphism between them.

Mappings f : M → R are usually called (real-valued) functions on M .
A curve in a Cs manifold M is, by definition, a mapping γ : I → M , where

I ⊂ R is any interval containing more than one point. (Thus, I may be open,
closed, or half-open, bounded or unbounded.) The curve γ is said to be of class Cl,
l = 0, 1, 2, . . . , r, if it has a Cl extension to some open interval containing I (note
that open intervals are 1-dimensional manifolds). More generally, we say that a
curve γ : I →M is piecewise Cl, l = 1, 2, . . . , r, if it is continuous and there exist
t1, . . . , tk in the interior of I, for some integer k ≥ 0, such that the restrictions of
γ to I ∩ (−∞, t1], I ∩ [t1, t2],. . ., I ∩ [tk−1, tk], I ∩ [tk,∞) are all of class Cl.

Let K be a subset of a manifold M . Recall (§2) that K is said to be compact
if every sequence xk, k = 1, 2, . . . , of points in K has a subsequence that converges
in M to a point x ∈ K. On the other hand, K is called (pathwise) connected if
any two points x, y ∈ K can be joined by a continuous curve in K, that is, if there
exists a continuous curve γ : [a, b] → M with −∞ < a < b < ∞, γ([a, b]) ⊂ K,
and γ(a) = x, γ(b) = y.

Every manifold M can be uniquely decomposed into a disjoint union of its
connected components, that is, its maximal pathwise connected subsets. Every
connected component is both open and closed as a subset of M (see Problem 10).

Conversely, given a family {Mλ}λ∈Λ of n-dimensional Cs manifolds, we can
form their disjoint sum (or disjoint union), which is the n-dimensional Cs manifold
with the underlying set

(3.1) M =
⋃
λ∈Λ

(Mλ × {λ})

and with the manifold structure determined by the atlas which is the union of
atlases describing the structures of the Mλ. (Note that each Mλ may be treated
as a subset of M via the injective mapping Mλ 3 x 7→ (x, λ), and so a chart in
Mλ is also a chart in M .)

The following assertions are immediate from the above definitions.

Lemma 3.1. Let M be a Cs manifold with a family {Uλ}λ∈Λ of nonempty
open sets Uλ ⊂ M such that

⋃
λ Uλ = M and Uλ ∩ Uλ′ = ∅ whenever λ 6= λ′.

Then there exists a unique Cs diffeomorphism between M and the disjoint sum of
the Uλ (treated as open submanifolds of M), whose restriction to each Uλ is the
identity inclusion mapping.
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Corollary 3.2. Every manifold is naturally diffeomorphic to the disjoint sum
of its connected components.

As a consequence, in most situations problems concerning manifolds can be
directly reduced to questions about connected manifolds.

The disjoint sum operation, applied to a family containing more than one man-
ifold, always results in a manifold which is disconnected (that is, not connected;
this is immediate from Problems 3.10 and 3.11). There is, however, a class of ”sum”
or ”union” operations that does preserve connectedness. Specifically, given n-di-
mensional Cs manifolds M ′ and M ′′, open subsets U ′ ⊂ M ′, U ′′ ⊂ M ′′, and a
Cs diffeomorphism h : U ′ → U ′′, let

(3.2) M = M ′ ∪h M ′′

be the set obtained by ”gluing” M ′ to M ′′ with the aid of h, i.e., forming first the
disjoint union of M ′ and M ′′ and then identifying each x ∈ U ′ with h(x). (For
details, see Problem 12 below, where Y1, Y2 stand for M ′, M ′′.) Both M ′ and
M ′′ then may be regarded as (open) subsets of M , and the union of their maximal
atlases is an n-dimensional Cs atlas A on M (Problem 12). Consequently, M
acquires the structure of a manifold, provided that A satisfies the Hausdorff axiom.
The latter condition need not hold in general (see Problem 7 in §2), and has to be
verified on a case-to-case basis. For instance, it does hold for the gluing procedure
used to obtain the Möbius strip (Problem 7 in §2):

Fig. 2. The the Möbius strip

An important class of examples in which the Hausdorff axiom does hold for A
described as above arises in the so-called connected-sum constructions. Here M ′

and M ′′ are arbitrary n-dimensional Cs manifolds with open subsets U ′ ⊂ B′ ⊂
M ′ and U ′′ ⊂ B′′ ⊂ M ′′, chosen so that B′, B′′ may be Cs-diffeomorphically
identified with an open ball in Rn, of some radius a > 0, centered at 0 and, under
those identifications, either of U ′, U ′′ is a ”spherical shell” obtained from a smaller
concentric open ”ball” B′r, B

′′
r , of radius r, by removing an even smaller closed

ball K ′ε, K
′′
ε of some radius ε > 0 (all balls centered at 0), with 0 < ε < r < a.

The Cs-diffeomorphism h : U ′ → U ′′ is an inversion mapping, transforming the
closure in Rn of the spherical shell that both U ′, U ′′ are identified with onto itself
in such a way that the inner and outer boundary spheres become interchanged.
Specifically,

(3.3) h(x) = ε r
Φx

|x|2
,

where Φ : Rn → Rn is any norm-preserving linear isomorphism (i.e., any orthogonal
n×n matrix). We now use h to glue together, along U ′ and U ′′, not the original
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manifolds M ′ and M ′′, but their open submanifolds M ′0 and M ′′0 with M ′0 =
M ′ \K ′ε, M

′′
0 = M ′′ \K ′′ε . The atlas A obtained as above on the set M = M ′0 ∪h

M ′′0 defined as in (3.2) then satisfies the Hausdorff axiom (see Problem 21), and
so M becomes an n-dimensional Cs manifold, called a connected sum of M ′ and
M ′′.

The connected-sum manifold just constructed depends not only on M ′ and
M ′′, but also on the additional ”parameters” that have to be fixed: The sets B′ ⊂
M ′ and B′′ ⊂M ′′, their diffeomorphic identifications with a ball of radius a in Rn,
the smaller radii r and ε, and the norm-preserving isomorphism F . Nevertheless,
one often uses the informal notation

(3.4) M = M ′#M ′′

for the connected sum. (As a matter of fact, connected sums of the given manifolds
M ′ and M ′′ may represent either one, or two diffeomorphic types, and if there are
two of them, the difference between them results from the two different possible
values of detF , namely 1 and −1.)

A 2-dimensional Cs manifold is usually referred to as a Cs surface. Let k ≥ 0
be an integer. By a closed orientable Cs surface of genus k we mean a Cs surface
which is Cs diffeomorphic to

a. The sphere S2, if k = 0.
b. A connected sum (3.4) of a closed orientable Cs surface M ′ of genus k− 1

and a Cs surface M ′′ diffeomorphic to the torus T 2, if k ≥ 1.

Thus, starting from the sphere S2 and successively ”adding” the torus T 2, we
obtain examples of surfaces of all possible genera.

Fig. 3. The closed orientable surface of genus 2

Problems
1. Set R0 = {0}. By definition, let all mappings to/from any Rn from/to R0 be of

class Cω (and continuous), and let both subsets of R0 be open. Our definitions
of charts, atlases and manifolds thus make sense in the 0-dimensional case as
well. Verify that, for a 0-dimensional atlas on a set M , every subset of M
is open (this is referred to as the discrete topology), and the Hausdorff axiom
always holds. Show that every nonempty set M carries a unique structure of a
0-dimensional manifold, and that this manifold is compact if and only if M is
finite.

2. Let f : M → N be a mapping between manifolds. Verify that the following
three conditions are equivalent:

(i) f is continuous.
(ii) The f -preimage f−1(U) of any open set U ⊂ N is open in M .
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(iii) The f -preimage f−1(K) of any closed set K ⊂ N is closed in M .
3. Let M be an n-dimensional Cs manifold. Show that, for a pair (U,ϕ), the

following two conditions are equivalent:
(i) (U,ϕ) is a coordinate system in M (that is, an element of the maximal

atlas forming the manifold structure of M).
(ii) U is an open subset of M and ϕ is a Cs diffeomorphism between U and

an open submanifold of Rn. (See also Problems 11 in §2 and 7 in §1.)
4. Let f : K → N be a continuous mapping from a compact subset K of a

manifold M into a manifold N . Prove that
(a) The image f(K) is also compact.
(b) If, in addition, f restricted to K is injective, then f : K → f(K) is a

homeomorphism.
5. Verify that a subset K of Rn is compact if and only if it is closed and bounded

(in the Euclidean norm).
6. Let f : K → R be a continuous function on a compact subset K of a manifold

M . Show that
(a) f is bounded, i.e., |f | ≤ C for some constant C ≥ 0.
(b) f assumes its largest and smallest values max f , min f somewhere in K.

7. Let f : K → N be a continuous mapping from a subset K of a manifold M
into a manifold N . Verify that, if K is (pathwise) connected, then so is the
image f(K).

8. Prove that compactness and connectedness of subsets of manifolds are both
preserved by the Cartesian product operation.

9. Let K be a subset of a manifold M . By a connected component of K we mean
any pathwise connected subset K ′ ⊂ K which is maximal (i.e., not contained in
any other pathwise connected subset of K). The pathwise connected components
of M itself are simply called the connected components of M .
(a) Show that the connected components of K are pairwise disjoint, and their

union equals K.
(b) Verify that two points x, y ∈ K lie in the same connected component of

K if and only if they can be joined by a continuous curve in K.
10. Prove that the connected components of any manifold M are both open and

closed as subsets of M . Verify that the connected components of a 0-dimen-
sional manifold M are the one-point subsets of M .

11. Show that a manifold M is connected if and only if the only subsets of M that
are simultaneously open and closed are ∅ and M . (Hint below.)

12. Prove that the assertion of Problem 6 in §2 remains valid when modified as
follows: Y1 and Y2, instead of being open sets in Rn, are arbitrary n-dimen-
sional Cs manifolds; (i) is the same, while (ii) is replaced by
(ii)’ Let A be the union of atlases determining the manifold structures of Y1

and Y2. (Note that each Yα may be treated as a subset of M via the
injective mapping Yα 3 x 7→ [(x, λ)]∼.) Show that A is an n-dimensional
Cs atlas on M .

13. Given a real or complex vector space V of dimension n < ∞, let us denote
by π : V \{0} → P (V ) the standard projection mapping, sending each nonzero
vector onto the subspace it spans. Show that π is of class Cω and onto. Verify
that V \{0} is connected if n ≥ 2. (Hint below.)

14. For a Euclidean space V , let the normalization mapping ν : V \{0} → S(V ) be
given by ν(w) = w/|w|. Prove that ν is of class Cω and onto.
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15. Prove that the spheres S(V ) (with dimV > 1), the tori Tn, and real/complex
projective spaces P (V ) defined above are all connected and compact.

16. For a Euclidean space V , define the mapping F : S(V )→ P (V ) by F (v) = Rv.
Verify that F is of class Cω, onto, and the preimage under F of any point in
P (V ) is a pair of opposite vectors (“antipodal points”) in S(V ). (Thus, the
underlying set of the real projective space P (V ) may be regarded as obtained
by identifying antipodal points in the sphere S(V ).)

17. Show that the real projective line RP1 is diffeomorphic to the circle (1-dimen-
sional sphere) S1. Cf. Problem 4 in §14. (Hint below.)

18. Prove that the complex projective line CP1 is diffeomorphic to the Riemann
sphere (Problem 8). Cf. Problem 4 in §14. (Hint below.)

19. Verify that the Riemann sphere (Problem 8 in §2) is diffeomorphic to the 2-di-
mensional sphere S2. Cf. Problem 4 in §14. (Hint below.)

20. Prove that the Möbius strip (Problem 9 in §2) is diffeomorphic to the real pro-
jective plane RP2 minus a point. (Hint below.)

21. Show that the connected-sum operations described in the text actually leads
to manifolds, i.e., the atlases they produce always satisfy the Hausdorff axiom.
(Hint below.)

22. Prove that every Cs manifold is Cs-diffeomorphic to a connected sum M #Sn,
with n = dimM . (Hint below.)

23. Verify that the torus T 2 is a closed orientable Cω surface of genus 1.
24. Given pathwise connected subsets K ′,K ′′ of a manifold M such that K ′∩K ′′ is

nonempty, verify that K ′∪K ′′ is pathwise connected. Generalize this statement
to the case of arbitrary (not just 2-element) families of pathwise connected sets.

25. Given a Cs manifold M , let B be an open subset of M that admits a Cs-
diffeomorphic identification with a ball of radius a centered at 0 in Rn, and
let K ⊂ B be the set corresponding under such an identification to an open or
closed ball of a smaller radius ε ≥ 0, also centered at 0. (Thus, it is possible
that K = {0}.) Prove that, if M is connected and dimM ≥ 2, then M \K is
a pathwise connected subset of M . (Hint below.)

26. Prove that connectedness (in dimensions n ≥ 2) and compactness (in all dimen-
sions) are both preserved under the connected-sum constructions. What about
dimension 1 ? (Hint below.)

Hint. In Problem 13, connectedness: Fix v, w ∈ V \{0}. If w is not a negative
multiple of v, the line segment connecting v to w lies entirely in V \ {0}. If
w = λv with λ < 0, we may choose u ∈ V \Rv and join both v, w to u in
V \{0} as before.
Hint. In Problem 17, define F : RP1 → S1 by F (Rz) = (z/|z|)2 = z/z, treating
z ∈ R2 = C as a complex number.
Hint. In Problem 18, define Fα : Yα → CP1 by F1(z) = [z, 1], F2(z) = [1, z], with
Yα as in Problem 8 in §2 and [ , ] referring to homogeneous coordinates (§2).
Hint. In Problem 19, define Fα : Yα → S2 by F1(z) = (|z|2 + 4)−1(4z, |z|2 − 4)
(the inverse of the stereographic projection, mentioned in §2), and F2(z) = (4|z|2 +
1)−1(4z, 1− 4|z|2).
Hint. In Problem 20, define Fα : Yα → RP2 \ {L} (notation of Problem 9 in §2)
with L = [0, 0, 1] (homogeneous coordinates) by

F1(x, y) = [cos(πy/2) cos(πx/2), cos(πy/2) sin(πx/2), sin(πy/2)] ,

F2(x, y) = [− cos(πy/2) sin(πx/2), cos(πy/2) cos(πx/2), sin(πy/2)] .
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Hint. In Problem 21, consider two different points x, y ∈ M = M ′#M ′′. Since
M ′0 and M ′′0 (notation as in the text) may be treated as open subsets of M , we
may assume that x ∈ M ′0 \M

′′
0 and y ∈ M ′′0 \M

′
0. (In fact, if x, y are both in

M ′0 or both in M ′′0 , they can be separated there.) Hence x ∈ M ′ lies outside the
closure clos(B′r) of B′r and y ∈ M ′′ lies clos(B′′r ), and so x, y have the disjoint
neighborhoods M ′ \ clos(B′r) and M ′′ \ clos(B′′r ) in M .
Hint. In Problem 22, set M ′ = M and choose B′ ⊂ M ′ and a diffeomorphic
identifications of B′ with a ball of radius a centered at 0 in Rn, as well as
the smaller radii r and ε, as in the text. Using a scale-factor transformation of
Rn, we may always select a > 2, and then let us choose r = 2 and ε = 1/2.
Writing elements of Rn+1 as pairs (x, t) with x ∈ Rn and t ∈ R, let us denote
by ϕ = ϕ(0,1) : U(0,1) → A(0,1) the stereographic projection (see §2) with the
pole (0, 1), where U(0,1) = Sn \{(0, 1)}, Sn is the unit sphere centered at 0

in Rn+1, and A(0,1) = {(x,−1) : x ∈ Rn}. Still treating B′ as a subset of

Rn, let us set M ′′ = Sn, K ′′1/2 = {(0, 1)} ∪ ϕ−1([Rn \ B′1] × {−1}) and B′′1 =

{(0, 1)} ∪ ϕ−1([Rn \ K ′1/2] × {−1}). The stereographic projection (see §2) with

the pole (0,−1) followed by the projection (x, 1) 7→ x then makes K ′′1/2 and B′′1
appear as a closed/open ball, centered at 0, and having the respective radius 1/2
or 1. The Cs-diffeomorphism h : U ′ → U ′′ (notation as in the text) comes from
the inversion mapping (3.3) with Φ = Id.

To describe a Cs-diffeomorphism F : M ′#M ′′ → P , for any manifold P , we
just need to provide mappings F ′ : M ′ \K ′ε → P and F ′′ : M ′′ \K ′′ε → P , which
both are Cs-diffeomorphisms onto open submanifolds of P , while the intersection
of their images is F ′(U ′) = F ′′(U ′′) and F ′′ ◦ h coincides with the restriction
of F ′ to U ′. In our case, ε = 1/2 and P = M = M ′, and we may declare
F ′ to be the identity mapping of M ′ \K ′1/2 ⊂ M , and set F ′′(w) = χ(w) with

ϕ(w) = (χ(w), 1). Note that the inversion mapping (3.3) with εr = 1 and Φ = Id
coincides with the transition between two stereographic projections with mutually
antipodal (i.e., opposite) poles.
Hint. In Problem 25, let S be the boundary sphere of any closed ball Q centered
at 0 in Rn with K ⊂ Q ⊂ B. Every x ∈ M̃ = (M \Q)∪ S can be joined to some

y ∈ S by a continuous curve lying entirely in M̃ ; to see this, choose a continuous
curve γ : [a, b] → M connecting x to a point in K and then replace it with γ

restricted to [a, c], where c is the supremum of those t ∈ [a, b] with γ([a, t]) ⊂ M̃ .

Since S is connected (Problem 15), it follows that M̃ is connected. Now, if K is

an open ball, we may choose Q to be the closure of K, and then M \K = M̃ . On
the other hand, if K is an closed ball, M \K is a union of sets of the form M̃
(with the radii of the corresponding Q approaching ε from above), and we can
use Problem 24.
Hint. In Problem 26, let Q′ ⊂ B′r, Q

′′ ⊂ B′′r be open balls slightly larger than
K ′ε or, respectively, K ′′ε (notation as in the text). Then the connected-sum man-
ifold (3.4) is a union of the connected or, respectively, compact subsets M ′ \Q′

and M ′′ \Q′′ (see Problem 25 in §3). The compact case now is obvious, and for
connectedness we can use Problem 24 in §3.
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4. Lie groups

Topics: Groups; Abelian groups; Lie groups; examples.

Recall that a group is a set G endowed with a fixed binary operation (called
the multiplication), that is, a mapping

(4.1) G×G 3 (a, b) 7→ ab ∈ G ,
having the following properties:

a. a(bc) = (ab)c for all a, b, c ∈ G (associativity). Thus, we may skip the
parentheses and simply write abc instead of a(bc).

b. There exists a neutral element 1 ∈ G with 1a = a1 = a for all a ∈ G. (It
follows that such an element is unique.)

c. Each a ∈ G has an inverse a−1 ∈ G with aa−1 = a−1a = 1. (Again, a−1

is uniquely determined by a.)

The group G is said to be Abelian if its multiplication is commutative, that is,
ab = ba for all a, b ∈ G. For Abelian groups one sometimes uses the additive
rather than multiplicative notation, writing a+ b, 0, −a and a− b instead of ab,
1, a−1 and ab−1, respectively.

By a Lie group of class Cs, 0 ≤ s ≤ ω, we mean a Cs manifold G with a
fixed group structure such that both the multiplication and the inverse

(4.2) G×G 3 (a, b) 7→ ab ∈ G , G 3 a 7→ a−1 ∈ G
are Cs mappings. (Here G×G is the Cartesian product manifold; see Problem 3
in §2.)

Example 4.1. For any finite-dimensional real vector space V , the underlying
additive group of V is a Lie group of class Cω.

Example 4.2. Let A be a finite-dimensional associative algebra with unit
over the field R of real numbers. The open submanifold G of A consisting of all
invertible elements, with the algebra multiplication of A restricted to G, then is a
Lie group of class Cω, with dimG = dimA. (See Problems 2, 4.)

Example 4.3. Let V be a real or complex vector space of real/complex di-
mension dimV = n <∞. The set GL(V ) of all real/complex linear isomorphisms
of V onto itself, with the composition operation, then is naturally a Lie group of
dimension n2 (when V is real) or 2n2 (when V is complex). This is a special
case of Example 4.2, with GL(V ) = G for the real algebra gl(V ) = A of all
real/complex linear operators V → V .

Example 4.4. The sets GL (n,R) and GL (n,C) of all nonsingular real (or,
respectively, complex) n×n matrices, with the matrix multiplication, carry natural
Lie group structures of dimensions n2 and 2n2, respectively. (This is a special case
of Example 4.3, with V = Rn or V = Cn, since linear operators between numerical
spaces may be identified with matrices.)

Example 4.5. In particular, the multiplicative groups R\ {0} = GL (1,R)
and C\ {0} = GL (1,C) of all nonzero real/complex numbers are Lie groups with
their structures of open submanifolds of R and C, respectively.

Example 4.6. Every group G may be viewed as a Lie group with dimG = 0.
(Such Lie groups are called discrete.) In fact, the maximal atlas of G then consists
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of charts with one-point (or empty) domains. Thus, the group structure of a Lie
group does not, in general, determine its manifold structure.

Given groups G and H, by a homomorphism from G to H we mean a mapping
F : G→ H such that F (ab) = F (a)F (b) for all a, b ∈ G. In the case where G and
H are Lie groups of class Cs, we will say that F is a Cl homomorphism, 0 ≤ l ≤ r,
if it is both a group homomorphism and a Cl mapping between manifolds. (For
examples, see Problems 6 – 7 in §4.) A Cl Lie-group homomorphism is called a
Cl isomorphism if it also is a Cl diffeomorphism of the underlying manifolds. Two
Lie groups G and H will be called Cl-isomorphic if there is a Cl isomorphism
G→ H.

By the algebra of quaternions, denoted by H, we mean the vector space R4

endowed with the bilinear operation of (quaternion) multiplication, written H ×
H 3 (p, q) 7→ pq ∈ H, and described as follows. Let 1, i, j, k be the standard basis
of H = R4. Then

(4.3)
i2 = j2 = k2 = − 1 ,

ij = − ji = k , jk = −kj = i , ki = − ik = j ,

while 1 is the neutral element of the quaternion multiplication.
It follows easily from (4.3) that the quaternion multiplication is associative,

and that the mapping R 3 t 7→ t · 1 ∈ H is an algebra homomorphism. From now
on we will identify R with its image and write

(4.4) R ⊂ H .

The conjugation of quaternions is the real-linear operator H 3 x 7→ x ∈ H, defined
by

(4.5) 1 = 1 , i = − i , j = − j , k = −k .

It follows easily that

(4.6) xy = yx , x = x

for all x, y ∈ H. We call i, j,k for the pure quaternion units. More generally, by
pure quaternions we mean elements of the 3-dimensional subspace

(4.7) 1⊥ ⊂ H

spanned by i, j,k. Here ⊥ denotes the orthogonal complement relative to the
standard Eulidean inner product 〈 , 〉 in H = R4. We thus have the direct-sum
decomposition (cf. also Problem 26 in §9):

(4.8) H = R ⊕ 1⊥ ,

which, for any given quaternion x, will be written as

(4.9) x = Rex + Pux , Rex ∈ R , Pux ∈ 1⊥ .

Then, for all quaternions x, y,

(4.10) Rex = Rex , Pux = −Pux ,

(4.11) xx = |x|2 ∈ R ⊂ H ,

and, consequently (since a symmetric bilinear form is determined by its quadratic
function),

(4.12) 〈x, y〉 = Rexy = Rexy .
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(Here | | is the Euclidean norm with |x|2 = 〈x, x〉.) In view of (4.11), H is an
associative, noncommutative field, that is, every x ∈ H\ {0} has a multiplicative
inverse x−1 with xx−1 = x−1x = 1. Namely,

(4.13) x−1 =
x

|x|2
.

Also, the norm | | is multiplicative in the sense that

(4.14) |xy| = |x| · |y|
for all x, y ∈ H. See Problem 12 in §4.

Example 4.7. For a finite-dimensional real vector space V , the set GL+(V )
of all linear isomorphisms A : V → V with detA > 0 is a Lie group of class Cω.
In fact, it is an open subgroup of GL(V ) (cf. Problem 2 in §4). In particular, we
have the Cω Lie group GL+(n,R) = GL+(Rn) of all real n × n matrices with
positive determinants.

Example 4.8. The multiplicative group H\ {0} of all nonzero quaternions is a
Cω Lie group, namely, as the set of all invertible elements of the quaternion algebra
H. (See Example 4.2.)

It turns out that the spheres S0, S1 and S3 are the underlying manifolds
of Lie groups. Before discussing those examples, let us observe that, instead the
atlas of stereographic projections on the unit sphere S(V ) in a Euclidean space
V (see §2), it is sometimes more convenient to use the projective atlas, described
below. (Both atlases are contained in the same maximal Cω atlas, since transitions
between them are given by simple algebraic formulas.) Specifically, the projective

atlas Ã is the set of all projective charts (Ũv, ϕ̃v), indexed by v ∈ S(V ) and given

by Ũv = {x ∈ S(V ) : 〈v, x〉 > 0}, with ϕ̃v : Ũv → A−v given by

(4.15) ϕ̃v(x) = x/〈v, x〉 .
Here, as in §2, A−v is the affine space v⊥ + v, i.e., Av = {y ∈ V : 〈y, v〉 = 1}.
Then,

(4.16) [ϕ̃v]
−1(y) = y/|y| .

Example 4.9. Let

(4.17) Sn = {x ∈ K : |x| = 1}
be the multiplicative group (cf. (4.14)) of the unit elements of the algebra K of
real numbers (K = R, n = 0), complex numbers (K = C, n = 1), or quaternions
(K = H, n = 3). Each of the spheres S0, S1 and S3 thus becomes a Cω Lie
group (which is obvious from (4.15) and (4.16) along with bilinearity of the algebra
multiplication). The 2-element group S0 = {1,−1} is also denoted by Z2.

Problems
1. Show that, in the definition of a Lie group of class Cs, the requirement that the

multiplication and inverse be both Cs, is equivalent to the condition

(4.18) G×G 3 (a, b) 7→ ab−1 ∈ G is of class Cs.

2. Show that any open subgroup of a Cs Lie group, with the open-submanifold
structure, is a Lie group of class Cs.
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3. Verify that the direct product G×H of two Cs Lie groups G and H, with the
product-manifold structure, is a Cs Lie group.

4. Prove the assertion in Example 4.2 above. In particular, show that G is open
in A. (Hint below.)

5. Verify the claims made in Examples 4.3 – 4.6 above.
6. For V as in Example 4.3, show that the determinant mapping

(4.19) det : GL(V )→ K\{0} ,
where K is the scalar field, is a real-analytic homomorphism of Lie groups.

7. For A and G as in Example 4.2, verify that the formula (ad a)x = axa−1

defines a Lie-group homomorphism ad : G→ GL (A) of class Cω.
8. Let T : V → W be a linear operator between finite-dimensional vector spaces

V,W . Verify that T is injective (surjective) if and only if there exists a linear
mapping T ′ : W → V with T ′T = Id V (or, respectively, TT ′ = IdW ).

9. Given a group G with the multiplication written as in (4.1), let G′ be the same
set with the new “reverse-order” multiplication given by (x, y) 7→ yx. Show that
G′ is a group isomorphic to G. Verify the analogous statement for Lie groups.
(See also Problem 1 in §12.)

10. Verify that, for any a ∈ R and c ∈ C, the assignments

t 7→ |t| , t 7→ sign t = t/|t| , t 7→ eat ,

t 7→ eiat , z 7→ |z| , z 7→ z/|z| , z 7→ ecz

are Cω Lie-group homomorphisms

R\ {0} → (0,∞) , R\{0} → Z2 = {1,−1} , R→ (0,∞) ,

R→ S1 , C\{0} → (0,∞) , C\{0} → S1 , C→ C\{0} ,

(0,∞) being the multiplicative group of positive real numbers.
11. Find Cω Lie-group isomorphisms Sn × (0,∞) → K\ {0}, where K = R and

n = 0, or K = C and n = 1, or K = H and n = 3.
12. Obtain (4.14) as a direct consequence of (4.11) and (4.6).
13. Show that quaternionic square roots of unity are precisely the pure quarternions

of norm 1, that is,

(4.20) S3 ∩ 1⊥ = {x ∈ H : x2 = −1} .
14. The center of a group G is the set of all a ∈ G which commute with every

element of G. Verify that the center of G is a normal subgroup of G.
15. Show that the centers of the Lie groups H\ {0} and S3 are R\{0} and, re-

spectively, Z2 = {1,−1}.
16. Let p, q be quaternions such that, for each quaternion x, px = xq. Show that

then p = q ∈ R.

Hint. In Problem 4, first note that the matrix inverse M 7→M−1 is a real-analytic
mapping GL(n,K) → GL(n,K) (with K = R or K = C), since the entries of
M−1 are rational functions of those of M. For V as in Example 4.3, this implies
real-analyticity of GL(V ) 3 F 7→ F−1 ∈ GL(V ) (use an isomorphism between V
and Kn.)

Now let A be as in Example 4.2. The linear operator P : A → gl (A) given
by (Pa)b = ab is injective as (Pa)1 = a (where A is treated as a real vector
space), and so (Problem 8) we may choose a linear operator Q : gl (A) → A with
QP = 1 (the identity mapping of A). Also, P (ab) = (Pa)(Pb) and P1 = 1 (that
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is, P is an algebra homomorphism). Thus, a ∈ G if and only if Pa ∈ GL (A) and
then P (a−1) = (Pa)−1. (In fact, if Pa ∈ GL (A), the element b = (Pa)−11 is the
inverse of a in A. Namely, we have ba = 1, so P (ab) = (Pa)(Pb) = (Pb)(Pa) = 1
and hence ab = 1 ; in other words, a one-sided inverse of an element in A must be
a two-sided inverse, since the same is true in GL (A).)

Thus, G is open in A, as it is the P -preimage of GL (A) (which in turn is
open, being the det-preimage of K\ {0} ).

Finally, the mapping G 3 a 7→ a−1 ∈ G is real-analytic since it is the composite
in which the restriction P : G→ GL (A) is followed first by GL (A) 3 F 7→ F−1 ∈
GL (A) and then by Q : GL (A) → A (both P,Q being here linear operators
restricted to open subsets.)

On the other hand, real-analyticity of the multiplication of G in Example 4.2
is a trivial consequence of its bilinearity.



CHAPTER 2

Tangent Vectors

5. Tangent and cotangent vectors

Topics: Index notation; partial derivatives; chain rule and group property; curves and tangen-

tiality; tangent vectors; velocity; vector components; transformation rule; tangent vector space;

tangent spaces in vector and affine spaces; directional derivative; germs; components of map-

pings; differentials of differentiable mappings; chain rule for differentials; tangent spaces for open

submanifolds; cotangent spaces and vectors; differentials of C1 functions; bases of tangent and

cotangent spaces naturally distinguished by a given coordinate system; invariance of the dimension

under diffeomorphisms.

All manifolds studied from now on are of class Cr with r ≥ 1. Thus, we exclude
C0 manifolds, also known as topological manifolds, and restrict our discussion to
manifolds that are Cr-differentiable, 1 ≤ r ≤ ∞, or real-analytic.

Coordinate systems (U,ϕ) in a given manifold M will often be written as
x1, . . . , xn (or, briefly, xj), where n = dimM and the xj : U → R are the
components of ϕ : U → Rn, i.e., ϕ(y) = (x1(y), . . . , xn(y)) (and U is presumed to
be known from the context, or irrelevant). Another coordinate system (U ′, ϕ′) in

M then may be written as x1′ , . . . , xn
′

(or, briefly, xj
′
), with the same basis letter

x and a different range of indices. The index sets {1, . . . , n} and {1′, . . . , n′} are
just two disjoint sets with dimM elements and each of them, formally, may be
thought of as the Cartesian product of the set of the first dimM positive integers
with the one-element set {(U,ϕ)} or, respectively, {(U ′, ϕ′)}. Different manifolds
may be distinguished by using different alphabet ranges to label coordinates: j
(and k, l, . . .) in M , α (and β, γ, . . .) in N , etc.

Another part of the index notation consists of the following conventions:

a. In each term (“monomial”) forming a given expression, any index may ap-
pear at most twice.

b. If an index appears once in one term, then it must appear once in every other
term of the given expression, always in the same position (up or down).

c. If an index appears twice in one term, then it must appear once as a subscript
and once as a superscript , and the term is to be summed over that index.

Given coordinates xj in a manifold M , corresponding to a coordinate system
(U,ϕ), and a C1 function f : U → R, we define the (continuous) partial derivatives
∂jf : U → R by

(5.1) ∂jf =
∂(f ◦ ϕ−1)

∂xj
◦ ϕ .

For two coordinate systems (U,ϕ) and (U ′, ϕ′), this leads to the functions

(5.2) pj
′

j = ∂jx
j′ : U ∩ U ′ → R .

17
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Functions of this type appear in the chain rule

(5.3) ∂j′ = pjj′∂j ,

which means that ∂j′f = pjj′∂jf for any C1 function f : U ∩U ′ → R. Also, when
three coordinate systems are involved,

(5.4) pj
′′

j = pj
′

j p
j′′

j′

in the intersection of all three coordinate domains (this is known as the group
property). In particular,

(5.5) pkj = δkj =

{
1 , if j = k

0 , if j 6= k

(the Kronecker delta), so that pj
′

j p
k
j′ = δkj , (i.e., at each y ∈ U ∩ U ′, the matrix

[pjj′(y)] is the inverse of [pj
′

j (y)] rather than its transpose).

Let y be a fixed point in a Cr manifold M (r ≥ 1). Denote by Gy the set of all
pairs (γ, t) such that γ : Iγ →M is a C1 curve in M defined on an interval Iγ , and

t ∈ Iγ with γ(t) = y. For (γ, t), (δ, s) ∈ Gy, write (γ, t) ∼ (δ, s) if γ̇j(t) = δ̇j(s)
for some coordinates xj at y (that is, a coordinate system whose domain contains
y) and each j = 1, . . . , n = dimM ; the dot stands for the derivative. Since

(5.6) γ̇j
′
(t) = pj

′

j (y) γ̇j(t)

(by the ordinary chain rule), the word some can be replaced with any, and ∼ is
an equivalence relation. The set

(5.7) TyM = Gy/ ∼

of all equivalence classes of ∼ is called the tangent space of M at Y , and its
elements are referred to as the tangent vectors. The ∼ equivalence class of any
(γ, t) ∈ Gy is denoted by γ̇(t) or γ̇t, and called the velocity of the curve γ at the
parameter value (“time”) t.

Fig. 4. Tangent vectors as equivalence classes of curves

Any fixed coordinates xj at y lead to the one-to-one surjective mapping
TyM → Rn written as v 7→ (v1, . . . , vn) and characterized by

(5.8) vj = γ̇j(t) whenever v = γ̇(t) .

The numbers vj are called the components of the vector v ∈ TyM relative to the
coordinates xj . In view of (5.6), they satisfy the transformation rule

(5.9) vj
′

= pj
′

j v
j ,
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where pj
′

j stands for pj
′

j (y). Consequently, TyM carries a unique structure of a

vector space such that for some (or any) coordinates xj at y, the mapping

(5.10) TyM 3 v 7→ (v1, . . . , vn) ∈ Rn

is an isomorphism. In particular,

(5.11) dimTyM = dimM

Example 5.1. For a real vector space V with dimV = n < ∞, treated as
a manifold (§1) and any u ∈ V , there is a canonical isomorphic identification
TuV = V obtained by sending each v = γ̇(t) ∈ TuV to the ordinary derivative
(velocity) vector

(5.12)
d

ds
γ(s)

t=0

= lim
s→t

γ(s)− γ(t)

s− t
∈ V

(often denoted by γ̇(t) as well). Note that any basis ej of V leads to the linear
coordinate system xj consisting of the linear homogeneous functions xj : V → R
which form a basis of the dual space V ∗ dual to the basis ej in the sense that

xj(ek) = δjk. The element of V associated under the above identification with
v = γ̇(t) ∈ TuV then is vjej , which provides a description of our identification
in terms of linear coordinate systems and components (rather than curves and
velocities). Since both descriptions coincide, we conclude that the identification is
really independent of the choice of γ and t, as well as the choice of the xj .

Example 5.2. Similarly, for a finite-dimensional real affine space (M,V,+),
regarded as a manifold (§1) and any x ∈ M , we have a natural isomorphic identi-
fication TxM = V . See Problem 7.

Given a manifold M , a point y ∈ M , a tangent vector v ∈ TyM , and a C1

function f : U → R on a neighborhood U of y, we define the directional derivative
of f in the direction of v to be the real number, denoted by dvf (or, sometimes,
vf), and given by

(5.13) dγ̇(t)f = (f ◦ γ) ˙(t)

for any (γ, t) ∈ Gy with v = γ̇(t), where the dot on the right-hand side represents
the ordinary differentiation of real-valued functions of a real variable. From the
ordinary chain rule,

(5.14) dvf = vj∂jf ,

and so dvf is well-defined (independent of γ), and linear in v. To discuss its
dependence on f , let us call two Cl functions defined on neighborhoods of y
equivalent (or, Cl-equivalent) at y, if they coincide on some (possibly smaller)
neighborhood of y. The equivalence classes of this relation are known as germs of
Cl functions at y, and they form a vector space F ly (with the obvious operations
applied to functions). The directional derivative dvf now depends only on v and
the C1 germ of f , and constitutes a bilinear mapping TyM ×F1

y → R.
Let F : M → N be a mapping between manifolds. Any local coordinates yα

in N then give rise to the component functions Fα of F , which are real-valued
functions on the F -preimage of the domain of the yα, given by

(5.15) Fα = yα ◦ F .
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Given manifolds M , N , a C1 mapping F : M → N , and a point z ∈M , we define
the differential of F at z to be the mapping dFz : TzM → TF (z)N with

(5.16) dFzv = (F ◦ γ) ˙(t)

whenever v = γ̇(t) ∈ TzM . In coordinates xj , yα at z and F (z), respectively, we
thus have

(5.17) (dFzv)α = vj(∂jF
α)(z) ,

and hence dFzv is well-defined (independent of γ) for the same reasons as in
Example 5.1 above. Furthermore, (5.17) shows that dFz is linear.

As an immediate consequence of (5.16) we have the chain rule

(5.18) d(G ◦ F )x = dGF (x) ◦ dFx .
for C1 mappings F : M → N , G : N → P between manifolds and any x ∈M .

Example 5.3. The tangent space TxU to an open submanifold U of a mani-
fold M at any point x ∈M can be naturally identified with TxM , as the differen-
tial dFx of the inclusion mapping F : U →M is an isomorphism. (See Problem 1.)
Thus, we will usually write TxU = TxM .

The cotangent space T ∗yM of a manifold M at a point y ∈M is, by definition,
the dual of the tangent space TyM , i.e., the vector space of all linear homogeneous
functions ξ : TyM → R. Elements ξ of T ∗yM are called cotangent vectors, or

dual vectors, or covariant vectors, or 1-forms at y. Every real-valued C1 function
f defined in a neighborhood of y gives rise to the cotangent vector dfy ∈ T ∗yM ,
called the differential of f at y and characterized by

(5.19) dfyv = dvf .

(There is no conflict between this terminology and notation, and the case of differ-
entials for mappings between arbitrary manifolds; see Problem 2 in §5.)

A fixed coordinate system xj at a point y in manifold M gives rise to the
tangent vectors pj = pj(y) ∈ TxM , j = 1, . . . , n, n = dimM , characterized by
their components relative to the coordinates xj :

(5.20) pkj = δkj

(the Kronecker delta). The pj are called the coordinate vectors at y corresponing
to the coordinates xj . Obviously, they form a basis of TxM , namely, the preimage
under the isomorphism (5.10) of the standard basis of Rn. For any tangent vector
v ∈ TxM we then have (see Problem 4)

(5.21) v = vjpj .

We define the components of a cotangent vector ξ ∈ T ∗yM relative to any fixed

coordinate system xj at the point y in the manifold M to be the numbers

(5.22) ξj = ξ(pj)

with pj = pj(y) ∈ TyM defined as in (5.20). Thus, for instance, any C1 function
f defined in a neighborhood of y satisfies

(5.23) (df)j = ∂jf

in the sense that (dfy)j = (∂jf)(y), while for any ξ ∈ T ∗yM and any v ∈ TyM we
have

(5.24) ξ(v) = ξjv
j
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Furthermore, the components ξj of a fixed cotangent vector ξ ∈ T ∗yM obey the
transformation rule

(5.25) ξj′ = pjj′ξj

under coordinate changes at y. Finally, denoting by dxj the differentials of the
coordinate functions at any point x of the coordinate domain, we easily see that
the dxj form a basis of T ∗xM ; in fact, it is the dual basis for the basis pj = pj(x)
in TxM , that is,

(5.26) (dxj)(pk) = δjk .

Every ξ ∈ T ∗xM then can be expanded as

(5.27) ξ = ξj dx
j .

Problems
1. Show that dFx : TxU → TxM in Example 5.3 is an isomorphism. (Hint below.)
2. For a C1 function f : M → R on a manifold M , treated as a mapping between

the manifolds M and R, a point x ∈ M and a vector v ∈ TxM , show that
dfxv = dvf under the canonical identification Tf(x)R = R (Example 5.1).

3. Given a manifold M , a point y ∈M , a vector v ∈ TyM , and coordinates xj at
y, verify that vj = dvx

j .
4. Given coordinates xj at a point y in manifold M , define the vectors pj =

pj(y) ∈ TxM by (5.20). Verify that
(a) Relation (5.21) holds for each v ∈ TyM .
(b) The directional derivative dpjf of any C1 function f defined near y co-

incides with the partial derivative (∂jf)(y).
(c) There is no clash between the notations used in (5.2) and (5.8), i.e., the

components of v = pj relative to any coordinate system xj
′

at y are

pj
′

j = ∂jx
j′ .

5. Prove (5.23) – (5.27).
6. An affine coordinate system in an n-dimensional affine space (M,V,+), with

n < ∞, consists of an origin o ∈ M and a basis ej of V , j = 1, . . . , n.
The corresponding affine coordinates xj : M → R then are characterized by
M 3 x 7→ xj with x = o + xjej . Verify that the coordinate functions xj then
are affine mappings (functions) M → R, and that their linear parts ψj form
the basis of the dual space V ∗ dual to the basis ej of V .

7. Proceeding as in Example 5.1 above (with affine coordinates introduced in Prob-
lem 6, rather than linear ones), describe the identification in Example 5.2 and
show that it is well-defined.

8. Show that dFx = F for any linear operator F : V → W between finite-di-
mensional real vector spaces V, W and any x ∈ V , with the identifications
TxV = V , TyW = W described in Example 5.1.

9. Verify that dFx = ψ for any affine mapping F : M → N between finite-di-
mensional real affine spaces M, N (§69 in Appendix A) and any x ∈M , where
ψ : V → W is the linear part of F , while V, W denote the translation vector
spaces of M, N , and TxM = V , TyN = W as in Example 5.2.

10. Verify that the dimension is a diffeomorphic invariant, that is, dimN = dimM
whenever the C1 manifolds M , N are C1-diffeomorphic. (Hint below.)
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11. For a C∞ manifold M and a point x ∈ M , let Tx be the vector space of all
derivations of germs of C∞ functions at x, i.e., linear operators A : F∞x → R
(notation as in the paragraph following (5.14)) such that A(fh) = (Af)·h(x) +
f(x)·Ah for any (germs of) C∞ functions f, h defined near x. Verify that

1. Af = 0 if A ∈ Tx and f is constant near x.
2. dv ∈ Tx for each v ∈ TxM .
3. The mapping TxM 3 v 7→ dv ∈ Tx is linear and injective.

Hint. In Problem 1, use local coordinates xj at x in U , treating them simultane-
ously as local coordinates xj at x in M , and note that, for v ∈ TxU , (dFxv)j = vj .
Hint. In Problem 10, let F : M → N be a C1 diffeomorphism. Applying the
chain rule (5.18) to P = M and G = F−1, with any fixed x ∈ M , we see that
dFx then is an isomorphism TxM → TF (x)N (and (dFx)−1 = dGF (x)). Hence
dimN = dimM by (5.11).

6. Vector fields

Topics: Tangent vector fields on manifolds; directional derivatives along vector fields; the Lie

bracket; Lie bracket as a commutator of differentiations; projectable vector fields; projectability

of Lie brackets.

Let U be an open subset of a Cr manifold M , 1 ≤ r ≤ ω. By a vector field
w in M defined on U we mean a mapping assigning to each x ∈ U a vector w(x)
(sometimes written as wx) tangent to M at x, i.e.,

(6.1) U 3 x 7→ w(x) = wx ∈ TxM .

Without specifying U (the domain of w) we will simply refer to w as a local vector
field in M . When U = M , such w will be called a global vector field, or a vector
field on M .

Given a local vector field w in M , any local coordinate system xj in M gives
rise to the component functions wj of w relative to the xj , which are the real-val-
ued functions on the intersection of the domain of w and the coordinate domain,
characterized by

(6.2) wj(x) = [w(x)]j .

Under a change of coordinates, we then have, with pj
′

j = ∂jx
j′ (§5)

(6.3) wj
′

= pj
′

j w
j .

Let V be any fixed finite-dimensional real or complex vector space. A local vector
field w defined on an open subset U of a manifold M then leads to the corre-
sponding directional derivative operator dw assigning to each V -valued C1 function
f : U ′ → V (where U ′ is any open subset of U) the function dwf : U ′ → V given
by (dwf)(x) = dw(x)f (see §5; the generalization of (5.13), (5.14) to V -valued C1

functions f is straightforward). Thus,

(6.4) dwf = wj∂jf .

for C1 functions f . In particular, the component functions wj of w relative to
any local coordinates xj in M can be expressed as

(6.5) wj = dwx
j

By (6.5), a vector field w is uniquely determined by the operator dw.
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We say that a vector field w on an open subset U of a Cr manifold M is
of class Cl, l = 0, 1, 2, . . . , r − 1, if so are its component functions wj in all local
coordinates xj for M . (We use the conventions that ∞− 1 =∞ and ω− 1 = ω.)

This is a local geometric property, in view of (6.3) and the fact that pj
′

j = ∂jx
j′ are

of class Cr−1. Furthermore, vector fields of class Cl on a fixed open subset U of a
manifold M admit the natural pointwise operations of addition and multiplication
by real scalars c, with (v+w)(x) = v(x) +w(x) and (cw)(x) = cw(x) ; thus, they
form a real vector space. More generally, such vector fields can be multiplied by
functions f : U → R so that (fw)(x) = f(x)w(x) and then fw is of class Cl if
so are f and w.

Let M now be a Cr manifold with r ≥ 2. Given two vector fields v, w of
class Cl, 1 ≤ l ≤ r− 1, on an open subset U of M , we define their Lie bracket to
be the Cl−1 vector field [v, w] on U with

(6.6) [v, w]j = dvw
j − dwv

j ,

i.e., having the component functions

(6.7) [v, w]j = vk∂kw
j − wk∂kv

j

relative to any local coordinates xj in M . That this definition is correct, i.e., [v, w]
does not depend on the coordinates used, follows from the the transformation rule
(6.3), which the [v, w]j satisfy whenever so do the vj and wj . In fact, by (6.3)

we have [v, w]j
′

= dvw
j′ − dwvj

′
= dv(p

j′

j w
j) − dw(pj

′

j v
j) = pj

′

j (dvw
j − dwvj) +

wjdvp
j′

j − vjdwp
j′

j = pj
′

j [v, w]j + vkwj(∂kp
j′

j − ∂jp
j′

k ), while ∂kp
j′

j = ∂k∂jx
j′ =

∂jp
j′

k due to symmetry properties of second-order partial derivatives. (See also
Problem 3.)

A coordinate-free description of the Lie bracket operation [ , ] can easily be
obtained using directional derivative operators. Specifically, for C1 vector fields
v, w on U ⊂M as above and any vector-valued C2 function f on an open subset
of U , (6.4) yields dvdwf = (vk∂kw

j)∂jf + vkwj∂k∂jf , and so

(6.8) d[v,w] = dvdw − dwdv

since, as before, ∂k∂jf = ∂j∂kf .
Let F : M → N be a C1 mapping between manifolds. Vector fields w on M

and v on N are called F -related if dFx(w(x)) = v(F (x)) for each x ∈ M . We
then also write

(6.9) (dF )w = v on F (M) .

Note that in general, when F is fixed, such a v (or w) need not exist or be unique
for a given w or v (see Problem 9); if v does exist, and v, w are both of class
C1, one says that w is F -projectable. The local-coordinate expression of (6.9) is

(6.10) wj∂jF
α = vα◦ F

in arbitrary local coordinates xj in M and yα in N .
Furthermore, if F happens to be a Cr diffeomorphism between the Cr man-

ifolds M,N and w is any given vector field on M , then there obviously exists a
unique vector field v on N with (6.9). That unique v, called the push-forward of
w under the diffeomorphism F , is denoted by (dF )w or simply Fw. Note that,
by (6.10), (dF )w is of class Cl (0 ≤ l ≤ r − 1) whenever so is w.
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Theorem 6.1. Suppose that F : M → N is a C2 mapping between manifolds
and w, w̃ are C1 vector fields on M that are F -projectable, with (dF )w = v on
F (M) and (dF )w̃ = ṽ on F (M) for some C1 vector fields v, ṽ on N . Then the
Lie bracket [w, w̃] is F -projectable, with

(dF )[w, w̃] = [v, ṽ] on F (M) .

In fact, ∂k∂jF
α = ∂j∂kF

α, and so differentiation by parts, the chain rule, (6.8)
and (6.10) give [w, w̃]j∂jF

α = wk(∂kw̃
j)∂jF

α−w̃k(∂kw
j)∂jF

α = wk∂k(w̃j∂jF
α)−

w̃k∂k(wj∂jF
α) + wkw̃j(∂k∂jF

α − ∂j∂kF
α) = wk∂k(ṽα ◦ F ) − w̃k∂k(vα ◦ F ) =

(wk∂kF
β)[(∂β ṽ

α)◦F ]−(w̃k∂kF
β)[(∂βv

α)◦F ] = (vβ◦F )[(∂β ṽ
α)◦F ]−(ṽβ◦F )[(∂βv

α)◦
F ] = [v, ṽ]α ◦ F , as required.

Problems
1. First-order Taylor approximation. Given coordinates xj at a point y in a Cr

manifold M , r ≥ 1, show that there exists a neighborhood U of y contained in
the coordinate domain such that every Cl function f : U → R, l = 1, 2, . . . , r,
can be written as

f = f(y) + (xj − yj)hj
where yj = xj(y) are the components of y and hj : U → R are Cl−1 functions
(depending on f) with hj(y) = (∂jf)(y). (Hint below.)

2. Let the xj be coordinates at a point y in a C∞ manifold M . Prove that
(a) Af = 0 whenever A ∈ Tx (notation as in Problem 11 of §5) and f is a

(germ of) a C∞ function defined near x, and constant in a neighborhood
of x.

(b) Af = (Axj)∂jf(y) if A ∈ Tx and f is a (germ of) a C∞ function defined
near x.

(c) the linear operator TxM 3 v 7→ dv ∈ Tx is an isomorphism. (Thus, Tx
may serve as an alternative description of TxM .) (Hint below.)

3. Verify that

dw(f + f ′) = dwf + dwf
′ , dw(ff ′) = (dwf)f ′ + fdwf

′

whenever U is an open subset of a C1 manifold M , w is a vector field on U ,
and f, f ′ are C1 functions U → R.

4. Denoting by F∞ the ring of all C∞ functions F : M → R on a given C∞

manifold M , prove that the assignment w 7→ dw is a linear isomorphism between
the vector space of all C∞ vector fields on M and the space of all real-linear
operators B : F∞ → F∞ satisfying the Leibniz rule

B(ff ′) = (Bf)f ′ + fBf ′

for all f, f ′ ∈ F∞. (Hint below.)
5. Show that the Lie bracket operation [ , ] is skew-symmetric: [u, v] = −[v, u],

and satisfies the Jacobi identity

(6.11) [[u, v], w] + [[v, w], u] + [[w, u], v] = 0

for any C2 vector fields u, v, w on a given C3 manifold M .
6. Verify that [fv, hw] = fh[v, w]+f(dvh)w−h(dwf)v for C1 differentiable vector

fields v, w and C1 functions f, h on a C2 manifold M .
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7. Let r ≥ 2. We say that two local C1 vector fields w, u defined on the same
open set U in a Cr manifold M commute if their Lie bracket [w, u] is zero at
every point of U . Verify that, with n = dimM ,
(a) For any local coordinates xj in M and any k, l ∈ {1, . . . , n}, the coordinate

vector field pk commutes with pl.
(b) For every y ∈ M there exist Cr−1 vector fields w, u defined near y that

are not of the form w = pk and u = pl for any local coordinates xj at y
in M and any k, l ∈ {1, . . . , n}.

8. A subset K of a manifold M is said to be dense in M if every point of M is
the limit of a sequence of points in K. Show that a subset K of a manifold M
is dense in M if and only if it intersects every nonempty open set in M .

9. Let C1-differentiable vector fields w and v on C2 manifolds M and N be
F -related for a C2 mapping F : M → N , so that (dF )w = v on F (M). Verify
that
(a) v is unique for a given w, if the image F (M) is dense in N (Problem 8);
(b) w is uniquely determined by v if, at each point x ∈ M , the differential

dFx : TxM → TF (x)N is injective.

10. Let U be an open subset of a finite-dimensional real vector space V . A Cl

vector field w on U then may be identified with a Cl mapping U → V ,
namely U 3 x 7→ v(x) ∈ V = TxV = TxU . Show that, under this identification,
the Lie bracket of C1 vector fields v, w on U is given by [v, w] = dvw − dwv
(notation as in (6.4)), i.e., [v, w](x) = (dw)xv − (dv)xw for all x ∈ U .

11. Let V be a finite-dimensional real or complex vector space. A vector field v on
V is called linear if it has the form v(x) = Fx ∈ V = TxV for a linear operator
F : V → V . (We then write v = F .) Verify that v then is C∞-differentiable.
Show that for any two linear vector fields v = F , v′ = F ′ on V , the Lie bracket
[v, v′] is also linear, with [v, v′] = F ′F − FF ′. (Hint below.)

12. Let F : V →W be a linear operator between finite-dimensional real or complex
vector spaces. Find an algebraic condition necessary and sufficient for a given
linear vector field v on V to be F -projectable.

Hint. In Problem 1, use the coordinates to identify a neighborhood of x with
an open set in Rn, n = dimM , then choose U that is convex and note that

f(x)− f(y) =
∫ 1

0
d
dtf(y + t(x− y)) dt for any x ∈ U .

Hint. In Problem 2, apply A to the equality in Problem 1. Then use Problem 4
in §5.
Hint. In Problem 4, let B be linear and satisfy the Leibniz rule. Then, for any
f ∈ F∞ with f = 0 in a neighborhood U of a given point x ∈ M , we have
(Bf)(x) = 0, as f = (1 − φ)f , where φ is chosen as in Problem 19 below for
K = M \U . Therefore, for f ∈ F∞ and x ∈ M , the number (Bf)(x) depends
only on the germ of f at x. Since every germ at x is obtained from some f ∈ F∞
(Problem 20 below), our B defines an assignment M 3 x 7→ Bx ∈ Tx (notation of
Problem 11 in §5), and we may use Problem 2(c).
Hint. In Problem 11, use Problem 10 of this section and Problem 8 in §5.

7. Lie algebras

Topics: Lie algebras; homomorphisms; examples.
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A real/complex Lie algebra is a real/complex vector space g with a fixed bi-
linear mapping

g× g 3 (u, v) 7→ [u, v] ∈ g,

called the multiplication or bracket, which is skew-symmetric ([u, v] = −[v, u] when-
ever u, v ∈ g) and satisfies the Jacobi identity : for all u, v, w ∈ g,

(7.1) [[u, v], w] + [[v, w], u] + [[w, u], v] = 0 .

By a Lie subalgebra of g we then mean any vector subspace h of g which is
closed under the multiplication [ , ]. The restriction of [ , ] to h then makes h
into a Lie algebra. Given Lie algebras g and g′, a homomorphism Φ : g → g′

is a linear mapping with Φ[u, v] = [Φu,Φv] for all u, v ∈ g. Composites of Lie-
algebra homomorphisms are Lie-algebra homomorphisms, and so are the identity
g→ g and the zero mapping g→ g′. We call a Lie-algebra homomorphism Φ an
isomorphism if, in addition, it is one-to-one and onto; the inverse Φ−1 then is an
isomorphism as well. Two Lie algebras g and g′ are said to be isomorphic if there
exists an isomorphism between them.

A Lie algebra is called Abelian if its multiplication is identically zero. Any
linear operator between Abelian Lie algebras is a Lie-algebra homomorphism.

Example 7.1. Any real/complex vector space V , with the trivial (zero) mul-
tiplication, is an Abelian Lie algebra.

Example 7.2. Let A be a real or complex associative algebra, with the multi-
plication operation denoted by (a, b) 7→ ab. The bracket given by the commutator

[a, b] = ab− ba
then turns A into a Lie algebra, also denoted by A.

Example 7.3. As a special case of Example 7.2, every real or complex vector
space V gives rise to the Lie algebra gl(V ) of all linear operators A : V → V
with the commutator bracket

[A,B ] = AB −BA ,
AB being the composite of the mappings A and B. For V = Kn (with K = R
or K = C) we may regard the Lie algebra gl(V ) = gl (n,K) as consisting of all
real (complex) n×n matrices, with the commutator bracket induced by the matrix
multiplication.

Example 7.4. Given an open subset U of a Cr manifold M with r =∞ or
r = ω, the set g of all Cr vector fields in M defined on U is a real Lie algebra
with the obvious (pointwise) vector space structure and the multiplication provided
by the Lie bracket. (See Problem 5 in §6.)

Example 7.5. Suppose that B is a real or complex algebra. (Its multiplication,
denoted by (u, v) 7→ uv, is assumed to be just bilinear, and does not have to be
associative or satisfy the Jacobi identity.) The Lie algebra gl (B) then contains a
naturally distingushed Lie subalgebra D(B) formed by all derivations of B, that
is, linear operators A : B → B suth that A(uv) = (Au)v + u(Av) for all u, v ∈ B.

Example 7.6. When B in Example 7.5 is the algebra F∞ of all C∞ functions
F : M → R on a given C∞ manifold M , the assignment w 7→ dw is a Lie algebra
isomorphism between the Lie algebra g of all C∞ vector fields on M and D(F∞).
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Given a Lie algebra g and a real/complex vector space V , by a real/complex
representation of g in V we mean any Lie-algebra homomorphism g → gl(V ).
The representation is called finite-dimensional if so is V .

Example 7.7. The adjoint representation of any given Lie algebra g is the
Lie-algebra homomorphism Ad : g→ D(g) given by (Adu)v = [u, v].

Bu an ideal in a real/complex Lie algebra g we mean any vector subspace
h ⊂ g with [g, h] ⊂ h (that is, [u, v] ∈ h whenever u ∈ g and v ∈ h). It follows
that h then is a Lie subalgebra of g. Obvious examples of ideals are provided by
the kernels h = Kerh of Lie-algebra homomorphisms h : g→ g′.

Problems
1. Verify the statements in Examples 7.2, 7.5, 7.6 and 7.7. (Hint below.)
2. Let V be a finite-dimensional real or complex vector space. Show that the trace

function Trace : gl(V )→ K is a Lie-algebra homomorphism of gl(V ) into the
scalar field K treated as an Abelian Lie algebra.

3. Given a finite-dimensional real or complex vector space V , verify that the set
sl(V ) of all linear operators A : V → V with TraceA = 0 is an ideal, and
hence also a Lie subalgebra, of gl(V ).

4. Let V be a finite-dimensional real vector space endowed with a fixed (positive-
definite) inner product 〈 , 〉. Prove that the space so(V ) of all linear operators
A : V → V which are skew-adjoint in the sense that 〈Au, v〉 + 〈u,Av〉 = 0 for
all u, v ∈ V , is a Lie subalgebra of sl(V ).

Hint. In Problem 1, use (6.8) and Problem 4 in §6 for Example 7.6, and (7.1) for
Example 7.7.

8. The Lie algebra of a Lie group

Topics: The Lie algebra of left-invariant vector fields on a Lie group; projectability of left-

invariant fields under Lie-group homomorphisms; the Lie-algebra homomorphism induced by a

Lie-group homomorphism; a regularity theorem for Lie-group homomorphisms.

Given a group G and a ∈ G, the mappings La, Ra : G → G of the left and
right translations by a, defined by

(8.1) La(x) = ax , Ra(x) = xa

are bijections (with the inverses La−1 , Ra−1). If, moreover, G is a Lie group of
class Cs, both La and Ra are Cs diffeomorphisms. For any Cs Lie group G,
1 ≤ s ≤ ω, and any x, a ∈ G and v ∈ TxG, we will use the notation

av ∈ TaxG , va ∈ TxaG

for the following vectors (see also Problems 1 – 6):

(8.2) av = (dLa)xv , va = (dRa)xv .

A vector field w on a Lie group G of class Cs (s ≥ 1) is called left-invariant if
(dLa)w = w for each w ∈ G (notation of (6.7)), that is, w is pushed-forward onto
itself by each left-translation diffeomorphism. We then denote by g the real vector
space of all left-invariant vector fields on G. Consequently, w ∈ g if and only if

(8.3) awx = wax for all a, x ∈ G ,
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(where wx = w(x)), which, by (8.7) below, is equivalent to

(8.4) w(x) = xv for all x ∈ G , with v = w(1) ∈ T1G .

On the other hand, for any fixed v ∈ T1G, formula (8.4) defines a unique vector
field w ∈ g with w(1) = v. More generally, for any a ∈ G, the evaluation mapping

(8.5) g 3 w 7→ w(a) ∈ TaG
is an isomorphism of real vector spaces. From now on we will often use (8.5) with
a = 1 to identify g with the tangent space T1G at the identity (unit element)
1 ∈ G. Thus, whenever convenient, we will just write

(8.6) g = T1G .

Every left-invariant vector field w ∈ g is automatically of class Cs−1 (if G is of
class Cs). In fact, choosing any local coordinates xj at a fixed z ∈ G and yα at
1 ∈ G, we have, for x near z and y near 1,

(xy)j = Φj(x1, . . . , xn, y1, . . . , yn) ,

where n = dimG and the Φj are some Cs functions of 2n real variables. Now
(8.4) becomes

wj(x) = vα
∂Φj

∂yα
(x1, . . . , xn, u1, . . . , un)

(where u stands for 1 ∈ G, to replace the awkward sumbols 1α by uα); hence the
wj are functions of class Cs−1.

In the case where G is a Lie group of class Cs with s ≥ 3, the space g
is closed under the Lie bracket operation [ , ] (in view of Theorem 6.1), and [ , ]
restricted to g satisfies the Jacobi identity (Problem 5 in §6). Therefore, g with
the multiplication [ , ] forms a Lie algebra, called the Lie algebra of the Lie group
G. Under the identification (8.6), the Lie algebra of G may be thought of as the
tangent space T1G of G at the identity, with the bracket multiplication in T1G
(also denoted by [ , ] ) which assigns to u, v ∈ T1G the value w(1) = [u, v] at 1 of
the Lie bracket w of the unique left-invariant vector fields on G whose values at
1 are u and v.

Example 8.1. For any finite-dimensional real vector space V , the underlying
additive group of V is a Lie group G = V of class Cω (cf. Example 4.1), and its
Lie algebra g = T0V = V is Abelian. In fact, left-invariant vector fields on V
are precisely the constant V -valued functions on V (Problem 5) and so their Lie
brackets are all zero (Problem 10 in §6).

Example 8.2. Let G be the Cω Lie group of all invertible elements of a finite-
dimensional real associative algebra A with unit. The Lie algebra g of G then is
the vector space A (as g = T1G = T1A = A) with the commutator multiplication
[a, b] = ab− ba (cf. Example 7.2). See also Problem 7 below and Problem 10 in §6.

Example 8.3. In particular, the Lie algebra of the Cω Lie group GL(V ) for
a finite-dimensional real or complex vector space V (Example 4.3) coincides with
the Lie algebra gl(V ) of all real/complex linear operators of V into itself, with
the commutator bracket (Example 7.3).

Example 8.4. For the matrix Lie group GL(n,K) with K = R or K = C,
the Lie algebra g = gl(V ) = gl (n,K) consists of all n×n matrices over K, with
the matrix commutator.
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Example 8.5. Any group G, viewed as a discrete Lie group (dimG = 0) has
the trivial Lie algebra g = {0}.

A mapping F : G→ H between groups is a homomorphism if and only if

(8.7) F ◦ Lx = LF (x) ◦ F

for all x ∈ G. If we now apply the differentials of both sides at 1 ∈ G to any
w ∈ T1G and use the chain rule (5.18) and the notation of (8.2), we obtain

(8.8) dFx(xw) = [F (x)](dF1w)

whenever x ∈ G and w ∈ T1G.
An easy consequence of (8.8) is the following

Lemma 8.6. Any C1 homomorphism F : G → H between Cs Lie groups G
and H, 1 ≤ s ≤ ∞, is automatically of class Cs.

Proof. Choose bases wa and vλ of the Lie algebras g and h for the Lie
groups G and H, and let the constants Cλa be characterized by dF1(wa(1)) =
Cλa vλ(1). In any local coordinates xj for G and yα for H, wa = wjapj and
vλ = vαλpα (formula (5.21)), with some Cs−1 component functions wja, vαλ . Also,
pj = Φajwa for some Cs−1 functions Φaj on the domain U of the coordinates xj ; in

fact, as matrices, [Φaj (x)] = [wja(x)]−1 at any x ∈ U (and the inverse exists, since
the wa form a basis of each tangent space). Now, for any x that is both in U and
in the F -preimage of the yα coordinate domain,

dFx(pj(x)) = dFx(Φaj (x)wa(x)) = Φaj (x)dFx(wa(x)) = Φaj (x)dFx(xwa(1))

= Φaj (x)[F (x)]dF1(wa(1)) = Φaj (x)[F (x)](Cλa vλ(1)) = CλaΦ
a
j (x)[F (x)](vλ(1))

= CλaΦ
a
j (x)vλ(F (x)) ,

and hence

dFx(pj(x)) = CλaΦ
a
j (x)vαλ (F (x))pα(F (x)) ,

where we have used (8.3), (8.8), as well as the definitions of the Φaj and Cλa and

linearity of the differentials of C1 mappings. However, in view of (5.17) and (5.21),
the partial derivatives (∂jF

α)(x) are the coefficients in the expansion of dFx(pj(x))
as a combination of the pα(F (x)). The equality just established thus reads

(8.9) ∂jF
α = CλaΦ

a
j (vαλ ◦ F ) .

We can now show, by induction on q, that the Fα are of class Cq for each finite
q with 1 ≤ q ≤ r. In fact, assuming that the Fα are of class Cq for a fixed q < r,
we see from (8.9) that the ∂jF

α must be of class Cq as well, and so the Fα are of
class Cq+1. This completes the proof.

Another easy consequence of (8.8) is

Lemma 8.7. Given C1 Lie groups G and H, a left-invariant vector field w
on G, and a C1 homomorphism F : G→ H,

a. w is F -projectable.
b. There exists a unique left-invariant vector field v on H with (dF )w = v

on F (G).
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In fact, the vector field v required in (b) is, by (8.8), the unique v ∈ h (the
Lie algebra of H) with v(1) = dF1(w(1)).

For a C2 homomorphism F : G → H of Lie groups, we will denote by F∗ :
g → h the mapping between the corresponding Lie algebras, assigning to each
w ∈ g the unique v described in Lemma 8.7(b). As we just observed, under the
identifications (8.6) for both G and H, F∗ is nothing else than dF1, the differential
of F at 1 ∈ G :

(8.10) F∗ = dF1 : g = T1G → T1H = h .

On the other hand, by Theorem 6.1, F∗ is a Lie-algebra homomorphism g → h.
Since

(8.11) (F ′ ◦ F )∗ = F ′∗ ◦ F∗
for two C2 homomorphisms F : G → G′ and F ′ : G′ → G′′, and Id∗ = Id, it
follows that C2-isomorphic Lie groups must have isomorphic Lie algebras.

Example 8.8. For finite-dimensional real vector spaces V,W , regarded as ”ad-
ditive” Cω Lie groups G = V , H = W with the Abelian Lie algebras g = T0V =
V and h = T0W = W (Example 8.1), the continuous Lie group homomorphisms
from G to H are precisely the linear operators F : V → W (and so they are
automatically real-analytic). For such a homomorphism F , we then have F∗ = F .
See Problem 9.

Example 8.9. Let V be a fixed finite-dimensional vector space over a field
K (with K = R or K = C). For the homomorphism det : GL(V ) → K\{0}
(Problem 6 in §4), the corresponding Lie-algebra homomorphism is

(8.12) det ∗ = Trace : gl(V )→ K

(Here the vector space K is treated as an Abelian Lie algebra.) For details, see
Problems 10 and 13.

Example 8.10. Every element a of any group G gives rise to the inner auto-
morphism µ(a) of G, that is, the group homomorphism µ(a) : G→ G with

(8.13) [µ(a)](x) = axa−1

for all x ∈ G. When G happens to be a Lie group of class Cs, 0 ≤ s ≤ ω, µ(a)
obviously is a Cs homomorphism. Under the identification (8.7), for s ≥ 1, the
linear isomorphism [µ(a)]∗ = d [µ(a)]1 : T1G→ T1G is given by

(8.14) [µ(a)]∗v = ava−1

whenever v ∈ T1G. (We use the notation avb = (av)b = a(vb), as in Problem 3
below.) Thus, in the case where s ≥ 3, [µ(a)]∗ is a Lie-algebra isomorphism of
g = T1G onto itself.

Problems
1. Given a Lie group G and elements a, b ∈ G, verify that

(8.15) Lab = La ◦ Lb , Rab = Rb ◦Ra .
2. For a Cs Lie group G, 1 ≤ r ≤ ω, and a C1 curve t 7→ x(t) ∈ G, show that, at

any parameter value t,

(8.16) aẋ = (ax)˙ ,
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that is, a[ẋ(t)] = (ax)˙(t), with (ax)(t) = a(x(t)).
3. Given a Lie group G of class Cs, 1 ≤ r ≤ ω, prove that the “multiplication”

defined by 8.2) is associative and distributive in the sense that

(8.17)
(ab)v = a(bv) , v(ab) = (va)b , (av)b = a(vb) ,

a(v + w) = av + aw , (v + w)a = va + wa

for all elements x, a, b ∈ G, and vectors v, w ∈ TxG. (Thus, we may skip the
parentheses and write abv for (ab)v or a(bv), etc.) (Hint below.)

4. For G, x, v as in Problem 3, verify that 1v = v1 = v, where 1 ∈ G is the
identity element.

5. Given a finite-dimensional real vector space V , treated as an Abelian “additive”
Lie group G = V of class Cω (Example 4.1), verify that the products av, va
with 8.2) both coincide with v ∈ V = Ta+xV = TxV .

6. Let G be obtained as in Example 8.2. Show that the “products” av and va
defined by 8.2) for a ∈ G ⊂ A and v ∈ TxG = A coincide with the ordinary
products in the algebra A.

7. For G as in Example 8.2, a left-invariant vector field w on G regarded as an
A-valued function with w(x) = xv and v ∈ A, and a vector u ∈ TyG = A,
verify that duw = uv ∈ A.

8. Prove the statement in Example 8.2 above.
9. Prove the assertion of Example 8.8. (Hint below.)

10. Prove (8.12). (Hint below.)
11. Show that

(8.18) ω(u1, . . . , uk) = detB · ω(v1, . . . , vk)

whenever ω is a k-linear skew-symmetric mapping V × . . .× V →W between
real or complex vector spaces, and vectors u1, . . . , uk ∈ V are combinations
of v1, . . . , vk ∈ V with the coefficient matrix B = [Bβα], so that uα = Bβαvβ ,
α, β ∈ {1, . . . , k}. (Hint below.)

12. Prove that

(8.19) ω(Fv1, . . . , Fvn) = (detF ) · ω(v1, . . . , vn)

and

(8.20)
ω(Fv1, v2 . . . , vn) + ω(v1, Fv2, v3 . . . , vn) + . . .+ ω(v1, . . . , vn−1, Fvn)

= (TraceF ) · ω(v1, . . . , vn)

whenever ω is an n-linear skew-symmetric mapping V × . . .×V →W between
real or complex vector spaces V,W with dimV = n < ∞ and v1, . . . , vk ∈ V ,
while F : V → V is a linear operator. (Hint below.)

13. Let t 7→ F = F (t) ∈ GL(V ) be a C1 curve of linear automorphisms of a
finite-dimensional real or complex vector space V . Prove the equality

(8.21) (detF )˙ = (detF ) Trace (F−1Ḟ )

with ( )˙ = d/dt, that is, d
dt detF (t) = [detF (t)] · Trace [(F (t))−1 ◦ Ḟ (t)] for all

t. (Hint below.)

Hint. In Problem 3, write v = ẋ(t) and use Problem 2.
Hint. In Problem 7, let u = ẋ(t) with x(t) = x, so that (duw)(x) = d

dt x(t)v = uv.
Hint. In Problem 9, a group homomorphism F : V → W must satisfy F (kx) =
kF (x) for k ∈ Z and x ∈ V (by additivity), so, if k 6= 0 and x = y/k, we have
F (y/k) = F (y)/k. Thus, F is linear over the field Q of rational numbers, and
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its R-linearity follows from continuity. Relation F∗ = F is immediate from (8.10)
and Problem 8 in §5.
Hint. In Problem 10, use (8.10) and the fact that det(Id + tA) is a polynomial in
t ∈ R with

(8.22) det(Id + tA) = 1 + (TraceA) t + . . . ,

where . . . stands for terms of order higher than one in t.
Hint. In Problem 11, note that

ω(Bα1
1 vα1

, . . . , Bαkk vαk) = Bα1
1 . . . Bαkk ω(vα1

, . . . , vαk)

= εα1...αkB
α1
1 . . . Bαkk ω(v1, . . . , vk) ,

εα1...αk being the Ricci symbol (equal to the signum of the permutation (α1, . . . , αk),
if α1, . . . , αk are all distinct, and to 0, if they are not), while εα1...αkB

α1
1 . . . Bαkk =

det[Bβα].
Hint. In Problem 12, note that both sides of either equality are skew-symmetric
in v1, . . . , vn, and so we may assume that v1, . . . , vn form a basis of V . Setting
Fvα = F βα vβ we may now use (8.18) for k = n and Bβα = F βα , since detF =
det[F βα ] and TraceF = Fαα .
Hint. In Problem 13, fix a basis vα of V , α = 1, . . . , n = dimV , and a nonzero
n-linear skew-symmetric scalar-valued function ω in V . From (8.19) and (8.20) we

get (detF )˙ω(v1, . . . , vn) = [ω(Fv1, . . . , Fvn)] ˙ =
∑
α ω(Fv1, . . . , Ḟ vα, . . . , Fvn) =∑

α ω(Fv1, . . . , FF
−1Ḟ vα, . . . , Fvn) = (detF ) ·

∑
α ω(v1, . . . , F

−1Ḟ vα, . . . , vn) =

(detF )(TraceF−1Ḟ )ω(v1, . . . , vn), and we may use Problem 12.



CHAPTER 3

Immersions and Embeddings

9. The rank theorem, immersions, submanifolds

Topics: The rank of a mapping at a point; openness of the maximum-rank subset; the rank theo-

rem; submersions; immersions; embeddings; submanifolds; submanifolds with the subset topology;

continuity versus differentiability for submanifold-valued mappings; uniqueness of submanifold

structure with the subset topology; critical and regular points and values of mappings; submani-

folds defined by equations, their dimensions and tangent spaces; tangent spaces of Cartesian-prod-

uct manifolds.

For a C1 mapping F : M → N between Cs manifolds, s ≥ 1, and a point
x ∈ M , the rank of F at x is defined by (rankF )(x) = dim [dFx(TxM)]. Thus,
rankF is a function on M valued in the finite set {0, 1, . . . , k}, where we have set
k = min(dimM,dimN).

Given local coordinates xj in M and yα in N, we have (dFxv)α = vj(∂jF
α)(x)

for all points x in the F -preimage of the yα coordinate domain and all v ∈ TxM
(formula (5.17)). Therefore, (rankF )(x) equals the rank of the matrix [(∂jF

α)(x)],
i.e., the maximum size of its nonzero subdeterminants. Consequently, rankF is
constant in a neighborhood of each point where rankF assumes its maximum
value, i.e., the set U ⊂M of all such points is both nonempty and open.

The following classical result is known as the rank theorem.

Theorem 9.1. Let F : M → N be a Cs mapping between Cs manifolds,
s ≥ 1, whose rank has a constant value

(9.1) rankF = r

in a neighborhood of some given point z ∈M . Then there exist local coordinates xj

at z in M and yα at F (z) in N , such that, near z, the components Fα = yα◦F
of F are given by

(9.2) FA = xA for A ≤ r , Fλ = 0 for λ > r .

Remark 9.2. In other words, the rank theorem states that for any Cs mapping
F : M → N having a constant rank r near z, the composite ϕ′ ◦ F ◦ ϕ−1 of F
with suitable coordinate mappings defined near z and F (z) has the “standard
form”

(9.3) (x1, . . . , xm) 7→ (x1, . . . , xr, 0 , . . . , 0) ,

where m = dimM (and the number of zeros is dimN − r).

Proof of Theorem 9.1. Let us set m = dimM , n = dimN and introduce
the following ranges for indices:

(9.4) 1 ≤ j, k ≤ m, 1 ≤ α, β ≤ n , 1 ≤ A,B ≤ r , r < λ, µ ≤ n .

33
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We start from arbitrary local coordinates xj at z in M and yα at F (z) in N ,
and modify them in three successive steps (keeping the notation xj , yα for the
new coordinates obtained after each modification).

First step. We may assume that det [∂AF
B ] 6= 0, i.e., a nonzero r×r subdeter-

minant sits in the left-upper corner of the n×m matrix [∂jF
α]. This is achieved

by suitably permuting the xj and the yα.
Second step. We may require that FA = xA and Fλ = Ψλ(x1, . . . , xr) for some

Cs functions Ψλ of r variables. To this end, we replace x1, . . . , xm by the new
coordinates F 1, . . . , F r, xr+1, . . . , xm near z. That this actually is a coordinate
system (in a suitable neighborhood of z) follows from the fact that the mapping

(9.5) (x1, . . . , xm) 7→ (F 1, . . . , F r, xr+1, . . . , xm)

is a diffeomorphism of a neighborhood of (z1, . . . , zm) = (x1(z), . . . , xm(z)) in Rm

onto an open set in Rm, which in turn is immediate from the inverse mapping
theorem (see Appendix B) and the determinant condition obtained in step 1. In
these new coordinates, now denoted just by xj , we thus have FA = xA. That Fλ

depend only on the xA is clear as ∂jF
A = 0 if j > r and ∂BF

A = δAB , so that,
otherwise, the matrix [∂jF

α] would have a nonzero subdeterminant of size r + 1.
Third step. To achieve FA = xA, Fλ = 0 we now change the coordinates

yα (i.e., yA and yλ) in N , replacing the yλ by yλ − Ψλ(y1, . . . , yr) with Ψλ

introduced in step 2, and leaving the yA unchanged. As in step 2, the new functions
form a coordinate system in view of the inverse mapping theorem (Appendix B).
This completes the proof.

A mapping F : M → N between Cs manifolds, s ≥ 1, is called an immersion if
it is of class Cs and, at each point x ∈ M , the differential dFx : TxM → TF (x)N
is injective (or, equivalently, rankF = dimM everywhere in M). In suitable local
coordinates, F then has the form (9.3) with r = m, that is,

(9.6) (x1, . . . , xm) 7→ (x1, . . . , xm, 0 , . . . , 0)

with m = dimM (and with dimN −m zeros). Thus, any immersion F : M → N
is locally injective in the sense that each x ∈ M has a neighborhood in M the
restriction of F to which is one-to-one. By an embedding F : M → N we mean
an immersion that is globally injective, i.e., one-to-one on the whole of M .

A submanifold of a Cs manifold M , s ≥ 1, is a subset K of M endowed
with its own Cs manifold structure such that the inclusion mapping F : K →M ,
F (x) = x, is an embedding. (In particular, F must be of class Cs.) A submanifold
K of M is said to have the subset topology if this F is a homeomorphism of the
manifold K onto the subset K of M (§3), i.e., xl → x in the manifold K, as
l→∞, whenever xl is a sequence in K and x ∈ K with xl → x in M .

Lemma 9.3. Suppose that M,N are Cs manifolds, s ≥ 1, K is a submanifold
of M , and F : N → M is a Cl mapping, 0 ≤ l ≤ s. If F (N) ⊂ K and
F : N → K is continuous as a mapping into the manifold K, then F : N → K is
Cl-differentiable.

Proof. Fix y ∈ N and choose local coordinates xj in K, yα in M , both at
the point z = F (y) ∈ K ⊂ M , in which the inclusion mapping K → M has the
form (9.6). By continuity of F : N → K, there is a neighborhood U of y in N
with F (U) contained in the domain of the xj . The components Fα = yα◦F of
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F are, by hypothesis, Cl-differentiable on U , and hence so are the F j = xj◦F as
they coincide with the first dimK of the Fα. This completes the proof.

Theorem 9.4. If M,N are Cs manifolds, s ≥ 1, K is a submanifold of M
endowed with the subset topology, and F : N → M is a Cl mapping, 0 ≤ l ≤ s,
such that F (N) ⊂ K, then F : N → K is of class Cl, that is, F is a Cl mapping
into the manifold K.

This is clear from Lemma 9.3, since F : N → K is continuous.

Corollary 9.5. If a subset K of a manifold M admits a structure of a
submanifold of M having the subset topology, then such a structure is unique.

Proof. Let K ′,K ′′ denote by K endowed with two such manifold structures.
Applying Theorem 9.4 to the identity mapping of K, acting in either direction
between K ′ and K ′′, we conclude that it is a diffeomorphism between K ′ and
K ′′. This proves our assertion (see Problem 1).

Without the assumption about the subset topology, a submanifold structure on a
subset of a manifold may fail to be unique. This is obviously illustrated by the case
of a manifold treated as its own discrete (zero-dimensional) submanifold. However,
even connectedness of a submanifold structure on a given set does not, in general,
guarantee its uniqueness (see Problem 12):

Fig. 5. Two different connected submanifold structures on a set

Whenever K is a submanifold of a manifold M , we write

(9.7) TxK ⊂ TxM ,

identifying TxK, at any x ∈ K, with its image under the differential of the inclusion
mapping K →M .

Given manifolds M,N and a C1 mapping F : M → N , we say that x ∈ M
is a regular point of F if the differential dFx : TxM → TF (x)N is surjective, i.e.,
“onto” (or, equivalently, rankF = dimN). Otherwise, x ∈ M is called a critical
point of F . Let CritF ⊂ M be the set of all critical points of F . The image
F ( CritF ) ⊂ N and its complement N \F ( CritF ) ⊂ N are known as the sets of
critical and regular values of F , respectively. (Thus, a ‘regular’ value is not always
a value.)

Theorem 9.6. Suppose that M,N are Cs manifolds and F : M → N is a Cs

mapping, s ≥ 1. If y ∈ N is a regular value of F and K = F−1(y) is nonempty,
then K is a Cs submanifold of M endowed with the subset topology, of dimension

(9.8) dimK = dimM − dimN
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and, for each x ∈ K, we have

(9.9) TxK = Ker dFx ⊂ TxM .

Proof. Fix z ∈ K. Using the rank theorem, we may choose local coordinates
xj at z in M , with some coordinate domain U , and yα at y in N , such that
F 1 = x1, . . . , Fn = xn, n = dimN . The functions xn+1, . . . , xm, m = dimM , then
form an (m− n)-dimensional coordinate system in the set K, with the coordinate
domain K ∩ U . Two such coordinate systems in K are automatically compatible
due to analogous compatibility for the maximal atlas of M , while convergence
zk → z in the resulting topology on K means noting else than xj(zk) → xj(z)
for all j, i.e., convergence zk → z in M (as x1, . . . , xn are constant along K).
The atlas on K thus obtained therefore leads to the subset topology, which is
necessarily Hausdorff. The inclusion TzK ⊂ Ker dFz (which must be an equality
for dimensional reasons) follows from the definition of dFz in terms of velocities
(formula (5.16)), since F ◦γ is constant for any curve γ in K. This completes the
proof.

Problems
1. Let a set K admit two Cr manifold structures (i.e., maximal atlases), denoted

by K ′,K ′′. Verify that these manifold structures coincide if and only if the
identity mapping of K is a Cr diffeomorphism K ′ → K ′′.

2. Let F : M → K be a one-to-one mapping of a Cr manifold M onto a set K.
Show that K then carries a unique manifold structure (i.e., maximal atlas) such
that F : M → K is a Cr diffeomorphism.

3. Let F : M → N be an embedding between Cr manifolds, and define a Cr man-
ifold structure on F (M) so as to make F : M → F (M) a Cr diffeomorphism.
Verify that, with this structure, F (M) is a submanifold of N .

4. Find an embedding of an open interval into R2 whose image is homeomorphic
(as a subset of R2; see §3) to a “figure eight” (i.e., to a union of two circles
having one point in common, cf. Fig. 5 above).

5. Verify that an open submanifold of a manifold M (Problem 11 in §2) is also a
submanifold in the sense defined above. Does it have the subset topology?

6. Show that any affine subspace M in a finite-dimensional real affine space N is
a submanifold of N endowed with the subset topology.

7. Prove that the unit sphere S(V ) = {v ∈ V : |v| = 1} of any Euclidean space
(V, 〈 , 〉), with the manifold structure defined as in §2, is a submanifold of V
carrying the subset topology.

8. Let T : V → W be a linear operator between finite-dimensional vector spaces
V,W . Verify that T is injective (surjective) if and only if there exists a linear
operator T ′ : W → V with T ′T = Id V (or, respectively, TT ′ = IdW ).

9. For a Euclidean space V , let ν : V \{0} → S(V ) be the normalization mapping
with ν(w) = w/|w| (Problem 7 in §3), and let ψ : S(V ) → V \ {0} be the
inclusion mapping (ψ(u) = u). Show that
(a) ψ is real-analytic,
(b) At each v ∈ V \{0}, the linear operator dνv : Tv(V \ {0}) → Tν(v)(S(V ))

is surjective.
(c) At each u ∈ S(V ), the linear operator

dψu : Tu(S(V ))→ Tψ(u)(V \{0})



Problems 37

is injective, and, under the identifications Tψ(u)(V \ {0}) = Tψ(u)V = V
described in Examples 5.1 and 5.3, the image of dψu coincides with the
orthogonal complement u⊥ ⊂ V .

10. Given manifolds M and N and points x0 ∈ M , y0 ∈ N , verify that the
mappings M 3 x 7→ (x, y0) ∈M×N , N 3 y 7→ (x0, y) ∈M×N are embeddings,
and that their images M×{y0}, {x0}×N , with the manifold structures defined
as in Problem 3, are submanifolds of M ×N and have the subset topology.

11. For a subspace W of a finite-dimensional real or complex vector space V , let the
mapping F : P (W ) → P (V ) between the corresponding projective spaces (§2)
assign to each L ∈ P (W ) the same line F (L) = L treated as a 1-dimensional
vector subspace of V . Show that F is an embedding, making P (W ) (as in
Problem 3) into a submanifold of P (V ) endowed with the subset topology.

12. Suppose that a subset M of a manifold N admits the structure of a connected
manifold that makes it a submanifold of N . Is such a structure always unique?
(Hint below.)

13. Verify that, for manifolds M,N , a continuous surjective mapping F : M → N
and a dense set K ⊂M (Problem 8 in §6), the image F (K) is dense in N .

14. Show that a sequence (xk, yk) of points in a product manifold M×N converges
to a point (x, y) ∈M ×N as k →∞ if and only if xk → x in M and yk → y
in N .

15. Verify that, for dense subsets K,K ′ of manifolds M,M ′, respectively, the prod-
uct K ×K ′ is dense in the product manifold M ×M ′.

16. Show that a subset K of a manifold M is dense in M if and only if it intersects
every nonempty open set in M .

17. Verify that, for open subsets U,U ′ of manifolds M,M ′, respectively, the product
U × U ′ is open in M ×M ′ and, conversely, every open subset of M ×M ′ is a
union of such product sets U × U ′.

18. Prove that any subgroup G of the real line R (with addition) is either cyclic
(generated by a single element, i.e., G = Z·a for some a ∈ R), or dense in R.
(Hint below.)

19. Show that any subgroup Γ of the circle S1 (the latter being an Abelian group
when endowed with the complex multiplication), is either finite and cyclic, or
infinite and dense in S1. (Hint below.)

20. Let T 2 be the 2-dimensional torus T 2 = S1 × S1, where the circle (1-dimen-
sional sphere) S1 consists of all complex numbers z ∈ C = R2 with |z| = 1
(§2). Any fixed vector (a, b) ∈ R2 gives rise to the mapping (curve) γ : R→ T 2

given by γ(t) = (eiat, eibt). Verify that γ is a real-analytic (Cω) Lie-group
homomorphism, and that it is an immersion unless a = b = 0. Show that γ is
an embedding if and only if neither of a, b is a rational multiple of the other.

21. Let a, b ∈ R be chosen so that the curve γ : R→ T 2 defined in Problem 20 is
an embedding.
(a) Show that the image γ(R), with the manifold structure defined as in Prob-

lem 3, does not have the subset topology.
(b) Prove that the set γ(R) is dense in T 2. (Hint below.)

22. Given linear functions f1, . . . , fm ∈ V ∗ on a finite-dimensional real vector space
V , show that the linear mapping (f1, . . . , fm) : V → Rm formed by them is
(a) Injective if and only if f1, . . . , fm span V ∗.
(b) Surjective if and only if f1, . . . , fm are linearly independent in V ∗.
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23. Let F : M → N be a C∞ mapping between manifolds. Verify that F is an
immersion if and only if, for any coordinate system yα in N , with a coordinate
domain U , the differentials dFαx of the component functions of F span T ∗xM
at each point x ∈ F−1(U). (Thus, immersions F : M → Rk are precisely those
k-tuples of functions F 1, . . . , F k : M → R for which dF 1

x , . . . , dF
k
x span T ∗xM

at every x ∈M .)
24. Show that, given a manifold M with n = dimM and a point x ∈ M , there

exists a C∞ mapping F : M → Rn and a neighborhood U of x in M such
that F restricted to U is an immersion. (Hint below.)

25. A mapping F : M → N between Cs manifolds, s ≥ 1, is called a submersion if
it is of class Cs and the differential dFx : TxM → TF (x)N is surjective at each
point x ∈M (or, equivalently, rankF = dimN everywhere in M). Show that
any submersion F : M → N is an open mapping in the sense that the F -image
F (U) of any open set U ⊂M is an open subset of N . (Hint below.)

26. Recall that a vector space W is said to be the direct sum of its subspaces V
and V ′, which one writes as

(9.10) W = V ⊕ V ′ ,

if each w ∈W can be uniquely expressed as a sum w = v+ v′ with v ∈ V and
v′ ∈ V ′. Verify that, for subspaces V, V ′ of W , relation (9.10) holds if and only
if the set V ∪ V ′ spans W and V ∩ V ′ = {0}. Assuming (9.10), show that the
assignment V × V ′ 3 (v, v′) 7→ v + v′ ∈W establishes an isomorphism between
the direct product V × V ′ of V and V ′ with the componentwise operations
(which is often also called the direct sum and denoted by V ⊕V ′), and W . (For
subspaces V, V ′ of a vector space W satisfying (9.10), we usually identify vectors
w ∈ W with the corresponding pairs (v, v′) ∈ V × V ′ satisfying w = v + v′.
Thus, the standard inclusions V → W , V ′ → W and projections W → V ,
W → V ′ can be characterized by v 7→ (v, 0), v′ 7→ (0, v′), w = (v, v′) 7→ v and,
respectively, w = (v, v′) 7→ v′.)

27. Given Cs manifolds M,N , verify that the mappings M 3 x 7→ (x, y) ∈M ×N
(with a fixed y ∈ N) and N 3 y 7→ (x, y) ∈M ×N (with a fixed x ∈M) are of
class Cs and, if s ≥ 1, their differentials at any x ∈M and y ∈ N , respectively,
are injective. (From now on, we will regard TxM and TyM as subspaces of
the tangent space T(x,y)(M ×N), by identifying them with their images.) (Hint

below.)
28. For M,N, x, y as in Problem 27 with s ≥ 1, show that

(9.11) T(x,y)(M ×N) = TxM ⊕ TyN

in the sense of (9.10), and that the corresponding inclusions and projections
(Problem 26) are the differentials at x and y of the mappings mentioned above
and, respectively, the differentials at (x, y) of the obvious Cs Cartesian-prod-
uct projection mappings M × N → M and M × N 3 (x′, y′) → N . Verify
that the identification w = (u, v) of vectors w ∈ T(x,y)(M × N) with pairs

(u, v) ∈ TxM × TyN then takes the form (x, y)˙(t) = (ẋ(t), ẋ(t)) for C1 curves
t 7→ x(t) in M and t 7→ y(t) in N , where (x, y) is the curve in M ×N defined
by (x, y)(t) = (x(t), y(t)). (Hint below.)

29. Suppose that M,N,P are manifolds and we are given an arbitrary C1 mapping
M ×N → P , which we write as a “multiplication” M ×N 3 (x, y) 7→ xy ∈ P .
For any x ∈ M and y ∈ N , let us denote by TxM 3 v 7→ vy ∈ TxyP and



10. MORE ON TANGENT VECTORS 39

TyN 3 w 7→ xw ∈ TxyP the differentials at x and y of the C1 mappings
M 3 x̃ 7→ x̃y ∈ P and N 3 ỹ 7→ xỹ ∈ P . Given an interval I ⊂ R and C1

curves t 7→ x(t) ∈M and t 7→ y(t) ∈ N , defined on I, prove the Leibniz rule

(9.12) (xy)˙ = ẋy + xẏ ,

that is, d[x(t)y(t)]/dt = ẋ(t)y(t) + x(t)ẏ(t) for all t ∈ I. (Hint below.)

Hint. In Problem 12, consider a figure-eight curve (see Fig. 5 above).
Hint. In Problem 18, let G 6= {0} and set a = inf (G∩ (0,∞)). If a > 0, then the
infimum is a minimum (as any two distinct elements x, y of G are at a distance
|x− y| ≥ a), and G = Z·a. If a = 0, for any ε > 0, G contains a number r with
0 < r < ε, and the subgroup Z·r of G comes closer to any real number than ε.
Hint. In Problem 19, let Γ 6= {1} and let G be the additive subroup of R with
G = Φ−1(Γ), Φ : R → S1 being the group homomorphism Φ(t) = eit. If G is
dense in R, so is Γ in S1 (Problem 13). Otherwise, G = Z ·a for some a > 0
(Problem 18), and then Γ (generated by eia) must be finite. In fact, if it were
infinite, compactness of S1 would imply the existence of a sequence of pairwise
distinct elements zk ∈ Γ that converges in S1, so that the ratios zk/zl ∈ Γ may
assume the form eiθ with arbirarily small θ > 0, contradicting the obvious relation
a = min {θ > 0 : eiθ ∈ Γ}.
Hint. In Problem 21, ab 6= 0. The torus is an Abelian group (as the direct sum
of two copies of S1, the latter endowed with the complex multiplication), and
γ : R → T 2 is a group homomorphism (from the additive group of real numbers).
The subgroups Γ = {z ∈ S1 : (z, 1) ∈ γ(R)} Γ′ = {z ∈ S1 : (1, z) ∈ γ(R)} of S1

are both infinite (otherwise Γ or Γ′ would be generated by its element z having
the smallest possible positive argument and, by finiteness, zn = 1 for some integer
n ≥ 1, thus making a/b rational.) Hence Γ, Γ′ are dense in S1 (Problem 19) and
γ(R) contains the dense subgroup Γ×Γ′ generated by Γ×{1} and {1}×Γ′. See
also Problem 15.
Hint. In Problem 24, let F = (F 1, . . . , Fm), where the F j are obtained by ex-
tending arbitrary coordinate functions xj at x from a suitable neighborhood of x
to the whole of M (Problem 20 in §6).
Hint. In Problem 25, note that, in suitable local coordinates, (9.3) becomes

(9.13) (x1, . . . , xm) 7→ (x1, . . . , xn)

with dimM = m ≥ n = dimN . We can now use the openness property of surjective
linear operators between finite-dimensional real vector spaces.
Hint. In Problem 27, use the chain rule to conclude that the differentials of the
projection mappings M × N → M , M × N → N are one-sided inverses of the
differentials in question.
Hint. In Problem 28, use the hint for Problem 27.
Hint. In Problem 29, fix t0 ∈ I and set x0 = x(t0), y0 = y(t0), v = ẋ(t0),
w = ẏ(t0) and let F : M ×N → P be our “multiplication mapping” F (x, y) = xy.
Then, at t = t0, d

dt [x(t), y(t)] = d
dtF (x(t), y(t)) = dF(x,y)(v, w) (Problem 28) and,

since (v, w) = (v, 0) + (0, w), this equals dF(x,y)(v, 0) +dF(x,y)(0, w) = d
dt [x(t)y0] +

d
dt [x0χ(t)] = vy0 + x0w.

10. More on tangent vectors

Topics: Ad hoc descriptions of tangent spaces of real and complex projective spaces; tangent

spaces of Grassmannians; more general cases of submanifolds defined by equations.
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Let P (V ) be the projective space for a given finite-dimensional real or complex
vector space V (§2). We then have a natural isomorphic identification

(10.1) TL[P (V )] = Hom(L, V/L)

at any projective point L ∈ P (V ). (The symbol ’ Hom’ stands for “the space of
K-linear operators”, where K is the scalar field.)

To define a natural linear isomorphism

(10.2) Φ : Hom(L, V/L) → TL[P (V )] .

let us fix L ∈ P (V ) and F ∈ Hom(L, V/L). We now choose any vector

(10.3) u ∈ L\{0} ,

any lift F̃ of F to V , that is, an operator F̃ : L→ V whose composite with the
projection operator V → V/L equals F :

(10.4) F̃ ∈ Hom(L, V ) , π ◦ F̃ = F ,

and any C1 curve I 3 t 7→ x(t) ∈ V \{0} along with a parameter a ∈ I such that

(10.5) x(a) = u , ẋ(a) = F̃ u .

With the aid of these additional data, we declare the image of F under Φ to be

(10.6) ΦF = ẏ(a) ∈ TL[P (V )] , where y(t) = π(x(t)) ,

π : V \ {0} → P (V ) being this time the standard projection mapping (Problem 13
in §3).

We need to prove that this definition is correct, that is, independent of the
choice of the quadruple u, F̃ , x(t), a with (10.3) – (10.5). To this end, let us

first note that, for fixed u and F̃ with (10.3) and (10.4), the vector ẏ(a) in (10.6)

is the image dπu[F̃ u] of the vector ẋ(a) = F̃ u ∈ Tu[V \{0}] = TuV = V (cf.
Examples 5.1, 5.3 under the differential at u of the mapping π : V \ {0} → P (V )
(see (5.16)) and, consequently, ẏ(a) does not depend on the choice of the curve

t 7→ x(t) and a (satisfying (10.5) for the given u and F̃ ).

Secondly, let u and F̃ now be replaced with another vector w ∈ L\{0} and

another lift F ′ of F . Thus, F̃ and F ′ differ by an L-valued operator L → V
and, in particular, F ′u = F̃ u+µu for some scalar µ ∈ K, while, as dimL = 1, we
have w = cu for some scalar c 6= 0. Choosing a C1 curve I 3 t 7→ x(t) ∈ V \{0}
and a ∈ I with (10.5), and any C1 curve I 3 t 7→ λ(t) ∈ K\ {0} with λ(a) = c

and λ̇(a) = cµ, we now easily verify that the new curve I 3 t 7→ λ(t)x(t) and the

parameter a satisfy the analogue of (10.5) with w, F ′ instead of u, F̃ . However,
π(λ(t)x(t)) = π(x(t)) due to the definition of π (Problem 13 in §3). Consequently,

the value of ΦF obtained from (10.6) will be the same, whether we use u and F̃ ,
or w and F ′.

Thus, ΦF is defined correctly, i.e., it depends on F (and L), but not on the

quadruple u, F̃ , x(t), a with (10.3) – (10.5).
To show that the mapping (10.2) is linear, let us fix u with (10.3) and choose a

subspace Ṽ of V with V = Ṽ ⊕L (cf. Problem 26 in §9. We thus have a natural

isomorphism Ṽ → V/L obtained by restricting the projection operator V → V/L

to Ṽ . Denoting Ψ : V/L → Ṽ the inverse of that isomorphism, we can associate

with every F ∈ Hom(L, V/L), a particular lift F̃ given by F̃ = Ψ ◦ F . (In other
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words, this is the unique F̃ with (10.4) which is, at the same time, Ṽ -valued.) By
(10.5), (10.6) and (5.16), we now have

(10.7) ΦF = dπu[Ψ(Fu)] ,

which obviously shows that Φ is linear.
Relation (10.7) also implies that Φ is injective: if ΦF = 0, it follows from

(10.7) that Ψ ◦F is valued both in L = Ku (Problem 1(a)) and in Ṽ (due to our

choice of Ψ), so that F = 0 as L ∩ Ṽ = {0}. Finally, Φ is an isomorphism, since
both spaces in (10.1) are easily seen to be of the same dimension.

We conclude this section by discussing two important generalizations of Theo-
rem 9.6 (cf. also Problem 5 below.

Theorem 10.1. Suppose that M,N are Cs manifolds and F : M → N is a
Cs mapping, s ≥ 1. If the rank of F is constant on M , while y ∈ N is a point
such that K = F−1(y) is nonempty, then K is a Cs submanifold of M endowed
with the subset topology, of dimension

(10.8) dimK = dimM − rankF ,

and with the tangent spaces given by (9.9).

Proof. See Problem 4.

Given C1 manifolds M and N , a C1 mapping F : M → N , and a C1 submanifold
P of N , one says that F is transversal to P if, for every x ∈ M such that
y = F (x) ∈ P , the tangent space TyN is spanned by the subset TyP ∪ dFx(TxM).
For instance, F is automatically tranversal to P if it is a submersion, as well as
in the case where F (M) does not intersect P .

Theorem 10.2. Suppose that M,N are Cs manifolds, F : M → N is a
Cs mapping, s ≥ 1, and P is a Cs submanifold of N endowed with the subset
topology. If F is tranversal to P and the set K = F−1(P ) is nonempty, then K
is a Cs submanifold of M , carrying the subset topology, while its dimension and
its tangent spaces are given by

(10.9) dimK = dimM − dimN + dimP ,

(10.10) TxK = (dFx)−1(TF (x)P ) whenever x ∈ K .

Proof. See Problem 6.

Problems
1. Let π : V \{0} → P (V ) denote the standard projection mapping (Problem 13

in §3).
(a) Verify that, for any u ∈ V \{0}, denoting K the scalar field, we have

(10.11) Ker dπu = Ku ⊂ Tu[V \{0}] = TuV = V .

(b) Show that π is a submersion. (Hint below.)
2. Generalize the construction of the natural isomorphism (10.1) to the case of

arbitrary Grassmann manifolds Grq(V ) (Problem 2 in §81), in the sense of
providing a natural isomorphic identification

(10.12) TW [Grq(V )] = Hom(W,V/W )

for any W ∈ Grq(V ). (Hint below.)
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3. Verify that any C1 homomorphism between C1 Lie groups has constant rank.
(Hint below.)

4. Prove Theorem 10.1. (Hint below.)
5. Explain why Theorem 10.1 is a generalization of Theorem 9.6. (Hint below.)
6. Prove Theorem 10.2. (Hint below.)

Hint. In Problem 1, let us choose a basis e1, . . . , en of V with u = e1 and let
f = e1 be the first element of the dual basis in V ∗. Using the linear coordinates in
V associated with the basis e1, . . . , en and the coordinate system in P (V ) obtained
from (Uf , ϕf ) (§2) by replacing ϕf with ϕf followed by (e2, . . . , en) : f−1(1) →
Kn−1, we see that in such coordinates π appears as

(10.13) (x1, . . . , xn) 7→ (x2/x1, . . . , xn/x1) .

(Note that x1 6= 0 throughout the coordinate domain Uf .) Differentiating the
right-hand side with respect to a parameter t at a value of t for which x1 = 1
and x2 = . . . = xn = 0 (which corresponds to the point u = e1), we easily obtain
the following description of dπu in terms of the components of tangent vectors in
the coordinate systems selected above (which proves both (a) and (b)):

(10.14) (ẋ1, . . . , ẋn) 7→ (ẋ2, . . . , ẋn) .

Hint. In Problem 2, let us introduce the manifold Bq(V ) consisting of all linearly
independent q-tuples of vectors in V . (This is an open subset of the vector space
V q, the qth Cartesian power of V .) We have the standard projection mapping
π : Bq(V ) → Grq(V ) given by π(u1, . . . , uq) = Span{u1, . . . , uq}. We can now
define a linear isomorphism

(10.15) Φ : Hom(W,V/W ) → TW [Grq(V )]

by setting, for F ∈ Hom(W,V/W ),

(10.16) ΦF = ẏ(a) ∈ TL[P (V )] , with y(t) = π(x1(t), . . . , xq(t)) ,

where we have fixed a basis u1, . . . , uq of W and a lift F̃ : W → V of F , and used

any C1 curve I 3 t 7→ (x1(t), . . . , xq(t)) with xj(a) = uj and ẋj(a) = F̃ uj for a
specific a ∈ I and all j = 1, . . . , q. Proceeding as before, we now show that Φ is
independent of the choice of the additional data.
Hint. In Problem 3, use (8.8) to observe that, for a C1 homomorphism F : G→ H
and any x ∈ G, dFx is the composite v 7→ [F (x)](dF1(x1v)) involving two linear
isomorphisms, and so it must have the same rank as dF1.
Hint. In Problem 4, use an obvious modification of the proof of Theorem 9.6.
Hint. In Problem 5, note that Theorem 9.6 is a special case of Theorem 10.1
obtained by replacing M with the open submanifold (rankF )−1(dimN).
Hint. In Problem 6, fix x ∈ K and let y = F (x). The rank theorem guarantees
the existence of a neighborhood U of y in N and a Cs submersion H : U → U ′

onto a neighborhood U ′ of 0 in Rn−p (where we have set m = dimM , n = dimN ,
p = dimP ) such that U ∩ P = H−1(0). Thus, F−1(U) ∩K = (H ◦ F )−1, while
the transversality assumption makes 0 a regular value of H ◦ F . The rest of the
argument is the same as in the proof of Theorem 9.6.
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11. Lie subgroups

Topics: Lie subgroups; Lie subgroups with the subset topology; the identity component; discrete

subgroups; S1 and S3 as Lie subgroups of C\{0} and H\{0}; other simple examples;

orientation in real vector spaces.

Given a group G whose operation is written as a multiplication, an element
a ∈ G and subsets K,L ⊂ G, let us set aK = {ax : x ∈ K}, Ka = {xa : x ∈ K},
KL = {xy : x ∈ K , y ∈ L} and K−1 = {x−1 : x ∈ K}. Thus, a subgroup of G is
any nonempty subset H ⊂ G with HH ⊂ H and H−1 ⊂ H. By a normal subgroup
of G we mean, as usual, a subgroup H ⊂ G such that aHa−1 ⊂ H whenever
a ∈ G (and hence, aHa−1 = H for all a ∈ G); in other words, a subgroup is called
normal if it is closed under all inner automorphisms of G (Example 8.10).

For a fixed subgroup H of a group G, the left cosets of H are defined to be all
sets of the form aH for some a ∈ G. They form a disjoint decomposition of G into
a union of subsets, one of which is H itself. The same is true for the right cosets
of H, which are the sets of the form Ha with a ∈ G. One easily sees that H is a
normal subgroup if and only if the families of its left and right cosets coincide.

Suppose now that G is a Lie group of class Cr, 0 ≤ r ≤ ω. By the iden-
tity component of G we mean the connected component G◦ of the manifold G,
containing 1 (1 is often called the identity of G). We then have G◦G◦ ⊂ G◦,
(G◦)−1 ⊂ G◦, and aG◦a−1 ⊂ G◦ for all a ∈ G, as G◦G◦, (G◦)−1 and aG◦a−1

are connected subsets of G containing 1 (Problem 8 in 3). The connected compo-
nents of G are nothing else than the left (or right) cosets of G◦ ; this is immediate
from Problem 1 below. Furthermore, G◦ regarded as an open submanifold of G
is a Lie group of class Cr (with the group operation inherited from G; see Prob-
lem 3). The identity inclusion mapping G◦ → G now is a Cr homomorphism of
Lie groups, inducing the familiar identification T1G

◦ = T1M , so that, when r ≥ 3,
the Lie algebras of G and G◦ are naturally isomorphic (and will from now on be
identified).

In other words, the algebraic structure (i.e., isomorphism type) of the Lie alge-
bra g of any Lie group G depends solely on the connected Lie group G◦. Thus,
the only conclusions about G that may be expected to follow from assumptions
about g are those that pertain to G◦ alone.

Example 11.1. The Cω Lie group GL(V ) for a finite-dimensional vector space
V over the field K of real or complex numbers (Example 4.3), is connected when
K = C, and has two connected components when K = R and dimV > 0. In the
latter case, the identity component of GL(V ), denoted by GL+(V ), consists of all
linear isomorphisms A : V → V with detA > 0. See Problem 10.

Example 11.2. In particular, the matrix Lie group GL (n,C) is connected,
while GL (n,R) with n ≥ 1 has two components, the one containing the identity
being the group GL+(n,R) of all real n×n matrices having positive determinants.

Let G be a Lie group of class Cr, r ≥ 0. By a Lie subgroup of class Cr in
G we mean any subgroup H of G with a fixed structure of a Cr manifold which
makes H both a Cr submanifold of G and a Cr Lie group (for the group operation
H inherits from G). We will call H a Lie subgroup of G with the subset topology
if its manifold structure represents the subset topology. (In the latter case, such a
manifold structure is unique, cf. Corollary 9.5, and so does not have to be specified;
also, the final clause in the definition of a Lie subgroup follows automatically, and
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hence need not be verified; see Remark 11.8 below.) Similarly, a normal Lie subroup
of G is a Lie subroup of G which is simultaneously a normal subgroup.

Example 11.3. Every open subgroup of a Lie group is a Lie subgroup with
the subset topology. (See Problem 3.)

Example 11.4. The kernel of any C1 homomorphism G → H between Cr

Lie groups G and H, r ≥ 1, is a Cr normal Lie subgroup of G with the subset
topology, which is also closed as a subset of G. (See Problem 4.)

Example 11.5. As a special case of Example 11.4, for any finite-dimensional
real or complex vector space V , the automorphism group GL(V ) has a Cω normal
Lie subgroup SL(V ) with the subset topology, consisting of all A : V → V with
detA = 1. (cf. Problem 6 in §4.)

Example 11.6. One easily finds examples of Lie subgroups which do not have
the subset topology. For instance, every Lie group G contains as a Lie subgroup the
same group G treated as discrete (Example 4.6). More generally, G contains as a
Lie subgroup the disjoint union of all cosets of any given Lie subgroup H. However,
there also more interesting examples of such subgroups, namely, connected ones;
for instance, the torus T 2 contains a 1-dimensional dense Lie subgroup which does
not have the subset topology (see Problem 21(a) in §9).

Example 11.7. The circle S1 and 3-sphere S3 are Lie subgroups of C\{0}
and H\{0}. Namely, they are kernels of the norm homomorphisms valued in
R\ {0}.

Remark 11.8. Let a subgroup H of a Cr Lie group G be, at the same
time, a Cr submanifold of G endowed with the subset topology. Then H is a
Lie subgroup of class Cr in G. In fact the group operations in H (that is, (4.2)
restricted to H × H or H) are of class Cr as mappings into H, which is an
immediate consequence of Theorem 9.4.

Problems
1. Show that the family of all connected components of a given manifold M is the

unique collection of pairwise disjoint, nonempty connected open subsets of M
whose union is M .

2. Show that f(G◦) ⊂ H0 for a continuous Lie-group homomorphism f : G→ H.
3. Let H be a subgroup of a Lie group G of class Cr, r ≥ 0, which at the same

time is an open subset of G. Verify that H is a Cr Lie subgroup of G with
the subset topology.

4. Prove the claim made in Example 11.4. (Hint below.)

Hint. In Problem 4, use Lemma 8.6, Problem 3 in §10 and Theorem 10.1.

12. Orthogonal and unitary groups

Topics: Lie-group actions on manifolds; transitive and free actions; isotropy groups; (special)

orthogonal and (special) unitary groups; their Lie algebras; explicit descriptions in low dimensions;

orbits of group actions.

By a left action of a group G on a set M we mean a mapping G×M →M ,
denoted by (a, x) 7→ ax, such that, with ab denoting the product in G,

i. a(bx) = (ab)x whenever x ∈M and a, b ∈ G,
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ii. 1x = x for all x ∈M , where 1 stands for the neutral element of G.

If such an action is given, we say, informally, that G acts on M (from the left).
Similarly, a right action of a group G on a set M is a mapping M × G 3

(x, a) 7→ xa ∈M with (xa)b = x(ab) for all x ∈M and a, b ∈ G. Every left/right
action can be naturally converted into a right/left one if one sets xa = a−1x or,
respectively, ax = xa−1. In other words, a left/right action of G on M may
be thought of as a right/left action on M of the group G obtained from G by
“reversing the multiplication” (see Problem 1).

By a Cr action from the left/right of a Cr Lie group G on a Cr manifold M
we mean an action of G on the underlying set of M which is also a Cr mapping
G ×M → M (or, respectively, M × G → M). When r is clear from the context
and r ≥ 1 (e.g., under the blanket assumption that all objects considered are of
class C∞), we will then simply say that G acts on M differentiably from the left
or from the right.

Example 12.1. Every (Lie) group G admits the trivial action on any set/man-
ifold M , with ax = x (or ax = x) for all a ∈ G and x ∈M .

Example 12.2. Every subgroup H of a group G acting from the left/right on
a set M also acts on M via the restriction to H of the original action. Similarly,
for every subset N of M invariant under the given left/right action of G (in the
sense that ax ∈ N or xa ∈ N whenever a ∈ G and x ∈ N), the restriction of
the original action is a left/right action of G on N . Analogous statements are
obviously valid for Cr actions of Lie groups on manifolds, provided that H is a
Cr Lie subgroup of G or, respectively, the G-invariant subset N ⊂ M is a Cr

submanifold of M endowed with the subset topology. (In the latter case, our claim
is immediate from Theorem 9.4.)

Example 12.3. Every (Lie) group G acts on itself (differentiably), both from
the left and from the right, via the group multiplication. Similarly, G×G acts on
G from the left via ((a, b), x) 7→ axb−1.

Given a left or right action (a, x) 7→ ax or (x, a) 7→ xa of a group G on a set
M and any a ∈ G, x ∈M , let us now generalize the notations introduced in (8.1),
denoting La : M → M and Rx : G → M (or, Ra : M → M and Lx : G → M)
the mappings given by

(12.1) La(y) = ay , Rx(b) = bx or Ra(y) = ya , Lx(b) = xb

(whichever applies), for y ∈ M , b ∈ G. Again, each La (or Ra) is a bijection,
with the inverse La−1 (or, Ra−1) and, in the case of a Cr-differentiable Lie-group
action, every La (or Ra) is a Cr-diffeomorphism, while every Rx (or, Lx) is of
class Cr.

From now on, ’actions’ will stand for left actions; all the statements made about
(left) actions have obvious counterparts for right actions, the details of which are
left to the reader.

Note that, by the above definition, an action of G on a set M amounts to any
fixed group homorphism a 7→ La from G into the group of all permutations of M
(i.e., bijections M → M), with composition as the group operation. For instance,
the trivial homomorphism (sending all of G to Id : G → G) corresponds to the
trivial action of G on M with ax = x for all a ∈ G and x ∈M .
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An action (a, x) 7→ ax of a group G on a set M is called transitive if, for
any x, y ∈ M , there is a ∈ G with ax = y, and is called free if ax 6= x for any
a ∈ G\{1} and any x ∈ M . Thus, the given action is free if and only if, for any
a ∈ G other than the identity, La has no fixed points (in M). An action which is
both free and transitive is referred to as simply transitive. For instance, the action
of G on itself by left/right translations is simply transitive; the action of G × G
on G in Example 12.3 is transitive but not free unless G is trivial (consider (x, x)
and (1, 1) acting on the element x).

Example 12.4. A real or complex affine space (M,V,+) (§2, appendix) is
nothing else than a set M with a fixed “additively written” simply transitive
action on M of the additive group G = V of a given real/complex vector space
V . If V is finite-dimensional, we may treat M as a Cω manifold (§2) and G = V
as a Cω Lie group (Example 4.1); the action in question then is, obviously, also of
class Cω.

Lemma 12.5. For any C1 action (a, x) 7→ ax of a C1 Lie group G on a C1

manifold M and any given point x ∈ M , the mapping Rx : G → M defined by
(12.1) is of constant rank.

Proof. Let us set F = Rx. Given a ∈ G, using the multiplicative notation
of Problem 29 in §9 we have dFav = vx and dF1u = ux for any v ∈ TaG and
u ∈ T1G. On the other hand, the “associativity” of the group action (condition
(i) above) gives (au)y = a(uy) for any a ∈ G, y ∈ M and any vector u tangent
to G at any point. (To see this, realize u as the velocity of a C1 curve.) Thus,
writing aux (without parentheses) and choosing u = a−1v ∈ T1G for a ∈ G and
v ∈ TaG, we now have vx = (aa−1v)x = a((a−1v)x), i.e., dFa is the isomorphism
TaG 3 v 7→ a−1v ∈ T1G, followed by dF1, followed by the isomorphism TxM 3
w 7→ aw ∈ TaxM . Thus, dFa and dF1 have the same rank, as required.

Given an action (a, x) 7→ ax of a group G on a set M and a point x ∈M , by the
isotropy group of the action at x we mean the subset Hx of G given by

(12.2) Hx = {a ∈ G : ax = x} .
It is easy to see that Hx is always a subgroup of G. Moreover, since Hx = R−1

x (x),
combining Lemma 12.5 with Theorem 10.1 we obtain

Corollary 12.6. Given a Cr action of a Cr Lie group G on a Cr manifold
M , r ≥ 1, the isotropy group Hx of every point x ∈ M is a Lie subgroup of G,
endowed with the subset topology and closed as a subset of G.

Let V be a vector space over a scalar field K (where K = R or K = C).
Suppose that B : V ×V → K is either bilinear (K = R or K = C), or sesquilinear
(K = C). Recall that sesquilinearity of B means that it is linear in the first, and
antilinear in the second variable. Any vector space W over K with any linear
operator F : W → V then gives rise to the pullback of B under F , which is the
bilinear/sesquilinear form on W with

(12.3) (F ∗B)(w,w′) = B(Fw,Fw′) for w,w′ ∈W .

Note that, if there is also a third vector space W ′ over K and another operator
H : W ′ →W , we can form the composite FH : W ′ → V and then, obviously,

(12.4) (FH)∗B = H∗(F ∗B) .
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Suppose now that our vector space V over the field K is finite-dimensional, and let
Q stand for the vector space of all forms on V which are of a fixed type (bilinear
or sesquilinear). In view of (12.4), the assignment

(12.5) (B,F ) 7→ F ∗B

is a right Cω action on Q of the group GL(V ) (notation of Example 4.3). We de-
note by Aut(V,B) the automorphism group of B, that is, the subgroup of GL(V )
consisting of those linear automorphisms F : V → V which satisfy the condition
F ∗B = B (i.e., preserve B). We have

Corollary 12.7. The automorphism group Aut(V,B) of any bilinear/sesqui-
linear form B on a finite-dimensional real or complex vector space V is a Cω

Lie subgroup of GL(V ), carrying the subset topology, and it is a closed subset of
GL(V ).

This is clear from Corollary 12.6, as Aut(V,B) is the isotropy group of the
point B ∈ Q for the action of GL(V ) on Q given by (12.5).

Suppose that we are given a fixed finite-dimensional real (or complex) vector
space V and a fixed form B which is bilinear and symmetric (or, respectively,
sesquilinear and Hermitian) and positive definite. (In other words, B is an inner
product in V .) The automorphism group Aut(V,B) then is usually denoted by
O(V ) (in the real case) or U(V ) (in the complex case) and called the orthogonal
group or the unitary group of the inner-product space V . (The form B is usually
omitted from the notation.) Furthermore, one denotes by SO(V ) (in the real case)
or SU(V ) (in the complex case) the Lie subgroup of G = O(V ) or G = U(V )
obtained as the kernel of the determinant homomorphism (4.19) restricted to G.
Those groups are referred to as the special orthogonal group or the special unitary
group of V . In the case where V is Rn or Cn with the standard inner product,
one denotes these groups by O(n), SO(n) (or, U(n), SU(n)), and regards them
as consisting of n× n matrices.

The Lie algebras of the groups just described are denoted by o(V ), so(V )
(the real case) or u(V ), su(V ) (the complex case). For V = Kn, these become
the matrix Lie algebras o(n), so(n) or u(n), su(n). Explicitly, we have

(12.6)
o(V ) = so(V ) = u(V ) = {A ∈ gl(V ) : A∗ = −A} ,
su(V ) = {A ∈ gl(V ) : A∗ = −A and TraceA = 0}.

In fact, if V is real, SO(V ) is the identity component of O(V ) (Problem 14),
and so o(V ) = so(V ) (see §11). Both in the real and complex case, the first
line of (12.6) is an obvious special case of Problem 4. To obtain the second line,
it now suffices to apply Problem 5 to the restriction det : U(V ) → C\{0} of
the determinant homomorphism (4.19) (using the description of the corresponding
Lie-algebra homomorphism det ∗ provided by (8.12)).

The dimensions of the Lie algebras in (12.6) are easily computed using matrix
representation of operators; we thus have

(12.7)
dim O(V ) = dim SO(V ) =

(
n

2

)
=

n(n− 1)

2
, n = dimV ,

dim U(V ) = n2 , dim SU(V ) = n2 − 1 .

For a finite-dimensional inner-product space V over the field K of real or complex
numbers, the determinant homomorphism det : G → K\{0} restricted to G =
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O(V ) or G = U(V ) takes values in {1,− 1} (when K = R), or in the unit
circle S1 ⊂ C (when K = C); see Problem 17. Moreover, one easily sees that
det maps O(V ) onto {1,− 1} and U(V ) onto S1. This reduces the question of
understanding the structure of O(V ) or U(V ) to the corresponding question for
SO(V ) or SU(V ). Of course, each of the groups involved may also be identified
with the corresponding group of n× n matrices, n = dimKV .

On the other hand, if V is complex, we have an n-to-one mapping

(12.8) S1 × SU(V ) 3 (z, F ) 7→ zF ∈ U(V ) ,

that is, a surjective mapping whose every value has exactly n preimages. (See
Problem 21.) Moreover, (12.8) is clearly a Lie-group homomorphism of class Cω,
and its kernel is the cyclic group Zn of all nth roots of unity (treated as the
corresponding multiples of the identity operator V → V ). Thus, we can identify
U(V ) with the quotient of S1 × SU(V ) over the normal subroup Zn.

In the lowest real or complex dimensions, we have some explicit descriptions.

Example 12.8. When dimKV = 1, we have the natural isomorphic identifi-
cation GL(V ) = K\{0}, and then O(V ) = {1,− 1}, SO(V ) = {1} (if K = R)
and U(V ) = S1, SU(V ) = {1} (if K = C).

Example 12.9. When V is a 2-dimensional real inner-product space, SO(V )
is isomorphic, as a Cω Lie group, to the circle S1, and so the underlying manifold
of O(V ) is diffeomorphic to a disjoint union of two circles.

Example 12.10. When V is a 2-dimensional complex inner-product space,
SU(V ) is isomorphic, as a Cω Lie group, to the 3-sphere group S3 of unit quater-
nions. (See Problem 20.) Thus, according to the preceding discussion, the group
U(V ) then is isomorphic to a Z2 quotient of the direct product S1 × S3, with Z2

generated by (− 1, 1).

Denoting S3 ⊂ H the sphere of unit quaternions and using quaternion multi-
plication (see §4), we now define two Cω Lie group homomorphisms:

(12.9) S3 3 p 7→ {x 7→ pxp} ∈ SO(1⊥) ,

where 1⊥ is the 3-dimensional Euclidean space (4.7) of pure quaternions, and

(12.10) S3 × S3 3 (p, q) 7→ {x 7→ pxq} ∈ SO(H) .

Note that p = p−1 for p ∈ S3 (by (4.11)), and each homomorphism is valued
in the special orthogonal group as a consequence of Problem 2 in §11 (since S3

is connected; see Problem 15 in §3). Computing the differentials of (12.9) at 1
and of (12.10) at (1, 1), we find that they send any ṗ (or, any (ṗ, q̇)) to the
operator x 7→ ṗx − xṗ (or, x 7→ ṗx − xq̇). (Note that ṗ, q̇ ∈ 1⊥ differ from their
quaternion conjugates by sign.) Thus, both differentials are injective (according to
Problems 15 and 16 in §4, as R ∩ 1⊥ = {0}). On the other hand, both groups in
(12.9) (or, (12.10)) are of the same dimension 3 (or, 6), the differentials in question
are isomorphisms. Thus, the homomorphisms (12.9) and (12.10) are submersions
(Problem 3 in §10), and hence, in this particular case, must both be surjective (see
Problem 22). They are also both two-to-one, since their kernels are copies of Z2,
generated by − 1 or, respectively, (− 1,− 1).

Example 12.11. For a real inner-product space V with dimV = 3, the un-
derlying manifold of SO(V ) is diffeomorphic to RP3. (See Problem 20.)
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Example 12.12. For a real inner-product space V with dimV = 4, the group
SO(V ) is isomorphic to a Z2 quotient of the direct product S3 × S3, with Z2

generated by (− 1,− 1). (This is immediate from our discussion of (12.10).)

Problems
1. Given a group G, let ∗ denote a new binary operation in the set G, with

a ∗ b = ba for a, b ∈ G, where ab is the product in G. Verify that ∗ is a
group operation and, denoting G the group formed by the set G with the
multiplication ∗, we have a group isomorphism G 3 x 7→ x−1 ∈ G (inverse
taken in G). Show that left/right actions of G coincide with right/left actions
of G. (cf. Problem 9 in §4.)

2. Show that, given a C1 curve t 7→ x = x(t) ∈ G in a Lie group G of class Cr,
r ≥ 1, for the corresponding curve t 7→ x−1 = [x(t)]−1 ∈ G one has

(12.11) (x−1)˙ = −x−1ẋx−1 ,

that is, d[x(t)]−1/dt = −[x(t)]−1ẋ(t)[x(t)]−1. (Hint below.)
3. Given a C2 Lie subgroup H of a Lie group G, verify that the Lie-algebra

homomorphism h→ g induced by the inclusion homomorphism H → G maps
h isomorphically onto a Lie subalgebra of g. (From now on we will always
identify h with that subalgebra of g, and write h ⊂ g.)

4. Verify that, for any bilinear/sesquilinear form B on a finite-dimensional real or
complex vector space V , the Lie algebra of the automorphism group Aut(V,B),
viewed as its tangent space at 1 and thus identified with a Lie subalgebra of
gl(V ) = Hom(V, V ) (cf. Problem 3 and Example 8.3) consisting of all operators
F : V → V with B(Fv,w) = −B(v, Fw) for all v, w ∈ V . (Hint below.)

5. For any C2 homomorphism F : G → H of Lie groups, verify that the normal
Lie subgroup K = KerF of G (Example11.4) has the Lie algebra k ⊂ g
(cf. Problem 3) given by k = KerF∗, with F∗ as in the paragraph preceding
formula (8.10).

6. Given a finite-dimensional real or complex vector space V , verify that the Lie
subgroup SL(V ) of the automorphism group GL(V ) (Example 11.5) has the
Lie algebra sl(V ) ⊂ gl(V ) defined as in Problem 3 in §7.

7. Verify that, for any finite-dimensional complex vector space and any linear op-
erator F : V → V , there exists a basis ea of F that makes F upper triangular
(i.e., each Fea is in the span of the ec with c ≤ a). (Hint below.)

8. Given a complex vector space V with dimV < ∞, prove that the Lie group
GL(V ) is connected. Denoting B(V ) the set of all bases of V , verify that B(V )
is connected. (Hint below.)

9. Verify that, for any finite-dimensional complex inner-product space and any lin-
ear isometry F : V → V (that is, a linear operator F ∈ U(V )), all eigenvalues
of F are of modulus 1 and there exists an orthonormal basis of V consisting
of eigenvectors of F .

10. For any complex inner-product space V with dimV < ∞, prove that the Lie
groups U(V ) and SU(V ) are both connected. (Hint below.)

11. Verify that, for any real (or, complex) n × n matrix M, the following three
conditions are equivalent:

(i) M ∈ O(n) (or, respectively, M ∈ U(n)).
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(ii) The rows (or, columns) of M form an orthonormal basis of Rn (or, Cn)
with the standard inner product.

(iii) M is invertible and its inverse coincides with its transpose (or, with the
entrywise complex conjugate of its transpose).

12. Verify that, for all finite-dimensional real/complex inner-product spaces V , the
Lie groups O(V ), SO(V ), U(V ), SU(V )) are all compact.

13. Given a real or complex inner-product space V with dimV = n, 1 ≤ n < ∞,
let M ⊂ V n be the set of all orthonormal bases of V (see also Problem 5 in
§11. Verify that M is a compact Cω submanifold of V n carrying the subset
topology; in addition, M is connected (if V is complex), or has two connected
components (if V is real).

14. Show that, for any finite-dimensional real inner-product space V , SO(V ) is the
identity component of O(V ).

15. Given a complex vector space V with 1 ≤ dimV <∞, verify that the underly-
ing real space of V has a “distinguished” orientation, containing the real basis
e1, ie1 . . . , en, ien for every basis e1, . . . , en of V . (Hint below.)

16. A bilinear/sesquilinear form B in a real or complex vector space V is called
nondegenerate if for every v ∈ V \{0} there exists w ∈ V with B(v, w) 6= 0.
Prove that, if dimV <∞, nondegeneracy of B is equivalent to the requirement
that detB 6= 0 for the matrix representing B in some (or, any) basis of V .

17. Let B be a bilinear/sesquilinear form in a real or complex vector space V . We
say that a vector subspace W of V is nondegenerate (relative to B) if the
restriction of B to W is nondegenerate. (Note that B itself is not assumed
nondegenerate.) Show that, if dimV <∞ and W ⊂ V is nondegenerate, then
V = W ⊕W⊥, where W⊥, called the B-orthogonal complement of W, is the
space of all v ∈ V such that B(v, w) = 0 for every w ∈W. (Hint below.)

18. Let a bilinear/sesquilinear form B in a finite-dimensional real or complex vector
space V be nondegenerate, and let A ∈ Aut(V,B). Prove that in the bilinear
case detA ∈ {1,− 1} and in the sesquilinear case detA ∈ S1 ⊂ C. (Hint below.)

19. Verify that the group SU(2) consists of all matrices of the form

(12.12)

[
a − b
b a

]
with a, b ∈ C such that |a|2 + |b|2 = 1.

20. Show that the real algebra of quaternions is isomorphic to the subalgebra of
gl(2,C) formed by all matrices of the form (12.12) with arbitrary a, b ∈ C, in
such a way that the norm squared of the quaternion corresponding to the matrix
(12.12) equals |a|2 + |b|2. (Hint below.)

21. Prove the claims made in Examples 12.10 and 12.11. (Hint below.)
22. Prove that, for any finite-dimensional complex inner-product space V , formula

(12.8) defines an n-to-one homomorphism S1 × SU(V ) → U(V ) with the
kernel Zn × {1}.

23. Let F : M → N be a C1 mapping between manifolds M,N such that M is
compact, N is connected, and F has no critical points, i.e., is a submersion (as
defined in §9). Prove that F is surjective, that is, F (M) = N . (Hint below.)

Hint. In Problem 2, use the fact that xx−1 = 1 is constant in t, so by (9.12),
0 = (xx−1)˙ = ẋx−1 + x(x−1) ,̇ as required.
Hint. In Problem 4, use Lemma 12.5 for the action (12.5), so that the final clause
of Theorem 10.1 can be applied to find the tangent space of Aut(V,B) at the
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identity 1. This leads to differentiating B(Av,Aw) with respect to a parameter t
such that A ∈ GL(V ) is a C1 function of t, arriving at 1 for some fixed value of
t. Now it is clear that B(Fv,w) = −B(v, Fw).
Hint. In Problem 7, choose an eigenvector e1 of F and proceed by induction on
dimV , noting that F descends to an operator V/W → V/W , there W = Ce1.
Hint. In Problem 8, given A ∈ GL(V ) find operators F,Φ : V → V such that
A = F + Φ and, for some basis ea, Fe1 = ez(1)e1, . . .,Fen = ez(n)en (n = dimV ),
while the matrix representing Φ is upper triangular with zeros on the diagonal. (See
Problem 7.) The curve [0, 1] 3 t 7→ Ft + tΦ with Ftea = etz(a)ea (no summation!)
now connects 1 to A in GL(V ).
Hint. In Problem 10, use Problem 9, as in the hint for Problem 8.
Hint. In Problem 15, note that the assignment

(12.13) (e1, . . . , en) 7→ (e1, ie1 . . . , en, i en)

is continuous, and use Problem 10 in §11.
Hint. In Problem 17, W ∩ W⊥ = {0} due to nondegeneracy of W, and so its
suffices to show that dimW⊥ = n− k, where n = dimV and k = dimW. This is
achieved by fixing a basis wj of W and noting that the operator V → Rk sending
v to (B(v, e1), . . . , B(v, ek)) is surjective (since its restriction to W is injective,
and hence constitutes an isomorphism W → Rk).

Hint. In Problem 18, apply det to the matrix relation B̃ = ABA′, where B and
B̃ represent B in bases ea and Aea (so that B̃ = B), while A, A′ are the matrix
of A and its (Hermitian) transpose. Note that detB 6= 0 (Problem 16).
Hint. In Problem 20, treat the left multiplication by any quaternion as a C-linear
operator in H viewed as a complex 2-space in which the multiplication by scalars
(real combinations of 1, i ∈ H) is the quaternion multiplcation from the right.
Hint. In Problem 21, use Problems 19 and 20 (for Example 12.10), or combine the
two-to-one homomorphism (12.9) with Problem 16 in §3 (for Examplesorpt).
Hint. In Problem 23, note that F (M) is both open (Problem 25 in §9) and closed
(as it is compact; see Problem 4(a) in §3). Then use Problem 11 in §3.

13. Orbits of Lie-group actions

Topics: Orbits of group actions on sets and of Lie-group actions on manifolds; vector fields

tangent to submanifolds.

Given an action (a, x) 7→ ax of a group G on a set M , let us define a relation
∼ in M by declaring that x ∼ y if and only if y = ax for some a ∈ G. One
easily verifies that ∼ is an equivalence relation. The equivalence classes of ∼ are
called the orbits of the action in question. For instance, the action is transitive if
and only if it has only one orbit.

Problems
1. Let a group G act on a set M . Prove that the isotropy groups of two points

x, y ∈ M lying in the same orbit are conjugate in G, that is, one is the other’s
image under an inner automorphism of G.

2. Find the orbits of the evaluation action (F, v) 7→ Fv of the group GL(V ) on
V , where V is any finite-dimensional real or complex vector space. The same
for the pullback action (B,F ) 7→ F ∗B of GL(V ) on the space of all symmetric
bilinear forms on V , where V is this time a finite-dimensional real vector space.
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3. Given a C∞ right action (x, a) 7→ xa of a Lie group G on a manifold M
and a vector v ∈ T1G, let us define a vector field v∗ on M by v∗(x) = dF1v,
where F stands for the mapping Lx : G → M defined by (12.1). (In other
words, v∗(x) = xv, with the same multiplicative notation as in the proof of
Lemma 12.5.) Show that v∗ then is of class C∞ and that, for every fixed
point x ∈ M , we have (dF )w = v∗ on F (G) (notation of (6.9), with F = Lx
as above), where w is the unique left-invariant vector field on G such that
w(1) = v. (Hint below.)

4. Under the assumptions of Problem 3, prove that [u∗, v∗] = [u, v]∗ for any u, v ∈
T1G, the bracket in T1G being the Lie bracket in the Lie algebra g of G,
transferred onto T1G via the evaluation isomorphism g → T1G. In this way,
identifying g with T1G, we may regard the assignment v 7→ v∗ as a Lie-algebra
homomorphism from h into the Lie algebra of all C∞ vector fields on M . (Hint

below.)
5. Verify that every constant-rank injective Cr mapping between manifolds, r ≥ 1,

is a Cr embedding. (Hint below.)
6. Let us define a free orbit of a right action (x, a) 7→ xa of a group G on a set M

to be any orbit N of the action such that, for some x ∈ N , the isotropy group
Hx (cf. (12.2)) is trivial. Verify that, for every x ∈ N , we then have Hx = {1}
and the mapping Lx : G → N defined by (12.1) is bijective. Show that any
free orbit N of a right Cr action of a Lie group G on a manifold M , r ≥ 1,
carries a unique structure of a Cr submanifold of M such that Lx : G→ N is
a Cr-diffeomorphism for every x ∈ N and, if G is compact, the submanifold
N of M is endowed with the subset topology. (Hint below.)

7. Given a simply transitive Cr right action (x, a) 7→ xa of a Lie group G on a
manifold M , r ≥ 1, verify that, for every x ∈ M , the mapping Lx : G → M
defined by (12.1) is a bijective Cr embedding. Does it always have to be a
Cr-diffeomorphism? (Hint below.)

8. Given a manifold N , a submanifold M of N and a vector field v on N , we
say that v is tangent to M (along M) if v(x) ∈ TxM ⊂ TxN for each x ∈M .
Restricting v to M , we then obtain a vector field v

M
on the manifold M . Verify

that each vector field on any manifold M is tangent along U to every open
submanifold U of M .

9. Given a Cr right action of a Lie group G on a manifold M , r ≥ 1, and a vector
v ∈ T1G, verify that the vector field v∗ on M (see Problem 3) is tangent to
every free orbit of the action (cf. Problem 6).

10. Let a vector field v on a manifold N be of class Cl and tangent (along M ) to
a submanifold M of N . Prove that the restriction v

M
then is of class Cl as a

vector field on the manifold M . (Hint below.)
11. Let M be a submanifold of a manifold N . Prove that for any two vector fields

u, v on N which are tangent to M along M , the bracket [u, v] is also tangent
to M along M , and [u, v]

M
= [u

M
, v
M

]. (Hint below.)
12. Let B be a nonzero symmetric bilinear form in a finite-dimensional real or

complex vector space V , and let a be a scalar (real or, respectively, complex).
Define Ma to be the set {x ∈ V : B(x, x) = a , B(x, ·) 6= 0}, B(x, ·) : V → V ∗

being the linear operator y 7→ B(x, y). (Thus, the condition B(x, ·) 6= 0 may
be omitted if a 6= 0.) Verify that Ma is empty if and only if V is real and aB
is negative definite. Show that, if Ma is nonempty, then it is a submanifold of
V \{0}, carrying the subset topology, and that its tangent space TxMa ⊂ V =
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Tx(V \ {0}) at any x ∈Ma coincides with the B-orthogonal complement x⊥ of
x in V , that is, TxMa = {y ∈ V : B(x, y) = 0}. (Hint below.)

13. Given V , B as in Problem 12, we say that a linear operator F : V → V is
skew-adjoint relative to B if B(Fx, y) + B(x, Fy) = 0 for all x, y ∈ V . Verify
that this is the case if and only if B(Fx, x) = 0 for all x ∈ V . Show that
the linear vector field w = F on V (Problem 11 in §6), restricted to the open
submanifold V \ {0}, then is tangent along Ma to the submanifold Ma defined
as in Problem 12.

Hint. In Problem 3 use the “associative law” (xa)v = x(av), a ∈ G.
Hint. In Problem 4, use Problem 3 and Theorem 6.1.
Hint. In Problem 5, note that injectivity of (9.3) implies m = r.
Hint. In Problem 6, use Lemma 12.5, Problem 5 above, and Problem 4(b) in §3.
Hint. In Problem 7, last question: no. Consider G (treated as discrete) acting by
translations on M = G with dimG > 0.
Hint. In Problem 10, use the rank theorem (§9) to observe that in suitable local
coordinates for M and N the component functions of v

M
are just the restrictions

to M of some component functions of v.
Hint. In Problem 11, note that (dF )v

M
= v on M = F (M) (notation as in (6.9)),

F : M → N being the inclusion mapping, and use Theorem 6.1.
Hint. In Problem 12, apply Theorem 9.6 to F : V \ {0} → R given by F (x) =
B(x, x).

14. Whitney’s embedding theorem

Topics: The countability axiom; the Borel-Heine theorem; Whitney’s embedding theorem for

compact manifolds; specific embeddings of projective spaces.

From now on we will assume, whenever needed, that the manifolds in question
satisfy the following condition (which happens to be equivalent to metrizability, as
well as paracompactness, and also to separability of every connected component).

The countability axiom: Every manifold admits a countable atlas, that is,
forms the union of a countable family of coordinate domains.

This implies that M has at most countably many connected components. (See
Problem 6.) Thus, the countability axiom fails for a disjoint union of an uncountable
family of manifolds of any given dimension, and so, from now on, we will restrict
the disjoint-union construction to countable families. However, there also exist
numerous examples of connected manifolds, in the sense used so far, that do not
satisfy the countability axiom. They all are, however, quite “pathological” in many
respects, and do not come up naturally in geometry or physics. The only reason why
the countability axiom was not introduced sooner, or made a part of our definition
of a manifold, is that it was not needed before.

To state and prove some important results that do require the above assump-
tion, let us first define an open covering of a subset K of a manifold M to be a
family U of open sets in M whose union contains K. A subfamily of U which
itself a covering of K then is called a subcovering. A family U of open subsets
of M is called a basis of open sets if every open subset of M is the union of a
subfamily of U . Finally, we say that a manifold M is separable if it admits a
countable dense subset.



54 3. IMMERSIONS AND EMBEDDINGS

Lemma 14.1. As a consequence of the countability axiom, every manifold M
is separable, and admits a countable basis U of open sets.

Proof. Fix a countable atlas on M and let U be the family of all preim-
ages under the coordinate mappings of open balls in Rn, n = dimM , that are
contained in images of the coordinate domains and have rational radii and centers
with rational coordinates. The set of all centers of these balls is dense and countable.

A family U of sets is said to be subordinate to a family U ′ if every U ∈ U is a
subset of some U ′ ∈ U ′.

The next result is known as the Borel-Heine theorem.

Theorem 14.2. Given a manifold M satisfying the countability axiom, and a
set K ⊂M , the following two conditions are equivalent:

a. K is compact.
b. Every open covering of K has a finite subcovering.

Proof. Let K ⊂ M be compact. By Lemma 14.1, M admits a countable
basis U of open sets. For any given open covering U ′ of K, we may thus choose a
(countable) subfamily {Us}∞s=1 of U which itself a covering of K and is subordinate

to U ′. Now one of the sets Yl =
⋃l
s=1 Us contains K, which shows that (a) implies

(b). In fact, if none of the Yl contained K (while K ⊂
⋃∞
l=1 Yl), then choosing

xl ∈ K \Yl we would get a sequence in K with no subsequence that converges in
K (since a limit of such a subsequence would lie in some Ys along with xl for
infinitely many l ≥ s).

Conversely, assume that K is not compact, and fix a sequence xl of points
in K that has no subsequence converging in M to a point of K. The set K ′

formed by all the xl is then infinite, and each x ∈ K has a neighborhood Ux in
M such that (Ux \ {x}) ∩K ′ is empty. The sets Ux, for all x ∈ K, clearly form
an open covering of K without a finite subcovering: since each of them contains
at most one point ok K ′, any finite family of them contains only a finite subset of
the infinite set K ′. This completes the proof.

Remark 14.3. Note that (b) implies (a) in the Borel-Heine theorem even for
manifolds that do not satisfy the countability axiom.

Proposition 14.4. Every compact C∞ manifold M satisfying the countability
axiom admits an immersion h : M → Rk for some integer k ≥ 1.

Proof. Set m = dimM . The family of all open sets U ⊂ M for which
there exists a diffeomorphism U → U ′ onto an open set U ′ ⊂ Rm that has a
C∞ extension M → Rm forms an open covering of M (Problem 24 in §9). By
the Borel-Heine theorem, we can cover M with finitely many of these sets, say,
U1, . . . , Us, with the respective immersions Uλ → Rm having C∞ extensions Fλ
to M . Then F = (F1, . . . , Fs) : M → Rms (Problem 23 in §9).

Now we can prove Whitney’s embedding theorem for compact manifolds:

Theorem 14.5. For every compact C∞ manifold M that satisfies the count-
ability axiom, there exists an embedding F : M → Rl into a Euclidean space of
some dimension l.
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Proof. By Proposition 14.4, there exists an immersion h = (h1, . . . , hk) of
M in Rk. Since h is locally injective (§9), there exists an open set U in M ×M
containing the diagonal subset {(x, x) : x ∈ M} and such that h(x) 6= h(y)
whenever (x, y) ∈ U . Set K = (M × M)\U . For each (x, y) ∈ K select a
C∞ function fx,y : M → R with fx,y(x) = 1, fx,y(y) = 0 (Problem 19 in
§6). Since K is compact, it is covered by a finite number s of the open sets
f−1
x,y((1/2,∞))×f−1

x,y((−∞, 1/2)). Letting f1, . . . , fs be the corresponding functions

fx,y, we see that for l = k+ s, the mapping F = (h1, . . . , hk, f1, . . . , fs) : M → Rl

is an embedding, which completes the proof.

Problems
1. Show that a compact subset of a manifold M can intersect only finitely many

connected components of M .
2. Prove that a submanifold K of a manifold M that is compact with respect to its

own manifold structure must have the subset topology (and be a compact subset
of M). Does the subset-topology property follow just from the assumption that
K is a compact subset of M ? (Hint below.)

3. Let V be a finite-dimensional real or complex inner-product space, and let W
be the real vector space

(14.1) W = {A ∈ gl(V ) : A∗ = A and TraceA = 0}

of all traceless self-adjoint operators in V . Prove that the projective space P (V )
admits a Cω embedding F : P (V ) → W , which sends every L ∈ P (V ) to the
operator A having the eigenspaces L and L⊥ ⊂ V with the corresponding
eigenvalues n− 1 and − 1, where n = dimV . (Hint below.)

4. For a finite-dimensional real/complex inner-product space V , verify that the
formula

(14.2) 〈A,A′〉 = TraceAA′

(involving the real/complex trace) defines an inner product in the real space W
given by (14.1), and that the image F (P (V )) of the embedding described in

Problem 3 is contained in the sphere Σ ⊂ V of radius
√
n(n− 1) , centered at

0. Show that F (P (V )) = Σ whenever dimV = 2, and that F then is a Cω

diffeomorphism between P (V ) and the sphere Σ of dimension 1 (V real) or
2 (V complex); cf. also Problems 17 – 19 in §3.

5. For V , W , F and Σ as in Problem 4, assume that dimV ≥ 3. Prove that the
image F (P (V )) then is a proper subset of the sphere Σ. Show that, for any
integer n ≥ 2, the real projective space RPn can be embedded in Rm, with
m = (n2 + 3n− 2)/2, and the complex projective space CPn can be embedded
in Rq, with q = n2 + 2n− 1. (Hint below.)

6. Show that, as a consequence of the countability axiom, every manifold M has
at most countably many connected components. (Hint below.)

Hint. In Problem 2, use Problem 4(b) in §3; the answer to the last question is ’no’
(Problem 4 in §9).
Hint. In Problem 3, note that, for any nonzero vector v ∈ V , we have

(14.3) F (Kv) = n
〈 · , v〉
〈v, v〉

v − 1 ,
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where the dot · is the “blank space” (for the argument), and 1 stands for the
identity operator V → V . Thus, F is of class Cω, since it appears so in the
standard coordinates for P (V ) (see §2). The fact that F is an immersion follows
since it has local “one-sided inverses” of class Cω, as A = F (Kv) determines
v/f(v) (with f as in §2) via v/f(v) = (A + 1)u/[f((A + 1)u)] for any vector
u ∈ V with (A+ 1)u 6= 0. Similarly, F (L) determines L (its only eigenspace for
a positive eigenvalue), so that F is an embedding.
Hint. In Problem 5, use Problem 4 and the fact that the sphere Sk minus a point
is diffeomorphic to Rk (e.g., via a stereographic projection, defined as in §2).
Hint. In Problem 5, note that the connected components form a family of disjoint
open sets, and such a set must be countable in view of the separability clause in
Lemma 14.1.



CHAPTER 4

Vector Bundles

15. Real and complex vector bundles

Topics: Vector bundles over sets; line bundles; sections over subsets; trivializations; transition

functions; atlases; compatibility; vector bundles of given regularity over manifolds; local/global

regular sections and trivializations; product bundles; tangent bundles; vector fields; tautological

line bundles over projective spaces; tautological vector bundles over the Grassmann manifolds;

affine bundles.

A real or complex vector bundle η over a set B is a family

(15.1) B 3 x 7→ ηx ,

parametrized by B, of real or complex vector spaces ηx of some finite dimension
q (independent of x). One then calls q the fibre dimension (or rank) of η, while
B is referred to as the base of η. For x ∈ B, the space ηx is known as the fibre of
η over x ∈ B. If q = 1, η is called a line bundle.

By a section of a vector bundle η as above over a set K ⊂ B we mean any
mapping ψ that assigns to each x ∈ K an element of the fibre ηx. The set K
then is referred to as the domain of ψ. When K = B, the section ψ is called
global .) Sections ψ of η with a fixed domain K can be added valuewise, and
multiplied by functions f on K valued in the scalar field according to the rule
(fψ)(x) = f(x)ψ(x) ∈ ηx, and so they form a module over the algebra of functions
on K.

Let η be a vector bundle over a set B, of some fibre dimension q. A trivializa-
tion of η over a set K ⊂ B is a q-tuple e1, . . . , eq of sections of η over K whose
values e1(x), . . . , eq(x) form, at each x ∈ K, a basis of the fibre ηx. Instead of
e1, . . . , eq, we then simply write ea, where a varies in the fixed range {1, . . . , q}.
For x ∈ K and φ ∈ ηx, we define the components φa of φ relative to the trivial-
ization ea over K to be the scalar coefficients of the expansion φ = φaea(x), while
the corresponding scalar-valued component functions ψa : K → R or ψa : K → C
of any section ψ of η over K then are given by ψa(x) = [ψ(x)]a. Thus

(15.2) ψ = ψaea .

Another such trivialization (over a set K ′ ⊂ B) will be denoted by ea′ , so that
different trivializations will be distinguished by using mutually disjoint ranges of
indices (just like in the case of coordinate systems on a manifold; see §5), usually
without specifying the domain K or K ′. The scalar-valued transition functions
eaa′ on K ∩ K ′ then are defined to be just the component functions of the ea′

relative to the ea, i.e., are characterized by

(15.3) ea′ = eaa′ea ,

57
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and satisfy

(15.4) φa
′

= ea
′

a φ
a

for any x ∈ K ∩K ′ and φ ∈ ηx, as well as

(15.5) ea
′′

a = ea
′

a e
a′′

a′

in the intersection of all three trivialization domains, whenever three coordinate
systems are involved. In particular, eba = δba.

Again, a trivialization ea of η is called global if its domain K coincides withe
the base set B.

Consider now a vector bundle η whose base set, denoted by M , carries a fixed
structure of a Cr manifold , r ≥ 1. By a local section (trivialization) of η we then
mean a section ψ (or, trivialization ea) whose domain is an open set U ⊂M . Two
local trivializations ea, ea′ with domains U,U ′ are called Cs-compatible (0 ≤ s ≤ r)
if the scalar-valued transition functions eaa′ on U ∩ U ′ are of class Cs. The Cs-
compatibility relation is symmetric (Problem 1). A Cs atlas B for η is a collection
of local trivializations which are pairwise Cs compatible and whose domains cover
M . Such an atlas is said to be maximal if it is not contained in any other Cs

atlas. Every Cs atlas B for η is contained in a unique maximal Cs atlas Bmax,
formed by all local trivializations of η that are Cs compatible with each of the local
trivializations constituting B. We define a Cs vector bundle over a Cr manifold
M (0 ≤ s ≤ r) to be any vector bundle η over M endowed with a fixed maximal
Cs atlas Bmax. Note that, to describe a Cs vector bundle η over M , it suffices to
provide just one Cs atlas B contained in its maximal Cs atlas Bmax.

A local section ψ of a Cs vector bundle η is said to be of class Cl, 0 ≤ l ≤ s,
if its components ψa relative to all local trivializations ea forming the maximal
atlas Bmax of η, are Cl functions. This is a local geometric property (§2): to
verify that ψ is Cl, we only need to use, instead of Bmax, just any Cs atlas B
contained in Bmax. (Problem 2.) Obviously, the set of local Cl sections of η with
a fixed domain U ⊂ M is closed under addition and multiplication by scalar-val-
ued Cl functions on U , thus forming a module over the algebra of such functions.
Instead of C0-regularity for local sections of a vector bundle one often uses the
term continuity.

Among all local trivializations ea of a given Cs vector bundle η, those forming
the maximal atlas Bmax of η are characterized by the condition that their con-
stituent local sections ea are all of class Cs (Problem 3). From now on, such local
trivializations will simply be called Cs local trivializations of η.

Example 15.1. A fixed finite-dimensional real or complex vector space F gives
rise to the product bundle over any base set B, denoted by η = B × F, which is
the “constant” family

(15.6) B 3 x 7→ ηx = F .

Its sections over any K ⊂ B are just mappings K → F, which gives rise to the
distinguished classes of constant sections (and trivializations). If B = M is a Cr

manifold, η = B × F thus becomes a Cr vector bundle with the (non-maximal)
atlas formed by all constant global trivializations.
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Example 15.2. The tangent bundle of any Cr manifold M , r ≥ 1, is the
vector bundle η = TM over M given by

(15.7) M 3 x 7→ ηx = TxM .

The local sections of TM are called (local) vector fields on M (see §6). Each
local coordinate system xj in M defines a local trivialization pj of TM over the
coordinate domain U , with pj(x) ∈ TxM for x ∈ U defined by (5.20). Since

pj′ = pjj′pj with pj
′

j = ∂jx
j′ (see (5.4), such local trivializations make TM into a

Cr−1 vector bundle over M .

Example 15.3. For any finite-dimensional real or complex vector space V , the
tautological line bundle λ over the projective space P (V ) (the set of all 1-dimen-
sional vector subspaces of V ; see §2), is defined by

(15.8) P (V ) 3 L 7→ λL = L .

Every nonzero scalar-valued linear function f ∈ V ∗ \{0} gives rise to the local
trivialization for λ formed by the nowhere-zero local section ef with the domain
Uf = {L ∈ P (V ) : f(L) 6= {0}} (§2), defined by ef (L) = v/f(v) ∈ L if L =
Span(v), v ∈ V \{0}. (This happens to be the same formula as for the coordinate

mapping ϕf : Uf → f−1(1) in §2.) If f, f ′ ∈ V ∗ \ {0}, we have ef ′ = eff ′ef (not

really summed over f , since either of f, f ′ forms a one-element index set), with

eff ′(L) = f(v)/f ′(v) if L ∈ Uf ∩ U ′f is spanned by v ∈ V . Thus, each transition

function eff ′ is real-analytic, as its coordinate representation eff ′ ◦ϕf has the form

f−1(1) 3 v 7→ f(v)/f ′(v), which is a rational function on V \ Ker f ′ restricted to
the open subset f−1(1)\ Ker f ′ of the affine subspace f−1(1). The resulting atlas,
parametrized by f ∈ V ∗ \{0}, turns λ into a Cω vector bundle over P (V ).

For a more general construction, see Problem 8.

Problems
1. Show that the Cs compatibility relation between local trivializations of a vector

bundle over a manifold is symmetric.
2. Verify that Cl regularity for local sections of a Cs vector bundle, 0 ≤ l ≤ s, is

a local geometric property.
3. Show that a local trivialization ea of a Cs vector bundle η over a manifold M

belongs to the maximal atlas Bmax of η if and only if the local sections ea are
all Cs-differentiable.

4. Show that Cl-differentiable local sections of a product vector bundle η = B×F
over a manifold M are just Cl-differentiable mappings of open subsets of M
into F.

5. Suppose that λ is the tautological line bundle over the projective space P (V ) of
a given finite-dimensional real or complex vector space V . Let us assign, to each
global section ψ of λ, the scalar-valued function h on V \{0} characterized by
ψ(L) = h(v)v whenever L ∈ P (V ) is spanned by v ∈ V \{0}. Verify that this
establishes a bijective correspondence between the set of all global sections ψ
of λ and the collection of all functions h on V \ {0}, valued in the scalar field,
which are homogeneous of degree −1 in the sense that h(av) = h(v)/a for any
v ∈ V \{0} and any nonzero scalar a.
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6. Show that a global section ψ of the tautological line bundle λ over the projective
space P (V ) of any finite-dimensional real or complex vector space V is of class
Cl, 0 ≤ l ≤ ∞, if and only if so is the function h corresponding to ψ as in
Problem 5.

7. Let V be a real vector space with 2 ≤ dimV < ∞. Prove that every con-
tinuous global section ψ of the tautological line bundle λ over P (V ) has to
vanish somewhere, i.e., the value of ψ at some point is the zero vector of the
corresponding fibre. (Hint below.)

8. Let V be a real or complex vector space of real/complex dimension n <∞, and
let q be an integer with 0 ≤ q ≤ n. Generalize the construction in Example 15.3
above by introducing the tautological vector bundle κ over the Grassmann man-
ifold Grq(V ) (Problem 2 in §81), with

(15.9) Grq(V ) 3W 7→ κW = W .

Verify that the coordinate mappings for Grq(V ) introduced in Problem 2 in
§81, when regarded as local trivializations of κ, form a Cω atlas, parametrized
by the set of all surjective linear mappings f : V → Kq (where K is the scalar
field). This turns κ into a Cω real/complex vector bundle of fibre dimension q
over P (V ).

Hint. In Problem 7, the nowhere-zero scalar-valued function h on the connected
set V \{0}, corresponding to ψ as in Problems 5 and 6, assumes values of both
signs due to homogeneity.

16. Vector fields on the 2-sphere

Topics: Retractions; linear subvarieties of projective spaces; projective lines in projective spaces;

nonexistence of C2 retractions of real projective spaces onto projective lines in them; nonexistence

of C2 tangent vector fields without zeros on the 2-sphere; nonexistence of global C2 sections

without zeros in the tautological line bundles over complex projective spaces.

We will use the symbols D,S1 ⊂ C for the unit disk centered at 0 in C and
its boundary circle:

(16.1) D = {z ∈ C : |z| ≤ 1} , S1 = {z ∈ C : |z| = 1} .
Given intervals I, I ′ of any kind, we will say that a function I × I ′ → C is of class
Cs if it has continuous partial derivatives up to order s which, in the case where
one or both of I, I ′ have endpoints, includes one-sided derivatives. Similarly, we
will refer to a function f : D → C as being of class Cs in polar coordinates if
(r, θ) 7→ f(reiθ) ∈ C is of class Cs on I × I ′ = [0, 1]×R.

Lemma 16.1. Suppose that we are given an interval I ⊂ R and a C2 mapping
I × R 3 (r, θ) 7→ z(r, θ) ∈ C\ {0} such that z(r, θ + a) = z(r, θ) for some real
a > 0 and all r ∈ I and θ ∈ R. Then the integral

(16.2)

∫ a

0

1

z

∂z

∂θ
dθ

is constant as a function of r ∈ I.

Proof. Using a subscript notation for partial derivatives, we have (zθ/z)r =
(zr/z)θ, since both are equal to zrθ/z − zrzθ/z

2. Thus, d[
∫ a

0
(zθ/z) dθ ]/dr =∫ a

0
[zθ/z]r dθ =

∫ a
0

[zr/z]θ dθ, which equals the increment of zr/z between θ = 0
and θ = a, and hence vanishes due to periodicity. This completes the proof.
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Lemma 16.2. Given an integer k 6= 0, there exists no continuous mapping
F : D → C\{0} of the unit disk D ⊂ C, as in (16.1), whose restriction to the
boundary circle is given by F (z) = zk.

Proof. First, if such a mapping existed, there would also exist a C∞ mapping
with the same property. In fact, applying Corollary 75.2 (in Appendix B) to M =
V = C and K = D, we can select a C∞ function h : C→ C with |h−F | < ε, for
ε > 0 chosen so that |F | ≥ 3ε on D. Thus, |h| > 2ε on D by the triangle identity.
Next, there must exist a ∈ (0, 1) such that |zk − h(z)| ≤ ε for all z ∈ C with
a ≤ |z| ≤ 1. (Otherwise, a sequence of complex number z with |z| approaching 1
from below would have |zk − h(z)| ≥ ε, and choosing a convergent subsequence we
would get a contradiction with the fact that ε > |h− F | = |zk − h| at all z with
|z| = 1.) Now let us set F ′(z) = h(z) + [zk − h(z)][1 − ϕ(|z|)], with ϕ chosen as
in Problem 18 of §6 for any fixed b ∈ (a, 1). That F ′(z) 6= 0 at evere z ∈ D is
clear: F ′(z) = h(z) 6= 0 if |z| ≤ a, while |F ′− h| ≤ |zk − h| ≤ ε and |h| > 2ε at
all z ∈ D with |z| ≥ a.

However, a C∞ mapping F with the stated property does not exist: if it did,
Lemma 16.1 applied to z(r, θ) = F (reiθ), for r ∈ I = [0, 1], would imply that
the corresponding integral (16.2) is the same at r = 0 as at r = 1, whereas the
two integrals are easily seen to have the values 0 and, respectively, 2kπi. This
completes the proof.

By a retraction of a set X onto a subset Y ⊂ X we mean any mapping X → Y
whose restriction to Y equals the identity mapping of Y . Retractions X → Y are
usually of interest only in those cases where they satisfy some regularity conditions
such as continuity or differentiability (or, in the case of vector spaces X, Y , also
linearity).

Example 16.3. The Cartesian product X = M ×N of Cr manifolds M , N
admits Cr retractions, given by (x, y) 7→ (x, y0) or (x, y) 7→ (x0, y) onto all “factor
submanifolds” Y of the form M × {y0} or {x0} ×N , with any fixed y0 ∈ N or
x0 ∈ M . Note that all these Y are Cr submanifolds, endowed with the subset
topology, of X = M ×N (Problem 10 in §9).

Example 16.4. When Y is a vector subspace of a vector space X, a retraction
X → Y which is also a linear operator is usually called a projection operator of
X to Y , and amounts to the ordinary Cartesian-product projection Y × Y ′ → Y
under some isomorphic identification of X with a direct-product space Y × Y ′

which makes each y ∈ Y correspond to (y, 0). In other words, if dimX <∞, this
may be viewed as a special case of Example 16.3.

The fact that a retraction X → Y of a specific regularity class does not exist
means that Y is positioned in X in some “topologically nontrivial” way (in par-
ticular, not as a factor submanifold in a Cartesian product). For instance, the case
k = 1 in Lemma 16.2 can be restated as

Corollary 16.5. There exists no continuous retraction F of the unit disk D
in C onto its boundary circle S1.

We know (see Problem 11 in §9) that, for any vector subspace W of a finite-
dimensional real or complex vector space V , the projective space P (W ) (which is
obviously a subset of P (V )) is also a Cω submanifold of P (V ) endowed with the
subset topology. Any such submanifold of P (V ) will be called a linear submanifold
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of P (V ) or a linear variety in P (V ). When W ⊂ V is of dimension 2 over
the respective scalar field, we will refer to P (W ) as a projective line in P (V ).
Note that projective lines are a natural analogue of “lines” in classical elementary
geometry; see, for example, Problem 1.

Lemma 16.6. Let π : W \{0} → P (W ) be the standard projection mapping
defined as in Problem 13 of §3 for a 2-dimensional real vector space W . Then, for
any fixed real-isomorphic identification W = C, there exists a Cω-diffeomorphic
identification between the projective line P (W ) and the circle S1 with (16.1) such
that both identifications together make π appear as the mapping C\{0} → S1 ⊂ C
given by z 7→ z2/|z|2.

In fact, for any C\{0}, the number z2/|z|2 determines its square root z/|z|
up to a sign, and hence it determines z up to a nonzero real factor. A fixed real-
isomorphic identification W = C thus gives rise to a bijection h : P (W ) → S1

with h(Rz) = z2/|z|2, which is a Cω-diffeomorphism, as one easily verifies using a
projective coordinate system (cf. the hint for Problem 17 in §3).

Lemma 16.7. A real projective plane admits no continuous retraction onto a
projective line in it.

Proof. Assume, on the contrary, that Φ : P (V )→ P (W ) is such a retraction,
where W is a subspace of a real vector space V with dimV = 3 and dimW = 2.
Let us fix a real-isomorphic identification W = C and a vector u ∈ V \W = V \C.
Choosing a Cω-diffeomorphic identification P (W ) = S1 as in Lemma 16.6, we now
define F : D → S1 (with D, S1 as in (16.1)) by F (z) = Φ(R[z + (1 − |z|2)u]).
(Here z ∈ D ⊂ C = W , so that z + (1 − |z|2)u ∈ V , R[z + (1 − |z|2)u] =
π(z + (1 − |z|2)u) ∈ P (V ) and F (z) ∈ P (W ) = S1.) Since Φ is continuous, so
is F . Finally, if z ∈ D lies on the boundary circle S1, that is, |z| = 1, we have
F (z) = Φ(Rz) = Φ(π(z)) = π(z) = z2, since π(z) ∈ P (W ) as z ∈ D ⊂ C = W
and Φ restricted to P (W ) equals the identity, while π(z) = z2/|z|2 = z2 by
Lemma 16.6. The existence of such a mapping F contradicts the case k = 2 in
Lemma 16.2, which completes the proof.

Corollary 16.8. Let M be a real projective space of any dimension n ≥ 2.
Then M does not admit a continuous retraction onto any projective line in M .

Proof. If there was such a retraction Φ : M → P (W ), where M = P (V ) for
some real vector space of dimension n+1 and W is a 2-dimensional subspace of V ,
then, choosing a subspace V ′ with W ⊂ V ′ ⊂ V and dimV ′ = 3, and restricting
Φ to the linear subvariety P (V ′) of P (V ), we would obtain a C2 retraction of the
real projective plane P (V ′) onto the projective line P (W ) in it, whose existence
would directly contradict Lemma 16.7.

The level sets of any mapping F : M → N between sets M and N are, by
definition, the subsets of M having the form F−1(y) with y ∈ N . Thus, M is
the disjoint union of the (nonempty) level sets F−1(y) with y ∈ F (M).

Let M be the set of all orthonormal bases in a given oriented 3-dimensional
Euclidean vector space V which are also positive-oriented, that is, compatible with
the orientation of V . Clearly, M is an orbit of the Lie group SO(V ) acting on
bases of V as a Lie subgroup of GL(V ) (see (12.5) and Example 12.2). Therefore,
M is a compact, connected Cω submanifold, endowed with the subset topology,



16. VECTOR FIELDS ON THE 2-SPHERE 63

of the third Cartesian power V 3 of V , and for every fixed (u, v, w) ∈ M the
mapping SO(V ) 3 A 7→ (Au,Av,Aw) ∈ M is a Cω-diffeomorphism. (All of this
is immediate from Problem 6 in §13.) In particular, dimM = 3 (cf. (12.7)). We
now denote by F : M → S(V ) the mapping given by F (u, v, w) = u, where
S(V ) = {x ∈ V : 〈x, x〉 = 1} is the (2-dimensional) unit sphere in V .

Lemma 16.9. Let V = 1⊥ be the Euclidean 3-space of pure quaternions, ori-
ented through the basis i, j, k, and let M and F : M → S(V ) correspond to this
V as in the preceding paragraph. Then there exists a Cω-diffeomorphic identifica-
tion between M and the 3-dimensional real projective space P (H), where H is
the real 4-space of quaternions, which makes all level sets of F appear as projective
lines in P (H).

Proof. The mapping H\{0} 3 p 7→ (pip−1, pjp−1, pkp−1) (with quaternion
multiplication and the quaternion inverse p−1 = p/|p|2) is constant on L\ {0} for
any real line through 0 in H, i.e., its value does not change if p is replaced by
λp for any λ ∈ R\{0}. Therefore, it descends to a mapping Φ : P (H) → M
with Φ)(Rp) = (pip−1, pjp−1, pkp−1). (Note that the image Φ(P (H)) coincides
with our manifold M , since every Rp is spanned by some p ∈ S3, while the
homomorphism (12.9) maps S3 onto SO(1⊥), and so Φ(P (H)) is the SO(1⊥)-
orbit of the basis (i, j, k).) Also, two elements of S3 have the same image under
(12.9) only if they differ at most by sign, while (12.9) is locally Cω-diffeomorphic
(see §12); therefore, Φ : P (H)→M is a Cω-diffeomorphism.

The fact that the identification M = P (H) provided by Φ has the required
properties amounts to saying that, for each u ∈ S(V ), the the real vector subspace
W = {p ∈ H : pi = up} of H (that is, the union of all the lines forming the Φ-pre-
image of u) is 2-dimensional. However, by (4.10), the left or right multiplication
by any fixed pure quaternion is a skew-adjoint operator in the Euclidean 4-space
H. (This is clear from Problem 13 in §13, as 〈px, x〉 = Re pxx = 0 and 〈x, xp〉 =
Rexxp = 0 whenever Re p = 0, by (4.10) and (4.11).) Hence, being the kernel of
a skew-adjoint operator, W must be of some dimension m ∈ {0, 2, 4} (Problem 3;
see also formula (16.4)). Now m 6= 4, or else p = 1 would be in W (so that
u = i), but then p = j cannot be in W (as pi = ji = −k, while up = ij = k, cf.
(4.3)). Also, m 6= 0 since u+ i ∈W (by (4.20)) and either u+ i 6= 0, or u = − i
and then p = j is in W . Thus, m = 2, which completes the proof.

By a zero of a local section ψ of a vector bundle η over a manifold M we
mean any point x ∈ M lying in the domain of ψ and such that ψ(x) = 0. In
particular, we can speak of zeros of vector fields in a C1 manifold M , since they
are (local) sections of TM .

Theorem 16.10. Every global continuous vector field on the 2-dimensional
sphere S2 must have at least one zero.

Proof. Suppose, on the contrary, that u is a global continuous vector field
without zeros on the unit sphere N = S(V ) in an oriented Euclidean 3-space V .
Since TxN = x⊥ ⊂ V (Problem 12 in §13), u may be treated as a continuos map-
ping u : N → V \{0}. (In fact, the components of u relative to linear coordinates
in V corresponding to an orthonormal basis ea are dufa, with fa(x) = 〈x, ea〉 for
x ∈ N .) Replacing u with u/|u| we may assume that |u| = 1.

Let M and F : M → S(V ) = N be defined, for our space V , as in the
paragraph preceding Lemma 16.9. The existence of u now leads to a homeomorphic



64 4. VECTOR BUNDLES

identification M = S2 × S1 which makes F appear as the standard projection
S2×S1 → S2. The idea is to set w(x) = x×u(x) (vector product), and then assign
to any pair (x, z) = (x, a+bi) ∈ S2×S1 (with S1 as in (16.1)) the orthonormal basis
(x, u′, w′) obtained by rotating the basis x, u(x), w(x) about the axis Rx by the
angle θ with z = eiθ. Explicitly, (x, u′, w′) = (x, au(x) − bw(x), bu(x) + aw(x)).
This assignment is a homeomorphism, since its inverse is given by (x, u′, w′) 7→
(x, z) with z = 〈u′, u(x)〉 + i〈w′, u(x)〉. Thus, according to Example 16.3, M
would admit a continuous retraction onto any given level set of F , which (in view
of Lemma 16.9) would give rise to a continuous retraction of the 3-dimensional
real projective space P (H) onto a projective line in P (H). The latter, however,
cannot exist as a consequence of Corollary 16.8. This contradiction completes the
proof.

A vector bundle η over a set B can obviously be restricted to any subset B′ of
B, yielding a vector bundle η′ over B′ with the same fibres ηx, x ∈ B′. A section
(or trivialization) of η defined on any set K ⊂ B can similarly be restricted
to B, giving rise to a section (or trivialization) of η′ defined on K ′ = K ∩ B′,
and the transition functions (§15) in η′ between two such restricted trivializations
are nothing else than restrictions to B′ of the corresponding transition functions
between the original trivializations in η′. Consequently, the restriction of a Cs

vector bundle η over a Cs manifold M ′ to a Cs submanifold N of M is a
Cs vector bundle η′ over M ′, with an atlas of local trivializations obtained by
restricting to N ′ such an atlas in η. Also, any local/global Cs section of η, when
restricted to M ′, produces a local/global Cs section of η.

An analogue of Problem 7 in §15 also holds for complex projective spaces:

Theorem 16.11. Let V be a complex vector space with 2 ≤ dimV <∞. Every
global continuous section ψ of the tautological line bundle λ over P (V ) then must
have at least one zero.

Proof. First, we may assume that dimV = 2. In fact, if the assertion is
known to be true for 2-dimensional complex vector spaces, it follows for all complex
spaces V with dimV ≥ 2. To see this, we pick a 2-dimensional subspace W of
V and restrict the given global continuous section ψ of λ over P (V ) to the
submanifold P (W ) of P (V ), which produces a global continuous section of the
tautological line bundle over P (W ) (see the paragraph preceding Theorem 16.11
and Problem 4). Therefore, ψ(L) = 0 for some L ∈ P (W ), as required.

Let us now assume that dimV = 2 and, contrary to our assertion, ψ is a global
continuous section of λ without zeros. Thus, ψ assigns to every line L ∈ P (V )
a nonzero element ψ(L) ∈ L. Using a fixed nonzero skew-symmetric bilinear form
Ω : V × V → C, we can now choose, for each L ∈ P (V ), a vector v ∈ V with
Ω(ψ(L), v) = 1 (Problems 5, 6). The coset χ(L) = v + L ∈ V/L\{L} then is
uniquely determined by L (Problem 7). Since ψ(L) and χ(L) form bases of the
1-dimensional vector spaces L and V/L, there exists a unique linear isomorphism
w(L) ∈ Hom(L, V/L) sending ψ(L) to χ(L). However, the natural isomorphic
identification Hom(L, V/L) = TL[P (V )] (see formula (10.1)) allows us to treat
w(L) as a (nonzero) vector tangent to P (V ) at L. In other words, the assignment
L 7→ w(L) is a global vector field w without zeros on P (V ).

Our claim is thus reduced to showing that this vector field w must be contin-
uous. In fact, since the complex projective line P (V ) is Cω-diffeomorphic to the
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2-sphere S2 (see Problem 4 in §14, or Problem 18 in §3), the existence of a global
vector field w without zeros on P (V ) is precluded by Theorem 16.10. Thus, our
assumption that λ admits a global continuous section of without zeros leads to a
contradiction.

To show that w is a continuous vector field, we will use the coordinate system
(Uf , ϕf ) (§2) for any fixed f ∈ V ∗ \{0}, and verify that the push-forward (dϕf )w
of w (restricted to Uf ) under the coordinate diffeomorphism ϕf : Uf → f−1(1)
is continuous as a mapping f−1(1) → Ker f , and hence also as a vector field on
the affine space f−1(1) with the translation vector space Ker f (cf. Example 5.2
and Problems 16 – 17 in §2). Specifically, for any fixed u ∈ Ker f \ {0},

(16.3) [(dϕf )w](v) = [Ω(v, u)]−1[h(v)]−2u ,

where h : V \{0} → C is the continuous function such that ψ(L) = h(v)v whenever
v ∈ V \{0} spans L ∈ P (V ) (see Problems 5 – 6 in §15). In fact, if v ∈ f−1(1)
spans L, the identification (10.2) makes any F ∈ Hom(L, V/L) correspond to
the image under the differential of ϕ−1

f (i.e., of π) at v of the unique v̇ ∈ Ker f

with Fv = v̇ + Cv ∈ V/Cv (see §10). For v̇ equal to the right-hand side of
(16.3), the corresponding F has Fψ(L) = h(v)v̇ + L, with L = Cv, and so
Ω(ψ(L), Fψ(L)) = 1, i.e., F corresponds under (10.2) to w(L) ∈ TL[P (V )]. This
completes the proof.

Problems
1. Given a finite-dimensional real or complex vector space V , verify that, for any

two distinct projective points L,L′ in the projective space P (V ), there exists a
unique projective line N in P (V ) with L,L′ ∈ N .

2. Let V be a finite-dimensional, real or complex inner-product space. Verify
that, for any linear operator F : V → V which is self-adjoint (F ∗= F ) or skew-
adjoint (F ∗ = −F ), the subspaces KerF and F (V ) are mutually orthogonal
and V = KerF ⊕ F (V ) (cf. Problem 26 in §9). (Hint below.)

3. Let F : V → V be a skew-adjoint linear operator in a finite-dimensional real
inner-product space V . Prove that the rank of F (that is, the dimension of its
image F (V )) then must be even. (Hint below.)

4. Given a vector subspace W of a finite-dimensional real or complex vector space
V , verify that the restriction of the tautological line bundle over P (V ) to the
Cω submanifold P (W ) (Problem 11 in §9) coincides, as a Cω vector bundle
over P (W ) (Example 15.3) with the tautological line bundle over P (W ).

5. Show that, given a 2-dimensional real or complex vector space V , the vector
space of all scalar-valued skew-symmetric bilinear forms Ω on V is 1-dimen-
sional, and that, for any given basis u, v of V , the assignment Ω 7→ Ω(u, v)
provides an isomorphism between that space and the scalar field.

6. Let Ω : V × V → K be a nonzero skew-symmetric bilinear form on a 2-dimen-
sional vector space V over a scalar field K (which is R or C). Verify that any
two vectors u, v ∈ V then are linearly independent if and only if Ω(u, v) 6= 0.

7. For V and Ω as in Problem 6, show that for every u ∈ V \{0} there exists
v ∈ V with Ω(u, v) = 1, and that any two vectors v with this property differ
by a multiple of u.

Hint. In Problem 2, orthogonality follows since 〈Fv,w〉 = ±〈v, Fw〉 = 0 whenever
v ∈ V and w ∈ KerF . The direct-sum decomposition now is immediate for
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dimensional reasons, in view of the rank-nullity theorem, which states that

(16.4) dim KerF + dimF (V ) = dimV

for any linear operator F : V → V ′ between arbitrary vector spaces V, V ′.
Hint. In Problem 3, the image W = F (V ) is an F -invariant subspace of V . If
dimW were odd, W would contain an eigenvector of F , that is, we would have
Fw = λw for some nonzero w ∈ W and λ ∈ R. However, skew-adjointness of
F then would give 0 = 〈Fw,w〉 = λ〈w,w〉, so that λ = 0 and w 6= 0 would
simultaneously be in F (V ) and KerF , contradicting the orthogonality property
described in Problem 2.

17. Operations on bundles and vector-bundle morphisms

Topics: Operations on vector bundles; the dual; total spaces of vector bundles; the conjugate

vector bundle; direct sum; pullback; (base-fixing) morphisms; C l morphisms.

Any algebraic operation that makes new finite-dimensional real or complex
vector spaces out of old ones, gives rise to the corresponding fibrewise construction
for vector bundles. If, in addition, the operation in question is applicable in a
sufficiently “regular” manner to bases of the spaces involved, it can be applied to
local trivializations, which in turn leads to an analogous operation in the category
of Cs vector bundles over Cr manifolds (s ≤ r).

Example 17.1. The dual vector bundle η∗ of a vector bundle η over a set B
is given by

(17.1) B 3 x 7→ η∗x

with η∗x = (η∗)x defined to be the dual space (ηx)∗ of the original fibre ηx (and we
skip the parentheses as their location is of no consequence). Sections ξ of η∗ and
ψ of η, with a common domain K ⊂ B, can be paired to produce the scalar-valued
function ξ(ψ) on K with [ξ(ψ)](x) = [ξ(x)]((ψ)(x)). Thus, any trivialization ea of
η over K defines a trivialization of η∗ over K, denoted by ea, and characterized
by ea(ψ) = ψa for ψ as before (that is, assigning to each x ∈ K the basis ea(x)
of η∗x dual to the basis ea(x) of ηx in the sense that ea(eb) = δab ).

Let η again be a real/complex vector bundle over a set B. By the total space
of η we then mean the set (also denoted by η)

(17.2) η = {(x, φ) : x ∈M , φ ∈ ηx} .

In other words, η is a disjoint union of the fibres ηx :

(17.3) η =
⋃
x∈B

({x} × ηx) .

The mapping π : η → B given by

π(x, φ) = x

then is called the bundle projection of η. Furthermore, we will identify each fibre
ηx of η with the subset {x}×ηx of the total space η. In this way, η is decomposed
into the preimages

ηx = π−1(x) ,
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x ∈ B. Any section ψ of η, with a domain K = dom(ψ) ⊂ B, may be identified
with the mapping

(17.4) (Id, ψ) : K → η

given by

(17.5) x 7→ (x, ψ(x)) ,

and then

(17.6) π ◦ (Id, ψ) = Id : K → K .

The graph of ψ then is defined to be the image set of (17.4), i.e.,

graph(ψ) = {(x, ψ(x)) : x ∈ dom(ψ)} .

We will also treat the base set B as a subset of the total space η, via the inclusive
mapping

B 3 x 7→ (x, 0x) ∈ η ,
where, this time, 0x stands for the zero vector of the vector space ηx. (Normally,
we just write 0 ∈ ηx.) In other words,

B ⊂ η

is identified with the graph of the zero section of η.

Fig. 6. The total space of a vector bundle

In the case where B = M is a Cr manifold and η is a Cs vector bundle over
M (0 ≤ s ≤ r), the total space η carries a natural structure of a Cs manifold of
dimension n+ q, where n = dimM and q is the fibre dimension of η. In fact, any
local coordinate system xj for M along with a Cs local trivialization ea for η,
both defined on the same coordinate-and-trivialization domain U ⊂M , give rise to
the (n+ q)-dimensional coordinate system xj , ea for η, with the domain π−1(U) ;
more precisely, the coordinate mapping is given by (x, φ) 7→ (x1, . . . , xn, φ1, . . . , φq).
The bundle projection π : η → M then becomes is called a mapping of class Cs

between Cs manifolds, in fact, a submersion (cf. Problem 25 in §9). The fibres ηx,
x ∈ M , as well as the graphs of all local Cs sections of η, then are submanifolds
of η carrying the subset topology; in particular the zero section M ⊂ η is such a
submanifold. (See Problem 7.)
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Fig. 7. The Möbius strip as the total space of a line bundle (Problems 4 and 5)

Example 17.2. Given a complex vector space V with the multiplication of
vectors by scalars denoted, as usual, by C × V 3 (z, v) 7→ zv ∈ V , we define the
(complex) conjugate of V to be the complex vector space V with the same under-
lying set V and the same addition of vectors, but with a different multiplication
of vectors by scalars, namely

C× V 3 (z, v) 7→ zv ∈ V .
The conjugate of a complex vector bundle η over a set B now is the complex
vector bundle η over B with

B 3 x 7→ ηx ,

ηx = ηx being the conjugate of the fibre ηx. Since ηx and ηx coincide as sets
(and as real vector spaces), sections ξ of η over any set K naturally constitute
sections of η. Any trivialization ea of η over K thus becomes a trivialization of
η over K.

Example 17.3. Given vector bundles η1, . . . , ηp over the same set B, their
direct sum is the vector bundle

η = η1 ⊕ . . .⊕ ηp

over B with ηx = η1
x⊕ . . .⊕ ηpx for all x ∈ B. Sections ψ1 of η1, . . ., ψp of ηp with

any domain K ⊂ B can be treated as sections of η by regarding each summand ηlx
of ηx as a subspace of ηx via the l th-place embedding φ 7→ (0, . . . , 0, φ, 0, . . . , 0).
Thus, trivializations ea1 , . . . , eap of η1, . . . , ηp, respectively, with a common domain
K, can be juxtaposed to form the trivialization ea1 , . . . , eap of η over K, indexed
by the disjoint union of the respective index sets.

For a vector bundle η over a set B and a set B′ along with a mapping
h : B′ → B, the pullback of η under h is defined to be the vector bundle h∗η over
B′ given by

B′ 3 y 7→ ηh(y) ,

that is, (h∗η)y = ηh(y). Every section ψ of η over a set K ⊂ B can now be

pulled back to h∗η, leading to the section h∗ψ of h∗η over h−1(K) ⊂ B′ with
(h∗ψ)(y) = ψ(h(y)) ∈ ηh(y) = (h∗η)y. Applied to a trivialization ea of η over K,

this results in the trivialization h∗ea of h∗η over h−1(K).
An important special case of the pullback construction is the restriction ηB

of a vector bundle η over a set B to a subset B′ ⊂ B, defined in §16. (Here
h : B′ → B is the inclusion mapping.)

The above constructions of the dual, conjugate, direct sum and pullback can
now be applied to Cs vector bundles over any fixed manifold M and, respectively,
Cs mappings h : M ′ → M between Cr manifolds (s ≤ r). The corresponding
operations applied to their maximal atlases of Cs local trivializations ea yield
atlases of local trivializations in each resulting bundle, thus endowing the latter
with a natural structure of a Cs vector bundle. (Mutual compatibility is immediate
from the transformation rules stated in Problems 1, 2.) Again, a special case of
the pullback is provided by the restriction ηB of a Cs vector bundle η over a Cs

manifold M to a Cs submanifold N ⊂M .
In the case where η = TM for a Cs manifold M (s ≥ 1), the dual η∗ thus

is a Cs−1 vector bundle over M which we call the cotangent bundle of M and
denote by T ∗M (rather than (TM)∗).
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By a (vector-bundle) morphism F : η → ζ from a vector bundle η into a vector
bundle ζ, both over the same base set B, we mean a family

B 3 x 7→ Fx

of linear operators Fx : ηx → ζx, indexed by x ∈ B. Such a morphism F sends any
section ψ of η over a set K ⊂ B onto a section Fψ of ζ defined by (Fψ)(x) =
Fx(ψ(x)). Trivializations ea for η and eλ for ζ with the same domain K ⊂ B
thus lead to the scalar-valued component functions Fλa of F , defined on K by the
relation Fea = Fλa eλ. We say that a morphism between Cs vector bundles over a
Cr manifold is of class Cl (0 ≤ l ≤ s ≤ r ≤ ω) if so are its component functions.
(This is a local geometric property; see Problem 4.)

Problems
1. Show that the transformation rule ea′ = eaa′ea in a vector bundle η over a set

B implies ea
′

= ea
′

a e
a in η∗ and ea′ = eaa′ea in η.

2. Verify that, given a vector bundle η over a set B, and a mapping h : B′ → B, we
have the transformation rule h∗ea′ = (eaa′◦h)h∗ea in h∗η whenever ea′ = eaa′ea
in η .

3. Establish the transformation rule Fλ
′

a′ = eaa′e
λ′

λ F
λ
a for the component functions

of any vector-bundle morphism F : η → ζ, assuming that ea′ = eaa′ea in η and
eλ′ = eλλ′eλ in ζ.

4. Verify that Cl regularity for morphisms between Cs vector bundles over a Cr

manifold (0 ≤ l ≤ s ≤ r ≤ ω) is a local geometric property.
5. For complex vector spaces V,W , denote by Hom(V,W ), Hom (V,W ) the com-

plex vector spaces of all mappings V → W that are complex linear (or, re-
spectively, antilinear in the sense that T (λz) = λTz for all λ ∈ C, v ∈ V ),
with the valuewise addition and multiplication by scalars. Verify that the iden-
tity transformation provides natural isomorphic identifications Hom(V ,W ) =

Hom(V,W ) = Hom(V,W ) = Hom(V,W ), as well as V = V and V
∗

= V ∗ =
Hom(V,C).

6. For finite-dimensional complex vector spaces V , exhibit natural isomorphisms
V = Hom(V ∗,C) = [ Hom(V,C)]∗ . (This provides alternative definitions of V
when dimV <∞.)

7. Prove the claims made in the paragraph preceding Example 17.2.
8. Let η be a vector bundle over a set B. Verify that formula (17.5) establishes a

bijective correspondence between sections of η with any given domain K ⊂ B,
and mappings (17.4) satisfying condition (17.6). State and prove the analogous
statement for local Cs sections of Cs vector bundles over Cs manifolds.

18. Vector bundle isomorphisms and triviality

Topics: VecTor-bundle morphisms; isomorphisms of vector bundles; regularity of the inverse

isomorphism; trivial bundles; triviality and global trivializations; nontriviality of TS2 and of

tautological line bundles over projective spaces.

Morphisms η → ζ between fixed vector bundles having a common base set B
can be added and multiplied by scalar-valued functions ϕ on B, so that (F+G)x =
Fx + Gx and (ϕF )x = ϕ(x)Fx for x ∈ B and morphisms F,G : η → ζ. (Thus,
they form a module over the algebra of functions on B.) Similarly, the composite
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of the morphisms F : η → η′, F ′ : η′ → η′′ of vector bundles over B is the
morphism F ′F : η → η′′ given by (F ′F )x = F ′xFx. The zero morphism 0 : η → ζ
and the identity morphism Id : η → ζ are the “neutral elements” of addition and
composition, respectively.

Given vector bundles η and ζ over the same base set B, a vector-bundle
morphism F : η → ζ is called a (vector-bundle) isomorphism if all the linear
operators Fx : ηx → ζx, x ∈ B, constituting F , are isomorphisms. The inverse
morphism F−1 : ζ → η then is defined by (F−1)x = (Fx)−1 : ζx → ηx for x ∈ B.

Recall that a vector-bundle morphism F : η → ζ between Cs vector bundles
η, ζ over a Cr manifold M is said to be of class Cl, 0 ≤ l ≤ s ≤ r, if so are the
component functions Fλa of F relative to all Cs local trivializations ea of η and
eλ of ζ ; this is a local geometric property. Sums and composites of Cl morphisms
are again of class Cl (Problem 1). Furthermore, if F : η → ζ is a Cl isomorphism,
i.e., a vector-bundle isomorphism that is a morphism of class Cl, then the inverse
isomorphism F−1 : ζ → η is of class Cl as well (Problem 2). We will say that η,
ζ are Cl-isomorphic if there is a Cl isomorphism between them.

A Cs vector bundle η over a Cs-manifold M is called Cs-trivial (or just
trivial) if it Cs-isomorphic to a product bundle over M . Also, a Cs-manifold M ,
s ≥ 1, is said to be Cs−1-parallelizable if its tangent bundle TM is Cs−1-trivial.

Proposition 18.1. For a Cs vector bundle η over a Cr manifold M , s ≤ r,
the following two conditions are equivalent :

i. η is Cs-trivial.
ii. η admits a Cs trivialization ea which is global, that is, defined on the whole

of M .

Proof. Set F = Rq or F = Cq, where q is the fibre dimension of η over R
or, respectively, C. A global Cs trivialization ea for η leads to the Cs vector-
bundle isomorphism F : M × F→ η, with Fx : F→ ηx sending each (φ1, . . . , φq)
onto φaea(x). Thus, (ii) implies (i). The inverse implication is clear since M × F
admits global (e.g., constant) Cs trivializations ea, which any Cs-isomorphism
F : M × F → η will send onto global Cs trivializations Fea for η (notation
of §17). Combining the above proposition with Theorem 16.10, Problem 7 in §15
and Theorem 16.11, we obtain the following results for TS2 and tautological line
bundles over projective spaces (defined in Example 15.3).

Corollary 18.2. The 2-dimensional sphere is not continuously parallelizable.

Corollary 18.3. For any real vector space V with 2 ≤ dimV < ∞, the
tautological line bundle λ over the projective space P (V ) is not C0-trivial.

Corollary 18.4. For any complex vector space V with 2 ≤ dimV <∞, the
tautological line bundle λ over the projective space P (V ) is not C0-trivial.

Problems
1. Given vector bundles η, η′, η′′ over the same base set B and two morphisms,

F : η → η′ and G : η′ → η′′, along with trivializations ea, eλ, eA for the
respective bundles (all having the same domain), verify that (GF )Aa = GAλF

λ
a .

2. Let F : η → ζ be an isomorphism between vector bundles η and ζ over
the same base set B. Show that the component functions Gaλ of the inverse
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isomorphism G = F−1 : ζ → η are related to those of F by GbλF
λ
a = δba, i.e.,

as matrix-valued functions, [Gaλ] = [Fλa ]−1.
3. Let h : M → N be a Cr mapping between Cr manifolds, 1 ≤ r ≤ ω. Verify

that the differentials dhx of h at all points x ∈ M then constitute a vector-
bundle morphism dh : TM → h∗TN of class Cr−1 and

(18.1) (dh)pj = (∂jh
α)h∗pα ,

i.e., dh has the component functions (dh)αj = ∂jh
α in the local trivializations

pj for TM and h∗pα for h∗TN , provided by arbitrary local coordinates xj for
M and yα for N .

4. Let λ be the tautological line bundle over the projective space P (V ) of any
finite-dimensional vector space V over the field K of real or complex numbers.
(Thus, P (V ) is the set of all 1-dimensional vector subspaces of V , while λ is
defined by P (V ) 3 L 7→ λL = L.) Prove that the total space of the dual bundle
λ∗ of λ is Cω-diffeomorphic to the manifold

(18.2) P (V ×K) \ {{0} ×K}
obtained by removing a point from the projective space P (V ⊕K). (Hint below.)

5. Verify that the Möbius strip is diffeomorphic to the real projective plane RP2

minus a point. (Hint below.)

Hint. In Problem 4, note that every line L′ through zero in V ⊕ K, with the
exception of {0} × K, is the graph of a linear function from a unique line L
through zero in V (namely, the V -projection of L′) into K.
Hint. In Problem 5, use Problems 4 above and Problem 20 in §3.

19. Subbundles of vector bundles

Topics: Subbundles of vector bundles; quotient bundles; Ck-subbundles; the image and kernel

of a constant-rank bundle morphism; the tangent and normal bundles of an immersion.

A vector subbundle or simply subbundle of a real/complex vector bundle η over
a set B is any real/complex vector bundle ζ over B such that, for every x ∈ B,
ζx is a vector subspace of ηx. To express that ζ is a subbundle of η, we will write

ζ ⊂ η

This notation is consistent with our use of the same symbol η for both the bundle
in question and its total space (17.2); in fact, the total space of a subbundle ζ
obviously is a subset of the total space of the given bundle η. (See also Problem 1.)

If ζ ⊂ η, we can form the quotient vector bundle η/ζ over the same base B,
with the fibres ηx/ζx, x ∈ B, and with the obvious projection morphism

π : η → η/ζ .

Let η be a vector bundle of class Ck over a Ck manifold M . By a Ck-subbundle
of η we then mean any vector subbundle ζ of η with the property that, for every
x ∈M and φ ∈ ζx, there exists a local section ψ of ζ defined on a neighborhood
of x which is of class Ck as a local section of η, and has ψ(x) = φ. It follows that
in this case ζ is automatically a Ck vector bundle over M with the Ck-bundle
structure uniquely characterized by the property that the local Ck sections of ζ
are precisely those local sections of ζ which are Ck as local sections of η. (In fact,
local trivializations of ζ obtained using ψ as above for φ running through a basis
of ζx form a Ck atlas of local trivializations for ζ, as defined in §15; this is in turn
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clear since, for two such local trivializations, the transition functions are of class
Ck as they form, locally, a submatrix of a matrix of transition functions for two
Ck local trivializations of η.)

Similarly, given a Ck-subbundle ζ of a Ck vector bundle η over a Ck manifold
M , the quotient vector bundle η/ζ carries a natural structure of a Ck vector
bundle over M , uniquely characterized by requiring that the π-image of any local
Ck section of η be a local Ck section of η/ζ. (To see this, note that, near any
x ∈M , the π-images of a suitable subcollection of any system of local Ck sections
of η, trivializing η in a neighborhood of x, form a local trivialization of η/ζ, and
two such local trivializations are Ck-compatible by a submatrix argument similar
to that in the preceding paragraph.)

Let Φ : η → ζ now be a vector-bundle morphism between two vector bundles
η, ζ over the same base set B. The rank of Φ at a point x ∈ B is, by definition,
the rank of the linear operaton Φx : ηx → ζx, i.e., the dimension of its image. If the
point x is not specified, the term ’rank of Φ ’ means the function B → Z assigning
to every x the rank of Φ at x, and we will say that Φ is of constant rank if that
function is constant on B. For every constant-rank morphism Φ : η → ζ of vector
bundles over B, the image Φ(η) of Φ, with the fibres Φx(ηx), x ∈ B, forms a
vector subbundle of ζ. Also, in view of the rank-nullity formula (16.4), the kernel
KerΦ of Φ, with the fibres KerΦx, x ∈ B, forms a vector subbundle of η.

Proposition 19.1. The image and the kernel of any constant-rank Ck mor-
phism Φ : η → ζ between Ck vector bundles η, ζ over a Ck manifold M are
Ck-vector subbundles of ζ and η, respectively.

Proof. All we need to do is find local trivializations of Φ(η) (or, KerΦ)
defined in a neighborhood of any given point x ∈ M and consisting of Ck local
sections of ζ (or, η). To this end, let us choose the ranges of indices to be a, b ∈
{1, . . . , r} and λ, µ ∈ {r + 1, . . . , q}, where r is the rank of Φ and q is the fibre
dimension (rank) of η. By suitably reordering the sections e1, . . . , eq forming any
fixed local trivialization of η in a neighborhood of x, we may assume that the Φea
constitute, at x, a basis of Φx(ηx), and hence that they form a local trivialization of
Φ(η) near x, as required for the Φ(η) case. As for KerΦ, note that Φeλ = Ha

λΦea
with some Ck functions Ha

λ , so that eλ − Ha
λea are Ck local sections of KerΦ,

which also form a local trivialization (since their linear independence at every point
is immediate from that of e1, . . . , eq). This completes the proof.

Every Ck mapping F : M → N between Ck manifolds, k ≥ 1, leads to the Ck−1

bundle morphism dF : TM → F ∗(TN) whose action on each TxM , x ∈ M ,
is nothing else than dFx : TxM → TF (x)N = [F ∗(TN)]x. (Note that dF is of

class Ck−1 since so are its component functions ∂jF
α.) If, in addition, F is an

immersion, the morphism dF is injective, i.e., of constant rank dimM . Its image

(19.1) τ = dF (TM) ⊂ F ∗(TN)

is called the tangent bundle of the immersion F . (Of course, τ is isomorphic to
TM , via the isomorphism dF : TM → τ .) The quotient bundle

(19.2) ν = F ∗(TN)/τ

is called the normal bundle of the immersion F : M → N . In the case where M
is a submanifold of N and F is the inclusion mapping, we clearly have τ = TM ,
while ν = F ∗(TN)/TM then is referred to as the normal bundle of M in N .
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According to Proposition 19.1, τ and ν as above both carry natural structures
of Ck−1-vector bundles over M .

Given real vector space V and W, we will denote by L(V, V,W ) the vector
space of all bilinear mappings V×V →W. There is an obvious natural isomorphism
Hom(V, Hom(V,W ))→ L(V, V,W ), defined by Φ 7→ B with B(v, u) = (Φv)u for
v, u ∈ V . We will use the symbols S(V, V,W ) and A(V, V,W ) for the subspaces of
L(V, V,W ) formed by those bilinear mappings V ×V →W with are also symmetric
(or, respectively, skew-symmetric).

Let η and ζ be real vector bundles of class Ck over a manifold M . A fibrewise
application of the three operations just described leads to vector bundles L(η, η, ζ),
S(η, η, ζ) and A(η, η, ζ) over M . Furthermore, L(η, η, ζ) is naturally a Ck vector
bundle (due to the isomorphic identification Hom(η, Hom(η, ζ)) → L(η, η, ζ), cf.
the last paragraph). Finally, S(η, η, ζ) and A(η, η, ζ) are Ck vector subbundles of
L(η, η, ζ). Namely, L(η, η, ζ) = S(η, η, ζ)⊕A(η, η, ζ) and the projection morphisms
are of class Ck as vector-bundle morphisms L(η, η, ζ)→ L(η, η, ζ). See Problems 3
and 4.

Problems
1. Verify that, for a Ck vector subbundle ζ of a Ck vector bundle η over a

manifold M , the total space of ζ is contained in the total space of η as a Ck

submanifold with the subset topology.
2. Let S(V ) = {x ∈ V : 〈x, x〉 = 1} be the unit sphere in a Euclidean space V .

Verify that the normal bundle of S(V ) in V is trivial.
3. Given real vector bundles η and ζ of class Ck over a manifold M , verify that
L(η, η, ζ) = S(η, η, ζ)⊕A(η, η, ζ) and the projection morphisms are Ck vector-
bundle morphisms L(η, η, ζ)→ L(η, η, ζ) of constant rank.

4. Let η, ζ be Ck vector bundles over a manifold M , and let ζ ′ be a Ck vec-
tor subbundle of ζ. Verify that Hom(η, ζ ′) then is a Ck vector subbundle of
Hom(η, ζ).
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CHAPTER 5

Connections and Curvature

20. The curvature tensor of a connection

Topics: Connections in vector bundles; germ-dependence of the covariant derivative; the com-

ponent functions of a connection; curvature; curvature components; the standard flat connection

in a product bundle.

Let η be a real or complex Cs vector bundle over a Cr manifold M , 1 ≤ s ≤ r,
and let z ∈M .

As in §5, let us say that two local Cl sections of η (l ≤ s), defined on neighbor-
hoods of z, are equivalent at z if they coincide on some (smaller) neighborhood of
z. The equivalence classes of this relation are known as Cl germs of local sections
of η at z, and they form a vector space as well as a module over the algebra of the
germs of scalar-valued functions in M at z.

By a connection at z in η we mean a mapping

(20.1) (v, ψ) 7→ ∇vψ ∈ ηz

associating an element ∇vψ of the fibre ηz of η over z with any tangent vector
v ∈ TzM and any local C1 section ψ of η defined on any open set containing z,
in such a way that

a. TzM 3 v 7→ ∇vψ ∈ ηz is (real) linear when ψ as above is fixed,
b. For a fixed v ∈ TzM , ∇vψ depends only on the C1 germ of ψ at z,
c. ∇v(ψ + φ) = ∇vψ +∇vφ for local C1 sections ψ, φ of η defined near z,
d. The Leibniz rule (or product rule)

(20.2) ∇v(fψ) = (dvf)ψ(z) + f(z)∇vψ

holds for all vectors v ∈ TzM whenever ψ is a local C1 section of η and
f is a scalar-valued C1 function, both defined near z.

Intuitively, a connection at z in η represents an analogue of the directional dif-
ferentiation with respect to vectors tangent to M at z (see §6), applied to local
sections of η rather than real-valued functions; since no such operation is natu-
rally distinguished by the vector-bundle structure of η, we have to select it as an
additional feature of the geometry in question.

Let us denote by Cz(η) the set of all connections at z in η. When η and
z are fixed, the set Cz(η) carries a natural structure of a real or complex affine
space of dimension nq2, where q is the (real or complex) fibre dimension of η
and n = dimM . The translation vector space is Hom(TzM, Hom(ηz, ηz)) ; see
Problem 1 below.

If xj is a local coordinate system in M , and ea is a local trivialization of η,
both having the same domain U ⊂ M containing z, we define the components of
the connection (20.1) relative to the xj and the ea to be the scalars Γ bja uniquely

75
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characterized by

(20.3) ∇pj(z)ea = Γ bjaeb(z) .

The Γ bja then uniquely determine the connection (20.1) at z via the formula

(20.4) ∇vψ = vj [(∂jψ
a)(z) + Γ ajbψ

b(z)]ea(z) .

Briefly,

(20.5) ∇vψ = vj(∂jψ
a + Γ ajbψ

b) ea , i.e. (∇vψ)a = vj(∂jψ
a + Γ ajbψ

b) ,

where the dependence on z is suppressed for clarity. In particular, note that ∇vψ
involves ψ only through the ψa(z) and (∂jψ

a)(z).
The definition of a vector bundle in §15 can be naturally generalized to that of

an affine bundle, that is a bundle of affine spaces, with the analogous concepts of
fibre dimension (rank), base, fibres, sections (and their domains), as well as local
trivializations, compatibility, and Cs affine bundles over Cr manifolds, with local
Cl sections (l ≤ s ≤ r). The associated vector bundle of such an affine bundle ζ
with base set B is the vector bundle η over B whose each fibre ηx (x ∈ B) is the
translation vector space of the fibre ζx of ζ. For details, see the appendix following
§15.

Every vector bundle naturally constitutes an affine bundle. As our primary ex-
ample of affine bundles other than those, note that every Cs vector bundle η over a
Cr manifold M (1 ≤ s ≤ r) gives rise to a Cs−1 affine bundle C(η) over M whose
fibre over each z ∈M is defined to be Cz(η), the affine space of all connections at
z in η. The associated vector bundle of C(η) thus is Hom(TM, Hom(η, η)).

By a Cl connection in a Cs vector bundle η over a Cr manifold M (0 ≤
l ≤ s − 1 ≤ r − 1) we then mean a global Cl section of the Cs−1 affine bundle
C(η). Without introducing affine bundles, we could just define a Cl connection in
η to be a mapping ∇ assigning to each point z ∈ M a connection ∇z ∈ Cz(η)
whose components Γ ajb(z) with any xj , ea as in (20.3) are Cl functions of z. The

assignments z 7→ Γ ajb(z) then are called the component functions of the connection

∇ relative to the xj and the ea, and denoted by Γ ajb. Note that Cl regularity
of connections is a local geometric property, e.g., in view of Problem 2 below.
Furthermore, for a Cl connection in a vector bundle η over M , a local vector
field w in M , and a local C1 section ψ of η, both defined on the same open set
U ⊂M , a continuous local section ∇wψ of η can be defined on U by

(20.6) (∇wψ)(x) = ∇xw(x)ψ .

We then have the following versions of (20.2), (20.3) and (20.5) for vector fields:

∇w(fψ) = (dwf)ψ + f∇wψ , ∇pjea = Γ bjaeb ,

and

(20.7) (∇wψ)a = wj(∂jψ
a + Γ ajbψ

b) .

From now on all connections, vector bundles and manifolds will be assumed
C∞; most statements can be generalized to much lower regularity, which is left as
an easy exercise for the reader.

Given a connection ∇ in a vector bundle η over a manifold M , an open set
U ⊂ M , local C1 vector fields v, w in M , defined on U , and a local C2 section
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ψ of η, also with the domain U , let R(v, w)ψ denote the continuous local section
of η, given (on U) by

(20.8) R(v, w)ψ = ∇w∇vψ − ∇v∇wψ + ∇[v,w]ψ .

Then, for any local coordinate system xj in M , and any local trivialization ea of
η, both having the same domain U ⊂M , we have (see Problem 4)

(20.9) R(v, w)ψ = vjwkψaRjka
beb ,

with the scalar-valued C∞ functions Rjka
b on U given by

(20.10) Rjka
b = ∂kΓ

b
ja − ∂jΓ

b
ka + Γ bkcΓ

c
ja − Γ bjcΓ

c
ka .

In view of (20.9), the operation defined in (20.8) has the remarkable property
that the value [R∇(v, w)ψ](x) of R∇(v, w)ψ at any point x ∈ M depends only
on the values v(x), w(x) and ψ(x) of v, w and ψ at x. We can thus define the
curvature tensor field R = R∇ of any connection ∇ in a C∞ vector bundle over
a manifold M , to be the the assignment M 3 x 7→ R∇x = R∇(x), associating with
each x the skew-symmetric bilinear mapping

R∇(x) : TxM × TxM → Hom(ηx, ηx) ,

also written as (v, w) 7→ R∇x (v, w), which is valued in linear operators ηx → ηx,
and characterized by (20.8) for (local) C1 vector fields v, w on M and (local) C1

sections ψ of η, all three with the same domain. Specifically, R∇(v, w)ψ then is
the local section of η with [R∇(v, w)ψ](x) = R∇x (v(x), w(x))[ψ(x)].

By (20.9), the component functions Rjka
b of R∇ relative to any local coordi-

nate system xj in M and any local trivialization ea of η, both having the same
domain U ⊂M , thus may be expressed as

R∇(pj , pk)ea = Rjka
beb .

Equivalently,

Rjka
b = eb [R∇(pj , pk)ea] .

Remark 20.1. The curvature tensor R is, clearly, a C∞ section of the vector
bundle A(TM, TM, Hom(η, η))), defined as at the end of §19.

Example 20.2. Every product bundle η = M × F carries the standard flat
connection, often denoted by d (instead of the generic symbol ∇ for connections),
such that dvψ is the ordinary directional derivative of any local C1 section of η
viewed as an F-valued function.

Problems
1. Let η be a real/complex Cs vector bundle over a Cr manifold M , 1 ≤ s ≤ r,

and let z ∈M . For ∇ ∈ Cz(η) and F ∈ Hom(TzM, Hom(ηz, ηz)) set

(∇+ F )vψ = ∇vψ + Fv(ψ(z))

whenever v ∈ TzM and ψ is a local C1 section of η defined near z, with
Fv = F (v) ∈ Hom(ηz, ηz)). Verify that then ∇ + F ∈ Cz(η). Prove that this
addition turns (Cz(η), Hom(TzM, Hom(ηz, ηz)),+) into a real/complex affine
space. (Hint below.)
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2. Verify the transformation rule

Γ b
′

j′a′ = pjj′e
a
a′e

b′

b Γ
b
ja + eb

′

c ∂j′e
c
a′

for the component functions Γ bja of a connection ∇ in a C∞ vector bundle η
over a manifold M , characterized by (20.2), under any change of the coordinates
xj in M and the local trivialization ea in η, with the transition functions

pj
′

j = ∂jx
j′ and eaa′ = ea(ea′).

3. Let ∇ be a connection in a C∞ vector bundle η over a manifold M . A local
C1 section ψ of η is said to be ∇-parallel (or just parallel) if ∇vψ = 0 for
each vector v ∈ TxM tangent to M at any point x in the domain of ψ. Prove
that every ∇-parallel section ψ of η is C∞ differentiable. What are the ∇-
parallel sections for the standard flat connection ∇ = D in a product bundle
η = M × F ? (Hint below.)

4. Verify that (20.8) and (20.10) imply (20.9).
5. Given a connection in a vector bundle η over a manifold M , verify that in a

given coordinate-and-trivialization domain we have Γ bja = 0 identically if and
only if all the ea are parallel.

6. A connection ∇ in a C∞ vector bundle η over a manifold M is called flat if its
curvature R∇ is identically zero. Verify that under any of the following three
assumptions, flatness of ∇ follows:
(a) dimM = 1.
(b) M can be covered by coordinate-and-trivialization domains with Γ bja = 0,

where Γ bja are the corresponding component functions of ∇.
(c) For each x ∈ M and each φ ∈ ηx there exists a ∇-parallel local section

ψ of η (see Problem 3), defined in a neighborhood of x and such that
ψ(x) = φ.

7. Verify that the standard flat connection ∇ = D in a product bundle η = M×F
is actually flat.

8. Let ∇ be a connection in a complex line bundle η over a manifold M (that
is, a C∞ complex vector bundle of fibre dimension 1 over M). Verify that, at
each x ∈ M , the curvature R∇ = R∇(x) may be regarded as a skew-symmet-
ric real-bilinear mapping TxM × TxM → C, so that, given v, w ∈ TxM and
φ ∈ ηx, the element R∇(v, w)φ of ηx is obtained by multiplying the complex
scalar R∇(v, w) by φ ∈ ηx.

9. Consider a connection ∇ in a complex line bundle η over a manifold M (Prob-
lem 8), and a fixed local coordinate system xj in M with some domain U ⊂M ,
which also is the domain of a C∞ local trivializing section e1 of η. Departing
from our usual notational convention, let us use the symbol Γj (rather than Γ 1

j1)
for the complex-valued component function of ∇ relative to such a section e1.
Show that
(a) R∇(pj , pk) = ∂kΓj−∂jΓk, where R∇(∂j , ∂k) is regarded as a complex-valued

function on U (Problem 8).

(b) Γ ′j = Γj + (∂jf)/f , where Γ ′j stands for Γ 1′

j1′ relative to another C∞ local

trivializing section e1′ of η over U and the same coordinates xj , and
f : U → C\{0} is the ratio of e1′ and e1, i.e., e1′ = fe1 (in other words,
f = e1

1′).
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10. Verify that the above ad hoc definition of a Cl connection in a Cs vector bundle
η over a Cr manifold M (0 ≤ l ≤ s−1 ≤ r−1) describes precisely a Cl section
of the Cs−1 affine bundle C(η).

Hint. In Problem 1, given ∇,∇′ ∈ Cz(η), show that ∇vψ −∇′vψ depends only on
v ∈ TzM and ψ(z) (rather than on the whole local C1 section ψ), by applying the
Leibniz rule to ψ = ψaea. Thus, ∇′ = ∇+F with F ∈ Hom(TzM, Hom(ηz, ηz)).
Hint. In Problem 3, a ∇-parallel section ψ of η satisfies

∂jψ
a = −Γ ajbψb

(by (20.7)), and induction on k shows that its component functions ψa are Ck-
differentiable for each integer k ≥ 1. In the case of the standard flat connection
∇ = D in a product bundle η = M × F, the D-parallel local sections are just the
locally constant mappings ψ : U → F defined on open sets U ⊂M .

21. Connections in the tangent bundle

Topics: Connections on a manifold; the torsion tensor and its component functions; torsionfree

(symmetric) connections; the case of an affine space; twice-covariant tensor fields; the Ricci tensor

of a connection on a manifold; pullbacks of twice-covariant tensors.

Let ∇ be a connection on the manifold M , by which we means a connection
in the tangent bundle TM . For any open set U ⊂ M , and local C1 vector fields
v, w in M , defined on U, we denote by T(v, w) the continuous vector field

(21.1) T(v, w) = ∇vw − ∇wv − [v, w]

on U. In any local coordinates xj for M with a domain U ′ ⊂ U , we then have
(see Problem 1)

(21.2) T(v, w) = vjwkTljk pl ,

with the scalar-valued C∞ functions Tljk on U ′ given by

(21.3) Tljk = Γ ljk − Γ lkj .

The Γ ljk stand here for the component functions of ∇ relative to the xj , i.e.,
involving the local trivialization pj of TM , so that

∇pjpk = Γ ljk pl .

In view of (21.2), the operation defined by (21.1) has the same “tensorial” property
as the curvature in (20.9); namely, the value [T(v, w)](z) of T(v, w) at any point
z ∈M depends just on the values v(z), w(z) of v and w at z. We can thus define

the torsion tensor field T = T∇ of any connection ∇ in a TM to be the mapping
assigning to each x ∈ M the skew-symmetric bilinear mapping TxM × TxM 3
(v, w) 7→ Tx(v, w) ∈ TxM given by (21.1) for (local) C1 vector fields v, w defined

near x in M . By (21.2), the component functions Tljk of T relative to any local

coordinate system xj in M , given by (21.3), can also be characterized by

T(pj , pk) = Tljkpl

Equivalently,

Tljk = dxl(T(pj , pk)) .
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A connection ∇ in TM is called torsionfree (or symmetric) if its torsion tensor
field is identically zero. This is the case if and only if, in any local coordinates xj ,

(21.4) Γ ljk = Γ lkj.

The torsion tensor field T is, obviously, a C∞ section of A(TM, TM, TM) (see
the end of §19).

Example 21.1. The natural isomorphic identification TxM = V for a finite-di-
mensional real affine space (M,V,+) viewed as a manifold (Example 5.2) amounts
to a natural vector-bundle isomorphism between TM and M × V ; from now on,
we will write TM = M × V . The standard flat connection ∇ = D in TM
(Example 20.2) is torsionfree; in fact, T(v, w) = 0 for constant vector fields v, w.
(Or, Γ ljk = 0 in affine coordinates.)

By a twice-covariant tensor field on a manifold M we mean any mapping b
assigning to every point x ∈M a real-valued bilinear form bx on the tangent space
TxM . We will usually skip the word ’field’ and simply speak of a twice-covariant
tensor b. Such b is called symmetric or, respectively, skew-symmetric, if so is bx
at every point x ∈M .

Twice-covariant tensors b on M are nothing else than all possible sections of
a specific C∞ vector bundle over M , namely, L(TM, TM,M ×R) (see the end
of §19), or, in other words, Hom (TM, T ∗M). Explicitly, each bx may be viewed
as an operator TxM → T ∗xM , given by v 7→ bx(v, · )). It therefore makes sense
to speak of their Ck-differentiability for k = 0, 1, . . . ,∞, which is the same as the
differentiability class of their component functions bjk = b(pj , pk) relative to any
local coordinates xj in M . Note that the bjk coincide with the components of b
as a section of Hom (TM, T ∗M) in the local trivialization corresponding to the xj.

Similarly, twice-covariant tensors which are symmetric (or, skew-symmetric)
coincide with arbitrary sections of the vector bundle S(TM, TM,M × R) (or,
respectively, A(TM, TM,M ×R)), defined in §19.

Let ∇ now be a connection on a manifold M . Its Ricci tensor is the twice-
covariant tensor field Ric = Ric∇ on M , defined by requiring, for every x ∈ M ,
that the bilinear mapping Ricx : TxM × TxM → R send vectors v, w to

(21.5) Ric x(v, w) = Trace [u 7→ R(v, u)w] ,

the trace being that of an operator TxM → TxM . The component functions of
Ric in local coordinates xj are traditionally written as Rjk. Obviously,

(21.6) Rjk = Rjlk
l .

Problems
1. Verify that (21.1) and (21.3) imply (21.2).
2. For a C∞ connection ∇ in the tangent bundle TM of a manifold M and a

global C∞ section F of the vector bundle Hom(TM, Hom(TM, TM)), show
that the torsion tensor field of the connection ∇+F in TM is given by T + A,
where T is the torsion of ∇ and A(v, w) = Fvw − Fwv for all x ∈ M and
v, w ∈ TxM .

3. Given a C∞ connection ∇ in the tangent bundle TM , write a natural formula
for a (new) connection ∇′ in TM that is torsionfree. (Hint below.)
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4. Let η and ζ be C∞ vector bundles over the same C∞ manifold M , with local
trivializations eλ (for η) and ea (for ζ), both having the same domain U ⊂M .
Given a local Cs section φ of η a local Cs section Ψ of Hom(η, ζ), both
defined on U , verify that the local section Ψφ of ζ obtained by “valuewise
evaluation” of Ψ on φ is also of class Cs and has the component functions

[Ψφ]a = Ψaλφ
λ .

5. Let b be a twice-covariant tensor field on a manifold M , and let F : N → M
be a C1 mapping between manifolds. Verify that the pullback F ∗b of b under
F , defined by (F ∗b)y(v, w) = bF (y)(dFyv, dFyw) for y ∈ N and v, w ∈ TyN, is
a twice-covariant tensor field on and that F ∗b is symmetric whenever b is.

6. For b, F,M,N as in Problem 4, verify the local-coordinate formula (F ∗b)λµ =
(∂λF

j)(∂µF
k)bjk, and conclude that F ∗b is of class C∞ whenever b and F

are.

Hint. In Problem 3, write ∇′ = ∇ − 1
2 T, where T is the torsion of ∇.

22. Parallel transport and geodesics

Topics: Sections of a vector bundle along a curve; covariant differentiation of sections along

curves; the component formula; the case of the standard flat connection in a product bundle;

sections parallel along a curve in a vector bundle with a connection; spaces of parallel sections;

evaluation isomorphisms; parallel transport; the case of the standard flat connection in a product

bundle; velocity and acceleration; geodesics; straight lines in affine spaces.

Let η be a C∞ real or complex vector bundle over a manifold M . Given an
interval I ⊂ R and a Cr curve γ : I → M , by a Cs section φ of η along γ,
0 ≤ s ≤ r ≤ ∞, we mean a mapping sending each t ∈ I to φ(t) ∈ ηγ(t) whose
component functions t 7→ φa(t) relative to all local trivializations ea of η, defined
on suitable subsets of I and characterized by φ(t) = φa(t)ea(γ(t)), are of class Cs.
(This Cs regularity is obviously a local geometric property, as described in §2.)

From now on, dealing with a fixed curve γ, we will often use the generic symbol
x(t) instead of γ(t).

Let ∇ be a connection in a vector bundle η over M as above. Given a C1

section φ of η along a C1 curve I 3 t 7→ x(t) ∈ M , parametrized by an interval
I ⊂ R, we define the covariant derivative of φ to be the C0 section ∇ẋφ of η
along the same curve, with the component functions

(22.1) (∇ẋφ)a = φ̇a + Γ ajb(x)ẋjφb ,

where ( )˙ = d/dt, that is, (∇ẋφ)a(t) = φ̇a(t) + Γ ajb(x(t))ẋj(t)φb(t) for all t ∈ I.

This operation is uniquely characterized by the following “axioms” (see Problems 1
and 2):

a. φ 7→ ∇ẋφ is real/complex linear (for a fixed C1 curve I 3 t 7→ x(t) on a
fixed interval I);

b. ∇ẋ(fφ) = ḟφ + f∇ẋφ for φ, I and a curve t 7→ x(t) as above, and any

scalar-valued C1 function f on I, where ḟ = df/dt ;
c. The operation in question is local, that is, when applied to the restrictions of
φ and the curve as above to any subinterval I ′ of I, it yields the restriction
to I ′ of the original covariant derivative ∇ẋφ (on I);

d. ∇ẋ[ψ(x)] = ∇ẋ(t)ψ for local C1 sections ψ of η, with ψ(x) being the
composite t 7→ ψ(x(t)).
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Example 22.1. The standard flat connection ∇ = D in a product bundle
η = M × F (Example 20.2) satisfies Dvψ = dvψ, for local C1 sections of η (which
are nothing else than F-valued C1 functions) and vectors v tangent to M . Given
γ and φ along γ as above, we now have (see Problem 3)

(22.2) Dγ̇φ = φ̇ ,

where ( )˙ = d/dt is the ordinary differentiation of F-valued C1 functions

I 3 t 7→ φ(t) ∈ ηγ(t) = F .

Let ∇ be a connection in a C∞ real or complex vector bundle η over a manifold
M . Given an interval I ⊂ R and a Cl curve I 3 t 7→ x(t) ∈ M , we will say that
a C1 section φ of η along the curve is parallel if

(22.3) ∇ẋφ = 0

identically. If the curve is fixed, sections parallel along it form a vector space W
(“axiom” (a) in §22). If, moreover, a ∈ I and χ ∈ ηx(a) are fixed, the global exis-
tence and uniqueness theorem for (systems of) linear ordinary differential equations
(Appendix C), applied to the system

(22.4) φ̇a = −Γ ajb(x)ẋjφb .

implies that there is a unique parallel section φ with the initial value φ(a) = χ.
(See also Problem 8.) The evaluation mapping eva :W → ηx(a) given by

W 3 φ 7→ φ(a) ∈ ηx(a)

is, therefore, a linear isomorphism. For a, b ∈ I, the parallel transport (or displace-
ment) from a to b along any C1 curve γ : I →M is the linear isomorphism

τ ba(γ) : ηγ(a) → ηγ(b)

with
τ ba(γ) = evb ◦ (eva)−1 .

Thus, τ ba(γ) sends each χ ∈ ηγ(a) onto φ(b), where φ is the unique parallel section
of η along γ with φ(a) = χ.

Example 22.2. Consider the standard flat connection ∇ = D in a product
bundle η = M × F (Example 20.2). For γ, I, a, b and φ along γ as above, we
see from (22.4) that φ is parallel if and only if it is constant as a F-valued C1

function, so that τ ba(γ) : ηγ(a) → ηγ(b) is nothing else than Id : F→ F.

Let ∇ now be a connection on the manifold M . Every C2 curve γ : I → M
the gives rise, besides the velocity γ̇, to its acceleration vector field, also known as
the geodesic curvature of γ, which is the C0 vector field ∇γ̇ γ̇ along γ. In local
coordinates xj , the component functions of ∇γ̇ γ̇ are

(22.5) γ̈l + (Γ ljk ◦ γ)γ̇j γ̇k .

A C2 curve I 3 t 7→ x(t) ∈ M then is said to be a geodesic for ∇ if ∇ẋẋ = 0
identically. In local coordinates xj , geodesics are characterized by

(22.6) ẍl + Γ ljk(x)ẋj ẋk = 0 .

Thus, for a fixed a ∈ R, and any x ∈ M and v ∈ TxM , there exists an open
interval I containing a and a unique geodesic γ : I → M with γ(a) = x and
γ̇(a) = v. Moreover, geodesics are automatically curves of class C∞ (Problem 7).
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Given a connection ∇ on a manifold M , the exponential mapping

(22.7) expx : Ux → M

of ∇ at a point x ∈ M is defined as follows. Its domain Ux is the subset of
TxM consisting of all those v ∈ TxM for which there exists a geodesic t 7→ x(t)
of ∇ defined on the whole interval [0, 1], such that x(0) = x and ẋ(0) = v. For
such v and x(t), we set expxv = x(1). (One traditionally omits the parentheses
around v.) It is obvious from the dependence-on-parameters theorem for ordinary
differential equations that the set Ux is open in TxM and contains 0, while the
mapping expx is of class C∞. Furthermore,

(22.8) the geodesic with x(0) = x and ẋ(0) = v is given by x(t) = expxtv,

as one sees fixing t ∈ [0, 1] and noting that the assignment s 7→ x(ts) then is a
geodesic defined on [0, 1], with the value and velocity at s = 0 equal to x and,
respectively, tv. In particular, d[expxtv]/dt at t = 0 equals v and, obviously,
expx 0 = x. Thus, the differential of expx at the point 0 ∈ Ux coincides with the
identity mapping TxM → TxM . (Cf. (5.16) and Examples 5.1, 5.3.) According
to the inverse mapping theorem, there exist a neighborhood U of x in M and
a neighborhood U ′ of 0 in TxM such that U ′ ⊂ Ux and expx : U ′ → U is a
C∞ diffeomorphism. Its inverse diffeomorphism may be thought of as a coordinate
system xj with the domain U (after one has identified TxM with Rn, for n =
dimM , using any fixed linear isomorphism). A coordinate system obtained in this
way is called a geodesic coordinate system centered at x.

Example 22.3. The tangent bundle TM of any finite-dimensional real affine
space M may be regarded as (that is, is naturally isomorphic to) the product
bundle M×V , where V is the translation vector space of M (cf. Example 5.2). The
standard flat connection ∇ = D in M×V thus becomes a connection on M , called
the standard flat connection of the affine space M . It is clear from Example 22.2
that the geodesics of this connection D are precisely all line segments in M with
uniform (constant-speed) parametrizations, along with, all constant curves. For
x ∈ M , the set Ux coincides with TxM = V , and expx : V → M is given by
expx v = x+ v.

Problems
1. Given a C∞ real/complex vector bundle η over a manifold M , an interval

I ⊂ R, a Cr curve γ : I → M , and an integer s with 1 ≤ s ≤ r ≤ ∞, verify
that the set of all Cs sections φ of η along γ forms a real/complex vector
space (with valuewise operations), which is also a module over the algebra of all
scalar-valued Cs functions f on I.

2. Given a connection ∇ in a C∞ vector bundle η over a manifold M , prove that
there is a unique operation φ 7→ ∇γ̇φ satisfying conditions (a) – (d) above, and
that its local component description is provided by (22.1). (Hint below.)

3. Verify (22.2) for the standard flat connection D in any product bundle. (Hint

below.)
4. Prove that

∇[x(f)]′ (φ ◦ f) = f ′ [(∇ẋφ)◦ f ]

whenever ∇ is a connection in a C∞ vector bundle η over a manifold M ,
I, I ′ ⊂ R are intervals, I 3 t 7→ x(t) ∈ M is a C1 curve, f : I ′ → I is a C1
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function, the prime ′ stands for the derivative d/ds, where s ∈ I ′, and φ is a
C1 section of η along t 7→ x(t).

5. Given a connection ∇ on a manifold M , a geodesic t 7→ x(t), and real constants
p, q, verify that s 7→ x(ps+ q) is also a geodesic.

6. For a connection ∇ in a C∞ vector bundle η over a manifold M , an interval
I ⊂ R, a Cr curve γ : I → M , 1 ≤ r ≤ ∞, and a C1 section φ of η along γ
which is parallel, show that φ is Cr-differentiable.

7. Verify that, for a C∞ connection ∇ on a C∞ manifold M , any geodesic (which
is, by definition, C2 differentiable) is actually of class C∞.

8. Let η be a C∞ vector bundle, endowed with a fixed connection ∇, over a
manifold M . Given an interval I ⊂ R and a C1 curve γ : I → M , show that
the isomorphisms τ ba(γ) of parallel transport along γ satisfy the relations

τ cb (γ)τ ba(γ) = τ ca(γ) , τaa (γ) = Id , τab (γ) = [τ ba(γ)]−1

for any a, b, c ∈ I.
9. Prove that

τdc (γ◦f) = τ
f(d)
f(c) (γ)

whenever ∇ is a connection in a C∞ vector bundle η over a manifold M ,
I, I ′ ⊂ R are intervals, γ : I →M is a C1 curve, f : I ′ → I is a C1 function,
f ′ stands for the derivative of f with respect to the parameter s ∈ I ′, and φ
is a C1 section of η along γ.

Hint. In Problem 2, uniqueness: writing φ(t) = φa(t)ea(x(t)) and using the “ax-
ioms” (a) – (d), we obtain (22.1). Existence: defining ∇ẋφ locally by (22.1), we
see that, in view of its uniqueness, this formula produces the same operation in the
intersection of any two coordinate-and-trivialization domains.
Hint. In Problem 3, use formula (22.1) or, equivalently, the “axioms” (a) – (d).

23. The “comma” notation for connections

Topics: The homomorphism-bundle construction; bundle morphisms as sections of the homo-

morphism bundle; tensor multiplication of sections; the case of differentiable vector bundles over

manifolds; covariant derivative ∇ψ as a (local) section of a homomorphism bundle; the “nabla”

and “comma” notational conventions for covariant-derivative components.

Suppose that V and W are two finite-dimensional real/complex vector spaces.
For any ξ ∈ V ∗ and w ∈W we define the tensor product ξw ∈ Hom(V,W ) to be
the linear operator V →W given by

(23.1) [ξw](v) = ξ(v)w

for all v ∈ V . The tensor multiplication thus defined is clearly a bilinear operation
V ∗×W → Hom(V,W ). Given a basis eλ of V and a basis ea of W , let eλ denote
(as in §17) the basis of V ∗ dual to the basis eλ in the sense that eλ(eµ) = δλµ. The

tensor products eλea then form a basis of Hom(V,W ). In fact, denoting by F aλ
the components of any given F ∈ Hom(V,W ) relative to the bases eλ and ea,
(that are characterized by Feλ = F aλ ea, i.e., F aλ = ea(Feλ)), we thus have

F = F aλ e
λea

for each F (since both sides applied to any eµ yield the same value Feµ = F aµea).

On the other hand, if for some coefficients F aλ the combination F = F aλ e
λea is the
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zero operator, we have F aµea = Feµ = 0 and so the F aµ are all zero as the ea are
linearly independent.

Let η and ζ be vector bundles over the same base set B. By the morphism
bundle of η and ζ we then mean the vector bundle χ = Hom(η, ζ) over B with the
fibres χx = Hom(ηx, ζx), x ∈ B. For instance, vector-bundle morphisms η → ζ
(§17) are nothing else than global sections of Hom(η, ζ). Given trivializations eλ
for η and ea for ζ, both having the same domain K ⊂ B, we can now use valuewise
tensor multiplication to obtain the trivialization eλea for Hom(η, ζ), also with the
domain K. Since tensor multiplication is bilinear, we have the transformation rule

(23.2) eλ
′
ea′ = eλ

′

λ e
a
a′e

λea

(sf. Problem 1 in §17). Given a section Ψ of Hom(η, ζ), defined on K, we will
denote by Ψaλ its component functions relative to the trivialization eλea, so that

Ψ = Ψaλe
λea .

Consequently, in the case where η and ζ are C∞ vector bundles over a C∞

manifold M , Hom(η, ζ) naturally becomes a C∞ vector bundle over M , with the
atlas of local trivializations eλea obtained using local trivializations eλ for η and
ea for ζ. The tensor product ξψ of a local Cs section ξ of η∗ and a local Cs

section ψ of ζ, both defined on the same open set U ⊂ M , then obviously is a
local Cs section of Hom(η, ζ), with the component functions

[ξψ]aλ = ξλψ
a ,

that is, ξψ = ξλψ
λeλeλ, which is due to bilinearity of the tensor multiplication.

Finally, let ∇ be a connection in a C∞ vector bundle η over a manifold M .
For any a local C1 section ψ of η, we define the covariant derivative ∇ψ of ψ to be
the local section of Hom(TM, η), with the same domain as ψ, whose value (∇ψ)z ∈
Hom(TzM,ηz) at any z in the domain of ψ is given by (∇ψ)z(v) = ∇vψ ∈ ηz for
all v ∈ TzM . In any local trivialization ea and coordinates xj at z, the covariant
derivative ∇ψ then has the component functions (∇ψ)aj characterized by

(∇ψ)aj = [(∇ψ)(pj)]
a = ea(∇pjψ) .

Instead of (∇ψ)aj , it is usually convenient to use the symbol ∇jψa or, when the
connection in question is fixed, simply ψa,j . Thus, we write

(23.3) ψa,j = ∇jψa = (∇ψ)aj ,

and so, for v as above,

(∇vψ)a = vjψa,j , ∇vψ = vjψa,jea .

Consequently (see Problem 2)

(23.4) ∇ψ = ψa,j dx
jea .

Furthermore, by (20.7),

(23.5) ψa,j = ∂jψ
a + Γ ajbψ

b.

In the special case where ∇ is a connection in the tangent bundle TM and w is
a (local) C1 vector field, (23.5) becomes

(23.6) wk,j = ∂jw
k + Γ kjlw

l.
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Remark 23.1. It must be emphasized that the symbol ψa,j = ∇jψa in (23.3)
does not stand for the result of applying some operator ∇j (or ( ),j) to the scalar-
valued function ψa. In fact, it is clear from (23.5) that ψa,j also depends on the
functions ψb with b 6= a.

Problems
1. Establish (23.4).
2. For a C∞ connection ∇ in a vector bundle η over a manifold M and a global

C∞ section F of the vector bundle Hom(TM, Hom(η, η)), verify that the com-
ponent functions of the connection ∇ + F in η equal Γ ajb + F ajb, where F ajb
denote the component functions of F with F ajb = ea(F (pj , eb)).

3. Let η be a real or complex C∞ vector bundle over a manifold M , and let ηU

denote the restriction of η to a fixed open submanifold U of M , i.e., the vector
bundle

U 3 x 7→ ηUx = ηx .

(Thus, ηU is nothing else than the pullback of η under the inclusion mapping
U →M .) Verify that every connection ∇ in η gives rise to a unique connection
∇U in ηU with [∇U ]vψ = ∇vψ for any x ∈ U , any v ∈ TxU , and any local C1

section ψ of ηU defined on a neighborhood of x (so that ψ is, obviously, also a
local C1 section of η). We then call ∇U the restriction of ∇ to U . Show that
(a) The component functions relative to any coordinates xj in M and any

local trivialization ea in ηU with the coordinate-and-trivialization domain
contained in U , coincide with the respective component functions Γ bja of
∇.

(b) Given a family B 3 β 7→ Uβ of nonempty open sets in M whose union is

M and a connection ∇(β) in the restriction of η to each Uβ , such that the

restrictions of ∇(β) and ∇(β′) to Uβ ∩ Uβ′ coincide whenever β, β′ ∈ B
and Uβ ∩Uβ′ is nonempty, there exists a unique connection ∇ in η whose

restriction to each Uβ equals ∇(β). (Hint below.)

Hint. In Problem 3, define ∇vψ for x ∈ M , v ∈ TxM , and a local C1 section

ψ of η defined on a neighborhood U of x to be ∇(β)
v ψ for any β with x ∈ Uβ

and ψ restricted to Uβ∩ U . This is independent of the choice of β in view of the
germ-dependence of the covariant derivative ((b) in §20).

24. The Ricci-Weitzenböck identity

Topics: The Hom operation for connections; the special case of the dual connection in the dual

bundle; higher-order covariant derivatives; the Ricci-Weitzenböck identity.

In most of our discussion we will use the generic symbol ∇ for all connections
we encounter, the only exceptions being the case where more than one connection
in the given vector bundle η is studied, and the case of the standard flat connection
in a product bundle η = M × F (denoted by D rather than ∇, cf. Example 20.2).
Since sections to which two such connections ∇ are applied then live in different
bundles (and so their components are labeled with different sorts of indices), no
confusion is likely to arise. The same convention applies to the “comma” notation
(§23).

Let there be given two connections, both denoted by ∇, in two C∞ real/com-
plex vector bundles η and ζ over a manifold M . Recall (§23) that we can form
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the homomorphism bundle Hom(η, ζ), which is also a C∞ vector bundle over M ,
and has the fibres Hom(ηx, ζx), x ∈M . Two local trivializations, ea for η and eλ
for ζ, both with the same domain U ⊂M , give rise to the “tensor-product” local
trivialization eaeλ for Hom(η, ζ), defined on U . (See §23 for details.)

Dealing with a local trivialization eaeλ as above, we obviously must modify
our notational conventions. Namely, the role of the superscript a in the “generic”
natation ea for local trivializations of vector bundles (§15) now is played by the
two-tiered double index a

λ. The corresponding upper indices a (such as those in
ψ = ψaea, for sections ψ) now have to be replaced with the inverted double indices
λ
a , appearing in the analogous expansion F = Fλa e

aeλ of sections F of Hom(η, ζ)
(with a double summation, over a and λ). Any connection ∇ in Hom(η, ζ) thus
has the component functions Γ aµ

jλb with

(24.1) ∇pj (eaeλ) = Γ aµ
jλb e

beµ .

Proposition 24.1. Given two connections, both denoted by ∇, in C∞ real
or complex vector bundles η and ζ over a manifold M , there exists a unique
connection in the real/complex vector bundle Hom(η, ζ), also denoted by ∇, which
is characterized by the requirement that, writing φ, F instead of φ(x) and F (x),
we have

(24.2) ∇v(Fφ) = (∇vF )φ + F (∇vφ)

for every open set U ⊂ M , every point x ∈ U and vector v ∈ TxM , and any C1

local sections F of Hom(η, ζ) and φ of η, both defined on U . The component
functions Γ aµ

jλb of this unique connection ∇, defined by (24.1), are given by

(24.3) Γ aµ
jλb = δabΓ

µ
λ − δµλΓ

b
ja ,

while, for any F as above, ∇F has the component functions

(24.4) Fλa,j = ∂jF
λ
a + ΓλjµF

µ
a − Γ bjaF

λ
b .

Proof. The uniqueness part and formula (24.3) are obvious, since (24.2) de-
termines the action of each ∇v on all local trivializing sections F = eaeλ. Namely,
using this F and φ = eb, we obtain Fφ = δab eλ, and so (24.2) with v = pj at x
(for any fixed local coordinates xj) gives (24.1) with Γ aµ

jλb as in (24.3).

To establish existence of ∇, let us define ∇ by (24.1) with (24.3) (replacing the
bundles with their restrictions to the coordinate-and-trivialization domain). Now
(24.4) is immediate from (24.3) and the general formula (23.5), which in turn easily
gives (24.2). The fact that two connections defined (locally) in this way coincide in
the intersection of the respective coordinate-and-trivialization domains is obvious
from the just-proven uniqueness assertion. This completes the proof.

A particularly interesting special case of the Hom operation occurs when the target
bundle ζ is the product bundle M × K, K being the scalar field. Obviously,
Hom(η, ζ) then is nothing else than the dual η∗ of the given bundle η. Any given
connection ∇ in η, combined with the standard flat connection ∇ = d in the
product bundle ζ = M × K (Example 20.2), gives rise to the connection (also
denoted by ∇) in the dual bundle η∗ = Hom(η, ζ), called the dual of the original
connection ∇ in η. Given C1 local sections ξ, φ and v of η∗, η and, respectively,
TM , all defined on the same open set, we then have

(∇vξ)(φ) = dv[ξ(φ)] − ξ(∇vφ) ,
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which is nothing else than (24.2) for F = ξ. Also, since ζ = M × K has the
global trivialization consisting of the constant function 1, the tensor-product local
trivializations eaeλ for η∗ = Hom(η, ζ) contain a naturally distinguished subatlas
formed by those eaeλ in which eλ is the constant function 1; such eaeλ are in
turn nothing else than the ea, i.e., the duals (see Example 17.1). of all local C∞

trivializations ea of η. (In fact, the tensor product ξw ∈ Hom(V,W ) of ξ ∈ V ∗
and w ∈ W , defined by (23.1), is nothing else than the valuewise product of the
scalar-valued linear function ξ on V with w treated as a constant W -valued
function on V .) As the component functions Γµλ of the standard flat connection
d then are identically zero (see Example 20.2 and formula (20.3)), relations (24.1)
and (24.4) (with F = ξ) become

ξa,j = ∂jξa − Γ bjaξb , ∇pjea = −Γ ajbeb .

In other words, the components (relative to ea) of the dual connection in η∗ are
obtained from those of the original connection in η by changing the sign and, in
addition, switching the roles of upper and lower indices.

Suppose now that ∇ is a connection in the given vector bundle η over a
manifold M and, in addition, we also have a fixed connection (also denoted by
∇) in the tangent bundle TM . A local Cs section ψ of η, s ≥ 1, defined on
an open set U ⊂ M , gives rise to the covariant derivative ∇ψ, which is a local
Cs−1 section of Hom(TM, η), with the same domain U (§23). However, the
bundle Hom(TM, η) now carries the connection obtained as in Proposition 24.1
using the original connections in TM and η. Thus, as long as s ≥ 2, we can
define the second covariant derivative of ψ, denoted by ∇2ψ, which is nothing else
than the local section ∇(∇ψ) of Hom(TM, Hom(TM, η)). This can be repeated
again, up to s times, leading to the covariant derivatives of orders r = 1, 2, . . . , s,
with ∇(r)ψ = ∇(∇(r−1)ψ), which live in Hom-bundles of increasing complexity
(depending on r).

Let us now examine in some detail the second covariant derivative of ψ as
above (with s ≥ 2). At any given point x ∈ U , ∇(∇ψ) sends any vector v ∈ TxM
to an operator, which in turn assigns to every w ∈ TxM the element

(24.5) [∇v(∇ψ)]w ∈ ηx .

However, from (24.2) (with F = ∇ψ and φ = w), [∇v(∇ψ)]w = ∇v[(∇ψ)w] −
(∇ψ)[∇vw], i.e., for C1 vector fields , v, w,

(24.6) [∇v(∇ψ)]w = ∇v∇wψ − ∇∇vwψ .

We can now establish the Ricci-Weitzenböck identity

(24.7) [∇v(∇ψ)]w − [∇w(∇ψ)]v = R(w, v)ψ ,

valid for any local C2 section ψ of a C∞ vector bundle η over a manifold M
endowed with any connection ∇, with the curvature tensor R, and any fixed con-
nection in TM which, in addition, is torsionfree. (About the non-torsionfree case,
see Problem 6.) In fact, (24.7) is immediate from (24.6), (20.8) and the assumption
that the right-hand side of (21.1) vanishes.

Since the dependence of (24.5) on v, w is real-bilinear, we have

(24.8) [∇v(∇ψ)]w = vkwjψa,jkea ,
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where ψa,jk = ψa,jk(x) is the value at x of the function [∇pk(∇ψ)]pj . Thus, from
(24.6) and (20.4) (or, equivalently, from (24.4) applied to F = ∇ψ),

(24.9) ψa,jk = ∂kψ
a
,j + Γ akbψ

b
,j − Γ lkjψ

a
,l ,

which can be further rewritten as

ψa,jk = ∂k∂jψ
a + (∂kΓ

a
jb)ψ

b + Γ akb∂jψ
b + Γ akbΓ

b
jcψ

c − Γ lkj∂lψa − Γ lkjΓ albψb.

From (24.8) we also easily obtain the component version of the Ricci-Weitzenböck
identity (24.7):

(24.10) ψa,jk − ψa,kj = Rjkb
aψb .

In the case where η = TM and the same tosionfree connection ∇ in TM is used
in both roles, (24.10) becomes

(24.11) wl,jk − wl,kj = Rjks
lws

for local C2 vector fields w. We then also have (see Problem 7)

(24.12) Rjsw
s = ws,js − ws,sj .

Problems
1. Let ∇ be a connection in the tangent bundle of a manifold M , and let f :

U → R be a C2 function on an open subset U of M . The second covariant
derivative ∇df of f then can be defined as in the general case (with f treated
as a local section of the product bundle η = M × R endowed with the standard
flat connection d). Verify that ∇df then coincides with the covariant deriva-
tive of the local section df of the cotangent bundle T ∗M (§17) relative to the
connection in T ∗M dual to ∇, while relations (24.6) and (24.9) become

(24.13) i) [∇v(df)]w = dvdwf − d∇vwf , ii) f,jk = ∂k∂jf − Γ lkjf,l .

2. Let M , ∇, U and f be as in Problem 1. The value of ∇df at every point
x ∈ U may be treated as a bilinear form, sending tangent vectors v, w ∈ TxM
to (∇df)(v, w) = [∇v(df)]w = vjwkf,jk. If, in addition, ∇ is torsionfree, then,
at every x ∈ U , the form (∇df)(x) is symmetric. Derive this fact from:
(a) formula (24.13.i),
(b) relation (24.13.ii),
(c) the Ricci-Weitzenböck identity (24.7) (or (24.10)).

3. Prove that the covariant differentiations of C1 sections along any C1 curve
t 7→ x(t) ∈M relative to a connection ∇ in a vector bundle η over a manifold
M and its dual connection ∇ in η∗ are related by

(24.14) (∇ẋξ)(φ) = [ξ(φ)]˙ − ξ(∇ẋφ)

for such sections φ of η and ξ of η∗. (Hint below.)
4. Given a connection ∇ in the tangent bundle of a manifold M and a C2 function

f : U → R on an open set U ⊂M , verify that, for every geodesic t 7→ x(t) ∈ U ,

(24.15) [f(x)]¨ = (∇df)(ẋ, ẋ) ,

that is, d2[f(x(t))]/dt2 = [(∇df)(x(t))](ẋ(t), ẋ(t)). (Hint below.)
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5. Verify that the connection in Hom(TM, η), described in Proposition 24.1 can,
instead of (24.2), be also uniquely characterized by

∇v(ξψ) = (∇vξ)ψ + ξ(∇vψ)

for local C1 sections ξ of η∗ and ψ of ζ. (Hint below.)
6. Generalize the Ricci-Weitzenböck identity (24.7) to the case where the connec-

tion in TM has an arbitrary (not necessarily vanishing) torsion tensor field T.
Write the corresponding component version (as in (24.10)). (Hint below.)

7. Prove (24.12). (Hint below.)

Hint. In Problem 3, we may use formula (∇ẋξ)a = ξ̇a−Γ bja(x)ẋjξb, (that is, (22.1)
for the dual connection) or, equivalently, the “axioms” (a) – (d) in §22.
Hint. In Problem 4, use (24.14) for η = TM , ξ = (df)(x) and φ = ẋ. An-
other option is the following direct argument: from the chain rule d[f(x(t))]/dt =
ẋj(t)(∂jf)(x(t)) we obtain

d2

dt2
f(x(t)) = ẍj(t)(∂jf)(x(t)) + ẋj(t)ẋk(t)(∂j∂kf)(x(t))

for any C2 function f and any C2 curve t 7→ x(t) in a manifold M , and arbitrary
local coordinates xj in M . Now (24.15) is immediate from (24.13.ii) and (22.6).
Hint. In Problem 5, use (24.4) and the fact that

(ξψ)λa = ξaψ
λ .

Hint. In Problem 6, the formulae are

[∇v(∇ψ)]w − [∇w(∇ψ)]v = R(w, v)ψ + ∇T(w,v)ψ .

ψa,jk − ψa,kj = Rjkb
aψb + Tljkψ

a
,l ,

Hint. In Problem 7, obtain (24.12) by contracting in k = l the Ricci-Weitzenböck
identity (24.11).

25. Variations of curves and the meaning of flatness

Topics: Sections of vector bundles defined along mappings from a rectangle into the base mani-

fold; their partial covariant derivatives relative to a connection in the vector bundle; a component

formula; partial derivatives of a rectangle mapping, treated as as vector fields along the mapping;

a curvature formula of the Ricci-Weitzenböck type; manifolds with connections as configuration

spaces of mechanical systems with constraints; geodesics as trajectories of free pointlike parti-

cles; the curvature as the infinitesimal shape-deformation factor for a geodesic segment set in free

motion.

A Ck mapping F of a rectangle X = [a, b] × [c, d] into a manifold M may
be referred to as a variation of curves [a, b] 3 t 7→ F s(t) = F (t, s) ∈ M , each of
which corresponds to a fixed value of the variation parameter s ∈ [c, d]. When
F (a, s) = y and F (b, s) = y for some y, z ∈ M and all s ∈ [c, d], F is also
called a Ck homotopy with fixed endpoints between the curves F c and F d ; if such
a homotopy exists, one says that the curves F c and F d connecting y to z are
Ck-homotopic with fixed endpoints.

Let η be a vector bundle over a manifold M , and let φ be a section of η
along a Ck mapping F : X →M , where X = [a, b]× [c, d], that is, an assignment
of an element φ(t, s) of the fibre ηF (t,s) to each (t, s) ∈ X. (In other words, ψ

is a section of the pullback bundle F ∗η.) We say that φ is of class Ck if its
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components φa relative to any local trivialization ea of η are Ck-differentiable
functions of (t, s). If k ≥ 1, we can now define the partial covariant derivatives φt
and φs relative to a fixed connection ∇ in η to be the Ck−1 sections of η along
F , obtained by covariant differentiation of φ treated as a section along the curve
F (·, s) or F (t, ·) (while s or t is kept fixed). Writing x(t, s) instead of F (t, s),
we see that

(25.1) φt(t, s) = [∇[x(·,s)]˙(φ(·, s))](t) , φs(t, s) = [∇[x(t,·)]˙(φ(t, ·))](s) ,

so that

(25.2)
φt = φat (ea ◦ F ) , where φat =

∂φa

∂t
+ (Γ ajb◦ F )

∂F j

∂t
φb ,

φs = φas(ea ◦ F ) , where φas =
∂φa

∂s
+ (Γ ajb◦ F )

∂F j

∂s
φb .

We call φat and φas the component functions of φt and φs. Let us also set (still
with x(t, s) = F (t, s))

(25.3) xt(t, s) = [x(·, s)] (̇t) , xs(t, s) = [x(t, ·)] (̇s) ,

so that

(25.4) xt = xjt (pj ◦ x) , xjt =
∂xj

∂t
, xs = xjs(pj ◦ x) , xjs =

∂xj

∂s
.

Taking in turn the partial covariant derivatives of φt and φs (when k ≥ 2), we
obtain the second-order partial covariant derivatives φtt = (φt)t, φts = (φt)s,
φst = (φs)t and φss = (φs)s. It is now easy to verify that, if k ≥ 2,

(25.5) R∇(xt, xs)φ = φts − φst .

where both sides are Ck−2 sections of η along the mapping (t, s) 7→ x(t, s). (In

fact, (20.10) and (25.2) easily yield Rjkb
axjtx

k
sφ

b = φats − φast.)

Lemma 25.1. Suppose that ∇ is a flat connection in a vector bundle η over a
manifold M , while x, y ∈ M and F 0, F 1 : [a, b] → M are C2 curves in M that
connect x to y. If F 0 and F 1 are C2-homotopic with fixed endpoints, then they
give rise to the same ∇-parallel transport ηx → ηy.

Proof. Choose a fixed-endpoints C2 homotopy F : [a, b]×[0, 1]→M between
F 0 and F 1. For any given ψ ∈ ηx, let φ(t, s) ∈ ηF (t,s) be the image of ψ under the

parallel transport along the curve [a, t] 3 t′ 7→ F s(t′) = F (t′, s). Since R∇= 0 and
φt = 0, (25.5) yields φst = 0, that is, φs is parallel in the t direction. Therefore
φs = 0, as φs(a, s) = 0 (due to our initial conditions F (a, s) = x, φ(a, s) = ψ).
Setting t = b, we now obtain constancy of the curve [0, 1] 3 s 7→ φ(b, s) ∈ ηy.

The following basic classification result states that any flat connection looks, locally,
like the standard flat connection in a product bundle:

Lemma 25.2. Any flat connection ∇ in a vector bundle η over a manifold
M admits, locally, a local trivialization ea consisting of parallel sections. In other
words, every point of M has a neighborhood U such that for each y ∈ U and
any φ ∈ ηy there exists a unique parallel local section ψ of η, defined on U , with
ψ(y) = φ.
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Proof. Fix x ∈M and identify a neighborhood U of x with an open convex
subset of Rn, n = dimM . For any given φ ∈ ηx we can construct a parallel
section ψ of η restricted to U with ψ(x) = φ be defining ψ(y), for y ∈ U , to
be the parallel translate of φ along any C2 curve connecting x to y in U ; by
Lemma 25.1, this does not depend on the choice of the curve, as two such curves
admit an obvious fixed-endpoints C2 homotopy due to convexity of U . Our ea
now may to be chosen to be the parallel sections of η restricted to U with ea(x)
forming any prescribed basis of ηx.

Problems
1. Prove (25.5) for C2 sections φ, along C2 mappings [a, b] × [c, d] 3 (t, s) 7→

x(t, s) ∈M , in a C∞ vector bundle η with a fixed connection ∇ over a manifold
M , where the partial covariant derivatives φt, φs of φ and partial-derivative
vector fields xt, xs are given by (25.1), (25.3), while φts = (φt)s, φst = (φs)t.
(Hint below.)

2. Let T be the torsion tensor field of a connection ∇ on a manifold M . Prove
that, for any C2 mapping (t, s) 7→ x(t, s) ∈M ,

xts − xst = T (xs, xt) ,

where t ∈ [a, b] and s ∈ [c, d], xt, xs are the partial-derivative vector fields
given by (25.3) or (25.4), and xts = (xt)s, xst = (xs)t.

3. Let ∇ be a torsionfree connection on a manifold M . Verify that

(25.6) xtst = xtts −R∇(xt, xs)xt , xsst = xsts −R∇(xt, xs)xs

for any C3 mapping (t, s) 7→ x(t, s)inM .
4. Given a manifold M with a torsionfree connection ∇ in TM , interpreted as the

configuration space of a mechanical system with constraints, let a C∞ mapping
of a rectangle [a, b] × [c, d] into M consist of time-parametrized trajectories
[a, b] 3 t 7→ x(t, s) of pointlike particles labeled with real numbers s ∈ [c, d].
Suppose that each particle is moving freely, i.e., its trajectory is a geodesic, so
that

xtt = 0

identically in K, and that at the initial moment t = a the particles form a
geodesic segment (a “straight bar”):

xss t=a = 0 ,

and are set in motion so as to have “the same” initial velocity:

xts t=a
= 0 .

Show that, if ∇ is flat in the sense that its curvature R∇ is identically zero,
the bar will retain its straight shape at all times, that is,

xss = 0

everywhere in K.
5. Let ∇ be a connection on a manifold M (i.e., in the tangent bundle TM).

Recall that the geodesic curvature of a C2 curve γ : I → M is the vector field
∇γ̇ γ̇ along γ (which is identically zero if and only if γ is a geodesic). Verify



26. BIANCHI IDENTITIES 93

that, given another interval I ′ and a C2 function ϕ : I ′ → I, the geodesic
curvature of the composite curve γ ◦ ϕ : I ′ →M is given by

(25.7) ∇[γ◦ϕ]˙ [γ ◦ ϕ]˙ = (∇γ̇ γ̇ ◦ ϕ)ϕ̇2 + (γ̇ ◦ ϕ)ϕ̈ .

(Hint below.)
6. Let ∇ be a connection on a manifold M , and let γ : I → M be a C2 curve

defined on an interval I ⊂ R. Prove that the following two conditions are
equivalent:
(a) ∇γ̇ γ̇ = hγ̇ for some continuous function h : I → R.
(b) γ is an unparametrized geodesic in the sense that there exists an interval

I ′ and a C2 function ϕ : I ′ → I such that ϕ(I ′) = I, ϕ̇ 6= 0 everywhere
in I ′, and γ ◦ ϕ : I ′ →M is a geodesic. (Hint below.)

7. Is the word ‘continuous’ necessary in (a) of Problem 6? (Hint below.)

Hint. In Problem 1, use (25.2) to obtain φts − φst = Rjka
bxjtx

k
sφ

aeb with Rjka
b

given by (27.10).
Hint. In Problem 5, note that the components of ∇γ̇ γ̇ are given by the left-hand
side of 22.5).
Hint. In Problem 6, (b) implies (a) in view of (25.7). On the other hand, assuming
(a), choose an antiderivative H : I → R for h and an antiderivative Ψ : I → R
for e−H , and use the inverse mapping ϕ = Ψ−1 : I ′ → I, where I ′ = Ψ(I).
Hint. In Problem 8, yes: in R2 with the standard flat connection, consider γ :
R→ R2 given by γ(t) = (f(t), f(−t)), where f : R→ R is the C∞ function with
f(s) = e−1/s for s > 0 and f(s) = 0 for s ≤ 0 (Problem 12 in §5).

26. Bianchi identities

Topics: Sections parallel at a point; their existence for any prescribed value at the point; vanish-

ing of connection components at a point; vanishing of connection components at a point; the effect

of the Hom operation on curvature; the case of torsionfree connections in the tangent bundle; the

first Bianchi identity for torsionfree connections in tangent bundles; the second Bianchi identity

for arbitrary connections in vector bundles (when the connection in TM is torsionfree).

Let ∇ be a connection in a C∞ vector bundle η over a manifold M and let
z ∈ M . A local C1 section ψ of η is said to be ∇-parallel at z (or just parallel
at z) if its domain contains z and (∇ψ)(z) = 0, that is, ∇vψ = 0 for each vector
v ∈ TzM . Similarly, a local trivialization ea of η defined on a neighborhood of z
is called parallel at the point z if so are all the ea. Note that the latter condition
means that (∇ea)(z) = 0, i.e.,

(26.1) Γ bja(z) = 0

in every coordinate system xj at z. Assuming (26.1) at the given point z, we
obtain

ψa,j = ∂jψ
a at z

for any local C1 section ψ of η defined near z, while, from (20.10),

(26.2) Rjka
b = ∂kΓ

b
ja − ∂jΓ

b
ka at z .

Lemma 26.1. For any connection ∇ in a C∞ vector bundle η over a manifold
M , any point z ∈ M , and any φ ∈ ηz, there exists a local C∞ section ψ of η
defined near z, parallel at z, and such that ψ(z) = φ.
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Proof. We need (23.5) to be zero just at the point z, with ψa(z) = φa, which
may be achieved e.g. by choosing the ψa be suitable (nonhomogeneous) linear
functions of the coordinates used.

Applying Lemma 26.1 to each vector of any fixed basis of ηz, we obtain

Corollary 26.2. Let ∇ be a connection in a C∞ vector bundle η over a
manifold M , and let z ∈ M . Then there exists a local trivialization ea of η
defined on a neighborhood of z and parallel at z.

Lemma 26.1 (as well as its more refined version for torsionfree connections in
tangent bundles, cf. Problem 2) may lead to significant simplifications in various
calculation-type arguments, as we will see later in §26. Right now we will use it
to calculate the curvature RHom the connection ∇ in Hom(η, η′) corresponding
(as in Proposition 24.1) to two given connections (both also denoted by ∇), with
curvature tensors R, R′, in vector bundles η, η′ over a manifold M . Namely, we
have, for any x ∈M , v, w ∈ TxM and F ∈ Hom(ηx, η

′
x),

(26.3) RHom(v, w)F = R′(v, w) ◦ F − F ◦R(v, w) .

In fact, by (20.8), relation (26.3) amounts to

(26.4) ∇w∇vF − ∇v∇wF + ∇[v,w]F = R′(v, w) ◦ F − F ◦R(v, w)

for any local C2 section F of Hom(η, η′) and C1 vector fields v, w in M , all
defined on the same open set. Equality (26.4) is in turn easily verified if one
applied both sides to any local C1 section φ of η, using (24.2) and assuming that
both F and , φ are parallel at the point in question.

In the case where η = η′ = η and the connection ∇ in η coincides with ∇ in
η′, (26.3) (with R = R′ = R) becomes

RHom(v, w)F = [R(v, w), F ] ,

[ , ] being the ordinary fibrewise commutator of bundle morphisms.
The curvature R of every torsionfree C∞ connection ∇ in the tangent bundle

TM of a C∞ manifold M satisfies the relation

(26.5) Rjkl
m +Rklj

m +Rljk
m = 0

known as the first Bianchi identity. (For its analogue in the non-torsionfree case,
see Problem 3.) As in the case of relation (24.10), the content of (26.5) does not
depend on the local coordinates xj , since (26.5) simply states that

(26.6) R(u, v)w +R(v, w)u+R(w, u)v = 0

for any vectors u, v, w tangent to M at any point x. A more detailed version of
(26.6) would read

Rx(u, v)w +Rx(v, w)u+Rx(w, u)v = 0 .

To prove (26.5), use (20.10) along with the assumption that ∇ is torsionfree, i.e.,
Γ lkj = Γ ljk. (We could also fix z ∈ M and choose coordinates with Γ ljk(z) = 0, as

in Problem 2 of §26, making the argument even shorter.)
Suppose now that we are given a C∞ vector bundle η over a manifold M

endowed with an arbitrary C∞ connection ∇. The curvature tensor field R =
R∇ of ∇ then has the component functions Rjkb

a given by (20.10). Any fixed
connection in TM then can be used (along with ∇) to form the covariant derivative
∇R of R; as R is a section of Hom(TM, Hom(TM, Hom(η, η))), ∇R then will be
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a section of Hom(TM, Hom (TM, Hom(TM, Hom(η, η)))), so that at each point
x ∈M its value is a trilinear mapping

(∇R)x : TxM × TxM × TxM → Hom (ηx, ηx)

with (∇R)(u, v, w) = (∇uR)(v, w) for u, v, w ∈ TxM . In a local trivialization ea
and coordinates xj , sharing the same domain U ⊂ M , ∇R has the component
functions Rjka

b
,l = eb[(∇R)(pl, pj , pk)ea], so that

(∇R)(u, v, w)φ = ulvjwkφaRjka
b
,l(x)eb(x)

whenever x ∈ U , u, v, w ∈ TxM and φ ∈ ηx. In terms of the connection component
functions,

(26.7) Rjka
b
,l = ∂lRjka

b − Γmlj Rmka
b − Γmlk Rjma

b − Γ claRjkc
b + Γ blcRjka

c .

In the case where the connection in TM is torsionfree, ∇R satisfies the so-called
second Bianchi identity

(26.8) Rjka
b
,l +Rkla

b
,j +Rlja

b
,k = 0 .

(The non-torsionfree case is discussed in Problem 4.) As before, the meaning of
(26.8) does not depend on the local trivialization ea and coordinates xj ; in fact,
(26.8) can be rewritten as

(∇R)(u, v, w) + (∇R)(v, w, u) + (∇R)(w, u, v) = 0

or, equivalently,

(∇uR)(v, w) + (∇vR)(w, u) + (∇wR)(u, v) = 0

for any point x ∈M and any vectors u, v, w ∈ TxM .
To prove (26.8), fix z ∈M and choose ea at z with (26.1) (for any xj), which

is possible in view of Corollary 26.2. Combining (20.10) and (26.7) and using (26.1)
we obtain

Rjka
b
,l = ∂l∂kΓ

b
ja − ∂l∂jΓ

b
ka − Γmlj Rmka

b − Γmlk Rjma
b at z .

Relation (26.8) now is a trivial consequence of the (skew)symmetry of the Γ ljk
and Rjka

b in j, k. (Again, this proof can be made even simpler with the aid of
Problem 2.)

Problems
1. Let ∇ be a C∞ connection in the tangent bundle of a C∞ manifold M , and

let xj , xj
′

be two coordinate systems in M , both defined near a point z ∈M .
Verify that, for the local trivialization pj′ of TM to be parallel at z, it is
necessary and sufficient that (Hint below.)

(26.9) ∂j∂kx
k′ = Γ ljkp

k′

l at z .

2. Let T be the torsion tensor field of a C∞ connection ∇ in the tangent bundle
of a manifold M . For any point z ∈ M , prove that T(z) = 0 if and only if
there exists a coordinate system xj at z such that Γ ljk(z) = 0, i.e., the local

trivialization pj of TM is parallel at z. (Hint below.)
3. Generalize the first Bianchi identity (26.5) to the case where the connection in

TM is not necessarily torsionfree (with the torsion tensor field T appearing on
the right-hand side). State the corresponding generalization of the coordinate-
free formula (26.6). (Hint below.)
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4. The same for the second Bianchi identity. (Hint below.)

Hint. In Problem 1, ∇pjpj′ = ∇pj (pmj′ pm) = (Γ ljmp
m
j′ + ∂jp

l
j′)pl, which vanishes at

z if and only if so does pj
′

k p
k′

l (Γ ljmp
m
j′+∂jp

l
j′) = Γ ljkp

k′

l −p
j′

k p
l
j′∂jp

k′

l (as pk
′

l p
l
j′ = δk

′

j′

is constant), while pj
′

k p
l
j′∂jp

k′

l = ∂jp
k′

k = ∂j∂kx
k′ .

Hint. In Problem 2, necessity is obvious as Tljk = Γ ljk − Γ lkj ; for sufficiency, fix

some coordinates xj at z and find the new ones, xj
′
, with the required property,

by choosing them so as to satisfy (26.9) at z, which is possible due to symmetry of

Γ ljk(z) in j, k. We may, e.g., let xj
′

be (nonhomogeneous) quadratic functions of

the xj .
Hint. In Problems 3 and 4, the formulae are

Rjkl
m +Rklj

m +Rljk
m + Tmjk,l + Tmkl,j + Tmlj ,k = 0 ,

R(u, v)w+R(v, w)u+R(w, u)v + (∇uT)(v, w) + (∇vT)(w, u) + (∇wT)(u, v) = 0 ,

Rjka
b
,l +Rkla

b
,j +Rlja

b
,k + TmjkRlma

b + TmklRjma
b + TmljRkma

b = 0 ,

(∇uR)(v, w) + (∇vR)(w, u) + (∇wR)(u, v)

+ R(u, T(v, w)) +R(v, T(w, u)) +R(w, T(u, v)) = 0 .

27. Further operations on connections

Topics: Pullbacks of connections: expression in terms of component functions, covariant deriva-

tives along curves, and the effect on curvature; direct sums of connections; projections of connec-

tions in a direct-sum bundle; generalized convex combinations of connections; more on the dual;

existence of connections in vector bundles over compact manifolds; on connections: the effect of

selected operations on curvature; the description of operations in terms of component functions

and of the corresponding covariant differentiation of C1 sections defined only along C1 curves.

Recall that, given manifolds M,N , a C∞ mapping F : M → N , and a C∞

vector bundle η over M , we denote by F ∗η the corresponding pullback bundle
over M with the fibres (F ∗η)x = ηF (x), x ∈M . (See §17.) Any connection ∇ in
η then gives rise to the pullback connection F ∗∇ in F ∗η, uniquely characterized
by the requirement that

(27.1) (F ∗∇)v(F
∗ψ) = ∇dFxvψ ∈ ηF (x) = (F ∗η)x

whenever x ∈ M , v ∈ TxM and ψ is a local C1 section of η defined in a
neighborhood of F (x) (while F ∗ψ is the pullback of ψ to F ∗η, with (F ∗ψ)x =
ψF (x)). The component functions Γ bja of F ∗∇ relative to any local coordinates xj

in M and the pullback trivialization F ∗ea of F ∗η obtained from any C∞ local
trivialization ea of η, can be expressed as

(27.2) Γ bja = (∂jF
λ)(Γ bλa◦ F )

in the intersection of the respective domains, where yλ are any local coordinates
in N , and Γ bλa are the corresponding component functions of ∇. Thus, any C1

section φ along a C1 curve γ : I →M of the pullback bundle F ∗η is an assignment
I 3 t 7→ φ(t) ∈ (F ∗η)γ(t) = ηF (γ(t)), so that it is also a C1 section along the image

C1 curve F ◦ γ : I → N of the original bundle η. Then

(27.3) (F ∗∇)γ̇φ = ∇[F◦γ]˙φ .
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(See Remark 27.1 and Problem 2.) Furthermore, the curvatures RF
∗∇ and R∇ of

F ∗∇ and ∇ are related by

(27.4) RF
∗∇(v, w) = R∇(dFxv, dFxw)

for any x ∈ M and v, w ∈ TxM , both sides being linear operators sending the
fibre (F ∗η)x = ηF (x) into itself (see Problem 3).

Remark 27.1. The operation of covariant differentiation of C1 sections φ of
η along any C1 curve γ : I →M in a C∞ real or complex vector bundle η with
a connection ∇ over a manifold M determines ∇ uniquely via condition (d) in
§22. Thus, F ∗∇ can, equivalently, be characterized as the unique connection with
(27.3). For a similar characterization of the dual connection in the dual bundle, see
Problem 3 in §24.

We begin with more constructions leading from given connections to new ones.

Example 27.2. Given connections ∇(1), . . . ,∇(p) in vector bundles η1, . . . , ηp,
all with the same base manifold M , we define the direct-sum connection ∇ =
∇(1) ⊕ ∇(p) in the direct-sum vector bundle η = η1 ⊕ . . .⊕ ηp (Example 17.3) by

∇v(ψ1, . . . , ψp) = (∇(1)
v ψ1, . . .∇(p)

v ψp)

for any local C1 section ψ = (ψ1, . . . , ψp) of η and any vector v tangent to M
at a point of the domain of ψ. (See also Problems 6 and 13.)

Example 27.3. An arbitrary connection ∇ in a direct-sum vector bundle
η = η+ ⊕ η− can be projected onto connections in the summand bundles η±,
denoted by ∇± and defined by

(27.5) ∇±v ψ = (∇vψ)±

for local C1 sections ψ of η±. Note that, since η± ⊂ η, ψ then also is a local C1

section of η, so that ∇vψ on the right-hand side makes sense. Also, for any section
φ (or an element φ of a fibre) of η, we use the symbol φ± for the η± component
of φ. In (27.5) this is applied to φ = ∇vψ. See Problems 6 and 12.

Example 27.4. A generalized convex combination of connections ∇(1), . . . ,∇(p)

in a real/complex vector bundle η over a manifold M has the form

(27.6) ∇ = f1∇(1) + . . . + fp∇(p)

with any fixed real/complex valued C∞ functions f1, . . . , fp on M such that

f1 + . . . + fp = 1 .

As an operator associating ∇wψ with a local C1 section ψ of η and a local vector
field w in M , this ∇ clearly is a connection, and in particular (∇wψ)(x) depends
on w only through w(x). See also Problem 14.

The operation of covariant differentiation of C1 sections φ of η along any C1

curve γ : I → M in a C∞ real or complex vector bundle η with a connection
∇ over a manifold M determines ∇ uniquely (condition (d) in §22), and is often
much easier to work with than the connection itself. Therefore it is useful to
have a description of this operation for the connection obtained from some given
connection(s) through a specific constructions. In the case of the pullback (or,
dual-bundle) construction, such a description is provided by formula (27.3) (or,
respectively, (24.14)). For some of the other constructions we have discussed, see
Problem 6.
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Problems
1. Prove the existence and uniqueness of the pullback connection F ∗∇ with (27.1).

(Hint below.)
2. Prove (27.3). (Hint below.)
3. Prove the curvature formula (27.4) for pullbacks of connections. (Hint below.)
4. Let φ be a C1 section along a C1 curve γ : I →M of the bundle F ∗η over a

manifold M obtained by pulling back a C∞ vector bundle η over a manifold
N via a C∞ mapping F : M → N . Verify that φ then may be viewed as a C1

section along the curve F ◦ γ : I → N of the bundle η and, for any connection
∇ in η we have (27.3). (Hint below.)

5. Given η , M , N , γ, I and ∇ as in Problem 4, and any real numbers a, b ∈ I,
show that the ∇-parallel transport along F ◦ γ from a to b (§22) coincides
with the F ∗∇-parallel transport along γ from a to b.

6. Verify that the covariant derivative of any C1 section of the vector bundle in
question along a C1 curve I 3 t 7→ x(t) ∈M in the base manifold, relative to the
connection ∇ obtained as in Example 27.2, Proposition 24.1 or Example 27.3

is given, respectively, by ∇ẋ(φ1, . . . , φp) = (∇(1)
ẋ φ1, . . .∇(p)

ẋ φp), (∇ẋF )(φ) =
[Fφ]˙− F∇ẋφ, and ∇±ẋ φ = (∇ẋφ)±. (In the second equality, F and φ are C1

sections of Hom(η, ζ) and η along the curve.) (Hint below.)
7. The adjoint F ∗ of a linear operator F : V →W between real or complex vector

spaces V,W is the linear operator F ∗ : W ∗ → V ∗ defined by F ∗(f) = f ◦ F .
Show that, if V are finite-dimensional, with bases ea for V , eλ for W , in which
F is represented by the matrix [Fλa ] in (i.e., F (ea) = Fλa eλ), then the matrix of
F ∗ relative to the dual bases ea of V ∗ and eλ of W ∗ is the transpose of [Fλa ]
in the sense that F ∗(eλ) = Fλa e

a.
8. Let us denote by ∇∗ (instead of the customary ∇) the connection in η∗ dual to

the given connection ∇ in a vector bundle η over a manifold M . Verify that
the curvatures R of ∇ and R∗ of ∇∗ are related by

(27.7) R∗(v, w) = − [R(v, w)]∗

for any x ∈ M and v, w ∈ TxM . Here [R(v, w)]∗ denotes the adjoint η∗x → η∗x
of R(v, w) : ηx → ηx (Problem 7), and the point x is, as usual, suppressed
from the notation (so that R(v, w) stands for [R(x)](v, w)). Show that the
component version of (27.7) is

Rjk
b
a = −Rjkab ,

Rjk
b
a being the component functions of R∗, with Rjk

b
a = [R∗(pj , pk)eb](ea).

9. Let η be a C∞ real/complex vector bundle of some fibre dimension q over a
C∞ manifold M . Show that, for any x ∈ M , there exist global C∞ sections
ψ1, . . . , ψq of η whose restrictions to some neighborhood of x form a local
trivialization of η. (Hint below.)

10. Suppose we are given a C∞ real/complex vector bundle η over a compact C∞

manifold M satisfying the countability axiom (§14). Prove that there exists
a finite collection ψ1, . . . , ψl of global C∞ sections of η such that the values
ψ1(x), . . . , ψl(x) span the fibre ηx at every point x ∈M . (Hint below.)

11. For η and M as in Problem 10, show that there exist a product vector bundle
M × V and a C∞ vector-bundle morphism F : M × V → η which is surjective
in the sense that so is Fx : V → ηx for each x ∈M . (Hint below.)
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12. Generalize the construction of Example 27.3 to the case of direct sums with an
arbitrary finite number of summands.

13. Describe what happens with the curvature under the direct-sum operation for
connections (Example 27.2).

14. Given an affine space (M,V,+), points x1, . . . , xr ∈ M and scalars λ1, . . . , λr
with λ1 + . . .+λr = 1, one defines the affine combination of x1, . . . , xr with the
coefficients λ1, . . . , λr to be the point, denoted by

(27.8) x = λ1x1 + . . . + λrxr ,

and obtained by identifying M with its translation space V (with the aid of
a fixed “origin” o ∈ M) and then forming the corresponding combination of
vectors. In other words,

x = o + λ1(x1 − o) + . . . + λr(xr − o) .
Verify that this definition is correct (i.e., independent of the choice of o), and that
formula (27.6) represents, at any given point of the base manifold, a special case
of (27.8). (Another important application of (27.8) is in the case where dimM =
3 and x1, . . . , xr are locations of pointlike particles with masses m1, . . . ,mr.
The point (27.8) with λj = mj/m for j = 1, . . . , r, where m = m1 + . . .+mr,
then is called the system’s center of mass.)

Hint. In Problem 1, note that (27.1) implies

(27.9) (F ∗∇)pj (F
∗ea) = (∂jF

λ)(Γ bλa◦ F )(F ∗eb) whenever ∇pλea = Γ bλaeb ,

and hence uniqueness of F ∗∇. Using (27.2) as a definition of F ∗∇ , we obtain the
existence assertion.
Hint. In Problem 2, use (27.2) and the component formula (22.1), i.e., (∇γ̇φ)a =

φ̇a + (Γ ajb◦ γ)γ̇jφb for ∇γ̇φ.

Hint. In Problem 3, use (27.2) to establish the component version

(27.10) Rjka
b = (∂jF

λ)(∂kF
µ)(Rλµa

b ◦ F )

of (27.9) relative to local coordinates xj in M , local coordinates yλ in N , a C∞

local trivialization ea of η, and the corresponding F ∗ea for F ∗η.
Hint. In Problem 4, use formulae (22.1) and (27.2).
Hint. In Problem 6: see the hint for Problem 3 in §24.
Hint. In Problem 9, set ψa = φea for a local trivialization ea of η defined on
a neighborhood U of x and a C∞ cut-off function φ : M → R chosen as in
Problem 19 of §6 for x and the closed subset K = M \U .
Hint. In Problem 10, use Problem 9 and the Borel-Heine theorem.
Hint. In Problem 11, choose the φλ with λ = 1, . . . , l as in Problem 10 and, for
V = Rn or V = Cn define Fx : V → ηx by Fx(c1, . . . , cl) = cλφλ(x).
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CHAPTER 6

Riemannian Distance Geometry

28. Fibre metrics

Topics: Pseudo-Riemannian and pseudo-Hermitian fibre metrics in vector bundles; the positive-

definite case; Riemannian and pseudo-Riemannian manifolds; vector and affine spaces; immersion

pullbacks of Riemannian metrics; isometries; isometric immersions/embeddings and submanifold

metrics; Euclidean spheres; hyperbolic spaces.

Let η be a real (or, complex) vector bundle over a manifold M . By a pseudo-
Riemannian (or, respectively, pseudo-Hermitian) fibre metric in η we mean any
mapping g assigning to every point x ∈M a scalar-valued bilinear symmetric (or,
sesquilinear Hermitian) nondegenerate form gx on the fibre ηx. (For a definition
of nondegeneracy, see Problem 16 in §12.) If gx happens to be positive definite
for every x, one drops the prefix ‘pseudo’ and refers to the fibre metric g as
Riemannian or Hermitian. In addition, we will always require such a fibre metric
g to be C∞-differentiable; this makes sense as g is a section of a specific C∞

vector bundle, namely, Hom (η, η∗) or Hom (η, η∗). (In fact, g associates with
every x ∈M the operator ηx 3 φ 7→ gx(φ, · ) valued in η∗x or, respectively, η∗x.)

For η,M, g as above, x ∈M , and ψ, φ ∈ ηx, we will often simplify the notation
writing g(ψ, φ), or just 〈ψ, φ〉, instead of gx(ψ, φ). The symbols g(ψ, φ) and 〈ψ, φ〉
will be also used for the scalar-valued function U 3 x 7→ gx(ψx, φx), whenever ψ, φ
are local sections of η with the domain U ⊂M .

A pseudo-Riemannian fibre metric g in the tangent bundle TM of a manifold
M is referred to as a pseudo-Riemannian metric on the manifold M , and the pair
(M, g) is then called a pseudo-Riemannian manifold. Again, one omits ‘pseudo’ if
g is positive definite at every point; when M is connected, ‘every point’ may be
replaced here by ‘some point’ (see Problem 10).

Example 28.1. In a product vector bundle η = M × F one has a special class
of constant fibre metrics g, obtained by setting gx = 〈 , 〉 for x ∈ M , where 〈 , 〉
is any fixed scalar-valued bilinear symmetric (or, sesquilinear Hermitian) nonde-
generate form on F. Similarly, if M a finite-dimensional real affine space (or a
nonempty open subset thereof), the tangent bundle TM is naturally isomorphic to
M × V , where V is the translation vector space (Example 5.2), and so we have a
distinguished class of constant pseudo-Riemannian metrics on M . Such a constant
metric on an affine space is called a pseudo-Euclidean metric, and, if it is positive
definite, a Euclidean metric.

Let g = 〈 , 〉 now be a pseudo-Riemannian fibre metric in a C∞ real vector
bundle η over a manifold M . Any local trivialization ea of η gives rise to the
component functions of g, defined (on the trivialization domain) by

(28.1) gab = g(ea, eb) = 〈ea, eb〉

101
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Symmetry of g means that gab = gba. Clearly, for fibre elements or local sections
ψ, φ as before,

(28.2) g(ψ, φ) = 〈ψ, φ〉 = gabψ
aφb .

Suppose now that, in addition to a pseudo-Riemannian fibre metric g = 〈 , 〉 in a
C∞ real vector bundle η over a manifold M , we are also given a C∞ connection
∇ in η. Any local trivialization ea of η and local coordinates xj in M , with the
same domain U, give rise to the g-modified component functions of ∇, given by

(28.3) Γjba = 〈∇pjeb, ea〉 , that is, Γjba = Γ cjbgca .

(Note that gca = 〈ec, ea〉.) By themselves, the Γjba do not constitute the component
functions of any invariant object; their usefulness lies in simplifying some local
component expressions. For instance, when g is treated as a section of the vector
bundle Hom(η, η∗), its covariant derivative ∇g relative to the connection in η∗,
dual to ∇, is itself a section of Hom(TM, Hom(η, η∗)) with the local component
functions gba,j = ∂jgba − Γ cjbgca − Γ cjagbc, that now can be rewritten as

(28.4) gba,j = ∂jgba − Γjba − Γjab .

A connection ∇ in a real vector bundle η over M is called be compatible with
a pseudo-Riemannian fibre metric g = 〈 , 〉 in η if ∇g = 0, that is, if g is parallel
as a section of Hom(η, η∗). One then also says that ∇ is a metric connection, or
a Riemannian connection, especially when g is fixed (and clear from the context).
The local-component version of this condition is, by (28.4),

(28.5) ∂jgab = Γjab + Γjba .

A condition necessary and sufficient in order that a connection ∇ in a real vector
bundle η over M be compatible with a pseudo-Riemannian fibre metric g = 〈 , 〉,
is the Leibniz rule

(28.6) dv〈ψ, φ〉 = 〈∇vψ, φ(x)〉+ 〈ψ(x),∇vφ〉
whenever x ∈ M , v ∈ TxM and ψ, φ are local C1 sections of η defined in a
neighborhood of x. This is in turn equivalent to

(28.7) dv(|ψ|2) = 2〈∇vψ,ψ(x)〉
for x, v, ψ as above. In fact, (28.6) and (28.7) mean that

(28.8) dw〈ψ, φ〉 = 〈∇wψ, φ〉 + 〈ψ,∇wφ〉
and

(28.9) dw(|ψ|2) = 2〈∇wψ,ψ〉
for local C1 sections w of TM and ψ, φ of η, all three with the same domain.
Now, (28.8) implies (28.5) as a special case (with w = pj , ψ = ea, φ = eb) and the
converse implication is immediate if one expands w = wjpj , dw = wj∂j , ψ = ψaea
and φ = φbeb.

Let ∇ again be a connection in a real vector bundle η over M . The curvature
tensor R∇ of ∇ then assigns to each x ∈M a bilinear skew-symmetric mapping
TxM × TxM 3 (v, w) 7→ R∇(v, w) valued in real-linear operators ηx → ηx. If,
in addition, η carries a fixed pseudo-Riemannian fibre metric g = 〈 , 〉, each of
these mappings may be regarded as a real-valued bilinear form on ηx (Problem 5).
Specifically, that form is given by

(28.10) ηx × ηx 3 (ψ, φ) 7→ 〈R∇(v, w)ψ, φ〉 .
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Instead of 〈R∇(v, w)ψ, φ〉 we will usually write R(v, w, ψ, φ) (when ∇ and g are
fixed).

The g-modified curvature of ∇ is defined to be the assignment, to each x ∈M ,
of the real-quadrilinear function TxM×TxM×ηx×ηx 3 (v, w, ψ, φ) 7→ R(v, w, ψ, φ),
skew-symmetric in v, w. The modified curvature (also denoted by R) thus is a
C∞ section of the vector bundle A(TM, TM, Hom(TM, Hom(η, η∗))), while the
original R is a section of A(TM, TM, Hom(η, η))) (see Remark 20.1).

Any local trivialization ea of η and coordinates xj in M now give rise to the
g-modified curvature-component functions

Rjkab = R(pj , pk, ea, eb) = 〈R∇(pj , pk)ea, eb〉 ,
which, obviously, can also be expressed as

(28.11) Rjkab = Rjka
cgcb .

Proposition 28.2. Let a connection ∇ in a real vector bundle over M be
compatible with a pseudo-Riemannian fibre metric g = 〈 , 〉. Then the bilinear form
(28.10) is skew-symmetric, for any fixed x ∈M and v, w ∈ TxM .

Proof. We just need to verify that

Rjkab = −Rjkba.
This is done by choosing a local trivialization ea of η defined on a neighborhood of
any given z ∈M so that Γ bja(z) = 0 (formula (26.1)); then, Rjkab = ∂kΓjab−∂jΓkab
at z (cf. (26.2)), and so Rjkab +Rjkba = 0 at z by (28.5).

See also Problem 6.
Given manifolds M,N, a C∞ immersion F : N → M and a Riemannian

metric g on M , the pullback F ∗g, defined as in Problem 5 of §21, is obviously a
Riemannian metric on N. When N is a submanifold of M and F denotes the
inclusion mapping, we refer to F ∗g as the submanifold metric on N induced by
g. A unit sphere centered at 0 in a Euclidean vector space, with its submanifold
metric, is referred to as a standard (Euclidean) sphere.

Remark 28.3. It is now immediate from Whitney’s embedding theorem that
on every compact manifold there exists a Riemannian metric. For more general
conclusions, see Problem 7(c) below and Problem 2 in §84 of Appendix D.

By an isometry between pseudo-Riemannian manifolds (N,h) and (M, g) we
mean any C∞ diffeomorphism F : N →M with F ∗g = h. Two pseudo-Riemann-
ian manifolds are said to be isometric if an isometry between them exists.

Pullbacks of pseudo-Riemannian metrics under C∞ immersions F : N → M
are twice-covariant symmetric tensor fields of class C∞ (see Problems 5 – 6 in §21).
They may, however, fail to be nondegenerate. If F ∗g is nondegenerate for a given
pseudo-Riemannian metric g on M , we call F a nondegenerate immersion of N
into the pseudo-Riemannian manifold (M, g). One similarly defines a nondegener-
ate submanifold N of (M, g) (that is, one for which the inclusion mapping F is
nondegerate). In both cases, (N,F ∗g) is a pseudo-Riemannian manifold.

The classical differential geometry of surfaces, originated by Gauss, studies the
submanifold metrics of 2-dimensional submanifolds of a Euclidean 3-space.

The submanifold metric of a nondegenerate submanifold N in a pseudo-Riem-
annian manifold (M, g) may be positive definite even if g is not. One prominent
example of this kind is the n-dimensional hyperbolic space of any positive “radius”
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a, here denoted by N, and defined as follows. Let (M, g) be the space Rn+1 =
R×Rn with the pseudo-Euclidean metric corresponding to the bilinear form sending
(t, v), (s, w) ∈ R × Rn to −ts + 〈v, w〉, where 〈 , 〉 is the standard inner product
of Rn, and let N be the connected component, containing (1, 0), of the two-
sheeted hyperboloid given by −t2 + |v|2 = −a2, where | | is the Euclidean norm
of Rn. (In other words, N is the graph of the function Rn → R defined by
v 7→ t = (a2 + |v|2)1/2.) The hyperbolic-space metric on N is its (positive-definite)
submanifold metric. See Problems 11 – 12.

Problems
1. Given a pseudo-Riemannian fibre metric g in a real vector bundle η over a

manifold M , we say that a vector subbundle ζ of η is nondegenerate if so
is the restriction of the form gx to ζx for every x ∈ M . (Cf. Problem 16 in
§12.) Show that, for any nondegenerate C∞ vector subbundle ζ of η, its g-
orthogonal complement η⊥, with the fibre η⊥x over each x ∈ M defined to be
the gx-orthogonal complement of ζx in ηx (see Problem 17 in §12), is also a
nondegenerate C∞ vector subbundle of η. (Hint below.)

2. For a connection ∇ in a C∞ real vector bundle with a pseudo-Riemannian fibre
metric g, prove that condition ∇g = 0 is equivalent to the Leibniz rule (28.8)
without using the component functions. (Hint below.)

3. Verify that (28.9) implies (28.8).
4. Let a connection ∇ in a real vector bundle η over a manifold M be compatible

with a pseudo-Riemannian metric g = 〈 , 〉 in η. Show that

〈ψ, φ〉˙ = 〈∇ẋψ, φ〉 + 〈ψ,∇ẋφ〉,

with ( )˙ = d/dt, whenever ψ,ψ are C1 sections of η along a C1 curve t 7→
x(t) ∈M . (Hint below.)

5. Given a finite-dimensional real vector space V with a fixed pseudo-Euclide-
an inner product g = 〈 , 〉, show that the assignment, to each linear operator
F : V → V , of the bilinear form B : V × V → R given by B(v, w) = 〈Fv,w〉
constitutes a linear isomorphism Hom(V, V )→ L(V, V,R), where L(V, V,R) is
the vector space of all bilinear forms V × V → R (cf. §19).

6. Prove skew-symmetry of R(v, w, ψ, φ) in ψ, φ for metric connections without
using local component functions. (Hint below.)

7. Given a C∞ real/complex vector bundle η over a compact C∞ manifold M
satisfying the countability axiom, prove that
(a) η is C∞ isomorphic to a C∞ vector subbundle of a suitable product vector

bundle M × V ,
(b) there exists a C∞ vector bundle ζ over M such that the direct sum η⊕ ζ

is trivial,
(c) η admits a C∞ (positive-definite) Riemannian/Hermitian metric g and a

connection ∇ compatible with g. (Hint below.)
8. State and prove a version of Problem 5 for complex spaces, pseudo-Hermitian

inner products and sesquilinear (rather than bilinear) forms.
9. For V and g = 〈 , 〉 as in Problem 5, show that TraceF = 0 whenever F :

V → V is linear and skew-adjoint in the sense that the corresponding bilinear
form B : V × V → R is skew-symmetric.
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10. Let g be a pseudo-Riemannian or pseudo-Hermitian fibre metric in a real or,
complex vector bundle η over a connected manifold. Show that the algebraic
type of g, that is, its signature, is the same in every fibre.

11. Prove that the submanifold metric of a hyperbolic space is in fact positive defi-
nite. (Hint below.)

12. Verify that, up to an isometry, an n-dimensional hyperbolic space of “radius”
a > 0 could also be defined to be either connected component of the submanifold
{x ∈ V : 〈x, x〉 = −a2} of an (n + 1)-dimensional real vector space V with
a nondegenerate symmetric bilinear form 〈 , 〉 of the Lorentzian sign pattern
− + . . . +.

Hint. In Problem 1, apply Proposition 19.1 to the morphism Φ : η → ζ∗ sending
φ ∈ ηx, for any x ∈M , to gx(φ, · ) : ζx → R.
Hint. In Problem 2, note that (∇wg)(φ, ψ) = dw〈ψ, φ〉 − 〈∇wψ, φ〉 − 〈ψ,∇wφ〉 in
view of the definitions of the dual and tensor-product connections.
Hint. In Problem 4, use (28.2), (22.1) and (28.5).
Hint. In Problem 6, the Leibniz rule (28.8) implies, after obvious cancellations,
〈R∇(v, w)ψ,ψ〉 = 〈∇w∇vψ − ∇v∇wψ + ∇[v,w]ψ,ψ〉 = dw〈∇vψ,ψ〉 − dv〈∇wψ,ψ〉 +

〈∇[v,w]ψ,ψ〉 and so, by (28.9) and (6.8), −2〈R∇(v, w)ψ,ψ〉 = dvdw|ψ|2−dwdv|ψ|2−
d[v,w]|ψ|2 = 0.
Hint. In Problem 7, choose V, F as in Problem 11 of §27 and define ζ to be the
subbundle of M × V with ζ = KerF . Let ζ⊥ be the orthogonal complement of
ζ for some fixed (e.g., constant) metric in M × V . Then F : ζ⊥ → η is a C∞

vector-bundle isomorphism; to obtain (c), fix a metric connection in M × V (e.g.,
the standard flat one) and project it onto ζ⊥.
Hint. In Problem 11, use Problem 12 of §13.

29. Raising and lowering indices

Topics: A fibre metric as a vector-bundle isomorphism; the inverse (reciprocal) metric; identi-

fying vector fields on a pseudo-Riemannian manifold with 1-forms; the gradient operator; iden-

tification of twice-covariant tensor fields on a pseudo-Riemannian manifold with vector-bundle

morphisms acting in the tangent bundle; the inner product of twice-covariant tensors.

Let g be a pseudo-Riemannian fibre metric in a real vector bundle η over a
manifold M . Any local trivialization ea of η, defined on an open set U, gives rise
to the component functions gab of g, characterized by (28.1). By the reciprocal
components of g relative to the ea we mean the functions gab : U → R such that
[gab(x)] is the matrix inverse of [gab(x)], for every x ∈ U. In other words,

(29.1) gacg
cb = gcag

bc = δba .

For instance, if there is also given a connection ∇ in η, the relation Γjba = Γ cjbgca
in (28.3) can be rewritten as Γ bja = Γjacg

cb.
As another example, in a pseudo-Riemannian manifold (M, g), a local coor-

dinate system xj leads to the reciprocal components gjk of the metric g, with
[gjk] = [gjk]−1 (that is, gjlglk = δjk) at every point of the coordinate domain.

The reciprocal components gab clearly depend on the choice of the local triv-
ialization ea (since so do the original components gab). However, the gab are the
components, relative to the ea, of a trivialization-independent object (namely, g),
and a similar interpretation exists for the gab. Specifically, we may treat g as a
vector-bundle morphism g : η → η∗ which, at any point x ∈ M , sends φ ∈ ηx
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to the linear functional gx(φ, · ) ∈ η∗x. Nondegeneracy of g (which is a part of
the definition of a fibre metric, cf. §28) means that g : η → η∗ is an isomorphism.
Furthermore, gab are the components of the morphism g : η → η∗ relative to the
local trivialization ea for η and its dual ea for η∗ (see Problem 3). The inverse
isomorphism g−1 : η∗ → η then has the components gab, as one easily sees using
(29.1).

The isomorphisms g : η → η∗ and g−1 : η∗→ η are traditionally referred to as
index lowering and index raising. This terminology reflects the common practice
of using the same symbol both for a fibre element φ ∈ ηx (or, a local section φ of
η) and its image g(φ, · ). In a local trivialization ea we thus have φ = φaea and
φ = φae

a, with φa = gacφ
c and φa = gacφc. thus

An important special case is the gradient operator of any given pseudo-Riem-
annian manifold (M, g). It associates with every C1 function f : U → R defined
on an open set U ⊂M the tangent vector field ∇f on U , also denoted by grad f ,
which is the result of applying the index-raising operation to the differential df .
In other words, ∇f is the unique vector field w on M with g(w, v) = dvf for all
(local) vector fields v (that is, wj = gjk ∂kf). The component functions of ∇f
relative to any local coordinates xj are denoted by ∇jf or f ,j . Thus,

(29.2) f ,j = ∇jf = gjk ∂kf = gjkf,j ,

where, to be consistent, one also uses the symbol f,j = ∂jf for the component
functions of df . Note that

(29.3) dvf = g(v, v) if v = ∇f .

The use of the symbol ∇ to represent the gradient is due to a long-standing
tradition and has virtually nothing to do with our notation ∇ for connections.

To describe further examples of index raising/lowering, let us assume for sim-
plicity that we are given a pseudo-Riemannian manifold (M, g) (even though the
following discussion remains valid, with obvious modifications, for Riemannian fibre
metrics in arbitrary real vector bundles).

Let b be a twice-covariant tensor on a pseudo-Riemannian manifold (M, g),
that is, a vector-bundle morphism TM → T ∗M (acting by v 7→ b(v, · ). Replaced
by a composite morphism, in which the original g is followed by g−1 : T ∗M → TM ,
our b thus becomes a bundle morphism TM → TM , with the components bj

k

related to the components bjk of the original tensor by bj
k = bjlg

lk, or bjk = bj
lglk.

Some confusion may arise due to the possibility of treating b as a morphism TM →
T ∗M acting in a different (but equally natural) way, namely, by v 7→ b( · , v). When
the composite of this other morphism with g−1 : T ∗M → TM is used, one writes
its components as bkj , with bkj = gklblj and bjk = gjlb

l
k. In other words, leaving

blank spaces above subscripts and below superscripts allows us to keep track of
which index was actually raised or lowered.

The situation is simpler when b is symmetric. The two vector-bundle mor-
phisms TM → T ∗M represented by b then coincide, and so both ways of index
raising lead to the same morphism TM → TM , the components of which may,
without risk of ambiguity, be written as bkj .

The trace of a vector-bundle morphism A : TM → TM is the function
TraceA : M → R, assigning to x ∈M the trace of the operator Ax : TxM → TxM .
A fixed pseudo-Riemannian metric g allows us to define the g-trace of a twice-co-
variant tensor b on M to be the function Tracegb : M → R equal to the trace
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of the vector-bundle morphism TM → TM obtained from b by index raising.
(Which is the two indices is raised makes no difference, as the resulting morphism
are, at each point, each other’s adjoints, so that they have the same trace.) Clearly,

(29.4) bjj = Tracegb = 〈g, b〉 = gjkbjk .

Here 〈 , 〉 is the g-inner product of twice-covariant tensors, defined by 〈a, b〉 =
TraceAB∗, where A,B : TM → TM are obtained from a, b by raising an index
and the “product” is the composite of vector-bundle morphism, while B∗ is the
(pointwise) g-adjoint of B. In local coordinates,

(29.5) 〈a, b〉 = ajkbjk with ajk = gjpgkqapq .

See Problem 4.

Problems
1. Verify that the reciprocal components of a pseudo-Riemannian fibre metric in a

real vector bundle satisfy the symmetry condition gba = gab.
2. Show that, for n-dimensional pseudo-Riemannian manifold, 〈g, g〉 = n, or, in

local coordinates, gjkgjk = δkk = n.
3. Verify that g(ea, · ) = gace

c for any pseudo-Riemannian fibre metric g in a real
vector bundle η and any local trivialization ea of η.

4. Establish formula (29.5).

30. The Levi-Civita connection

Topics: The existence and uniqueness of the Levi-Civita connection on a pseudo-Riemannian

manifold; the Christoffel symbols; geodesics; the curvature tensor; the modified curvature tensor;

the Ricci tensor and scalar curvature; symmetry of the Ricci tensor; a further symmetry of the

modified curvature tensor.

For a pseudo-Riemannian manifold (M, g), a connection ∇ in TM , and local
coordinates xj in M , the g-modified component functions Γjkl of ∇ relative to
the xj , i.e., involving the local trivialization pj , are given by

(30.1) Γjkl = g(∇pjpk, pl) = Γ sjkgsl , Γ ljk = Γjksg
sl

(cf. §29), where gjk and Γ ljk as usual denote the corresponding component functions

of g and ∇ with gjk = g(pj , pk) and ∇pjpk = Γ ljkpl, while gjk are the component

functions of the reciprocal g−1 of g with gjlglk = δjk so that, at any point of the

coordinate domain [gjk] = [gjk]−1 as matrices. (See §29.)
Thus, by (28.5) and (21.4), the requirement that ∇ be compatible with g and

torsionfree, expressed in local coordinates, reads

(30.2) ∂jgkl = Γjkl + Γjlk , Γjkl = Γkjl .

Theorem 30.1. For any pseudo-Riemannian manifold (M, g) there exists a
unique connection ∇ in TM which is torsionfree and compatible with g. The
component functions of ∇ then are given by

(30.3) Γ ljk =
1

2
gls(∂jgks + ∂kgjs − ∂sgjk) ,

that is,

(30.4) 2Γjkl = ∂jgkl + ∂kgjl − ∂lgjk .
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Proof. Uniqueness: If ∇ is torsionfree and compatible with g, (30.4) is im-
mediate from (30.2). Existence: Define ∇ by (30.3), i.e., (30.4) and the last formula
in (30.1), which easily implies (30.2). The independence of the resulting connection
of the coordinates used follows from its uniqueness. (See also Problem 3 in §23.)

The unique torsionfree metric connection ∇ in the tangent bundle of a given pseu-
do-Riemannian manifold (M, g) is called its Levi-Civita connection of (M, g). Its
component functions (30.3) are known as the Christoffel symbols of g, and the g-
modified components (30.4) are sometimes referred to as the Christoffel symbols of
the second kind.

All objects normally associated with a connection ∇ on a manifold M will
from now on be also associated with a pseudo-Riemannian metric g on M , via its
Levi-Civita connection ∇. Thus, we will speak of geodesics in (M, g), its curvature
tensor R (as well as the g-modified curvature tensor, with the components Rjklp),
and its Ricci tensor Ric. We also define the scalar curvature of a pseudo-Riem-
annian manifold (M, g) to be the C∞ function s : M → R given by

(30.5) s = Traceg Ric ,

where Traceg is the g-trace defined in §29. In other words, s(x), at any x ∈ M ,
equals the trace of the g-modified Ricci tensor of (M, g) at x. In local coordinates
(cf. (29.4)),

(30.6) s = Rjj = gjkRjk .

Lemma 30.2. The Ricci tensor of any pseudo-Riemannian manifold (M, g) is
symmetric and. in local coordinates, gpqRjpkq = Rjk = gpqRpjqk.

Proof. For x ∈ M and v, w ∈ TxM , the operator sending u ∈ TxM to
R(v, u)w−R(w, u)v is traceless, since, by the first Bianchi identity (26.6), it coin-
cides with the operator u 7→ R(v, w)u, and the latter is skew-adjoint (cf. Problems 6
and 9 in §28). The local-coordinate now follows from Proposition 28.2.

At any point x of a pseudo-Riemannian manifold (M, g), the modified curvature
tensor R = Rx constitutes a quadrilinear function on the tangent space TxM
with R(v, v′, w, w′) = −R(v′, v, w,w′) = −R(v, v′, w′, w) and R(u, v, w, u′) +
R(v, w, u, u′) + R(w, u, v, u′) = 0 for all v, v′, w, w′, u ∈ V . These properties alone
imply an additional symmetry:

Proposition 30.3. The modified curvature tensor R of any pseudo-Riemann-
ian manifold (M, g) satifies the relation

(30.7) Rjklm = Rlmjk ,

that is, R(v, v′, w, w′) = R(w,w′, v, v′) whenever x ∈M and v, v′, w, w′ ∈ TxM .

Proof. See Problem 7.

Problems
1. Verify that, if γ : I → M is a geodesic for the Levi-Civita connection ∇ on

a pseudo-Riemannian manifold (M, g), then the function g(γ̇, γ̇) : I → R is
constant. (Hint below.)
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2. Given a finite-dimensional real affine space (M,V,+) and a pseudo-Euclide-
an inner product 〈 , 〉 in V treated as a (constant) pseudo-Riemannian metric
g on the manifold M , show that the Levi-Civita connection of the pseudo-
Riemannian manifold (M, g) coincides with the standard flat connection D in
TM = M × V . (Hint below.)

3. Let g be a pseudo-Riemannian metric on a manifold M . Any fixed C∞ function
f : M → R then gives rise to a new metric

(30.8) g̃ = e2fg .

One then says that g and g̃ are conformally related. Verify that, for the
Christoffel symbols Γ̃ ljk of g̃ and Γ ljk of g, one then has

Γ̃ ljk = Γ ljk + δlk∂jf + δlj∂kf − gjkg
ls∂sf .

4. Let two pseudo-Riemannian metrics g and g̃ on a manifold M be conformally
related, with (30.8) for some C∞ function f : M → R. Show that the Levi-Ci-

vita connections ∇ of g and ∇̃ of g̃ then are related by

∇̃vw = ∇vw + (dvf)w + (dwf)v − g(v, w)∇f ,

where v, w are any C1 vector fields, dv is the directional derivative correspond-
ing to v, and ∇f stands for the g-gradient of f , defined by (29.2).

5. Given pseudo-Riemannian manifolds (M, g) and (N,h), by the Riemannian
product of (M, g) and (N,h) we mean the pseudo-Riemannian manifold (M ×
N, g × h), where the product metric g × h assigns to each (x, y) ∈ M × N
the pseudo-Euclidean inner product (g × h)(x,y) defined to be the orthogonal
direct sum of gx and hy in the tangent space T(x,y)(M × N) = TxM ⊕ TyN
(see Problem 28 in §9); in other words,

(g × h)(x,y)((v, v
′), (w,w′)) = gx(v, w) + hy(v′, w′)

(notation as in Problem 28 of §9). Show that, in product coordinates xj , yα for
M×N obtained using local coordinates xj in M and yα in N (Problems 1,3 in
§9) the components of the product metric, along with its reciprocal components,
Christoffel symbols, as well as the components of its curvature and Ricci tensors,
all have the following property: the components involving both kinds of indices
(Roman and Greek) are zero, while those involving just one kind of indices are
equal to the respective components corresponding to g or h.

6. Let F : M → N be an isometry between pseudo-Riemannian manifolds (M, g)
and (N,h). Verify that, if t 7→ x(t) is a geodesic of (M, g), then t 7→ F (x(t))
is a geodesic of (N,h). (Hint below.)

7. Prove Proposition 30.3. (Hint below.)

Hint. In Problem 1, use Problem 4 of §28.
Hint. In Problem 2, either use formula (30.3) in affine coordinates (Problem 8 in
§5), or note that D is torsionfree and compatible with every constant metric.
Hint. In Problem 6, choose local cordinates in which F appears as the identity
mapping and then use (30.3) along with (22.6).
Hint. In Problem 7, write for simplicity abcd = R(a, b, c, d) for a, b, c, d ∈ V , so
abcd = −abdc = dabc + bdac = −dacb − bdca = (acdb + cdab) + (dcba + cbda) =
−acbd+ (cdab+ cdab)− cbad = 2cdab−acbd− cbad = 2cdab+ bacd = 2cdab−abcd,
as required.
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31. The lowest dimensions

Topics: Pseudo-Riemannian manifolds of dimensions 0 and 1; the curvature and Ricci tensors

of pseudo-Riemannian surfaces; the Gaussian curvature.

In a zero-dimensional pseudo-Riemannian manifold, the metric, curvature and
Ricci tensors, as well as the scalar curvature are all equal to zero by definition
(and they must be so, if we want the densors in question to represent multilinear
mappings in the zero-dimensionaltangent spaces).

In dimension 1, the curvature tensor R of any pseudo-Riemannian metric is
zero, due to skew-symmetry of R(u, v)w in u, v. Hence Ric = 0 and s = 0.

Finally, let (M, g) be a pseudo-Riemannian surface, that is, a pseudo-Riem-
annian manifold with dimM = 2. We define the Gaussian curvature of (M, g) to
be the function K = s/2 : M → R, where s is the scalar curvature of (M, g).

Proposition 31.1. The Ricci and curvature tensors of every pseudo-Riemann-
ian surface (M, g) satisfy the equalities Ric = Kg and R(u, v)w = K [g(u,w)v −
g(v, w)u], as well as s = 2K, where u, v, w are any vector fields or vectors tangent
to M at any point, and K is the Gaussian curvature. In local coordinates,

(31.1) a) Rjlp
q = K(gjpδ

q
l − glpδ

q
j ), b) Rjl = Kgjl .

Proof. For any fixed point x ∈ M we may treat Rx as a skew-symmetric
bilinear mapping from TxM×TxM into the vector space of skew-adjoint operators
TxM → TxM . (See Proposition 28.2.) Since the latter space is 1-dimension-
al (cf. (12.7)) and dimM = 2, such skew-symmetric mappings form a 1-dimen-
sional space as well, and so Rx much be a multiple of the mapping taking the
vectors v, w ∈ TxM to the operator gx(u,w)v − gx(v, w)u. (In fact, the latter
mappings is nonzero and has all the required properties). This yields (31.1.a) and,
by contraction, we also obtain (31.1.b) and s = 2K.

Problems
1. Let (M, g) be a 1-dimensional pseudo-Riemannian manifold. Verify that the

geodesics of (M, g) are precisely those C1 curves I 3 t 7→ x(t) ∈ M , where
I ⊂ R is an interval, which have constant speed. (The latter means that g(ẋ, ẋ)
is constant as a function of t ∈ I.) (Hint below.).

2. Let ∇ be a connection on a manifold M . One says that a submanifold N of
M is totally geodesic (relative to ∇ if, given any x ∈ N and v ∈ TxN ⊂ TxM ,
we have expxtv ∈ N for all t ∈ R sufficiently close to 0. Show that
(a) the image of any nonconstant injective geodesic of ∇ is a 1-dimensional

totally geodesic submanifold of M ,
(b) any affine subspace of an affine space (M,V,+) is totally geodesic relative

to the standard flat connection in TM = M × V (Example 21.1),
(c) all zero-dimensional submanifolds of M and open submanifolds of M are

totally geodesic.

Hint. In Problem 1, one implication is clear from Problem 1 of §30. Next, assuming
constant speed and leaving aside the obvious case g(ẋ, ẋ) = 0 we get g(∇ẋẋ, ẋ) = 0
(see Problem 4 in §28), and so ∇ẋẋ = 0. Namely, as g(ẋ, ẋ) now is a (nonzero)
constant, ẋ(t) spans Tx(t)M at every t ∈ I.
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32. Riemannian manifolds as metric spaces

Topics: Curve length; the distance function; the exponential mapping; Gauss’s Lemma; the

injectivity radius; a distance-preserving property of the exponential mapping; the metric-space

axioms.

By the length of a piecewise C1 curve [a, b] 3 t 7→ x(t) ∈ M in a Riemannian
manifold (M, g) we mean the number

(32.1) L =

∫ b

a

|ẋ(t)| dt .

Let (M, g) now be a connected Riemannian manifold. The distance function d :
M ×M → R of (M, g) assigns to (x, y) ∈ M ×M the infimum d(x, y) of the
lengths of all piecewise C1 curves in M joining x and y.

The following lemma uses the subscript conventions of §25.

Lemma 32.1. Suppose that we are given a Riemannian manifold (M, g) a C2

mapping (t, s) 7→ x(t, s) ∈M , defined on a rectangle [a, b]× [c, d] in the ts-plane.
If xtt = 0 identically and |xt| is constant on the rectangle, then 〈xt, xs〉t = 0
identically on the rectangle.

In fact, 〈xt, xs〉t = 〈xtt, xs〉 + 〈xt, xst〉 = 0, since xtt = 0 and xst = xts
(Problem 2 in §25), so that 〈xt, xst〉 = 〈xt, xts〉 = 〈xt, xt〉s/2.

The exponential mapping of a Riemannian manifold (M, g) at a point x ∈M
is the mapping expx : Ux → M defined as in the lines following (22.7) for the Le-
vi-Civita connection ∇ of (M, g). Lemma 32.1 easily implies the following classical
result known as the Gauss lemma.

Lemma 32.2. Given a Riemannian manifold (M, g), a point x ∈ M , and
v ∈ Ux, let H : TxM → TyM be the differential of expx : Ux → M at v, where
y = expxv and TvUx is identified with TxM as in Examples 5.1 and 5.3. Then,
for w ∈ TxM = TvUx such that gx(v, w) = 0,

(32.2) gy(Hv,Hv) = gx(v, v) , gy(Hv,Hw) = 0 .

Proof. See Problem 1.

For a Riemannian manifold (M, g) and x ∈ M , let [a, b] 3 t 7→ v(t) ∈ Ux be a
piecewise C1 curve. Then, with L as in (32.1) for x(t) = expxv(t),

(32.3) L ≥ |r(b)− r(a)| , where r(t) = |v(t)| .

In fact, we may assume that r(a) 6= r(b). Problem 2 thus allows us to replace
[a, b] with a subinterval [c, d] such that r(c) = r(a), r(d) = r(b) and r(t) > 0
for all t ∈ (c, d). Then r is a C1-differentiable function of t ∈ (c, d), and so we
may use the argument presented below; however, once (32.3) is proved for [c, d]
rather than [a, b], it will clearly follow for [a, b] as well. Namely, suppressing the
dependence of ẋ, v and r on t, and writing H for the differential of expx at
v(t), we have ẋ = Hv̇ (by the definition of the differential, cf. (5.16)). Hence

L ≥
∫ d
c
|ẋ| dt =

∫ d
c
|Hv̇| dt ≥

∫ d
c
|〈v, v̇〉|/|v| dt =

∫ d
c
|ṙ| dt ≥

∣∣∫ d
c
ṙ dt
∣∣ = |r(d) − r(c)|,

with the last two inequalities provided by Problems 3 and 4, and 〈 , 〉 denoting the
Euclidean inner product gx in TxM . (When one of r(a), r(b) is zero, this still
makes sense for improper integrals.)
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If, in addition, the differential of expx at v(t) is injective for every t ∈ [a, b],
the case where the inequality (32.3) is actually an equality is characterized as follows:

(32.4)
L = |r(b)− r(a)| if and only if all v(t) lie in a single line segment ema-
nating from 0 in TxM and the function t 7→ r(t) is (weakly) monotone.

In fact, this is clear since we understand the equality case in each of the three
inequality steps involved in the above proof of (32.3). (See Problems 3 and 4; the
replacement of [a, b] with [c, d] makes L smaller except when the curve x(t) is
constant on both [a, c] and and [d, b].)

Let (M, g) again be a connected Riemannian manifold. The injectivity radius
of (M, g) is the function r inj : M → (0,∞] assigning to every x ∈ M the supre-
mum r inj(x) of those ε ∈ (0,∞) for which the domain Ux of expx contains the
open ball Uε of radius ε centered at 0 in the Euclidean space TxM , and expx
maps Uε diffeomorphically onto an open set in M . (That r inj(x) > 0 is clear as
ε with the named property always exists; see the lines following (22.7).)

Lemma 32.3. Let there be given a point x of a Riemannian manifold (M, g), a
real number ε with 0 < ε < r inj(x), and a continuous curve [a, c] 3 t 7→ x(t) ∈M
with x(a) ∈ expx(Uε) and x(c) /∈ expx(Uε), where Uε is the open ball of radius
ε around 0 in TxM . Then there exists b ∈ (a, c] such that x(t) ∈ expx(Uε) for
all t ∈ [a, b) and x(b) ∈ expx(Sε), with Sε denoting the sphere of radius ε in
TxM , centered at 0.

Proof. Let b be the supremum of those t′ ∈ [a, c] with x(t) ∈ expx(Uε) for
all t ∈ [a, t′ ]. We may choose sequences tk ∈ [a, b] and vk ∈ Uε with tk → b
as k → ∞ and x(tk) = expxvk. Passing to a subsequence, we may also assume
that vk → v as k → ∞, for some v ∈ TxM with |v| ≤ ε. Hence, by continuity,
x(b) = expxv. If we had |v| < ε, the point x(b) would lie in the open set expx(Uε),
and, consequently, so would x(t) for all t > b sufficiently close to b, contrary to
how b was defined. Hence |v| = ε and x(b) ∈ expx(Sε), as required.

Proposition 32.4. Let x be a point in a connected Riemannian manifold
(M, g), and let v ∈ TxM be a vector with |v| < r inj(x). Then

(32.5) d(x, expxv) = |v| ,

with |v| denoting, as before, the Euclidean norm of v, so that |v|2 = gx(v, v).
If v 6= 0, the piecewise C1 curves [a, b] 3 t 7→ x(t) ∈ M with x(a) = x and

x(b) = y, where y = expxv, that have the minimum length |v| are those and only
those having the form x(t) = expx [s(t)v/|v|] with any nondecreasing piecewise C1

surjective function s : [a, b]→ [0, |v|].

Proof. That [0, 1] 3 t 7→ expxtv is a curve of length |v| is a trivial exercise.
Next, let L be the length of any piecewise C1 curve [a, b] 3 t 7→ x(t) ∈ M with
x(a) = x and x(b) = y which is not of the special form described in the final clause
of Proposition 32.4. Then L > |v|. In fact, we may choose the maximum c of those
t ∈ [a, b] for which the restriction of the curve to [a, t] lies in the expx-image of
the closed ball in TxM centered at 0 and having the radius |v|. Thus, c > a, since
x(a) = x and expx is diffeomorphic on a neighborhood of 0 in TxM (see §22),
while, as it is a closed ball that we use, x(c) = expxu for some unique u ∈ TxM
with |u| ≤ |v|, and, necessarily, |u| = |v|, since the strict inequality |u| < |v| would
contradict maximality of c.
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If our curve is not constant on [c, b], its length L is greater than the length L′

of its restriction to [a, c], so that L > L′ ≥ |v| from (32.3) (for L′, a, c rather than
L, a, b, with r(a) = 0 and r(c) = |u| = |v|). If, however, it is constant on [c, b], the
entire curve lies in the expx-image of the closed ball mentioned above, and L > |v|
by (32.3) and assertion (32.4). This completes the proof.

Corollary 32.5. Suppose that (M, g) is a connected Riemannian manifold,
x ∈ M , and ε is a real number with 0 < ε < r inj(x). Then the radius ε open
metric ball around x in M is the expx-diffeomorphic image of the radius ε
Euclidean open ball Uε centered at 0 in TxM .

Proof. In view of Proposition 32.4 it suffices to show that every y ∈M such
that d(x, y) < ε lies in expx(Uε). To this end, let us fix a piecewise C1 curve
[a, c] 3 t 7→ x(t) ∈ M of length L < ε with x(a) = x and x(c) = y. If we had
y /∈ expx(Uε), choosing b as in Lemma 32.3 we would have L ≥ d(x, x(b)), and so
L ≥ ε by Proposition 32.4, contrary to how the curve was chosen.

We will now show that the distance function d satisfies the usual axioms of a
metric space (cf. §73 in Appendix B), namely: d(x, y) = d(y, x) (symmetry),
d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality), d(x, x) = 0, and d(x, y) > 0
if x 6= y (positivity), for any x, y, z ∈M .

Theorem 32.6. Let d be the distance function of a connected Riemannian
manifold (M, g). Then

a. (M, d) is a metric space,
b. the metric-space topology of (M, d) coincides with the manifold topology of

M .

Proof. The metric-space axioms other than positivity are completely straight-
forward. To prove positivity, suppose that x, y ∈M and x 6= y. Choosing ε ∈ R
with 0 < ε < r inj(x) such that the open ball Uε of radius ε in TxM , centered at
0, is contained in the expx-diffeomorphic pre-image of a neighborhood of x in M ,
not containing y, we see from Corollary 32.5 that y does not lie in the radius ε
open metric ball around x in M , and so d(x, y) ≥ ε > 0. This proves (a).

Assertion (b) is in turn immediate from Corollary 32.5.

Problems
1. Prove the Gauss lemma. (Hint below.)
2. Let t 7→ r(t) be a nonnegative continuous function on a closed interval [a, b],

and let r(a) 6= r(b). Prove that [a, b] contains a nontrivial subinterval [c, d]
such that r(c) = r(a), r(d) = r(b) and r(t) > 0 for all t ∈ (c, d).

3. Suppose that |Hv| = |v| and 〈Hv,Hw〉 = 0 for a linear operator H : V → V ′

between Euclidean spaces, a fixed vector v ∈ V \{0}, and all vectors w ∈ V
with 〈v, w〉 = 0 (where 〈 , 〉 denotes both inner products). Prove the inequality
|Hw| ≥ |〈v, w〉|/|v| for every w ∈ V , and, if H is also injective, the inequality
is strict unless w is a scalar multiple of v.

4. Given a continuous function f : [a, b] → R on a closed interval, verify that∣∣ ∫ b
a
f(t) dt

∣∣ ≤ ∫ b
a
|f(t)| dt, and the inequality is strict unless f ≥ 0 on [a, b] or

f ≤ 0 on [a, b].

5. Verify that
∫ b
a
|ẋ(t)| dt ≥ |x(b)−x(a)| whenever [a, b] 3 t 7→ x(t) is a piecewise

C1 curve in an affine Euclidean space.



114 6. RIEMANNIAN DISTANCE GEOMETRY

6. Show that the claim made in Problem 4 remains true even if one replaces < by
=, provided that an open ball of infinite radius in M is defined to be M .

7. Let d, d′ be the distance functions of a connected Riemannian manifold (M, g)
and, respectively, a connected submanifold M ′ of M endowed with the sub-
manifold metric g′. Show that d ≤ d′ on M ′×M ′.

Hint. In Problem 1, apply Lemma 32.1 to x(t, s) = expxtv(s), where s 7→ v(s) is
a C1 curve in Ux, contained in a sphere centered at 0 in TxM .
Hint. In Problem 2, the last inequality will follow if r(t) lies between r(a) and
r(b) and is different from both of them, for every t ∈ (c, d). For instance, choose
d = min{t ∈ [a, b] : r(t) = r(b)}, and then c = max{t ∈ [a, d] : r(t) = r(a)}.

33. Completeness

Topics: Positive lower bounds for the injectivity radius; geodesics as distance-minimizing curves;

geodesic completeness versus metric completeness; the Hopf-Rinow theorem.

Lemma 33.1. For any compact subset Y of a connected Riemannian manifold
(M, g) there exist ε > 0 and an open set U containing Y such that r inj > ε on
U, where r inj is the injectivity radius of (M, g).

In fact, the Borel-Heine theorem allows us to assume that Y consists of a single
point. The assertion is now obvious from the inverse mapping theorem (see §74 in
Appendix B). Namely, the mapping

(33.1) (x, v) 7→ (x, expxv)

restricted to a suitable neighborhood in TM of any given point (x, 0) lying in the
zero section M ⊂ TM , sends that neighborhood diffeomorphically onto an open
set in M ×M . Note that (33.1) is defined and C∞-differentiable on some open
set in TM containing the zero section, due to the regularity theorem for ordinary
differential equations with parameters; see §80 in Appendix C.

One says that a piecewise C1 curve [a, b] 3 t 7→ x(t) ∈ M is minimizing
if its length L equals d(x(a), x(b)). For any c ∈ (a, b) the restrictions of the
curve to [a, c] and [c, b] then are minimizing as well. To prove this, note that
L = d(x(a), x(b)) ≤ d(x(a), x(c)) + d(x(c), x(b)) ≤ L′+ L′′ = L, where L′, L′′ are the
lengths of the restrictions, and so all inequalities used here must in fact be equalities.
Applying this principle twice in a row, we see that the restriction of a minimizing
curve to any closed subinterval of its parameter interval is also a minimizing curve.
It its therefore natural to agree that a piecewise C1 curve I 3 t 7→ x(t) ∈ M
defined on an arbitrary interval I should be called minimizing if its restriction to
every closed subinterval of I is a minimizing curve.

In view of (32.5), every geodesic [a, b] 3 t 7→ x(t) ∈ M of length L which is
less than r inj(x(a)) or r inj(x(b)) is necessarily a minimizing curve.

Conversely, every minimizing curve I 3 t 7→ x(t) ∈ M “is a geodesic” in the
sense that it is obtained from some geodesic by a reparameterization, or, more pre-
cisely, that x(t) = expx [s(t)v] for some (weakly) monotone piecewise C1 function
I 3 t 7→ s(t) ∈ R, some x ∈M , and some v ∈ TxM with s(t)v ∈ Ux for all t ∈ I.

To see this, first assume that I = [a, b] is a closed interval and d(x(a), x(b))
is less than r inj(x(a)) or r inj(x(b)). Our claim then is immediate from the final
clause of Proposition 32.4. The general case now easily follows from Lemma 33.1.
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A connection ∇ on a manifold M is said to be geodesically complete if its
every geodesic can be extended to a geodesic defined on the whole real line R.
This amounts to requiring that Ux = TxM for every x ∈M (notation of §22).

Similarly, a Riemannian manifold (M, g) is called geodesically complete if so is
its Levi-Civita connection ∇.

The following theorem is due to Hopf and Rinow [HR].

Theorem 33.2. In a geodesically complete Riemannian manifold (M, g), any
two points can be joined by a minimizing geodesic.

Proof. Let us fix a point x ∈ M and define A ⊂ [0,∞) to be the set of
all r ≥ 0 such that every point y ∈ M with d(x, y) ≤ r can be joined to x
by a minimizing geodesic (or, equivalently, equals expxv for some v ∈ TxM with
|v| = d(x, y)). Since x was arbitrary, we just need to show that A = [0,∞).

By Corollary 32.5, A contains every r with 0 ≤ r < r inj(x). Also, if r ∈ A,
then, clearly, r′ ∈ A for every r′ ∈ [0, r]. Thus, A is an interval and the equality
A = [0,∞) will follow once we show that r0 = sup A is infinite.

Let us suppose that, on the contrary, r0 < ∞. Then r0 ∈ A (that is, r0 =
max A). In fact, let y ∈ M be a point with d(x, y) = r0, and let [a, b] 3 t 7→
xk(t) ∈ M , k = 1, 2, . . . , be a sequence of piecewise C1 curves of lengths Lk such
that xk(a) = x, xk(b) = y and Lk → r0 as k → ∞. As Lk ≥ r0 = d(x, y), we
may find a sequence of parameters ck ∈ [a, b] such that the length of the curve
xk(t) restricted to [a, ck] is r0 − 1/k. The sequence yk = x(ck) then converges to
y in M , since d(yk, y) does not exceed the length Lk − r0 + 1/k of the restriction
of the curve xk(t) to [ck, b], while d(x, yk) ≤ r0 − 1/k < r0 = sup A, and so
yk = expxvk for some vk ∈ TxM with |vk| = d(x, yk) < r0. Boundedness of the
sequence vk implies that it has a subsequence convergent to some limit v ∈ TxM .
Thus, y = expxv due to continuity of expx, which shows that r0 ∈ A.

The closed metric ball Y = {y ∈M : d(x, y) ≤ r0} is a compact subset of M ,
as it is the expx-image of the closed Euclidean ball {v ∈ TxM : |v| ≤ r0}. Choosing
ε for Y as in Lemma 33.1, we will now show that A contains (r0, r0 + ε). (This
contradicts the maximality of r0 in A, and hence shows that r0 cannot be finite,
completing the proof.) Namely, let y ∈M and r0 < d(x, y) < r0+ε. Compactness
of Y allows us to find a point z ∈ Y having the minimum distance δ > 0 from y.
It follows that δ < ε. (In fact, let us choose a curve joining x to y and having
length L with r0 < L < r0+ε. Using a point z′ on the curve to partition it into two
segments of lengths r0 and L− r0 we see that z′ ∈ Y and d(y, z′) ≤ L− r0 < ε.)
Thus, both x and y can be joined to z by minimizing geodesics, which for x
follows from the definition of A (as r0 ∈ A), and for z from Corollary 32.5 applied
to z instead of x (note our choice of ε). The lengths of the two geodesics are r0

and, respectively, our δ. (We have d(x, z) = r0, since the inequality d(x, z) < r0

would also remain true at some points near z and different from z on the length
δ geodesic, contradicting the minimum property of δ.) The two geodesics together
form a piecewise C1 curve joining x to y, which is also minimizing (and hence a
geodesic, for reasons explained earlier in this section). Namely, if there existed a
curve connecting x to y and having some length L′ with r0 < L′ < r0 + δ, some
point z′′ on it would lie at the distance r0 from x (as the distance function is
continuous), and so the length of the curve segment from z′′ to y would be less
than or equal to L′ − r0 < δ, which, as z′′ ∈ Y , would contradict the choice of
δ.
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A connected Riemannian manifold naturally constitutes a metric space (§32), which
may or may not be (metrically) complete, in the sense that every Cauchy sequence
in it converges. (See §73 in Appendix B.) Both kinds of completeness mean exactly
the same:

Theorem 33.3. For a connected Riemannian manifold (M, g), with the dis-
tance function d, the following three conditions are equivalent :

a. (M, g) is geodesically complete,
b. every bounded closed subset of (M, d) is compact,
c. (M, d) is a complete as a metric space.

Proof. Assuming (a) we get (b): a bounded set is contained in a metric ball,
which (by Theorem 33.2) is in turn contained in the expx-image, for some x ∈M ,
of a closed Euclidean ball (and the latter is compact). Next, (b) implies (c): one
easily verifies (see Problems 3 and 4 in §73 of Appendix B) that a Cauchy sequence
is necessarily bounded; thus, by (b), it has a convergent subsequence; and hence
the Cauchy sequence is itself convergent. Finally, let us assume (c). To prove (a),
we suppose that, on the contrary, there exists a maximal geodesic t 7→ x(t), with
some constant speed c > 0, defined on an interval I 6= R. Using the parameter
change t 7→ −t, if necessary, we may also assume that I has a finite upper endpoint
b. For any sequence tk in I such that tk → b as k → ∞, the values x(tk) form
a Cauchy sequence, which, by (c), converges to some point x(b) ∈ M . (Note that
d(x(t), x(s)) ≤ c|t−s|.) The limit x(b) does not depend on how tk were chosen (as
one sees considering the “union” of two such sequences), and so it equals the limit
of x(t) as t → b−. Let us now fix a coordinate domain U containing x(b) and
contained, along with its compact closure, in another coordinate domain, along with
a ∈ I such that x(t) ∈ U for all t ∈ [a, b]. Using the coordinate identification,
we may treat [a, b] 3 t 7→ x(t) as a continuous curve in an open subset of Rn,
n = dimM . As it has a constant g-speed c > 0, its Euclidean speed (that is,
the Euclidean norm of ẋ(t)) is bounded, and so, in view of the geodesic equations
(22.6), the Euclidean norm of ẍ(t) is bounded as well; this, however, implies that
ẋ(t) has a limit in Rn as t → b−. (See Problem 3 in §79 of Appendix C.) Using
that limit as the initial velocity for a g-geodesic [b, b + ε) 3 t 7→ x(t), we thus
extend the original geodesic past b, contrary to its maximality. (The extension,
being of class C1, is necessarily also of class C∞, by (22.6).) This contradiction
completes the proof.

The diameter of a connected Riemannian manifold (M, g) is defined by

(33.2) diam (M, g) = sup{d(x, y) : x, y ∈M} ∈ [0,∞].

Thus, M is bounded (as a set in (M, g)) if and only if diam (M, g) <∞.
As an obvious consequence of Theorem 33.3, we have

Corollary 33.4. A complete Riemannian manifold is bounded, that is, has a
finite diameter, if and only if it is compact.

Problems
1. Show that, given a point x ∈M , every neighborhood of (x, 0) in TM contains

a neighborhood of the form {(y, v) ∈ TM : y ∈ U and |v| < ε} for some ε > 0
and some neighborhood U of x in M .
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2. For any manifold M and any point x ∈ M , describe a natural isomorphic
identification T(x,0)(TM) = TxM × TxM .

3. Show that the differential of (33.1) at every (x, 0) in the zero section is, under
the identification of Problem 2, given by (v, w) 7→ (v, v + w).

4. Verify that the square of the distance function d of any connected Riemann-
ian manifold (M, g) is of class C∞ on some open set containing the diagonal
{(x, x) : x ∈M} in M ×M . (Hint below.)

5. Let h be the submanifold metric of a totally geodesic submanifold N in a
Riemannian manifold (M, g). Prove that the geodesics of (N,h) are precisely
those geodesics of (M, g) which are contained in N. (Hint below.)

6. Given two Riemannian metrics g, h on a manifold M and a compact subset Y
of M , show that there exist positive constants ε, C such that

εh(v, v) ≤ g(v, v) ≤ Ch(v, v)

for all x ∈ Y and all v ∈ TxM . (Hint below.)
7. Generalize Problem 6 to Riemannian/Hermitian fibre metrics in vector bundles.

Hint. In Problem 4, cover the diagonal with diffeomorphic images, under (33.1),
of neighborhoods of (x, 0), for x ∈M .
Hint. In Problem 5, note that the geodesics of (M, g) contained in N are mini-
mizing curves in (N,h) (Problem 7 in §32), and realize all initial conditions in N.
(We are free to assume that M,N are both connected, by restricting our discussion
to one connected component of N at a time, and the connected component of M
which contains it.)
Hint. In Problem 6, argue by contradiction: if the infimum (or supremum) of
g(v, v)/h(v, v) over nonzero vectors v tangent to M at points of Y were 0 (or,
respectively, ∞), choosing a convergent sequence of points in a coordinate domain,
realizing such a limit, and vectors v which are unit relative to the Euclidean norm,
we get a contradiction with positive definiteness of g or h.

34. Convexity

Topics: Strongly convex sets; the strong local convexity theorem.

Given a connected Riemannian manifold (M, g) and an open set U ⊂M , we
say that U is strongly convex if any two points y, z ∈ U can be joined by a unique
minimizing geodesic in M , and, in addition, that unique minimizing geodesic

a. lies entirely in U , and
b. depends C∞-differentiably on y and z, that is, has a parameterization of

the form [0, 1] 3 t 7→ expytv with a vector v ∈ Uy depending on y, z so as
to form a C∞ differentiable mapping U × U 3 (y, z) 7→ v ∈ V .

The following fact may be called the strong local convexity theorem.

Theorem 34.1. Let Y be a compact subset of a connected Riemannian man-
ifold (M, g). Then there exists ε > 0 such that every open ball of radius less than
ε in M , centered at any point of Y , is strongly convex.

Proof. According to Lemma 33.1, there exists an open ball in M , centered
at x, on which r inj > ε for some ε > 0. Any sufficiently small concentric open
ball U of radius less than both ε/2 and the radius of this ball will automatically
satisfy all of our claims except, possibly, assertion (a) in the above definition; this is
clear from the final clause of Proposition 32.4 and the last paragraph of §11 along
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with the fact that Exp must be diffeomorphic (cf. Problem 3 in §33) on some
neighborhood of (x, 0) in TM having the form described in Problem 1 in §33.

Next, for every point y in an even smaller, and sufficiently small, open ball U
centered at x and every unit vector u ∈ TyM , we have

(34.1)
d2

dt2
[d(x, expytu)]2

t=0
> 0 .

In fact, the left-hand side of (34.1), with any fixed x, is a C∞ function of (y, u)
on a suitable open set in TM (where u is not assumed to be unit; see Problem 4
in §33). If the inequality (34.1) failed for y arbitrarily closed to x and some unit
vectors u, choosing a sequence of such “counterexamples” and replacing it with a
subsequence for which the sequence of the u converges, while the y (necessarily)
tend to x, we would get nonpositivity of the left-hand side of (34.1) for y = x
and some unit vector u ∈ TxM , which clearly contradicts the fact that, by (32.5),
d(x, expxtu) = t.

Relation (34.1) will still hold if, instead of t = 0, the second derivative is
evaluated at any value c of t in an interval I = [a, b] containing 0 and such that
expytu ∈ U for every t ∈ I. (In fact, [a − c, b − c] 3 t 7→ expy(c + t)u then is
also a unit-speed geodesic in U .) We now obtain (a) from Problem 1 applied to
f(t) = [d(x, expytu)]2. This completes the proof.

Corollary 34.2. For every compact connected Riemannian manifold (M, g)
there exists ε > 0 such that every open ball in M of radius not exceeding ε is
strongly convex.

Problems
1. Let a C2 function f : [a, b] → R have a positive second derivative. Show that

f ≤ max{f(a), f(b)} everywhere in [a, b].
2. Let H be a nonempty set of isometries of a given Riemannian manifold (M, g)

onto itself. Show that the set

(34.2) Y = {x ∈M : F (x) = x for every F ∈ H}
is either empty, or it is a disjoint union of totally geodesic submanifolds of (M, g),
each of which is closed as a subset of M and carries the subset topology. (Hint

below.)

Hint. In Problem 2, for any given point x ∈ Y , choose ε with 0 < ε < r inj(x) and,
letting Uε stand for the open ball of radius ε in TxM , centered at 0, note that the
preimage of Y ∩expx(Uε) under the diffeomorphism expx : Uve→ expx(Uε) is the
intersection of Uε and the vector subspace {v ∈ TxM : dFxv = v for every F ∈ H}
of TxM .

35. Myers’s theorem

Topics: The unit sphere bundle for a vector bundle with a Riemannian or Hermitian fibre met-

ric; the unit tangent bundle of a Riemannian manifold; the Ricci curvature function; the Myers

theorem.

Let 〈 , 〉 be a Riemannian (or, Hermitian) fibre metric in a real (or, complex)
vector bundle η over a manifold M . By its unit sphere bundle we mean the subset
η1 of the total space η formed by all (x, φ) with 〈φ, φ〉 = 1. Since (x, φ) 7→ 〈φ, φ〉
is a continuous function η → R (Problem 1), η1 is a closed subset of η. Moreover,
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η1 is compact whenever M is (Problem 2). Actually, η1 is also a codimension-one
submanifold of η endowed with the subset topology (see Problem 3), although we
do not need that fact in the present discussion. When η is the tangent bundle
TM of a Riemannian manifold (M, g), we will call η1 the unit tangent bundle of
(M, g) and denote it by T 1M .

The Ricci curvature of a Riemannian manifold (M, g) is the real-valued func-
tion on T 1M , denoted by Ric (just like the Ricci tensor), which sends any (x, u) ∈
T 1M to Ric(u, u). Since the Ricci tensor is continuous, so is Ric : T 1M → R (due
to the local-coordinate formula Ric(u, u) = Rjku

juk).
The following classical result of Myers [M] establishes a relation between the

diameter of a complete Riemannian manifold and its Ricci curvature.

Theorem 35.1. Let a complete Riemannian manifold (M, g) satisfy the Ricci-
curvature lower bound

(35.1) Ric ≥ (n− 1) δ > 0, where n = dimM,

with a constant δ. Then

i. M is compact,
ii. diam (M, g) ≤ π/

√
δ .

Proof. Let [a, b] 3 t 7→ w(t) ∈ Tx(t)M be any C∞ vector field with w(a) =
w(b) = 0, tangent to M along any minimizing geodesic [a, b] 3 t 7→ x(t) of
(M, g). Let us also choose a C∞ mapping (t, s) 7→ x(t, s) ∈ M , defined on a
rectangle [a, b] × [c, d] in the ts-plane, such that x(t, c) = x(t), x(a, s) = x(a),
x(b, s) = x(b) and xs(t, c) = w(t) for all t, s, with the subscript conventions of
§25. (For instance, we may set x(t, s) = expx(t) [(s− c)w(t)].) Defining L(s) and

A(s) for s ∈ [c, d] by L(s) =
∫ b
a
|xt(t, s)| dt and 2A(s) =

∫ b
a
|xt(t, s)|2dt, we obtain

(35.2) 2(b− a)A(c) = [L(c)]2 ≤ [L(s)]2 ≤ 2(b− a)A(s) for all s.

In fact, the three relations, from left to right, follow since the function t 7→ |ẋ(t)| is
constant (Problem 1 in §30), the original geodesic t 7→ x(t) = x(t, c) is minimizing,
and, respectively, from the Schwarz inequality for the L2 inner product of functions
[a, b]→ R. Thus, A(s) assumes its minimum value at s = c, leading to the second-
derivative relation A′′(c) ≥ 0. However, writing 2A(s) = (xt, xt), where ( , )
is the appropriate L2 inner product, we obtain the derivative formula 2A′(s) =
(xt, xts) = (xt, xst) = −(xtt, xs) (integration by parts, with the boundary term
vanishing as w(a) = w(b) = 0), and so A′′(c) = −(xtts, xs) (at s = c), in view
of the geodesic equation xtt(t, c) = 0. Since xtts = xstt − R(xs, xt)xt (see (25.6))
and xs(t, c) = w(t), relation A′′(c) ≥ 0 thus reads 0 ≥ (w,∇ẋ∇ẋw − R(w, ẋ)ẋ) =
(R(ẋ, w)ẋ, w)− (∇ẋw,∇ẋw), that is, after integration by parts, with ( , ) as above,
(R(ẋ, w)ẋ, w) ≤ (∇ẋw,∇ẋw) for any w such that w(a) = w(b) = 0.

Let ϕ̇ now stand for the derivative of any C∞ function ϕ : [a, b] → R with
ϕ(a) = ϕ(b) = 0. Given a parallel unit vector field t 7→ u(t) along our geodesic t 7→
x(t), we have (ϕ2R(ẋ, u)ẋ, u) ≤

∫ b
a
ϕ̇2dt, as one sees applying the last inequality

to w = ϕu. Summing this over n orthonormal fields u with this property, one of

which is tangent to the geodesic, we get
∫ b
a
ϕ2Ric(ẋ, ẋ) dt ≤ (n−1)

∫ b
a
ϕ̇2dt, which,

combined with (35.1), gives δL2
∫ b
a
ϕ2dt ≤ (b − a)2

∫ b
a
ϕ̇2dt, with L denoting the

length of the original minimizing geodesic.



120 6. RIEMANNIAN DISTANCE GEOMETRY

So far the C∞ function ϕ with ϕ(a) = ϕ(b) = 0 was arbitrary. Now, choosing
ϕ(t) = sin[π(t − a)/(b − a)], we can rewrite the last inequality as δL2 ≤ π2, that

is, L ≤ π/
√
δ . This yields (ii), and, in view of Corollary 33.4, also implies (i),

completing the proof.

Problems
1. Verify that, for any pseudo-Riemannian or pseudo-Hermitian fibre metric g =
〈 , 〉 in a C∞ real or complex vector bundle η over a manifold, the assignment
(x, φ) 7→ 〈φ, φ〉 defines a C∞ function η → R.

2. Show that the unit sphere bundle η1 is compact if so is the base manifold M .
(Hint below.)

3. Prove that the unit sphere bundle η1 is a codimension-one submanifold of η,
carrying the subset topology. (Hint below.)

Hint. In Problem 2, M is covered by finitely many open sets whose closures Y
are compact and contained in local trivialiation domains, while η1 is the union of
the compact sets η1 ∩ π−1(Y ), with π : η →M denoting the bundle projection.
Hint. In Problem 3, note that nonzero real numbers are regular values of the
function in Problem 1.



CHAPTER 7

Integration

36. Finite partitions of unity

Topics: Support of a continuous section of a vector bundle; compactly supported sections; finite

partitions of unity; small supports.

Let ψ be a global section of a vector bundle η over a manifold M . The support
of ψ, denoted suppψ, is the closure in M of the set {x ∈M : ψ(x) 6= 0}. In other
words, suppψ is the complement M \U of the largest open subset U of M on
which ψ vanishes (‘largest’ meaning the union of all such open subsets). We also
say that ψ is compactly supported if suppψ is compact, and that it is supported
in an open set U ⊂M if suppψ ⊂ U .

Suppose that Y is a subset of a manifold M . By a finite partition of unity
for Y we mean any finite family ϕ1, . . . , ϕk of compactly supported C∞ functions
ϕq : M → R such that 0 ≤ ϕq ≤ 1 for all q = 1, . . . , k, and ϕ1 + · · · + ϕk = 1
on some open set containing Y . If, in addition, U is an open covering of Y (§14),
that is, a family of open sets in M whose union contains Y , we will say that the
partition of unity ϕ1, . . . , ϕk for Y is subordinate to U if for every q ∈ {1, . . . , k}
there exists U ∈ U with suppϕq ⊂ U .

Lemma 36.1. Let U be an open covering of a compact subset Y of a manifold
M . Then there exists a finite partition of unity for Y , subordinate to U .

Proof. Every manifold M satisfies, by definition, the countability axiom
(§14). Given x ∈ M , let us choose open sets U ′(x), U(x), Ux and a compactly
supported C∞ function fx : M → [0,∞) with Ux ∈ U , x ∈ U ′(x) ⊂ U(x) ⊂ Ux

and fx > 0 on U ′(x). (See Problem 19 in §6.) In view of the Borel-Heine
Theorem (§14) there is a finite collection of points x1, . . . , xk ∈ M such that

Y ⊂
⋃k
q=1 U

′(xq). Let us write Uq, U ′q and fq instead of U(xq), U
′(xq) and fxq .

Now U ′ = U ′1 ∪ . . . ∪ U ′k is an open set containing Y and f = f1 + . . . + fk is
positive on U ′. Choosing a C∞ function ϕ : M → R with ϕ = 1 on an open
set containing Y and suppϕ ⊂ U ′ (see Problem 3), we may define the required
functions ϕq, q = 1, . . . , k, by ϕq = ϕfq/f . This completes the proof.

We will say that a subset Y of a manifold M is small if it is compact and contained
in an open set diffeomorphic to an open ball in Rn, n = dimM . The components
xj of such a diffeomorphism then form a coordinate system, whose domain contains
Y .

Applying Lemma 36.1 to the family of all open sets U diffeomorphic to an
open ball in Rn, n = dimM , we obtain the following result.

Proposition 36.2. For any compact subset Y of a manifold M , there exists a
finite partition of unity ϕ1, . . . , ϕk for Y such that the support of each ϕq is small.

121
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Here is a further consequence.

Corollary 36.3. Every compactly supported Cl section ψ of any vector bun-
dle η over a manifold, where l = 0, 1, . . . ,∞, can be written as a finite sum
ψ = ψ1 + . . .+ ψk of Cl sections of η whose supports are all small.

In fact, we may set ψq = ϕqψ, with ϕq chosen as in Proposition 36.2.
The next result will not be needed until §58:

Lemma 36.4. For every compact connected n-dimensional manifold M there
exist an integer k ≥ 1, open sets Uq ⊂ M and C∞ functions ϕq : M → R,
q = 1, . . . , k, such that

a. Each Uq is diffeomorphic to an open ball in Rn,
b. The support of each ϕq is compact and contained in Uq,

c.
∑k
q=1 ϕq = 1,

d. Uq ∩ Uq+1 is nonempty for all q = 1, . . . , k − 1.

Proof. For every x ∈ M , let us choose open sets U(x), U ′(x) with x ∈
U ′(x) ⊂ U(x) and such that there is a diffeomorphism of U(x) onto an open
ball in Rn which sends U ′(x) onto a smaller concentric open ball. Thus, there
is a C∞ function fx : M → [0,∞) with fx > 0 on U ′(x), whose support is a
compact subset of U(x). By the Borel-Heine Theorem (§14) we can find a finite set
Γ ⊂ M such that M =

⋃
x∈Γ U

′(x) and Γ is a minimal set with that property,
i.e.,

⋃
x∈Γ ′ U

′(x) 6= M for each proper subset Γ ′ of Γ . For every x ∈ Γ we may
thus select z(x) ∈M with

(36.1) z(x) ∈ U ′(x) \
⋃

x′∈Γ \ {x}

U ′(x′) .

Since M is connected, we can find a continuous curve γ : [a, b]→M whose image
γ([a, b]) contains all z(x) with x ∈ Γ , that is,

(36.2) {z(x) : x ∈ Γ} ⊂ γ([a, b]) .

Compactness of [a, b] now implies (Problem 2) that there are an integer k ≥ 1 and
t0, . . . , tk ∈ R such that a = t0 < t1 < . . . < tk = b and each of the curve segments
γ([tq−1, tq]), q = 1, . . . , k, is contained in the set U ′(xq) for some xq ∈ Γ . From
now on we will write Uq, U ′q and fq instead of U(xq), U ′(xq) and fxq . Now
(a) is obvious, and so is (d) since γ(tq) ∈ Uq ∩ Uq+1. Furthermore, the collection
U1, . . . , Uk contains (possibly with repetitions) all the U(x) for x ∈ Γ , since the
Uq cover γ([a, b]), while no proper subfamily of the U(x) does (by (36.1), (36.2)).
Hence M = U1 ∪ . . . ∪ Uk and so f = f1 + . . .+ fk is positive everywhere on M .
Setting ϕq = fq/f , we now obtain (b) and (c), which completes the proof.

Problems
1. Let U be a family of open sets in R covering (that is, containing in their

union) a closed interval [a, b]. Show the existence of ε > 0 such that for every
subinterval I of [a, b] whose length |I| is less than ε, there is U ∈ U with
I ⊂ U . (Hint below.)

2. Let U be a family of open sets in a manifold M and let γ : [a, b] → M
be a continuous curve whose image set γ([a, b]) is contained in the union of
U . Prove the existence of an integer k ≥ 1 and t0, . . . , tk ∈ R such that
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a = t0 < t1 < . . . < tk = b and each of the curve segments γ([tq−1, tq]),
q = 1, . . . , k, is contained in some U ∈ U . (Hint below.)

3. Separation of sets by functions. Let there be given a manifold M (satisfying,
by definition, the countability axiom, cf. §14), a closed subset K of M and a
compact subset K ′ of M . Prove that, if K and K ′ are disjoint, then there
exists a C∞ function f : M → R with 0 ≤ f ≤ 1 and f = 1 on an open set
containing K, as well as f = 0 on an open set containing K ′. (Hint below.)

Hint. In Problem 1, if no such ε > 0 existed, we could find two sequences xk, yk
in [a, b] with |xk − yk| → 0 as k → ∞, while, for each k, [xk, yk] would not be
contained in any U ∈ U . Choosing a convergent subsequence of the xk, we then
obtain a contradiction.
Hint. In Problem 2, extend γ continuously to an open interval containing [a, b]
(e.g., making it constant beyond a and beyond b), and then apply Problem 1 to
the family of γ-preimages of the sets forming U .
Hint. In Problem 3, for any fixed x ∈ K ′ there is a function φ = φx satisfying
the conditions in Problem 19 of §6, including φx = 0 on some neighborhood Ux of
x. By the Borel-Heine theorem, finitely many of the Ux cover K ′, and we can let
f be the product of the corresponding φx.

37. Densities and integration

Topics: Densities in real vector spaces; components; positivity; the bundle of densities; densities

on manifolds; the volume element of a Riemannian manifold; a generalization to the pseudo-Riem-

annian case; integration of compactly supported densities on manifolds; the volume of a compact

manifold with a fixed positive density.

Let V be a real vector space of dimension n, with 0 ≤ n <∞, and let B(V )
be the set of all (ordered) bases of V . By a density in V we mean any function
µ : B(V )→ R with the property that

(37.1) µ1′...n′ = |J |µ1...n , with J = det [eaa′ ],

for any two bases ea and ea′ of V . Here we write µ1...n instead of µ(e1, . . . , en),
while J is the determinant of the transition matrix [eaa′ ] with the entries charac-
terized by ea′ = eaa′ea.

A density thus is uniquely determined by the value it assigns to any single fixed
basis; in other words, densities in V form a line (that is, a 1-dimensional real vector
space). The line of densities in V is naturally oriented, since a nonzero density is
clearly either positive or negative as a real valued function. A fixed basis ea of V
naturally distinguishes a positive density µ characterized by µ1...n = 1.

When n = 0, the set B(V ) has just one element (the empty basis), so that den-
sities in V = {0} are nothing else than real numbers, with the unique distinguished
density correponding to the number 1.

Applying this fibre-by-fibre to any C∞ real vector bundle η over a manifold M ,
we obtain the C∞ real-line bundle of densities in η, with the local trivializing C∞

sections distinguished as above (at each point of the trivialization domain) by all
possible local C∞ trivializations of η. (Differentiability of the resulting transition
functions is obvious from (37.1).) In the case of the tangent bundle η = TM ,
global sections of its bundle of densities will from now on be called densities on the
manifold M . A density µ on M is represented, in any local coordinates, by its
component function µ1...n, defined, at any point x of the coordinate domain. by
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µ1...n(x) = µ(p1(x), . . . , pn(x)), where pj are the coordinate vector fields. A density
on M is positive (at every point) if and only if so are its component functions in
all local coordinate systems.

A Riemannian metric g on a manifold M canonically defines a positive C∞

density µ on M , known as the volume element of the Riemannian manifold (M, g).
Namely, given x ∈ M , we declare µ(x) to be the positive density in TxM natu-
rally distinguished, as descibed above, by any g-orthonormal basis of TxM . This
definition is correct, that is, µ(x) does not depend on the choice of such a basis
(which is clear from (37.1) since, according to Problem 18 in §12, the transition
matrix A between two orthonormal bases has det A = ±1). Instead of using the
generic symbol µ, we will denote the volume element of a Riemannian metric g by
dg. In local coordinates xj, the component function µ1...n of µ = dg is given by

(37.2) (dg)1...n =
√

det g , n = dimM

(see Problems 1 and 2), so that dg is C∞-differentiable; here det g is the function,
depending on the choice of the coordinates, which assigns to each point x of the
coordinate domain the determinant of the matrix [gjk(x)].

Suppose now that µ is a compactly supported continuous density on a manifold
M . We define the integral of µ to be the real number

∫
M
µ obtained as follows.

First, let us assume that suppµ is small in the sense of §36, and choose a coordinate
system xj containing suppµ in its domain. We then declare

∫
M
µ to be the

ordinary integral of the component function µ1...n of µ treated, with the aid of the
coordinate diffeomorphism, as a compactly supported continuous function on Rn,
where n = dimM . The latter integral does not depend on the coordinates used
(Problem 4).

Next, let µ be an arbitrary compactly supported continuous density on M .
By Proposition 36.2, there exists a finite partition of unity ϕ1, . . . , ϕk for the
compact set supp ω such that each suppϕq, q = 1, . . . , k, is small. We then

set
∫
M
µ =

∑k
q=1

∫
M
ϕqµ, where the small-support integrals

∫
M
ϕqµ are defined

as above. Finally. the number thus obtained does not depend on the partition

of unity used, since for another such partition f1, . . . , fl the value
∑l
a=1

∫
M
faµ

coincides with
∑k
q=1

∫
M
ϕqµ as they both equal

∑l
a=1

∑k
q=1

∫
M
faϕqµ (here we

use the obvious linearity of the small-support integral in µ).
Of particular importance is the case where the manifold M is compact and

the continuous density µ on M (often assumed C∞-differentiable) is also positive
everywhere on M . (This is, for instance, the case with the volume element dg of
any compact Riemannian manifold.) If such µ is fixed, we refer to the integral

(37.3) VolM =

∫
µ ∈ R ,

as the volume of M . In dimensions 1 and 2 one employs the terms length and area
rather than ’volume’ and uses the symbol AreaM for VolM when dimM = 2.

Problems
1. Verify (37.2). (Hint below.)
2. Let there be given a positive C∞ density µ on a manifold M , and a positive

C∞ function ϕ : M → R. Prove that M admits an atlas in whose every chart
µ1...n = ϕ, where n = dimM . (Hint below.)



38. DIVERGENCE OPERATORS 125

3. Show that the volume element can be similarly defined in the more general case
of a pseudo-Riemannian metric. How must formula (37.2) be modified? (Hint

below.)
4. Verify that the integral of a continuous density with a small support, defined

above, does not depend on the choice of the coordinate system. (Hint below.)
5. Given a Riemannian manifold (M, g) and local coordinates xj in M , show that

(37.4) a) Γ jjk = ∂k log
√

det g , b) gjl∂kgjl = ∂k log det g,

where Γ ljk are the Christoffel symbols of g, and det g is the same coordinate-

dependent function as in (37.2). (Hint below.)

Hint. In Problem 1, fix a point x in the coordinate domain and treat both sides
of (37.2) as functions B → R. Then note that they agree on orthonormal bases,
and obey the same transformation rule under a change of basis.
Hint. In Problem 2, fix a coordinate system xj at any given point y and use it to
find new coordinates at y that have the required property. In view of (37.1) and
the inverse mapping theorem, this amounts to finding n functions F 1, . . . , Fn of
the variables xj that are of class C∞ and µ1...n = ϕ det[∂jF

k]. We may choose
F 2 = x2, . . . , Fn = xn and let F 1 be any function with ∂1F

1 = µ1...n/ϕ.
Hint. In Problem 3, note that Problem 18 in §12 can still be applied. Under the
square root symbol in (37.2), the determinant must be replaced by its absolute
value.
Hint. In Problem 4, use the transformation rule (37.1) and the change-of-variables
formula for n-dimensional Riemann integrals.
Hint. In Problem 5, (b) is immediate from (8.21) with t = xk and F = [gjl], while
(a) then easily follows if one sums (30.3) over j = l, noting that two of the three
resulting terms cancel each other due to symmetry of gjk (Problem 1 in §29).

38. Divergence operators

Topics: The divergence operator corresponding to a differentiable positive density; the Laplacian

of a Riemannian manifold; more general divergence operators; divergences of the curvature and

Ricci tensors; the Bianchi identity for the Ricci tensor.

Any fixed positive C∞ density µ on a manifold M gives rise to the divergence
operator, which associates with every C1 vector field w on M the function divw
defined, in local coordinates, by

(38.1) µ1...ndivw = ∂j(w
jµ1...n) , where n = dimM .

Theorem 38.1. For any positive C∞ density µ on a manifold M , the diver-
gence operator div with (38.1) is well defined, that is, independent of the choice
of the coordinate system. Furthermore, if µ = dg is the volume element of a
Riemannian metric g on M , then, for every C1 vector field w,

(38.2) divw = Trace∇w, that is, divw = wj ,j ,

where ∇ is the Levi-Civita connection of g, and Trace is the pointwise trace of
the vector-bundle morphism ∇w : TM → TM .

Proof. If we define div by (38.2), for a fixed metric g, the relation wj ,j =

∂jw
j + Γ jjkw

k, obvious from (23.6), will yield (38.1) for µ = dg, as one sees using

(37.4) and (37.2). Our assertion now follows since, by (37.2), every positive C∞

density µ on a coordinate domain U is the volume element of some Riemannian
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metric on U (for instance, one obtained when one multiplies a prescribed metric
by a suitable positive function). This completes the proof.

For a fixed positive C∞ density µ on a manifold M , a C1 function f and a C1

vector field w, we have

(38.3) div (fw) = f divw + dwf ,

as one easily sees using (38.1) and (5.14).
Let (M, g) be a Riemannnian manifold. The Laplace operator, or Laplacian, of

(M, g) is the operator sending every (local) C2 function f on M to the function

(38.4) ∆f = div∇f ,

where ∇f denotes the g-gradient of f . Thus, by (29.4),

(38.5) ∆f = f ,jj = Traceg∇df = 〈g,∇df〉 = gjkf,jk ,

Note that, by (38.4) and (38.3), with w = ∇f ,

(38.6) f∆f = div (f∇f) − |∇f |2

for any C2 function f on a Riemannnian manifold (M, g).
Suppose now that we are given a Riemannnian manifold (M, g) and a real

vector bundle η over M , along with a connection ∇ in η. We now define a
divergence operator which sends every C1 section Ψ of Hom(η, TM) to the section
divΨ of η∗, given by

(38.7) [divΨ ]φ = Trace {v 7→ [∇vΨ ]φ} , that is, [divΨ ]a = Ψ ja,j ,

for any x ∈ M and phi ∈ ηx, where v varies in TxM , and ∇ stands also for the
connection in Hom(η, TM) induced by the connection ∇ in η and the Levi-Ci-
vita connection of g. (The components refer to local coordinates xj in M and a
local trivialization ea of η.) This operator generalizes div for vector fields on a
Riemannnian manifold (Problem 1).

Some other special cases of (38.7) are of interest. First, given a C2 vector field
w on a Riemannnian manifold (M, g), we may apply (38.7) to Ψ = ∇w, which is
a section Hom(TM, TM) (and, in η = TM , the Levi-Civita connection is used).
The resulting divergence div∇w is a cotangent vector field, and appears in the
identity

(38.8) Ric(w, · ) = div∇w − d (divw),

which is nothing else than a coordinate-free version of (24.12). As another example,
we can form the divergence divR of the curvature tensor field of any Riemannian
manifold (M, g), with the component functions

(38.9) (divR)jkl = Rjkl
s
,s .

As ∇ is torsionfree, we may use the second Bianchi identity (26.8), that is, Rjkl
p
,s+

Rksl
p
,j +Rsjl

p
,k = 0. Summed over p = s, it yields the relation

(38.10) Rjkl
s
,s = Rjl,k −Rkl,j .

The coordinate-free version of (38.10) reads

(38.11) (divR)(u, v, w) = (∇vRic)(u,w)− (∇uRic)(v, w)

for any vectors u, v, w ∈ TxM and any x ∈M .
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Next, since contractions commute with the covariant differentiation, we have
gjlRjkl

s
,s = (gjlRjkl

s),s = Rsk,s, the Rsk = gslRkl being as usual the components of

the g-modified Ricci tensor. (Cf. Lemma 30.2.) Similarly,

(38.12) gjlRjl,k = (gjlRjl),k = s ,k .

s being the scalar curvature. Therefore, “multiplying” (38.10) by gjl we obtain
the following equality, called the Bianchi identity for the Ricci tensor :

(38.13) 2 div Ric = ds , that is, 2gjlRkl,j = s ,k .

where the divergence is applied to the modified Ricci tensor Ric, treated as a
section of Hom(TM, TM).

Problems
1. How does the divergence operator for vector fields on a Riemannnian manifold

(M, g) arise as a special case of (38.7)? (Hint below.)
2. Verify that ∆[H(f)] = H ′(f)∆f + H ′′(f)|∇f |2 whenever f : M → R is a C2

function on a Riemannnian manifold (M, g), assuming values in some interval
I ⊂ R, and H : I → R is of class C2, while H(f) stands for the composite
H ◦ f , and H ′ is the derivative of H.

2. Show that Ric(w,w) = (divw)2− Trace (∇w)2 + div [∇ww− (divw)w] for any
C2 vector field w on a Riemannnian manifold (M, g). Here (∇w)2 is the vector-
bundle morphism TM → TM obtained by composing ∇w with itself. (Hint

below.)
3. A Riemannian manifold (M, g) is said to have harmonic curvature if divR = 0

identically in M . Verify that this is the case if and only if the Ricci tensor
satisfies the Codazzi equation Rjl,k = Rkl,j .

4. Let a connected Riemannian manifold (M, g) have harmonic curvature (Prob-
lem 3). Show that its scalar curvature is constant. (Hint below.)

Hint. In Problem 1, use the product bundle η = M ×R with the standard flat
connection, noting the natural identification Hom(η, TM) = TM .
Hint. In Problem 3, use (24.12) to verify that Rjkw

k = wj ,kjw
k − wj ,jkw

k =
wj ,jw

k
,k − wj ,kwk,j + (wj ,kw

k),j − (wj ,jw
k),k.

Hint. In Problem 4, “multiply” the equality Rjl,k = Rkl,j (see Problem 3) by gjl

and use (38.12) – (38.13).

39. The divergence theorem

Topics: The divergence theorem; Bochner’s Lemma; Bochner’s integral formula.

We begin with a classical result, usually referred to as the divergence theorem:

Theorem 39.1. For any compactly supported C1 vector field w on a manifold
any fixed positive C∞ density µ on a manifold M , we have

(39.1)

∫
M

(divw)µ = 0 .

Proof. See Problem 1.



128 7. INTEGRATION

Thus, for any compactly supported C2 function f on a Riemannnian manifold
(M, g), combining (39.1) with (38.4) and (38.6), we obtain the integral formulae

(39.2) i)

∫
M

∆f dg = 0 , ii)

∫
M

f∆f dg = −
∫
M

|∇f |2dg .

The following consequence of the divergence theorem is known as Bochner’s Lemma:

Corollary 39.2. A C2 function f on a compact connected Riemannian man-
ifold, such that ∆f ≥ 0, is necessarily constant.

Proof. See Problem 2.

A further consequence is Bochner’s integral formula

(39.3)

∫
M

Ric(w,w) dg =

∫
M

(divw)2 dg −
∫
M

Trace (∇w)2 dg ,

valid whenever w is a compactly supported C2 vector field on a Riemannian man-
ifold (M, g). See Problem 3.

Problems
1. Prove the divergence theorem. (Hint below.)
2. Prove Bochner’s Lemma. (Hint below.)
3. Establish Bochner’s integral formula. (Hint below.)
4. Given a Riemannnian manifold (M, g), a real vector bundle η over M , and

a connection ∇ in η, show that, for arbitrary C1 sections ψ of η and Φ of
Hom(η, TM),

(39.4)

∫
M

Trace (Φ∇ψ) dg =

∫
M

(δΦ)ψ dg .

Hint. In Problem 1, use Corollary 36.3, noting that (39.1) is obvious when the
support of w is small: the left-hand side of (39.1) equals the Euclidean integral of
the right-hand side of (38.1), in which each of the n summands clearly vanishes.
Hint. In Problem 2, (39.2.i) gives

∫
M

∆f dg = 0. Since ∆f is nonnegative, it
must thus vanish identically, and so f is constant by (39.2.ii).
Hint. In Problem 3, use Problem 3 in §38.

40. Theorems of Bochner and Lichnerowicz

Topics: Killing fields and harmonic 1-forms on Riemannian manifolds; Bochner’s theorem; eigen-

values and eigenfunctions of the Laplacian; the theorem of Lichnerowicz.

By a Killing field on a pseudo-Riemannian manifold (M, g) we mean any C∞

vector field w on M such that the vector-bundle morphism ∇w : TM → TM is
skew-adjoint at every point of M .

On the other hand, a harmonic 1-form on a compact Riemannian manifold
(M, g) is defined to be any C∞ section ξ of T ∗!M such that, for the vector field
w corresponding to ξ under the index-raising operation (§29), ∇w is self-adjoint
at every point and divw = 0 everywhere in M .

Both Killing fields and harmonic forms are of fundamental importance in Rie-
mannian geometry, and will be discussed in more detail later. (See §86 in Appendix
D and §69 in Chapter 13.) Here we will establish just one result about them, due
to Bochner [Bo]:
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Theorem 40.1. Let (M, g) be a compact Riemannian manifold with the Ricci
curvature function Ric : T 1M → R.

a. If Ric > 0, then (M, g) admits no nontrivial harmonic 1-form.
b. If Ric ≥ 0, then every harmonic 1-form on (M, g) is parallel.
c. If Ric < 0, then (M, g) admits no nontrivial Killing field.
d. If Ric ≤ 0, then every Killing field on (M, g) is parallel.

Proof. This is immediate from (39.3), as in either case the right-hand side of
(39.3) has a specific sign, while Trace (∇w)2 equals ±|∇w|2. (Note that divw = 0
for any Killing field w.)

From now on we will use the symbols ( , ) and ‖ ‖ for the L2 inner product, and
the L2 norm corresponding to it, for functions f, ϕ : M → R, vector fields v, w
on M , and twice-covariant tensor fields a, b on a Riemannian manifold (M, g), all
of which are assumed continuous and compactly supported. Specifically,

(40.1) (f, ϕ) =

∫
M

fϕ dg, (v, w) =

∫
M

g(v, w) dg, (a, b) =

∫
M

〈a, b〉 dg,

while ‖f‖2 = (f, f) (and similarly in other cases), 〈 , 〉 being the pointwise inner
product with 〈a, b〉 = gjpgkqajkbpq (see §28).

For instance, given a compactly supported C2 function f on a Riemannian
manifold (M, g), we have

(40.2) a) (f,∆f) = −‖∇f‖2, b)

∫
M

Ric(∇f,∇f) dg = ‖∆f‖2 − ‖∇df‖2,

as one sees using (39.2.ii) and, respectively, Bochner’s integral formula (39.3) with
w = ∇f (so that Trace (∇w)2 = |∇df |2).

Let (M, g) now be a compact Riemannian manifold. As usual, ∆ denotes its
Laplacian. We call a real number λ an eigenvalue of −∆ if ∆f = −λf for some
C2 function f : M → R which is not identically zero. Any such f is said to be an
eigenfunction of −∆ for the eigenvalue λ (or, simply an eigenfunction of −∆, if
λ is not specified). By the eigenspace of −∆ for the eigenvalue λ we mean the
vector space of all C2 functions f : M → R with ∆f = −λf .

Lemma 40.2. For any compact connected Riemannian manifold (M, g),

a. 0 is an eigenvalue of −∆ and the corresponding eigenspace consists of
constant functions;

b. all nonzero eigenvalues of −∆ are positive.

Proof. See Problem 1.

The next result is due to Lichnerowicz.

Theorem 40.3. Let a compact n-dimensional Riemannian manifold (M, g)
satisfy the following lower bound on the Ricci curvature:

(40.3) Ric ≥ (n− 1) δ > 0

with a constant δ, and let λ be a nonzero eigenvalue of −∆. Then

(40.4) λ ≥ nδ.
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Proof. Let f : M → R be a C2 function. As 〈g, g〉 = n (see Problem 2 in
§29), the Schwarz inequality (∆f)2 = 〈g,∇df〉2 ≤ n|∇df |2 shows that sum of the
integrands on the right-hand side of (40.2.b) does not exceed (n − 1)(∆f)2/n.
Therefore, nδ‖∇f‖2 ≤ n(n − 1)−1

∫
M

Ric(∇f,∇f) dg ≤ ‖∆f‖2 due to the as-
sumption (40.3). If we now choose f with ∆f = −λf and λ‖f‖ > 0 (cf.
Lemma 40.2(b)), formula (40.2.a) will give λ‖f‖2 = −(f,∆f) = ‖∇f‖2, and so
nδλ‖f‖2 = nδ‖∇f‖2 ≤ ‖∆f‖2 = λ2‖f‖2. As λ‖f‖ > 0, this yields (40.4).

Problems
1. Establish Lemma 40.2. (Hint below.)
2. Under the assumptions of Theorem 40.3, suppose that (40.4) holds as an equality,

that is, nδ is a (nonzero) eigenvalue of −∆. Prove that every eigenfunction f
of −∆ for the eigenvalue λ = nδ then satisfies the equation n∇df = −λfg.
(Hint below.)

Hint. In Problem 1, (a) is obvious from Bochner’s Lemma (Corollary 39.2), while
(40.2.a) with ∆f = −λf and ‖f‖ 6= 0 gives λ = ‖∇f‖2/‖f‖2 ≥ 0.
Hint. In Problem 2, consider the equality case in the Schwarz inequality.

41. Einstein metrics and Schur’s theorem

Topics: Einstein manifolds; spaces of constant curvature; flat pseudo-Riemannian manifolds;

Schur’s theorem.

A pseudo-Riemannian manifold (M, g) of any dimension n is called an Ein-
stein manifold, and its metric g is said to be an Einstein metric, if its Ricci tensor
Ric is a multiple of g, that is,

(41.1) Ric = κg

for some constant κ. One then refers to κ as the Einstein constant of (M, g).
Taking the g-trace §29 of both sides of (41.1) we obtain

(41.2) κ =
1

n
s , where n = dimM.

In particular, the scalar curvature s of any Einstein manifold is constant.
Examples of Einstein manifolds will be described in §42 (Example 42.2).
We say that a pseudo-Riemannian manifold (M, g) is a space of constant cur-

vature K, where K is a real number, if

(41.3) Rjlp
q = K(gjpδ

q
l − glpδ

q
j ) ,

R being the curvature tensor of (M, g), that is, if

(41.4) R(u, v)w = K [g(u,w)v − g(v, w)u]

for all points x ∈ M and all vectors u, v, w ∈ TxM . On the other hand, one calls
(M, g) a flat pseudo-Riemannian manifold if R = 0 identically. In dimensions
n ≥ 2, flatness amounts to being a space of constant curvature 0. On the other
hand, every pseudo-Riemannian manifold of dimension n = 1 is necessarily flat
(§31), and relation (41.3) then holds for any given choice of K, since both sides
then equal zero; this is why we declare that, by definition, K = 0 when n = 1.

Lowering an index, we can equivalently rewrite (41.3) in terms of the g-modified
curvature tensor:

(41.5) Rjlpq = K(gjpglq − glpgjq)) .
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Contracting (41.3) in l = q, we obtain Rjp = (n−1)Kgjp, where n = dimM . Thus,
a space of constant curvature K is also an Einstein manifold with the Einstein
constant κ = (n− 1)K.

According to Proposition 31.1, equality (41.3) is always satisfied in dimension
2, except that K then stands for the Gaussian curvature function and need not
be a constant. On the other hand, the following result, known as Schur’s theorem,
states that in dimensions n > 2 the constancy assumption about κ in (41.1) (or
K in (41.3)) is redundant:

Theorem 41.1. Let a connected pseudo-Riemannian manifold (M, g) of di-
mension n 6= 2 satisfy (41.1) with some function κ : M → R. Then κ is constant,
that is, (M, g) is an Einstein manifold.

Proof. Formula (41.1) implies (41.2) and so nRkj = sδkj . Hence nRkj,l = s ,lδ
k
j

and nRkj,k = s,j . However, by (38.13), 2Rkj,k = s,j . Hence (n− 2) s,j = 0, so that
s and κ are constant.

Corollary 41.2. If a connected pseudo-Riemannian manifold (M, g) with
dimM 6= 2 satisfies (41.3) with a function K : M → R, then K is constant, that
is, (M, g) is a space of constant curvature.

Problems
1. Verify that if a connected Einstein manifold (M, g) admits a local C1 vector

field w which is parallel (Problem 3 in §20), then either w = 0 identically, or
Ric = 0 everywhere. (Hint below.)

2. Show that the Riemannian product of two Einstein manifolds with the same
Einstein constant (or, or two flat pseudo-Riemannian manifolds), is also an Ein-
stein manifold with the same Einstein constant (or, respectively, is also flat).
(Hint below.)

3. Can the Riemannian product of two spaces of constant curvature, which are not
both flat, ever be a space of of constant curvature? (Hint below.)

4. Verify that a Riemannian manifold (M, g) is an Einstein manifold if and only
if its Ricci-curvature function Ric : T 1M → R is constant.

5. Let (M, g) be a connected pseudo-Riemannian manifold, and let f : M → R
be a C2 function such that ∇df = Cfg, that is, f,jk = Cfgjk for some constant
C.
(a) Verify that the function ϕ = gjkf,jf,k − Cf2 is constant.
(b) If, moreover, (M, g) is a space of constant curvature K and f is not

constant, then C = −K.
(Hint below.)

Hint. In Problem 1, use (24.12).
Hint. In Problem 2, use Problem 5 of §30.
Hint. In Problem 3, no: if it were, it would be non-flat (as so is at least one factor
metric, cf. Problem 5 in §30), while, in coordinates xj , yα chosen as in Problem 5
of §30, we have Rjαjα = 0 6= gjjhαα.
Hint. In Problem 5, to obtain (a), differentiate ϕ. As for (b), we can use the
Ricci-Weitzenböck identity

(41.6) ξj,kl − ξj,lk = −Rkljsξs
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for local cotangent vector fields ξ of class C2, easily derived from (24.10) by low-
ering an index. We apply (41.6) to ξ = df , then use the relation f,jk = Cfgjk and
(41.5), followed by a suitable contraction.

42. Spheres and hyperbolic spaces

Topics: Geodesics of standard spheres and hyperbolic spaces; the second order equation satisfied

by linear functions restricted to them; constancy of their curvatures; the eigenspace of the minus-

Laplacian of a sphere for the lowest positive eigenvalue; examples of Einstein manifolds.

Let V be a real vector space of dimension n+ 1, where 1 ≤ n <∞, endowed
with a fixed a nondegenerate symmetric bilinear form 〈 , 〉 of the sign pattern
± + . . . +, so that 〈 , 〉 is Euclidean or Lorentzian, depending on whether the sign
± is + or −. As in §28, let us consider the Riemannian manifold (M, g) defined
to be the sphere or hyperbolic space of a fixed radius a > 0 in V , so that M =
{x ∈ V : 〈x, x〉 = 1} (if ± = +), or M is one of the two connected components of
the hyperboloid {x ∈ V : 〈x, x〉 = −1} (if ± = −). (Cf. also Problems 11 and 12
in §28.) In both cases, g is the submanifold metric: gx(v, w) = 〈v, v〉 for x ∈ M
and v, w ∈ TxM = x⊥ ⊂ V (see Problem 12 in §13).

Given x ∈M and v ∈ TxM = x⊥ with 〈v, v〉 = a2 (that is, gx(v, v) = a2), let
x(t) = expxtv be the geodesic of (M, g) with x(0) = x and ẋ(0) = v, defined on
a maximal possible interval containing zero. That interval then is the whole real
line and, explicitly,

(42.1) x(t) =

{
(cos t)x + (sin t)v , if ± stands for +,

(cosh t)x + (sinh t)v , if ± stands for − .

In fact, the image set of the curve x(t) defined by (42.1) is great circle or one com-
ponent of a hyperbola, obtained by intersecting M with the plane P = Span (x, v),
and so it is the fixed point set of the isometry of (M, g), obtained by restricting
to M the reflection in P , that is, the linear isomorphism V → V equal to Id on
P and to −Id on P⊥. (Note that the reflection preserves the form 〈 , 〉.) Since
g(ẋ, ẋ) = a2 is constant as a function of t, the conclusion that (42.1) defines a
geodesic is now immediate if one combines Problem 2 in §34 with Problem 5 in §33
and Problem 1 in §31. Using affine change of parameter (cf. Problem 5 in §22), we
can easily modify (42.1) so as to obtain a formula for every geodesic in (M, g). In
particular, (M, g) is complete. (For the sphere, this is also clear from compactness,
cf. Theorem 33.3.)

Let f : M → R now denote the restriction to our manifold M of a linear
(homogeneous) function V → R. As a function on the Riemannian manifold
(M, g), any such f satisfies the equation

(42.2) ∇df = −Kfg, that is, f,jl = −Kfgjl ,

for the constant K = ±1/a2. In fact, since (42.1) defines a geodesic of (M, g),
formula (24.15) gives equality in (42.2) when both sides are applied to a pair (v, v),
with v ∈ TxM , for any x ∈ M , such that g(v, v) = a2. Now (42.2) follows from
bilinearity and symmetry of ∇df (see Problem 2 in §24). “Multiplying” (42.2) by
gjl we now obtain

(42.3) ∆f = −nKf .

Thus, every nonzero linear function V → R, restricted to M , is an eigenfunction
of −∆ for the eigenvalue λ = nK.
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If n ≥ 2, formula (42.2) also implies that (M, g) is a space of constant curvature
K = ±1/a2. In fact, differentiating (42.2) and then applying the Ricci-Weitzenböck
identity (41.6) to ξ = df , we obtain the equality in (41.3): both sides agree when
“multiplied” by fq, while every cotagent vector at any point x ∈ M equals the
value at x of df , for some linear function f .

In the case of the sphere, we also have the following theorem about eigenvalues
and eigenfunctions of −∆.

Theorem 42.1. Let (M, g) be the n-dimensional standard sphere of radius
a > 0 around 0 in a Euclidean space V . Then the lowest nonzero eigenvalue
of −∆ for (M, g) is λ = nK, for K = 1/a2, and the corresponding eigenspace
consists precisely of all linear homogeneous functions V → R, restricted to M .

Proof. See Problem 3.

Example 42.2. The results of this and the previous section lead to the following
examples of Einstein manifolds.

a. Spaces of nonzero constant curvature K, including standard spheres (K >
0), hyperbolic spaces (K < 0), and flat manifolds (K = 0). Spheres are
compact, hyperbolic spaces are noncompact but complete.

b. Flat manifolds, that is, spaces of constant curvature 0. Among them, pseu-
do-Euclidean (and Euclidean) spaces are noncompact but geodesically com-
plete (cf. Problem 2 in §30). Since 1-dimensional pseudo-Riemannian man-
ifolds are flat (§41) and flatness is preserved by the Riemannian-product
operation (Problem 2 in §41), examples of compact flat manifolds, in all
dimensions, are provided by tori with product metrics.

c. Combining (a) with Problem 2 in §41, we obtain examples of Einstein man-
ifolds in every dimension n ≥ 4 which are not spaces of constant curvature.
On the other hand, no such examples exist in dimensions n ≤ 3 (see Prob-
lem 4).

Problems
1. Explain why formula (42.2) fails to imply that (M, g) is a space of constant

curvature K = ±1/a2 when n = 1.
2. Show that, for the n-dimensional sphere (M, g) of radius a > 0 centered at

0 in a Euclidean space V , the C2 functions f : M → R satisfying (42.2) are
precisely the restrictions to M of linear homogeneous functions on V . (Hint

below.)
3. Prove Theorem 42.1. (Hint below.)
4. Prove that every Einstein manifold (M, g) of dimension n ≤ 3 is a space of

constant curvature. (Hint below.)
5. For (M, g) as in Problem 2, show that the distance function is given by

d(x, y) = a arccos[〈x, y〉/a2] ,

where arccos : [−1, 1] → [0, π] is the inverse of cos : [0, π] → [−1, 1]. (Hint

below.)
6. Verify that the distance function of a radius a hyperbolic space of any dimension

n, is given by

d(x, y) = a cosh−1 [|〈x, y〉|/a2] ,
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cosh−1 : [1,∞) → [0,∞) being the inverse function of cosh : [0,∞) → [1,∞).
(Hint below.)

7. Show that arccos〈x, z〉 ≤ arccos〈x, y〉 + arccos〈y, z〉 for unit vectors x, y, z in
a real vector space with a positive-definite inner product 〈 , 〉. (Hint below.)

Hint. In Problem 2, note that both spaces are of the dimension n+ 1. (With the
obvious inclusion between them, this will prove their equality.) That dimW = n+1
for the space W of all solutions f to (42.2) can be seen by fixing a point x ∈M and
considering the operator W → R× T ∗xM given by f 7→ (f(x), dfx). Its injectivity
follows from uniqueness of solutions for second-order ordinary differential equations,
applied to f(x(t)), with x(t) as in (42.1) (and the equation provided by (24.15)).
Hint. In Problem 3, use Problem 2 above and Problem 2 in §40.
Hint. In Problem 4, the cases n = 1 and n = 2 are settled by the discussion in
§41 and Proposition 31.1. If n = 3, fix x ∈M and a coordinate system at x such
that, at x, the the coordinate vector fields form a g-orthonormal basis of TxM .
Then directly verify the equality (41.5) with K = κ/2 (where κ is the Einstein
constant of (M, g)).
Hint. In Problem 5 and Problem 6, use (42.1) and the Hopf-Rinow theorem.
Hint. In Problem 7, use Problem 4 and the triangle inequality for d.

43. Sectional curvature

Topics: The sectional curvature function of a pseudo-Riemannian manifold.

Let (M, g) pseudo-Riemannian manifold of dimension n ≥ 2. By the Grass-
mannian of nondegenerate planes in (M, g) we mean the set G2 of all pairs (x, P )
formed by a point x ∈M and a two-dimensional vector subspace P ⊂ TxM such
that the restriction of the metric gx to P is nondegenerate. (Cf. Problem 16 in
§12.) The dependence of G2M on the metric g is, for simplicity, suppressed in
our notation, just as it was in the case of T 1M in §35. Note that, however, G2 is
the same for all positive-definite metrics g on M .

Given (x, P ) ∈ G2, we let εP stand for 1 or −1, depending on whether the
restriction of 〈 , 〉 to P is definite or not. The sectional curvature of (M, g) is the
function K : G2 → R given by

(43.1) K(x, P ) = εPR(v, w, v, w)

for (x, P ) ∈ G2 and any basis v, w of P which is orthonormal, that is, |g(v, v)| =
|g(w,w)| = 1 and g(v, w) = 0. In view of (8.18) and Problem 1, this definition is
correct, that is, independent of the choice of such a basis v, w.

Problems
1. Given a finite-dimensional real or complex vector space V and a nondegenerate

symmetric bilinear form 〈 , 〉 on V , let us call a basis eα of V orthonormal if
〈eα, eβ〉 = 0 for α 6= β and 〈eα, eα〉 = εα = ± 1 for each α. Show that, for any
two orthonormal bases eα and eα′ of V , the transition matrix [Aαα′ ], defined
by eα′ = Aαα′eα, satisfies

det[Aαα′ ] = ± 1 .

(Hint below.)
2. Verify that, for a space of constant curvature K of dimension greater than 1,

the sectional curvature function is constant and equal to K.
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3. Explain how the sectional curvature of a pseudo-Riemannian surface may be
identified with its Gaussian curvature.

4. Let vq, q = 1, . . . , n, be an orthonormal basis of the tangent space TxM at
a point x in an n-dimensional Riemannian manifold (M, g), and let us set
Kqr = K(x, P ) whenever q, r ∈ {1, . . . , n}, q 6= r, and P = Span (vq, vr).
Show that Ric(vq, vq) =

∑
rKqr, with r ranging in {1, . . . , n}\ {q}.

5. Let (M, g) be a four-dimensional Riemannian manifold. Prove that (M, g) is an
Einstein manifold if and only if K(x, P ) = K(x, P⊥) for every pair (x, P ) ∈ G2,
where P⊥ is the orthogonal complement of P in TxM . (Hint below.)

6. By an algebraic curvature tensor in a real vector space V we mean any quadrilin-
ear function R : V × V × V × V → R with R(v, v′, w, w′) = −R(v′, v, w,w′) =
−R(v, v′, w′, w) and R(u, v, w, u′) + R(v, w, u, u′) + R(w, u, v, u′) = 0 for all
v, v′, w, w′, u ∈ V . (Thus, R has an additional symmetry: R(v, v′, w, w′) =
R(w,w′, v, v′), cf. Problem 7 in §30.) Prove that any algebraic curvature tensor
R in a real vector space V is uniquely determined by its biquadratic function

(43.2) V × V 3 (v, w) → R(v, w, v, w).

(Hint below.)

Hint. In Problem 1, 〈vα, vβ〉 = BραB
σ
β 〈eρ, eσ〉 =

∑
ρ ερB

ρ
αB

ρ
β , i.e., G = BTDB

with D = diag (ε1, . . . , εn).
Hint. In Problem 5, let us fix a point x ∈M and an orthonormal basis ej of TxM .
Setting Rjlpq = R(ej , el, ep, eq) and Rjl = Ric(ej , el), we have Rjl =

∑
q Rjqlq.

Let {j, l, p, q} = {1, 2, 3, 4}. If K(x, P ) = K(x, P⊥) for all planes P in TxM , it
follows from (30.7) that 0 = R(ej + el, ep, ej + el, ep)−R(ej − el, eq, ej − el, eq) =
Rjplp + Rjqlq = Rjl, and 0 = (Rjpjp − Rlqlq) + (Rjqjq − Rlplp) = Rjj − Rll, so
that Ricx is a multiple of gx, and, as x was arbitrary, g is an Einstein metric
by Theorem 41.1. Conversely, let g be an Einstein metric, and, with x and ej as
above, let us fix j, p, q with {j, p, q} = {2, 3, 4}. Setting Al = R1l1l − Rpqpq for
l = 2, 3, 4, we have Dp+Dq = R11−Rjj = 0 and, similarly, Dj+Dp = Dj+Dq = 0,
so that D2 = D3 = D4. Thus, for instance, K(x, P ) = K(x, P⊥) for the plane
P = Span (e1, e2), and hence for all planes P in TxM (since the orthonormal basis
ej was arbitrary).
Hint. In Problem 6, write abcd = R(a, b, c, d) whenever a, b, c, d ∈ V . Since
a symmetric bilinear form is determined by its quadratic function, the function
(43.2) determines, via the quadratic function b 7→ abab, also the symmetric form
(b, d) 7→ abad. This form in turn uniquely determines (for the same reason) the
form (a, c) 7→ abcd+cbad and, consequently, also the substitution version (a, d) 7→
abdc+ dbac. Subtracting the last two forms (treated as functions of (a, b, c, d)), we
see that (43.2) determines (abcd+ cbad)− (abdc+ dbac) = (abcd− abdc) + cbad−
dbac = (abcd + abcd) − cbda − bdca = 2abcd + dcba = 2abcd + badc = 3abcd, as
required.
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CHAPTER 8

Geometry of Submanifolds

45. Projected connections

Topics: The second fundamental forms of direct-summand subbundles of a vector bundle with

a connection; the van der Waerden-Bortolotti connection; the Gauss formula and the Codazzi

equation for projected connections.

Let ∇ be a given connection in a real or complex C∞ vector bundle η over a
manifold M endowed with a fixed direct-sum decomposition

(45.1) η = η+⊕ η−

into C∞ subbundles η±. Note that ∇ is not assumed to be a direct-sum connec-
tion.

Recall (Example 27.3) that ∇ then can be projected onto connections ∇± in
η± with ∇±v ψ = (∇±v ψ)± for any x ∈ M , v ∈ TxM and a local C1 section ψ of
η± defined near x, where φ = φ++φ− is the decomposition of any φ ∈ ηx relative
(45.1), while the η± components of any local section ψ of η are the local sections
ψ± of η± given by (ψ±)(x) = [ψ(x)]±. We will skip the extra parentheses and
simply write ψ±(x).

The second fundamental form of the decomposition (45.1) relative to ∇ is the
section b of the vector bundle Hom(TM, Hom(η, η)), defined by requiring that it
assign to any vector field v on M the morphism b(v, · ) : η → η sending any C1

section ψ of η to the section b(v, ψ) characterized by

(45.2) ∇vψ± = ∇±v ψ± + b(v, ψ).

A crucial fact about b is that it actually is a section of Hom(TM, Hom(η, η)). In
other words, the value at any point x ∈M of the section b(v, ψ) of η, defined by
(45.2), depends on v and ψ only through their values at x. For v this is clear
since both ∇ and ∇± are connections (cf. (20.6); for ψ, it follows, according to
the hint for Problem 1 in §20, from the equality

(45.3) ∇ = ∇ + b ,

which is in turn immediate from (45.2), ∇ being the direct-sum connection

(45.4) ∇ = ∇+ ⊕ ∇−,

in η = η+ ⊕ η−, known (in this particular context) as the van der Waerden-
Bortolotti connection. (Note that ∇vψ = ∇+

v ψ
+ + ∇−v ψ− and ∇vψ = ∇+

v ψ
+ +

∇−v ψ−+ b(v, ψ) for local C1 sections ψ of η and tangent vectors v.)
Clearly, for any x ∈M , v ∈ TxM and φ± ∈ η±,

(45.5) b(v, φ±) ∈ η∓x , that is, b(TxM × η±x ) ⊂ η∓x .
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Instead of b, we will often use its restriction b∓ : TxM × η±x → η∓x , which we will
call the second fundamental form of the summand η± in the decomposition (45.1).
Thus, b∓ is a section of the vector bundle Hom(TM, Hom(η±, η∓)).

The curvatures R of ∇ and R± of ∇± are related by the Gauss-Codazzi
identity

(45.6)
R(v, w)ψ = R+(v, w)ψ+ + R−(v, w)ψ− − b(v, b(w,ψ)) + b(w, b(v, ψ))

+ (∇wb)(v, ψ) − (∇vb)(w,ψ) − b(T (v, w), ψ) ,

for v, w ∈ TxM , ψ ∈ ηx and x ∈ M . Here T is the torsion tensor field
of a fixed connection in the tangent bundle TM . (Note that b is a section of
Hom(TM, Hom(η, η)), and so, to form the covariant derivative ∇wb, we first need
to fix a connection in TM .) In fact, since (45.6) is linear in ψ, we may assume
that ψ = ψ± ∈ η±x , and then (45.6) becomes the requirement that

(45.7)
R(v, w)ψ± = R±(v, w)ψ± − b±(v, b∓(w,ψ±)) + b±(w, b∓(v, ψ±))

+ (∇wb∓)(v, ψ±) − (∇vb∓)(w,ψ±) − b∓(T (v, w), ψ±)

for both choices of the sign ±. For a proof of (45.7), see Problem 2.
Note that the operation of projecting connections onto summands of a direct-

sum decomposition treats the curvature tensor in a more complicated way than the
other operations on connections, discussed before: R± may be nonzero, even if the
original connection ∇ is flat.

The right-hand side of each of the equalities (45.6) – (45.7) is written as the
sum of its η± component (the first line) and its η∓ component (the second line).
The η+ and η− component versions of (45.7), treated as separate identities, are
known as the Gauss formula

(45.8) R±(v, w)ψ± = [R(v, w)ψ±]± + b±(v, b∓(w,ψ±)) − b±(w, b∓(v, ψ±)) ,

and the Codazzi equation

(45.9) [R(v, w)ψ±]∓ = (∇vb∓)(w,ψ±) − (∇wb∓)(v, ψ±) + b∓(T (v, w), ψ±) .

A case of particular interest arises when η carries a fixed pseudo-Riemannian
fibre metric g = 〈 , 〉 compatible with the original connection ∇, such that η+

and η− are mutually g-orthogonal. (Thus, either of η± is g-nondegenerate, and
coincides with the other’s g-orthogonal complement; cf. Problem 1 in §28.) It then
follows that the projected connections ∇± are compatible with the metrics in η±

obtained by restricting g. In addition,

(45.10) 〈b(v, ψ+), ψ−〉 + 〈ψ+, b(v, ψ−)〉 = 0

for any x ∈M , v ∈ TxM and ψ± ∈ η±x . In other words, b+(v, ·) and b−(v, ·) are
each other’s negative adjoints. Moreover, g then gives rise to the restricted metrics
in the subbundles η± (also denoted g = 〈 , 〉), either of which is automatically
compatible with the corresponding projected connection. We can thus form the
g-modified versions of the curvatures of ∇ and ∇± and use notations such as
R(v, w, ψ, φ) = 〈R(v, w)ψ, φ〉 (see §28). In view of (45.10), the Gauss formula
(45.8) now takes the form

(45.11)
R±(v, w, ψ±, φ±)

= R(v, w, ψ±, φ±) + 〈b∓(v, ψ±), b∓(w, φ±)〉 − 〈b∓(v, φ±), b∓(w,ψ±)〉 .
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Problems
1. For a C∞ connection ∇ in a vector bundle η over a manifold M and a global

C∞ section F of the vector bundle Hom(TM, Hom(η, η)), show that the cur-
vature tensor fields R of ∇ and R′ of the connection ∇′ = ∇+ F are related
by

(45.12)
R′(v, w)ψ = R(v, w)ψ + R−(v, w)ψ − F (v, F (w,ψ)) + F (w,F (v, ψ))

+ (∇wF )(v, ψ) − (∇vF )(w,ψ) − F (T (v, w), ψ) ,

where T is the torsion tensor field of any fixed C∞ connection in the tangent
bundle of M , used to form the covariant derivative ∇wF .

2. Derive (45.6) from (45.3) and (45.12). (Hint below.)
3. Establish (45.10).
4. Let η and ζ be C∞ real/complex vector bundles over a C∞ manifold M , and

let h : η → ζ be a C∞ vector-bundle isomorphism. Verify that h then can be
used to transport (push-forward) any connection ∇ in η onto a connection h∇
in ζ, given by

[h∇]vψ = hx(∇v(h−1ψ))

for any x ∈M , v ∈ TxM and a local C1 section ψ of ζ defined near x, where
h−1 is the inverse of h. (One often says that h∇ is obtained from ∇ by a gauge
transformation.) Prove that the curvature tensor hR of h∇ can be expressed
in terms of the curvature tensor R of ∇ as

(45.13) [hR]x(v, w)φ = hx[Rx(v, w)(h−1
x φx)]

for x ∈M , v, w ∈ TxM and φ ∈ ζx. (Hint below.)
5. For η, ζ, h as in Problem 33.1 and a pseudo-Riemannian/Hermitian fibre metric

g = 〈 , 〉 in η, define the push-forward hg of g under h so that it is a fibre
metric in ζ, and show that if g and a connection ∇ in η are compatible, then
so are hg and h∇. (Hint below.)

6. Verify that any C∞ diffeomorphism F : M → N between C∞ manifolds M
and N can be used to transport (push-forward) any connection ∇ in TM onto
a connection (dF )∇ in TN with

(45.14) [(dF )∇]dfxv[(dF )w] = dFx(∇vw)

for any x ∈M , v ∈ TxM and a local C1 tangent vector field w in M defined
near x, where (dF )w is the push-forward of w under the diffeomorphism F ,
defined as in (6.9). Show that the curvature and torsion tensors (dF )R and
(dF )T of (dF )∇ satisfy the condition

(45.15) [(dF )R]F (x)(dFxv, dFxw)dFxu = dFx(Rx(v, w)u) ,

(45.16) [(dF )T]F (x)(dFxv, dFxw)dFxu = dFx(Tx(v, w)u)

for x ∈ M and v, w, u ∈ TxM , where R and T are the curvature and torsion
tensors of ∇. (Hint below.)

7. Given a C∞ diffeomorphism F : M → N between C∞ manifolds M and
N and a pseudo-Riemannian metric g on M , verify that the push-forward
(dF )g = (F−1)∗g of g under F is a pseudo-Riemannian metric on N whose
Levi-Civita connection and curvature tensor are and (dF )∇ and (dF )R (no-
tation of Problem 6), where ∇ and R are the analogous objects for g. (Hint

below.)
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8. Let F : M → M ′ be an isometry between the pseudo-Riemannian manifolds
(M, g) and (M ′, g′). Verify that (dF )g = g′, (dF )∇ = ∇′ and (dF )R = R′,
where ∇, R, ∇′ and R′ are the Levi-Civita connection and curvature tensor
of (M, g) and (M ′, g′), respectively (notation of Problem 6).

Hint. In Problem 2, extend ψ, v, w to local C∞ sections of η± and TM defined
near x. Then use (20.8) and (24.2).
Hint. In Problems 4 – 7, use local trivializations ea in η and Fea in ζ, or local
coordinates yj in N and F j in M (to make h or F appear as Id), and note that
the components of ∇ and g then coincide, as functions of the coordinates, with
those of their push-forwards. Then apply (20.10), (23.2) and (30.3).

46. The second fundamental form

Topics: The second fundamental form of an immersion into a Riemannian manifold; the Gauss

and Codazzi equations for immersions; totally geodesic and totally umbilical immersions.

Let F : M → N be a C∞ immersion of a manifold M in a Riemannian
manifold (N,h). We use the symbols τ and g = F ∗h for the tangent bundle TM
and the pullback metric on M , identifying τ , as in (19.1), with a subbundle of the
pullback bundle F ∗(TN) over M . The normal bundle ν of F is defined to be the
orthogonal complement of τ in F ∗(TN) relative to the pullback fibre metric 〈 , 〉.
Note that ν is naturally isomorphic to the normal bundle defined, in the absence
of a metric, by (19.2).

The pullback fibre metric F ∗(TN) is naturally induced by h, as the fibre of
F ∗(TN) over x ∈ M is, by definition, TF (x)N (see §17). We denote it by 〈 , 〉
rather than F ∗h since the latter symbol is already used in a different meaning (the
pullback metric on M).

We thus have a situation of the type described at the beginning of §45: the real
vector bundle F ∗(TN) over M is endowed both with a direct-sum decomposition,
namely, F ∗(TN) = τ ⊕ ν, and with the connection F ∗D obtained by pulling back
from TN the Levi-Civita connection of h (which we denote by D to distinguish it
from Levi-Civita connection ∇ of g). For the connections in τ and ν obtained by
projecting F ∗D we now use the symbols ∇tng and ∇nrm, rather than ∇±, and we
refer to them as the tangent and normal connections of the immersion F . Simlarly,
we denote by ψtng and ψnrm the components of any local section of F ∗(TN), or
an element of a fibre of F ∗(TN), relative to the decomposition F ∗(TN) = τ ⊕ ν.

Lemma 46.1. Let F : M → N be a C∞ immersion of a manifold M in a
Riemannian manifold (N,h), and let g = F ∗h be the pullback metric on M . The
tangent connection ∇tng in τ = TM then coincides with the Levi-Civita connection
∇ of g.

in preparation

in preparation
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47. Hypersurfaces in Euclidean spaces

Topics: The second fundamental tensor of a codimension-one immersion; Euclidean versions of

the Gauss and Codazzi equations; local classification of totally geodesic and totally umbilical

submanifolds of Euclidean spaces.

in preparation

in preparation

48. Bonnet’s theorem

Topics: Reconstructing the ambient connection from immersion data; Bonnet’s theorem.

in preparation

in preparation
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CHAPTER 9

Differential Forms

49. Tensor products

Topics: Tensor products, symmetric and exterior powers of vector spaces; symmetric powers

and polynomial functions.

Given an integer k ≥ 1 and real or complex vector spaces V1, . . . , Vk and
W , let the symbol L(V1, . . . , Vk;W ) denote the vector space of all k-linear map-
pings B : V1 × . . . × Vk → W (with the valuewise operations). In the case
where the spaces V1, . . . , Vk all coincide, i.e., V1 = . . . = Vk = V , we denote
by L

sym
(V, . . . , V ;W ) and L

skew
(V, . . . , V ;W ) the subspaces of L(V, . . . , V ;W )

(where V, . . . , V stands for V repeated k times) consisting of all k-linear map-
pings V × . . . × V → W which are symmetric or, respectively, skew-symmet-
ric (for more details, see Problem 1). Natural surjective linear operators S, A
of L(V, . . . , V ;W ) onto L

sym
(V, . . . , V ;W ) and L

skew
(V, . . . , V ;W ), known as the

symmetrization and skew-symmetrization projections then can be defined by

(49.1)

(SB)(v1, . . . , vk) =
1

k!

∑
τ

B(vτ(1), . . . , vτ(k)) ,

(AB)(v1, . . . , vk) =
1

k!

∑
τ

sgn(τ)B(vτ(1), . . . , vτ(k)) ,

where τ runs through all permutations of {1, . . . , k}. See also Problem 2.
When V1, . . . , Vk as above are all finite-dimensional and W is the scalar field

K = R or K = C, one defines the tensor product of V1, . . . , Vk to be the vector
space

(49.2) V1 ⊗ . . .⊗ Vk = L(V ∗1 , . . . , V
∗
k ; K) .

The tensor multiplication is the natural k-linear mapping

(49.3) V1 × . . .× Vk 3 (v1, . . . , vk) 7→ v1 ⊗ . . .⊗ vk ∈ V1 ⊗ . . .⊗ Vk ,
with (v1⊗. . .⊗vk)(ξ1, . . . , ξk) = ξ1(v1) . . . ξk(vk). If, moreover, V1 = . . . = Vk = V ,
the tensor product V ⊗ . . . ⊗ V = L(V ∗, . . . , V ∗; K) of k copies of V is referred
to as the kth tensor power of V and denoted by V ⊗k. The kth symmetric power
V �k of V and the kth exterior power V ∧k of V then are defined to be the vector
subspaces of V ⊗k given by

V �k = L
sym

(V ∗, . . . , V ∗; K) , V ∧k = L
skew

(V ∗, . . . , V ∗; K) .

It is also convenient to extend these definitions to all integers k by setting

(49.4) V ⊗0 = V �0 = V ∧0 = K , V ⊗k = V �k = V ∧k = {0} for k < 0 .

The projections

S : V ⊗k → V �k , A : V ⊗k → V ∧k
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given by (49.1) thus give rise to the k-linear mappings V × . . . × V → V �k,
V × . . .× V → V ∧k of symmetric and exterior multiplication, assigning the values

(49.5) v1 � . . .� vk = S(v1 ⊗ . . .⊗ vk), v1 ∧ . . . ∧ vk = A(v1 ⊗ . . .⊗ vk) .

to (v1, . . . , vk). These multiplications can be expressed in terms of familiar op-
erations: valuewise multiplication of linear functions and the determinant of an
k× k matrix viewed as a “multiplication” of its row or column vectors; see Propo-
sition 49.1 and Problem 5.

Let V be a finite-dimensional real or complex vector space. A function f on
V valued in the scalar field K (R or C) is called a monomial of degree k ≥ 0 if it
can be written as a valuewise product ξ1. . . ξk of linear functions ξ1, . . . , ξk ∈ V ∗.
(When k = 0, this means that f is constant.) We call f : V → K a polynomial
if f is a sum of monomials, and say that a polynomial f on V is homogeneous
of degree k ≥ 0 if it can be written as a sum of monomials all of which are of
degree k. (Thus, the zero function is a homogeneous polynomial, and a monomial,
of all degrees.) Denoting by Pk(V ) the vector space of all degree k homogeneous
polynomials on V , and letting P(V ) be the algebra of all polynomials on V (with
the valuewise multiplication of functions), we now have

P0(V ) = K , P1(V ) = V ∗, P(V ) =
⊕
k≥0

Pk(V , )

sothat every polynomial can be uniquely expressed as a sum of homogeneous poly-
nomials (see Problem 7). As before, we set Pk(V ) = {0} if k < 0.

Given a homogeneous polynomial f ∈ Pk(V ) on a finite-dimensional real or
complex vector space V and a vector v ∈ V , we have dvf ∈ Pk−1(V ), as one
easily sees by considering monomials. Therefore, we may define a liinear operator
Ψ : Pk(V )→ (V ∗)�k = Lsym(V, . . . , V ; K) by

(49.6) (Ψf)(v1, . . . , vk) =
1

k!
dv1 . . . dvkf ∈ P0(V ) = K .

On the other hand, formula

(49.7) (ΦB)(x) = B(x, . . . , x)

defines a linear operator Φ : (V ∗)�k = L
sym

(V, . . . , V ; K) → Pk(V ) since, for any
fixed basis ej of V , ΦB is a sum of degree k monomials:

(49.8) ΦB = B(ej1 , . . . , ejk) ej1 . . . ejk .

Proposition 49.1. For any finite-dimensional real or complex vector space V
and any integer k ≥ 0, the operator Φ : (V ∗)�k = Lsym(V, . . . , V ; K)→ Pk(V ) de-

fined by (49.7) is a linear isomorphism and its inverse Ψ = Φ−1 is given by (49.6).
Furthermore, the symmetric multiplication (49.5) of linear functions ξ1, . . . , ξk ∈
V ∗ corresponds under Φ to their valuewise multiplication, that is,

(49.9) Φ(ξ1� . . .� ξk) = ξ1. . . ξk .

Proof. Relation (49.9) is immediate from formula (49.10) below. Thus, Φ
is surjective, since Pk(V ) is spanned by monomials. On the other hand, using
(49.8) with dvξ = ξ(v) for v ∈ V and ξ ∈ V ∗ we obtain (k− s)! dv1 . . . dvs(ΦB) =
k! Φ[B(v1, . . . , vs, ·, . . . , ·)] (induction on s ≤ k), where B(v1, . . . , vs, ·, . . . , ·) is the
element of (V ∗)�k−s = Lsym(V, . . . , V ; K) obtained from B ∈ (V ∗)�k by fixing
the first s arguments. Setting s = k, we thus have Ψ(ΦB) = B. Therefore Φ is
also injective and Φ−1 = Ψ, which completes the proof.
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Problems
1. A k-linear mapping B : V × . . . × V → W of real or complex vector spaces

V and W is called symmetric (or, skew-symmetric) if B(v1, . . . , vk) remains
unchanged (or, respectively, changes the sign) whenever two of the arguments
v1, . . . , vk ∈ V are interchanged. Verify that
(a) The phrase ‘two of the arguments v1, . . . , vk ∈ V ’ can be replaced by ‘two

neighboring arguments among v1, . . . , vk ∈ V ’.
(b) B is symmetric (or, skew-symmetric) if and only if, for all v1, . . . , vk ∈

V and all permutations τ of {1, . . . , k}, one has B(vτ(1), . . . , vτ(k)) =
B(v1, . . . , vk) (or, respectively, B(vτ(1), . . . , vτ(k)) = sgn(τ)B(v1, . . . , vk)).

(c) B is skew-symmetric if and only if B(v1, . . . , vk) = 0 whenever two neigh-
boring arguments among v1, . . . , vk ∈ V coincide.

2. Let V be a real or complex vector space. A linear operator S : V → V is
called a projection if S2 = S. Verify that, for a linear operator S : V → V , the
following three conditions are equivalent:
(a) S is a projection.
(b) V admits a direct-sum decomposition V = V0 ⊕ V1 such that S = 0 on

V0 and S = Id on V1.
(c) The restriction of S to the image subspace S(V ) coincides with the identity

transformation.
3. A linear operator S : V → V in a real or complex vector space V is called an

involution if S2 = Id. Verify that a linear operator S : V → V is an involution
if and only if V admits a direct-sum decomposition V = V+ ⊕ V− such that
S = ±Id on V±. Show that, for an involution S : V → V , the summands
V± are given by V± = Ker (S ∓ Id), and that the direct-sum projections V =
V+ ⊕ V− → V± coincide with 1

2 (S ± Id).
4. Show that, for any finite-dimensional real or complex vector space V one has

V ⊗2 = V �2 ⊕ V ∧2, with S, A playing the roles of the direct-sum projections.
Verify that the corresponding decomposition of v ⊗w for v, w ∈ V is v ⊗w =
v�w+ v ∧w. Give an explicit description of SB, AB for any B ∈ V ⊗2 (that
is, a bilinear function B : V × V → K).

5. Verify that, given a finite-dimensional real or complex vector space V and any
v1 � . . .� vk ∈ V , ξ1, . . . , ξk ∈ V ∗, we have

(49.10) (v1 � . . .� vk)(ξ1, . . . , ξk) =
1

k!

∑
τ

ξτ(1)(v1) . . . ξτ(k)(vk) ,

(v1 ∧ . . . ∧ vk)(ξ1, . . . , ξk) =
1

k!

∑
τ

sgn(τ) ξτ(1)(v1) . . . ξτ(k)(vk) =
1

k!
det
α,β

[ξα(vβ)] ,

where τ runs through all permutations of {1, . . . , k}.
6. Let V be a real or complex vector space. Show that, given a linear operator

S : V → V and vectors v1, . . . , vk ∈ V such that v1 + . . . + vk = 0 and
Sv1 = λ1v1, . . . , Svk = λkvk with pairwise distinct scalars λ1, . . . , λk, we must
have v1 = . . . = vk = 0 ; in other words, nonzero eigenvectors of S corresponding
to mutually distinct eigenvalues are always linearly independent. (Hint below.)

7. Let V be a finite-dimensional real or complex vector space. Verify that every
polynomial on V can be uniquely expressed as a sum of homogeneous polyno-
mials. (Hint below.)
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8. (See also Problem 1(c) in §88, Appendix D.) Let V be a finite-dimensional real
vector space and let a function f : V → R be Ck-differentiable and positively
homogeneous of degree k for some integer k ≥ 0. Show that f ∈ Pk(V ).

Hint. In Problem 6, set Tα = S1 . . . Ŝα . . . Sk, where ̂ means ‘delete’ and Sα =
S − λα · Id. Then 0 = Tα(v1 + . . .+ vk) = cαvα with cα =

∏
β 6=α(λα − λβ) 6= 0, as

the Sα all commute and Sαvα = 0 while Sβvα = (λα − λβ)vα for α 6= β.
Another argument: Let s be the number of nonzero vectors among the vα,

and let n = dimW with W = Span (v1, . . . , vk). Thus, n ≤ s. However, since S
has at least s distinct eigenvalues in W , and n is the degree of its characteristic
polynomial in W , we obtain s ≤ n, so that s = n and those s nonzero vectors are
linearly independent as they span an s-dimensional space, which contradicts our
assumption unless s = 0.
Hint. In Problem 7, apply Problem 6 to S = dId in the space of all C∞ functions
V → K. Cf. Problem 11 in §6 and Problem 2(a) in §88, Appendix D.

50. Exterior and symmetric powers

Topics: Natural bases in tensor products, exterior powers, and symmetric powers of vector

spaces; the universal factorization properties; the tensor, symmetric and exterior (graded) algebras

of a vector space.

Suppose that we are given finite-dimensional real or complex vector spaces
V1, . . . , Vk, k ≥ 1, and bases eα1 for V1, . . ., eαk for Vk.

A basis of the tensor product space V1 ⊗ . . . ⊗ Vk then is provided by the
collection of all tensor products

(50.1) eα1 ⊗ . . .⊗ eαk ,

where each index αs, s = 1, . . . , k, varies independently in {1, . . . ,dimVs} (nota-
tions of (49.2), (49.3)). Therefore

dim(V1 ⊗ . . .⊗ Vk) = dimV1 . . . dimVk .

To see that the products (50.1) form a basis (and are mutually distinct), note that,
treating them as k-linear functions, we have

(eα1 ⊗ . . .⊗ eαk)(eβ1 , . . . , eβk) = δβ1
α1
. . . δβkαk ,

each eαs denoting, as usual (see Example 5.1) the basis of V ∗s dual to the eαs .
Hence the equality B = λα1...αkeα1 ⊗ . . .⊗ eαk implies λα1...αk = B(eα1 , . . . , eαk),
and so the products (50.1) are linearly independent (the case B = 0) and, for any
B ∈ V1 ⊗ . . .⊗ Vk, we have the expansion

(50.2) B = Bα1...αkeα1
⊗ . . .⊗ eαk

with

(50.3) Bα1...αk = B(eα1 , . . . , eαk)

(as both sides of (50.2) coincide on each (eβ1 , . . . , eβk)).
Let us now assume, in addition, that V1 = . . . = Vk = V , and a single basis ea

is chosen in V . The families

(50.4) eα1 � . . .� eαk , 1 ≤ α1 ≤ . . . ≤ αk ≤ dimV

and

(50.5) eα1
∧ . . . ∧ eαk , 1 ≤ α1 < . . . < αk ≤ dimV
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then consists of mutually distinct elements, forming a basis of the kth symmetric
power V �k of V and the kth exterior power V ∧k of V , respectively. (Unlike the
previous case, the indices α1, . . . , αk now all vary in the same range {1, . . . ,dimV }.)
In fact, from (49.5) and (50.2) we obtain the expansions

B = Bα1...αkeα1
� . . .� eαk

with (50.3) for each B ∈ V �k and

B = Bα1...αkeα1
∧ . . . ∧ eαk

with (50.3) for each B ∈ V ∧k. Although the summations are over the unrestricted
range of all k-tuples (α1, . . . , αk), they clearly represent combinations of (50.4) or
(50.5) in view of the (skew)symmetry of the multiplications involved. Finally, the
products (50.4) or (50.5) are linearly independent (and pairwise distinct) since, by
(49.5) and (49.1),

(eα1
∧ . . . ∧ eαk)(eβ1 , . . . , eβk) = δβ1

α1
. . . δβkαk

whenever 1 ≤ α1 < . . . < αk ≤ dimV and 1 ≤ β1 < . . . < βk ≤ dimV , while

(eα1
� . . .� eαk)(eβ1 , . . . , eβk) = Cδβ1

α1
. . . δβkαk

whenever 1 ≤ α1 ≤ . . . ≤ αk ≤ dimV and 1 ≤ β1 ≤ . . . ≤ βk ≤ dimV , where C is
a positive integer depending on the indices involved.

Consequently,

(50.6) dimV ∧k =

(
n

k

)
if 0 ≤ k ≤ n = dimV ,

(see also (49.4), while

(50.7) V ∧k = {0} for k > dimV .

The last relation is clear since the set (50.5) is empty when k > dimM , but also
follows directly as B(eβ1 , . . . , eβk) = 0 if B is skew-symmetric and k > dimM ,
since two or more of the arguments eβs then must coincide. About the dimension
of V �k, see Problem 8.

Tensor products and symmetric/exterior powers of finite-dimensional real or
complex vector spaces V1, . . . , Vk (or V ) have the following universal factorization
properties. Given any vector space W and a k-linear mapping ϕ : V1×. . .×Vk →W
or a k-linear symmetric/skew-symmetric mapping ϕ : V ×. . .×V →W , there exists
a unique linear operator F : V1⊗ . . .⊗Vk →W , or F : V �k →W , or, respectively,
F : V ∧k →W , such that, for all v1 ∈ V1, . . ., vk ∈ Vk (or v1, . . . , vk ∈ V ),

ϕ(v1, . . . , vk) =


F (v1 ⊗ . . .⊗ vk) , or

F (v1 � . . .� vk) , or

F (v1 ∧ . . . ∧ vk) , whichever applies.

In fact, such F can be defined (uniquely!) on basis elements of the form (50.1),
(50.4) or (50.5), which then easily implies the required property for all v1, . . . , vk.

In other words, to define linear operators from tensor-product or symmetric/ex-
terior-power spaces it suffices to prescribe their values on product elements, and
such a definition is automatically correct as long as the dependence of the value on
the factors is k-linear, or k-linear and (skew)symmetric, respectively.
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Let V1, . . . , Vk+l and V , with integers k, l ≥ 1, be arbitrary finite-dimensional
real or complex vector spaces. There exist unique bilinear mappings

(50.8) (V1 ⊗ . . .⊗ Vk)× (Vk+1 ⊗ . . .⊗ Vk+l)→⊗→ V1 ⊗ . . .⊗ Vk+l

and

(50.9) V �k × V �l →
�
→ V �(k+l) , V ∧k × V ∧l →

∧
→ V ∧(k+l) ,

known as the tensor, symmetric and exterior multiplications, and characterized by

(50.10) (v1 . . . vk)(vk+1 . . . vk+l) = v1 . . . vk+l

where, for simplicity, we use ordinary multiplicative notation (without a dot), omit-
ting the symbols ⊗, � or ∧. See Problem 1. These multiplications can also be de-
fined directly, without invoking the universal factorization properties (Problems 2
and 3).

For V1, . . . , Vk as before, any permutation τ of {1, . . . , k} gives rise to a unique
isomorphism

V1 ⊗ . . .⊗ Vk → Vτ(1) ⊗ . . .⊗ Vτ(k)

sending each v1 ⊗ . . .⊗ vk to vτ(1) ⊗ . . .⊗ vτ(k).
For any finite-dimensional real or complex vector space V , there is a unique

isomorphism K⊗ V → V with

(50.11) λ⊗ v 7→ λv

for λ ∈ K and v ∈ V (K being the scalar field). In fact, since (λ, v) 7→ λv is
bilinear, a linear operator with (50.11) exists and is unique in view of the universal
factorization property for ⊗, and its inverse is given by v 7→ 1⊗ v.

The multiplications (50.8), (50.9) are associative (Problem 4) and so they turn
each of the direct sums

V ⊗ =
⊕
k≥0

V ⊗k , V � =
⊕
k≥0

V �k , V ∧ =
⊕
k≥0

V ∧k

into an associative algebra with the unit 1 (which belongs to the 0th summand, cf.
(49.4)), called the tensor, symmetric and exterior algebras of V . See also Problem 6.

Problems
1. Given finite-dimensional real or complex vector spaces V1, . . . , Vk+l and V , prove

the existence and uniqueness of the bilinear mappings (50.8), (50.9) with (50.10).
(Hint below.)

2. Show that (50.8) can be explicitly defined by

(50.12) (B ⊗B′)(ξ1, . . . , ξk+l) = B(ξ1, . . . , ξk)B′(ξk+1, . . . , ξk+l)

for B ∈ V1 ⊗ . . .⊗ Vk, B′ ∈ Vk+1 ⊗ . . .⊗ Vk+l and ξs ∈ V ∗s , s = 1, . . . , k + l.
3. Prove that

B �B′ = S(B ⊗B′) , B ∧B′ = A(B ⊗B′)

for all B ∈ V �k and B′ ∈ V �l or, respectively, B ∈ V ∧k and B′ ∈ V ∧l. (Hint

below.)
4. Verify associativity of the multiplications (50.8), (50.9).
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5. Given linear operators F1 : V1 → W1, . . ., Fk : Vk → Wk, show that there is a
unique linear operator F1⊗ . . .⊗Fk : V1⊗ . . .⊗ Vk →W1⊗ . . .⊗Wk (called the
tensor product of F1, . . . , Fk) with

(F1 ⊗ . . .⊗ Fk)(v1 ⊗ . . .⊗ vk) = (F1v1)⊗ . . .⊗ (Fkvk)

for all vs ∈ Vs, s = 1, . . . , k.
6. Verify that

dimV ∧ = 2n

whenever V is a real or complex vector space with dimV = n < ∞. (Hint

below.)
7. Given integers n ≥ 1 and k ≥ 0, let Πn,k be the set of all ordered n-tuples

(α1, . . . , αn) of integers αj ≥ 0 with
∑n
j=1 αj = k. Prove that Πn,k has

(
n+k−1

k

)
elements. (Hint below.)

8. Given a finite-dimensional real or complex vector space V , show that, for integers
k ≥ 0,

(50.13) dimPk(V ) =

(
n+ k − 1

k

)
, n = dimV

with Pk(V ) defined in §49. (Hint below.)
9. Verify that

dim V �k =

(
n+ k − 1

k

)
, n = dimV

for any finite-dimensional real or complex vector space V and any integer k ≥ 0.
(Hint below.)

10. Show that, when the isomorphism of Problem 5 in §28 is regarded as an isomor-
phism V ∗ ⊗ V → V ∗ ⊗ V ∗, it coincides with the tensor product (Problem 5) of
the operators Id : V ∗ → V ∗ and V 3 v 7→ 〈·, v〉 ∈ V ∗.

Hint. In Problem 1, fix v1, . . . , vk and define (v1 . . . vk)B′ for B′ in the appropriate
product/power space of the last l factors, combining (50.10) with the universal
factorization property, and note that the result is (k + 1)-linear in v1, . . . , vk, B

′.
Then use the same device to define BB′ for B in the product/power of the first k
factors.
Hint. In Problem 3, combine (50.12) with (49.1).
Hint. In Problem 6, use (50.6) and (50.7).

Hint. In Problem 7, use induction on n along with the formula
(
n+k
k

)
=

k∑
s=0

(
n+s−1

s

)
,

obtained from
(
n+k
k

)
=
(
n+k−1
k−1

)
+
(
n+k−1

k

)
by induction on k.

Hint. In Problem 8, note that, for a fixed basis f1, . . . , fn of V ∗, the monomials
(f1)α1 . . . (fn)αn form a basis of Pk(V ) indexed by Πn,k defined in Problem 7.
Hint. In Problem 9, use (50.13) and Proposition 49.1.

51. Exterior forms

Topics: Exterior forms; differential forms; exterior derivative; closed and exact differential forms;

the Poincaré lemma.

Given a manifold M , a point x ∈M , and an integer r ≥ 0, by exterior forms
of degree r (or, exterior r-forms) at x we mean elements of the vector space

ΛrxM = [T ∗xM ]∧r ,
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which is nothing else than the fibre over x of the vector bundle

ΛrM = [T ∗M ]∧r .

Sections of ΛrM then are called differential r-forms on M . We have ΛrM =
M × {0} when r < 0 (by definition) as well as when r > dimM (by (50.7)).
Also, Λ0M = M × R and Λ1M = T ∗M . Thus, differential 0-forms are just real-
valued functions on the manifold, while differential 1-forms are nothing else than
cotangent-vector fields. Any differential r-form ω on M gives rise to the r-linear
skew-symmetric mapping sending vector fields v1, . . . , vr on M to the function

ω(v1, . . . , vr) : M → R

given by

(51.1) [ω(v1, . . . , vr)](x) = [ω(x)](v1(x), . . . , vr(x)) .

Any local coordinate system xj in M defines a local trivialization of each ΛrM
formed by all dxj1∧. . .∧dxjr with 1 ≤ j1 < . . . < jr ≤ dimM (cf. (50.5). A (local)
differential r-form ω defined on the coordinate domain then can be expanded as

(51.2) ω = ωj1...jrdx
j1 ∧ . . . ∧ dxjr

(summation over all r-tuples j1, . . . , jr), where

(51.3) ωj1...jr = ω(pj1 , . . . , pjr )

are called the component functions ω relative to the local coordinates xj in M .
They are skew-symmetric in j1 . . . jr in the sense that ωjτ(1)...jτ(r) = (sgn τ)ωj1...jr
for any permutation τ of {1, . . . , r}. Consequently,

(51.4) ω = r!
∑

j1<...<jr

ωj1...jrdx
j1 ∧ . . . ∧ dxjr ,

and, by (51.3),

ω(v1, . . . , vr) = ωj1...jrv
j1
1 . . . vjrr ,

Note that, given ω and the xj , the coefficients ωj1...jr of the expansions (51.2),
(51.4) are made unique by the requirement of skew-symmetry or, respectively, the
restriction of the range of summation; in general, it may happen that

ω = fj1...jrdx
j1 ∧ . . . ∧ dxjr

with functions fj1...jr other than the ωj1...jr , and then

ωj1...jr =
1

r!

∑
τ

(sgn τ)fjτ(1)...jτ(r) ,

the summation being over all permutations τ of {1, . . . , r}.
Applying the exterior multiplication (see (50.9)) to exterior/differential forms

ω, θ of degrees r and s on M , we obtain the (r+s)-form ω∧θ, and (Problem10.13)

(51.5) ω ∧ θ = (−1)rsθ ∧ ω .
In local coordinates xj , ω ∧ θ has the components

(51.6) (ω ∧ θ)j1...jr+s =
1

(r + s)!

∑
τ

(sgn τ)ωjτ(1)...jτ(r) θjτ(r+1)...jτ(r+s) ,

where τ this time varies through all permutations of {1, . . . , r + s} (Problem 1).
Due to skew-symmetry of the components of ω and θ, each term on the right-hand
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side of (51.6) is repeated r! s! times, so that the number of terms can be reduced

from (r + s)! to
(
r+s
r

)
= (r+s)!

r! s! . In particular (see Problem 2)

(51.7) (p ∧ q)jk =
1

2
(pjqk − pkqj) , (p ∧ ω)jkl =

1

3
(pj ωkl + pk ωlj + pl ωjk) ,

(51.8) (ω ∧ ω)jklm =
1

3
(ωjk ωlm + ωjl ωmk + ωjm ωkl)

for 1-forms p, q and 2-forms ω.

Theorem 51.1. There exists a unique operation d, called the exterior deriva-
tive, which associates with each differential r-form ω of class Cl on any manifold
M , for all integers r ≥ 0 and l ≥ 1, a differential (r+ 1)-form dω of class Cl−1

on M , in such a way that

a. d is linear when r and l are fixed.
b. d sends any Cl function (0-form) f to its differential df .
c. d(ω ∧ θ) = dω ∧ θ + (−1)r ω ∧ dθ for Cl forms ω, θ of any degrees r, s.
d. d2 = 0, i.e., d(dω) = 0 for Cl forms ω, l ≥ 2, of all degrees.
e. d is local. i.e., the restriction of dω to any open set U ⊂M depends only

on the restriction of ω to U .

Furthermore, this unique operation d can be written as

(51.9) d(fj1...jrdx
j1 ∧ . . . ∧ dxjr ) = dfj1...jr ∧ dxj1 ∧ . . . ∧ dxjr

for any local coordinates xj and any Cl functions fj1...jr , l ≥ 1, which need not
be skew-symmetric in j1, . . . , jr.

Proof. Uniqueness of d is obvious from (51.9), which in turn follows imme-
diately from (a) – (e). Existence in any fixed coordinate domain is immediate if we
define d by (51.9) with fj1...jr = ωj1...jr . Its independence of the coordinates used
is obvious from uniqueness. This completes the proof.

A local-component description of the exterior derivative is

(51.10) (dω)j0...jr =
1

r + 1

r∑
q=0

(−1)q∂jqωj0...ĵq...jr ,

where ̂ stands for ‘delete’. In fact, the right-hand side of (51.10) is clearly
skew-symmetric in j0, . . . , jr, while from formula (51.9) with fj1...jr = ωj1...jr
we obtain, using (51.2) and skew-symmetry of the dxj0 ∧ . . . ∧ dxjr in the fac-
tors dxj , and grouping terms, (r + 1) dω = (r + 1) ∂j0ωj1...jr dx

j0 ∧ . . . ∧ dxjr =[∑r
q=0(−1)q∂jqωj0...ĵq...jr

]
dxj0 ∧ . . . ∧ dxjr .

The exterior derivative can also be easily described in terms of degree r differ-
ential forms treated as r-linear mappings sending r vector fields to functions as in
(51.1); see Problem 3.

Let ω be a local differential r-form in a manifold M , defined on an open subset
U of M . One says that ω is closed if ω is of class C1 and dω = 0 identically in
U . On the other hand, ω is called exact if ω = dθ for some (r−1)-form θ of class
C2 having the same domain U . Condition (d) of the theorem simply states that
every exact differential form is closed . The converse statement obviously fails for
0-forms, i.e., (local) functions: closedness then means that the function is locally
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constant in its domain, while there is no nonzero exact 0-form. It also fails for
1-forms; one easily verifies (see Problem 10) that the 1-form

(51.11) ω0 =
x

x2 + y2
dy − y

x2 + y2
dx ,

on R2 \ {0} (where x, y are the standard Cartesian coordinate functions) is closed
but not exact.

The following fundamental result is known as the Poincaré lemma. It shows
that the existence of such counterexamples in degrees r > 0 indicates some topo-
logical complexity of the domain U in question.

Theorem 51.2. Let ω be a closed differential r-form of class Cl, r, l ≥ 1, on
a manifold M which is diffeomorphic to a star-shaped open subset U of a finite-
dimensional real vector space V . Then ω is exact. More precisely, ω = dθ for
some global (r − 1)-form θ on M which is of class Cl+1.

Proof. Set n = dimM and choose global coordinates xj on M that con-
stitute such a diffeomorphism onto U ; using a translation in Rn, we may assume
that U is star-shaped relative to 0, i.e., with every point U also contains the
whole line segment connecting that point to 0. Let Ωj1...jr be the functions of n
variables defined on U ⊂ R and such that, applied to the coordinate functions,
they yield the components of ω, that is ωj1...jr = Ωj1...jr (x

1, . . . , xn). Now define
θ = θj2...jrdx

j2 ∧ . . . ∧ dxjr through its component functions by setting

(51.12) θj2...jr =

∫ 1

0

tr−1xj Ωjj2...jr (tx
1, . . . , txn) dt .

Formula (51.10) with dω = 0 yields

∂j1Ωjj2...jr − ∂j2Ωjj1j3...jr + . . .+ (−1)r+1 ∂jrΩjj1...jr−1
= ∂jΩj1j2...jr

and r(dθ)j1...jr = ∂j1θj2...jr− ∂j2θj1j3...jr+. . .+(−1)r+1 ∂jrθj1...jr−1 . Since we have

∂j1θj2...jr =
∫ 1

0
tr−1Ωj1...jr (tx

1, . . . , txn) dt+
∫ 1

0
trxj ∂j1Ωjj2...jr (tx

1, . . . , txn) dt (by
(51.12)), this and skew-symmetry of the Ωj1...jr in j1, . . . , jr implies

(51.13)

r(dθ)j1...jr = r

∫ 1

0

tr−1Ωj1...jr (tx
1, . . . , txn) dt

+

∫ 1

0

trxj ∂jΩj1...jr (tx
1, . . . , txn) dt ,

On the other hand, ωj1...jr = Ωj1...jr (x
1, . . . , xn) =

∫ 1

0
d
dt [t

rΩj1...jr (tx
1, . . . , txn)] dt,

so ωj1...jr = r(dθ)j1...jr by (51.13). Thus, ω = dθ

52. Cohomology spaces

Topics: The de Rham cohomology spaces; cohomology of the Euclidean spaces; pullbacks under

C∞ mappings of manifolds; restrictions to submanifolds; cohomology of the circle, computed via

integration.

Let M be a C∞ manifold. We denote by ΩrM the real vector space of all
global differential r-forms of class C∞ defined on M . Thus, ΩrM is trivial when
r < 0 or r > dimM , and infinite-dimensional otherwise. The subspaces Z rM and
B rM of ΩrM are, by definition, the kernel of d : ΩrM → Ωr+1M and, respectively,



52. COHOMOLOGY SPACES 153

the image d(Ωr−1M) of d : Ωr−1M → ΩrM . Since d2 = 0, we have B rM ⊂ Z rM .
The quotient vector space

H r(M,R) = Z rM/B rM

is called the rth de Rham cohomology space of M . For simplicity, we will often
write H rM instead of H r(M,R). As before,

(52.1) H rM = {0} if r < 0 or r > dimM .

We will also use the symbol

[ω] ∈ H rM

for the cohomology class of any closed form ω ∈ Z rM , that is, its equivalence class
ω mod B rM ∈ Z rM/B rM . In other words, [ω] is the coset ω + B rM of B rM
in Z rM .

Example 52.1. Z0M consists of all functions locally constant in M , and
B0M = {0}. Thus, if M is connected, we have an isomorphism

(52.2) H0M ≈ R .

See also Problem 4.

Example 52.2. By the Poincaré lemma, H rM = {0} if M is diffeomorphic
to a star-shaped open subset of some Rn. Thus,

H rRn ≈

{
R , if r = 0

{0} , if r 6= 0 .

Every C1 mapping F : M → N between manifolds can be used to pullback
differential forms from N to M , preserving the degree, so that it associates with
every r-form ω on N the r-form F ∗ω on M given by

(F ∗ω)x(v1, . . . , vr) = ωF (x)(dFxv1, . . . , dFxvr) .

The component functions (F ∗ω)j1...jr = (F ∗ω)(pj1 , . . . , pjr ) of F ∗ω relative to
local coordinates xj in M thus can be expressed with the aid of the component
functions ωα1...αr = ω(pα1 , . . . , pαr ) of ω relative to local coordinates yα in N
as

(52.3) (F ∗ω)j1...jr = (∂j1F
α1) . . . (∂jrF

αr )(ωα1...αr ◦ F ) .

Therefore, F ∗ω is of class C∞ if so are ω and F . Any C∞ mapping F : M → N
thus gives rise to linear mapping F ∗ : ΩrN → ΩrM sending each ω to F ∗ω.
Furthermore,

(52.4) d ◦ F ∗ = F ∗◦ d ,
that is,

(52.5) F ∗(dω) = d(F ∗ω)

for ω ∈ ΩrN with any degree r (Problem 5). Therefore, F ∗(Z rN) ⊂ Z rM and
F ∗(B rN) ⊂ B rM . As a consequence, F ∗ : Z rN → Z rM descends to a unique
linear operator

F ∗ : H rN → H rM

between the cohomology spaces in every dimension r, with F ∗[ω] = [F ∗ω]. In the
case where M is a submanifold of a manifold N and F : M → N is the inclusion
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mapping, we call F ∗ω and F ∗[ω] the restriction to M of the differential form ω
on N or the cohomology class [ω], with the notation

ωM = F ∗ω , σM = F ∗σ = [ωM ]

for ω ∈ ΩrN and σ = [ω] ∈ H rN (if ω is closed). See also Problems 6 and 7.

Example 52.3. For the circle S1 = {z ∈ C : |z| = 1}, we have a natural
isomorphic identification

(52.6) H1S1 = R ,

so that, by (52.1) and Problem 4, H0S1 and H1S1 are 1-dimensional, while H rS1

is trivial for r /∈ {0, 1}. In fact, the surjective C∞ mapping

(52.7) R 3 t 7→ eit ∈ S1

is, locally, a diffeomorphism (by Theorem 74.2) and any two local inverses of (52.7)
differ by a multiple of 2π in any connected component of the intersection of their
domains. Thus, even though t is not a single-valued function of z = eit ∈ S1,
the differential dt is a well-defined global C∞ 1-form on S1, forming a global
trivialization of T ∗S1. Every C∞ 1-form ω on S1 can be written as a function
times dt, and since functions on S1, when composed with (52.7), become precisely
all possible functions of t ∈ R that are periodic with period 2π, we have ω =
f(t) dt with a unique C∞ function f on R such that f(t+ 2π) = f(t) for all t.

Then, by (51.9) dω = ḟ(t) dt. Let us define the integral of any such ω ∈ Z1S1 =
Ω1S1 to be the number

(52.8)

∫
ω =

∫ 2π

0

f(t) dt ∈ R .

Note that ω = f(t) dt ∈ B1S1 if and only if f = ḣ for some C∞ function h on R
that is also periodic with period 2π, which is in turn equivalent to

∫
ω = 0 (as h

is obtained from f by integration). Thus, B1S1 is the kernel of the nonzero linear
function Z1S1 3 ω 7→

∫
ω ∈ R, which establishes the required isomorphism (52.6).

Problems
1. Establish (51.6). (Hint below.)
2. Verify (51.7), (51.8).
3. Given C1 vector fields v0, . . . , vr on a manifold M and a differential r-form ω

of class C1 on M , show that

(r + 1)(dω)(v0, . . . , vr) =

r∑
q=0

(−1)qdvq [ω(v0, . . . , v̂q, . . . , vr)]

+
∑

0≤p<q≤r

(−1)p+q ω([vp, vq], v0, . . . , v̂p, . . . , v̂q, . . . , vr) ,

where dv stands for directional differentiation. (Hint below.)
4. For a manifold M with a finite number k of connected components, describe

an isomorphism

H0M ≈ Rk .

5. Prove (52.4) (or (52.5)). (Hint below.)
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6. Given C∞ mappings F : M → N , G : N → P between manifolds, verify the
composite rule

(52.9) (G◦F )∗ = F ∗◦G∗

for the pullbacks both of differential r-forms (ΩrP → ΩrM) and r-dimensional
cohomology classes (H rP → H rM), and an analogous identity rule

(52.10) Id∗ = Id

for M = N and F = Id.
7. Show that C∞-diffeomorphic manifolds M,N must have isomorphic cohomol-

ogy spaces, i.e., for all integers r,

H rM ≈ H rN .

8. Let γ : [a, b]→M be a piecewise C1 curve in a manifold M . By the line integral
over γ of any continuous 1-form ξ in M (defined on an open set containing

γ([a, b])) one means the number
∫
γ
ξ =

∫ b
a
ξγ(t)(γ̇(t)) dt. Assuming that γ is a

closed curve in the sense that γ(b) = γ(a), show that, for any 1-dimensional
cohomology class σ ∈ H1M , the number∫

γ

σ =

∫
γ

[ξ] =

∫
γ

ξ dt ,

where ξ ∈ Z1M is any closed C∞ 1-form with [ξ] = σ, is well-defined (i.e.,
independent of the choice of such ξ), and that the function

(52.11) H1M 3 σ 7→
∫
γ

σ ∈ R

is linear; one calls (52.11) the period mapping corresponding to γ.
9. Given a C1 mapping F : M → N between manifolds a piecewise C1 curve in

the source manifold M , and a continuous 1-form ξ in the target manifold M
(defined on an open set containing F (γ([a, b]))), prove that

(52.12)

∫
γ

F ∗ξ =

∫
F◦γ

ξ .

Also, verify that, if F is of class C∞, we have, for any σ ∈ H1N,

(52.13)

∫
γ

F ∗σ =

∫
F◦γ

σ.

10. Verify that, for any C1 function f on a manifold M and a piecewise C1 curve
γ : [a, b]→M ,

(52.14)

∫
γ

df = f(γ(b)) − f(γ(a)) .

(Notation as in Problem 8.) Show that the 1-form (51.11) on R2 \ {0} is closed
but not exact.

11. Construct a 2-dimensional connected manifold M such that H1M is infinite-
dimensional. (Hint below.)

Hint. In Problem 1, note that the right-hand side of (51.6) is skew-symmetric in
j1, . . . , jr+s, while, summed against dxj1 ∧ . . . ∧ dxjr+s it gives ω ∧ θ in view of
(50.10) and (51.2).
Hint. In Problem 3, use (51.10), (6.6) and (51.1).
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Hint. In Problem 5, write (51.10) with ω replaced by F ∗ω, using (52.3). The terms
on the right-hand side involving second-order derivatives of the Fα will undergo
cancellations due to symmetry properties of second-order partial derivatives. The
assertion now follows since, by the chain rule, ∂j(ωα1...αr ◦ F ) = [∂α0

(ωα1...αr ) ◦
F ] ∂jF

α0 .
Hint. In Problem 10, note that ω0 is, locally, the differential of arctan(y/x)
or − arctan(x/y). Also,

∫
γ
ω0 = 2π for γ : [0, 2π] → R2 \{0} with γ(t) =

(cos t, sin t), and so, by (52.14), ω0 cannot be exact.
Hint. In Problem 11, set, for instance, M = C\Z. To prove our assertion, use
the family ωk of closed 1-forms labeled with integers k, given by ωk = F ∗−kω0,
where Fk : M → M is the translation by k ∈ Z with Fk(z) = z + k and ω0 is
the closed form (51.11) (restricted to the open submanifold M). The closed curves
curves γk : [0, 2π] → M with γk(t) = k + eit/2 now satisfy γk = Fk ◦ γ0, so by
(52.12), (52.13) with Fk+l = Fk ◦ Fl, we have

(52.15)

∫
γk

[ωl] =

∫
γk

F ∗−lω0 =

∫
γk−l

ω0 = 2πδkl .

(Note that
∫
γs
ω0 = 0 for all s 6= 0, since the image of γs then lies in the open

set U = {z ∈ M : z = x + iy, x, y ∈ R, x 6= 0}, while ω0 = df in U with
f(z) = f(x + iy) = arctan(y/x).) In view of (52.15), the system [ωk], k ∈ Z, of
vectors in H1M is linearly independent: if any finite combination of these vectors
is zero, so is each coefficient as one sees by taking line integrals.
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De Rham Cohomology

53. Homotopy invariance of the cohomology functor

Topics: Betti numbers; the Poincaré polynomial; the graded de Rham cohomology algebra;

piecewise C r homotopies between C r mappings of manifolds; homotopy invariance of the induced

cohomology-algebra homomorphism; extension of the cohomology functor to continuous mappings

between compact C∞ manifolds.

For a manifold M and an integer r, the rth Betti number of M , denoted by
br(M), is the dimension of the cohomology space H rM . We set br(M) = ∞ if
H rM is infinite-dimensional. By (52.1), br(M) = 0 if r < 0 or r > dimM .

For any manifold M whose Betti numbers are all finite, one defines the Poincaré
polynomial of M to be the polynomial IP[M ] in the variable t given by

(53.1) IP[M ] =

n∑
r=0

br t
r, where br = br(M) and n = dimM.

For instance, according to Examples 52.2 and 52.3,

(53.2) IP[Rn] = 1, IP[S1] = 1 + t.

In this chapter we will introduce an object called the Mayer-Vietoris sequence and
use it to prove that the Betti numbers of a compact manifold are all finite, and
determine them for all spheres, tori, projective spaces and closed orientable surfaces
of any genus.

A graded algebra is a real or complex associative algebra A along with a fixed
direct-sum decomposition A =

⊕
r∈ZAr of the underlying vector space such that

ArAs ⊂ Ar+s for all r, s ∈ Z (where the algebra multiplication of A is written
multiplicatively). Examples of interest for us are, for a given manifold M , the
graded algebra Ω∗M and its (graded) subalgebras Z∗M and B∗M , with the sum-
mands ΩrM , Z rM and B rM , respectively. By (c) in Theorem 51.1, B∗M is a
two-sided ideal in Z∗M (but only a subalgebra in Ω∗M). We can thus form the
quotient (associative) algebra

H∗M = Z∗M/B∗M ,

called the cohomology algebra of M . Its multiplication is referred to as the cup
product and denoted by ∪. Explicitly, H∗M is the direct sum

H∗M = H0M ⊕ . . .⊕HnM , n = dimM

of all cohomology spaces of the given manifold M , and the cup product is given by

[ω] ∪ [θ ] = [ω ∧ θ ] .

Thus, whenever ρ ∈ H rM and σ ∈ HsM , (51.5) gives

ρ ∪ σ = (−1)rsσ ∪ ρ.

157
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Any C∞ mapping F : M → N gives rise to the pullbacks F ∗ : Ω∗N → Ω∗M and
F ∗ : H∗N → H∗M (see the end of §51), which are algebra homomorphisms (Prob-
lem 1). Thus, C∞-diffeomorphic manifolds have isomorphic cohomology algebras,
and the isomorphism in question is graded, that is, compatible with the direct-sum
decompositions of the algebras.

Let Φ, Ψ : M → N be Ck mappings between Ck manifolds, 0 ≤ k ≤ ω. A Ck

homotopy between Φ and Ψ is any continuous mapping F : [a, b]×M → N, with
−∞ < a < b <∞, such that F (a, x) = Φ(x) and F (b, x) = Ψ(x) for every x ∈M ,
while F is of class Ck in the sense that it appears so in any given local coordinates
for M and N . (This last requirement is, clearly, a geometric property.) If such F
exists, Φ and Ψ are said to be Ck-homotopic. When k = 0, one drops the prefix
C0 and speaks simply of homotopies and homotopic mappings.

Given manifolds M,N, let F : [a, b] ×M → N be a C∞ homotopy between
C∞ mappings Φ, Ψ : M → N. Then, for each integer r, there exists a linear
operator H : ΩrN → Ωr−1M such that

(53.3) Ψ∗ − Φ∗ = d ◦ H + H ◦ d

(which, for each r, is an equality between operators H : ΩrN → ΩrM , while the de-
pendence of all operators involved on r is suppressed in our notation). Specifically,
for ω ∈ ΩrN, we define Hω by

(Hω)x(v2, . . . , vr) =

∫ b

a

[ω(F (t, x))](Ḟ (t, x), dF txv2, . . . , dF
t
xvr) dt .

whenever x ∈M , that is, in local coordinates xj for M and yλ for N,

(Hω)j2...jr =

∫ b

a

(ωλλ2...λr ◦ F )
∂Fλ

∂t
(∂j2F

λ2) . . . (∂jrF
λr ) dt .

In fact, (53.3) is easily obtained by combining the last formula with (51.10) and
(52.3), due to pairwise cancellations of terms involving second-order partial deriva-

tives of the components of F , and the relation Ψ∗ω − Φ∗ω =
∫ b
a

(d[F ∗t ω ]/dt) dt,
with Ft = F (t, · ).

We can now prove the fact stated in the title of this section.

Theorem 53.1. If two C∞ mappings Φ, Ψ : M → N between manifolds are
C∞-homotopic, they induce the same graded algebra homomorphism H∗N → H∗M .

Proof. By (53.3), for any closed r-form ω ∈ Z rN, the pullbacks Ψ∗ω and
Φ∗ω differ by the exact form d(Hω) ∈ B r−1M .

Given continuous mappings Φ, Ψ : N → M from a manifold N into a connected
Riemannian manifold (M, g), we define their uniform distance to be

(53.4) dist(Φ, Ψ) = sup{d(Φ(y), Ψ(y)) : y ∈ N} .

Thus, 0 ≤ dist(Φ, Ψ) ≤ ∞, and dist(Φ, Ψ) < ∞ if one of M,N is compact. We
will say that a continuous mapping Ψ : N →M is the uniform limit of a sequence
Φk of continuous mappings N → M if dist(Φk, Ψ) → 0 as k → ∞. See also
Problem 2.

Theorem 53.2. Every continuous mapping Ψ from a compact manifold N
into a compact connected Riemannian manifold (M, g) is the uniform limit of a
sequence of C∞ mappings N →M .
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Proof. Whitney’s embedding theorem for compact manifolds allows us to
treat M as a submanifold of a Euclidean space V . We may choose an open set
U in V , containing M , and a C∞ retraction π : U → M . (Namely, U is
the image of a tubular-neighborhood diffeomorphism, cf. Problem in §..., under
which π corresponds to the bundle projection of the normal bundle of M in V .)
In view of the Stone-Weierstrass theorem (or, more precisely, Corollary 75.2 in
Appendix B), Ψ is the uniform limit, relative to the Euclidean metric of V , of
a sequence Fk of C∞ mappings N → V . The image Fk(N) must, for all but
finitely many k, be contained in U, or else there would exist points in V \ U
arbitrarily close to points in M , and so, taking a convergent sequence of the latter
points we would get a contadiction (a limit lying in M and, simultaneously, in
V \ U). The sequence Φk = π ◦Fk of C∞ mappings N →M (with “large” k) now
converges to Ψ uniformly relative to the metric g. In fact, otherwise there would
exist ε > 0 and a sequence of “large” integers k with points yk ∈ N such that
d(Φk(yk), Ψ(yk)) ≥ ε, and, choosing a subsequence of the yk that converges to some
y ∈ N (see Problem 3), we would get 0 = d(Ψ(y), Ψ(y)) ≥ ε. This contradiction
completes the proof.

Lemma 53.3. For every compact connected Riemannian manifold (M, g) there
exists a constant ε > 0 such that any two Ck mappings Φ, Ψ : N →M from any
manifold N with dist(Φ, Ψ) < ε are Ck-homotopic.

Proof. With ε as in Corollary 34.2, we define a homotopy F : [0, 1]×N →M
by F (t, y) = expxtv, where x = Φ(y) and v ∈ TxM is the vector such that
expxv = Ψ(y), depending C∞-differentiably on x and Ψ(y).

We will now extend the cohomology functor, for compact manifolds, to a larger
category of all continuous mappings, rather than just C∞-differentiable ones.

Theorem 53.4. A graded algebra homomorphism Ψ∗ : H∗M → H∗N can be
uniquely assigned to every continuous mapping Ψ : N →M between compact C∞

manifolds in such a way that for C∞ mappings Ψ it is the homomorphism defined
at the end of §51, while Φ∗ = Ψ∗ if two continuous mappings Φ, Ψ : N → M are
homotopic.

Proof. Let Ψ : N → M be continuous. Choosing a Riemannian metric g
on M (see Remark 28.3), a constant ε > 0 for (M, g) as in Lemma 53.3, and
a C∞ mapping Φ : N → M with dist(Φ, Ψ) < ε/2 (which exists in view of
Theorem 53.2), we nay now define Ψ∗ by setting Ψ∗ = Φ∗. This does not depend
on how Φ was chosen: for another such choice Ξ, we have dist(Φ,Ξ) < ε due to
the triangle inequality for dist (Problem 2), we get Ξ∗= Φ∗ from Lemma 53.3 for
k =∞ and Theorem 53.1.

We have thus extended the functor to continuous mappings, and the extension
will clearly be unique once we establish the remaining property of homotopy invari-
ance. However, the prceding argument clearly gives Φ∗1 = Φ∗2 for two continuous
mappings Φ1, Φ2 : N → M with dist(Φ1, Ψ2) < ε/2. Homotopy invariance now is
immediate from Problem 5.

Problems
1. Verify that F ∗ : Ω∗N → Ω∗M and F ∗ : H∗N → H∗M are algebra homomor-

phisms whenever F : M → N is a C∞ mapping.
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2. Given a manifold N and a compact connected Riemannian manifold (M, g),
show that the set C(N,M) of all continuous mappings N → M , with the
distance function (53.4), forms a metric space. Is it complete?

3. For a compact manifold N, a connected Riemannian manifold (M, g), a sequence
Fk ∈ C(N,M) with the uniform limit F ∈ C(N,M), and a sequence yk ∈ N
with a limit y, prove that Fk(yk)→ F (y) in M as k →∞.

4. Verify that the “functorial” properties (52.9) – (52.10) remain valid in the cate-
gory of compact C∞ manifolds and continuous mappings.

5. For a compact manifold N and a compact connected Riemannian manifold
(M, g), show that if two continuous mappings Φ, Ψ : N → M are homotopic,
then, for any ε > 0, there exist an integer k ≥ 1 and continuous mappings
Φj : N →M , j = 0, 1, . . . , k, with Φ0 = Φ, Φk = Ψ and dist(Φj−1, Ψj) < ε for
all j ∈ {1, . . . , k}. (Hint below.)

Hint. In Problem 5, note that otherwise, with a fixed homotopy F : [a, b]×N →M
between Φ and Ψ , we could find ε > 0 and sequences tl, sl ∈ [a, b] and yl, zl ∈ N,
l = 1, 2, . . ., such that |tl − sl| → 0 as l → ∞ and d(Φ(tl, yl), Φ(sl, zl)) ≥ ε.
Choosing “simultaneous” convergent subsequences, we would get a contradiction.

54. The homotopy type

Topics: Homotopy equivalences and algebra isomorphisms; homotopy type; examples.

One calls a continuous mapping Φ : M → N between manifold a homotopy
equivalence there exists a continuous mapping Ψ : N → M such that both com-
posites of Φ and Ψ are homotopic to identity mappings Φ ◦ Ψ to IdN , and Ψ ◦Φ
to IdM . In this case, Ψ is also a homotopy equivalence, called a homotopy inverse
of Φ. If a homotopy equivalence M → N exists, the manifolds M and N are said
to be homotopy equivalent. One similarly defines (a) C∞-homotopy equivalence by
requiring, in addition, that Φ and Φ be of class C∞.

One also expresses the fact that two manifolds are homotopy equivalent, or
C∞-homotopy equivalent, by saying that they have the same homotopy type, or
C∞-homotopy type.

Remark 54.1. According to Problem 4 in §53 (and Theorem 53.1), two com-
pact manifolds having the same homotopy type, or two arbitrary manifolds of the
smae C∞-homotopy type, must also have isomorphic graded cohomology algebras.

Lemma 54.2. Let M be a submanifold of a manifold N and let Ψ : N →M is
a C∞ mapping which, as a mapping N → N , is homotopy equivalent to the identity
Id : N → N . Then the inclusion mapping M → N is a homotopy equivalence, for
which Ψ is a homotopy inverse.

In fact, for the inclusion mapping Φ : M → N, we have Φ ◦ Ψ = Ψ : N → N,
and Ψ ◦ Φ = IdM .

Example 54.3. For any n ≥ 1 and points o ∈ Rn, y, z ∈ Sn with y 6= z,

a. Sn \{y} is diffeomorphic to Rn.
b. Rn \{o} is homotopy equivalent to Sn−1 (where S0 is a two-point space).
c. Sn \{y, z} is homotopy equivalent to Sn−1.
d. Any star-shaped open subset U of Rn has the homotopy type of a one-point

space (which is a 0-dimensional manifold).

See Problem 1.
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Problems
1. Prove the claims made in Example 54.3. (Hint below.)
2. Show that the total space of a C∞ vector bundle over a manifold M is C∞-

homotopy equivalent to M . (Hint below.)
3. Verify that M × Rk has, for any manifold M and any integer k ≥ 0, the

C∞-homotopy type of M .
4. Let K = R or K = C. Prove that the projective space KPn minus a point

has, for each n ≥ 1, the homotopy type of KPn−1. (Hint below.)
5. Let W be a codimension-one subspace of a finite-dimensional real/complex vec-

tor space V , and let P (W ) be the corresponding linear subvariety of the pro-
jective space P (V ). Prove that P (V )\P (W ) is diffeomorphic to a Euclidean
space. (Hint below.)

6. Let U be a strongly convex, nonempty open set in a connected Riemannian
manifold. Verify that U has the homotopy type of a point. (Hint below.)

Hint. In Problem 1, for (a): use the stereographic projection from y (§2), for (b):
replace o with 0 (using a translation diffeomorphism) and apply Lemma 54.2 with
N = Rn \{0}, M = {x ∈ N : |x| = 1} ≈ Sn−1 and Φ(x) = x/|x|, the homotopy
[0, 1] 3 (t, x) 7→ F (t, x) between Id and Φ being F (t, x) = (1 − t)x + tx/|x|.
Finally, (c) is immediate from (a) and (b), while in (d) we may assume that U is
star-shaped relative to 0 and apply Lemma 54.2 to N = U, M = {0}, Φ(x) = x
and the homotopy F (t, x) = (1− t)x, 0 ≤ t ≤ 1.
Hint. In Problem 2, use Lemma 54.2.
Hint. In Problem 4, use Problem 4 in §18 and Problem 2.
Hint. In Problem 5, note that P (V )\P (W ) is the domain of a projective coordi-
nate system (§2).
Hint. In Problem 6, choose x ∈ U and apply Lemma 54.2 to N = U, M = {x},
the constant mapping Φ = x and the homotopy F (t, x) = (1− t)x, 0 ≤ t ≤ 1.

55. The Mayer-Vietoris sequence

Topics: The connecting homomorphism; exact sequences; the Mayer-Vietoris sequence; finite-

ness of Betti numbers of a compact manifold.

We now turn to a method of determining the Betti numbers of various specific
manifolds.

Finding dimensions of vector spaces, and bounds on those dimensions, is often
made possible by exhibiting linear operators between pairs of such spaces that are
injective and/or surjective, that is, have a trivial or improper kernel or image.

In many cases the information that is readily available has the seemingly weaker
form of equality between the image of one operator and the kernel of another;
namely, some natural sequences of operators are exact, in the sense that defined
below. As we will see in the next section, exactness of such a sequence is in turn
often sufficient to determine the dimensions of the spaces involved.

Let U, U ′ be open subsets of a manifold M such that U ∪ U ′ = M . The
(disjoint) closed sets K = M \U and K ′ = M \U ′ can be separated by a C∞

function f : M → R in the sense that f = 1 on an open set containing K and
f = 0 on an open set containing K ′. (See Problem 1 in §84 of Appendix D.) Thus,
whenever s is an integer and ω ∈ Ωs(U ∩ U ′), there exist θ, θ′ with

(55.1) ω = θ − θ′ on U ∩ U ′, while θ ∈ ΩsU and θ′ ∈ ΩsU ′.
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(In fact, we may set θ = fω and θ′ = (f−1)ω.) For any given s ∈ Z we define the
connecting homomorphism δ∗ : Hs(U ∩ U ′) → Hs+1M to be the linear operator
such that, with θ, θ′ chosen for ω ∈ Zs(U ∩ U ′) as in (55.1),

(55.2) δ∗[ω] = [σ] , where σ =

{
dθ on U

dθ′ on U ′.

That δ∗ is well-defined and linear can be seen as follows. First, if the closed form ω
representing the given cohomology class [ω] is fixed, the right-hand side of (55.2)

does not depend on the choice of θ, θ′ with (55.1): letting θ̃, θ̃′ be another such

choice, we have θ̃ − θ = θ̃′ − θ′ on U ∩ U ′, and so there exists χ ∈ ΩsM with
χ = θ̃ − θ on U and χ = θ̃′ − θ′ on U ′. Hence, for σ̃ defined as in (55.2) using

θ̃, θ̃′ instead of θ, θ′, we have σ̃ = σ+ dχ, that is, [σ̃] = [σ]. Next, let ω is replaced
by another closed form ω̃ = ω+ d(χ−χ′) representing the given cohomology class;
here we wrote an arbitrary (s − 1)-form of class C∞ on U ∩ U ′ as a difference
χ − χ′ of one such form on U and another on U ′. Now, if θ, θ′ are chosen as in
(55.1) for ω, then analogous forms θ̃, θ̃′ for ω̃ may be defined by θ̃ = θ + dχ and

θ̃′ = θ′ + dχ′. Thus, σ in (55.2) for ω̃ is the same as for ω. Finally, linearity of
δ∗ is obvious.

A sequence . . . → Vk−1 → Vk → Vk+1 → . . . , infinite in both directions and
consisting of vector spaces and linear operators (or, more generally, groups and
homomorphisms) is called exact if, for every integer k, the image of Vk−1 → Vk
coincides with the kernel of Vk → Vk+1.

An important example of an exact sequence is the Mayer-Vietoris sequence
associated with any pair U, U ′ of open subsets of a manifold M such that U∪U ′ =
M . (See Problem 2.) It is given by

(55.3) . . .
δ∗→

conn.
HsM →

rstr.
HsU ×HsU ′ →

sbtr.
Hs(U ∩ U ′) δ∗→

conn.
Hs+1M →

rstr.
. . . .

Here ‘conn.’, ‘rstr.’ and ‘sbtr.’ mean “connecting”, “restriction” and “subtraction,”
while δ∗ or ‘conn.’ is defined by (55.2), ‘rstr.’ sends [ω ] to ([χ], [χ′]), where χ, χ′

are the restrictions of ω to U, U ′, and ‘sbtr.’ assigns to ([χ], [χ′]) the difference
[θ]− [θ′], where θ, θ′ are the restrictions of χ, χ′ to U ∩ U ′.

In addition, we allow U∩U ′ in (55.3) to be empty. More precisely, the sequence
(55.3) remains exact also when we agree to treat the empty set as a manifold,
perhaps of dimension −1, and set HsØ = {0}, that is, bs(Ø) = 0, for all s ∈ Z.

Note that δ∗ : H0(U ∩ U ′)→ H1M is the zero operator if U ∩ U ′ is connected.
In fact, a closed 0-form ω on U ∩ U ′ then is a constant function, and θ, θ′ with
(55.1) may be chosen constant as well.

Lemma 55.1. If a manifold M is the union of two open sets U, U ′ such that
H1U = H1U ′ = {0} and U ∩ U ′ is connected, then H1M = {0}.

Proof. The restriction operator in (55.3) for s = 1 is trivial, since so is its
target space; hence its kernel is H1M . In view of exactness, H1M is also the image
of the zero operator mentioned in the last paragraph.

As our second application of the Mayer-Vietoris sequence, we will now show that
some simple conditions, such as compactness of a manifold M , are suffcient for
finite-dimensionality of its cohomology algebra H∗M , that is, finiteness of all Betti
numbers br(M).
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Proposition 55.2. Let a manifold M admit a finite open covering U such
that dimH∗U < ∞ for the cohomology algebra H∗U of the intersection U of
every nonempty subfamily of U. Then dimH∗M <∞.

Proof. Let U = {U1, . . . , Uk}. We use induction on k. When k = 1, our
claim follows as M = U1 is the intersection of the subfamily {U1}. Next, suppose
that k ≥ 2 and our assertion holds whenever the open covering with the stated
property consists of fewer than k sets. The Mayer-Vietoris sequence (55.3) with
U = U1∪. . .∪Uk−1 and U ′ = Uk now satisfies the finite-dimensionality assumption,
and hence conclusion, of Problem 4(a).

Corollary 55.3. The Betti numbers of any compact manifold are all finite.

This is immediate from Proposition 55.2 in view of Corollary 34.2 combined with
the Borel-Heine theorem and Problem 6 in §54. (Intersections of strongly convex
are, obviously, strongly convex.)

Problems
1. Verify that the Mayer-Vietoris sequence (55.3) is exact (also when U ∩ U ′ = Ø).
2. Show that whenever an exact sequence contains a portion that has the form

. . .→ {0} → V →W → {0} → . . . , the arrow V →W appearing in it must be
an isomorphism.

3. Given an exact sequence . . .→ Vk−1 → Vk → Vk+1 → . . . of vector spaces, let us
set nk = dimVk and define rk to be the rank, i.e., dimension of the image, of the
operator Vk−1 → Vk. (Thus, all nk, rk lie in the set {0, 1, 2, . . . ,∞}, consisting
of all nonnegative integers and the symbol ∞.) Verify that nk = rk + rk+1 and
nk ≤ nk−1 + nk+1 for every integer k. (Hint below.)

4. Let us agree to say that, in an exact sequence . . .→ Vk−1 → Vk → Vk+1 → . . . ,
two out of every three spaces satisfy some given condition if there exist two
distinct numbers q, q′ ∈ {0, 1, 2} such that this condition holds for Vk whenever
k − q or k − q′ is divisible by 3.
(a) Show that if two out of every three spaces in an exact sequence are finite-

dimensional, then all spaces in it are finite-dimensional.
(b) Verify that if two out of every three spaces in an exact sequence are trivial,

then all of its spaces are trivial. (Hint below.)

Hint. In Problem 3, the first relation nk = rk + rk+1 follows from the rank-nullity
theorem (since rk is the dimension of the kernel of Vk → Vk+1), and the second
one is immediate from the first.
Hint. In Problem 4, use the inequality nk ≤ nk−1 + nk+1 (Problem 3).

56. Explicit calculations of Betti numbers

Topics: The cohomology spaces of spheres, real and complex projective spaces, tori, connected

sums, and and closed orientable surfaces of any genus.

In view of Corollary 55.3, the Poincaré polynomial IP[M ] is well defined when-
ever the manifold M is compact. Using exactness of the Mayer-Vietoris sequence
(55.3) and Remark 54.1, we obtain the following relations. Some specific manifolds
appearing in them are compact; others, denoted by M and N, are assumed to have
finite Betti numbers (and the same then follows for their disjoint sum, connected
sum, and Cartesian product). The relatons in question are
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i. IP[Ø] = 0 and IP[{0}] = 1, where {0} is a one-point space,
ii. IP[Sn] = 1 + tn,

iii. IP[CPn] = 1 + t2 + t4 + . . .+ t2n = (1− t2n+2)/(1− t2),
iv. IP[RPn] = 1 for even n, and IP[RPn] = 1 + tn for odd n,
v. IP[Tn] = (1 + t)n,
vi. IP[M ∪ N ] = IP[M ] + IP[N ] if M,N are disjoint and dimM = dimN,
vii. IP[M #N ] = IP[M ] + IP[N ]− IP[Sn], where n = dimM = dimN,

viii. IP[M ×N ] = IP[M ] · IP[N ],
ix. IP[S1 ×M ] = (1 + t) IP[M ],
x. IP[Σk] = 1 + 2kt+ t2, where Σk is a closed orientable surface of genus k.

Relation (viii), known as the Künneth formula, will not be proved (or used) in this
text, and we include it only for the reader’s infomation. We do, however, prove its
special case (ix).

The first equality in (i) is our convention about the empty set (see a comment
following (55.3)), the second one is immediate from Example 52.2. We will now
derive (ii) – (iv), (vi), and (ix) from exactness of the Mayer-Vietoris sequence (55.3),
in which the role of M is played by the manifold appearing on the left-hand sise of
each equality. In most cases, instead of the open sets U, U ′, we will describe their
(disjoint, closed) complements Y, Y ′. First, in (vi), Y, Y ′ are M and N, and we
can either use the trivial empty-intersection case of (55.3), or use a simple direct
argument, analogous to that in Problem 1. In (ii), we choose Y, Y ′ to be one-point
sets, so that, in view of Example 54.3(a),(c), U ≈ U ′ ≈ {0} and U ∩ U ′ ≈ Sn−1.
(Here and in the sequel we let ≈ stand for homotopy equivalence.) Thus, by (53.2)
and Problem 2 in §55, exactness of (55.3) gives br−1(Sn−1) = br(S

n) whenever
r ≥ 2, and hence br(S

n) = br−1(Sn−1) = . . . = b1(Sn−r+1) for r = 2, . . . , n.
Thus, in view of (53.2) and Lemma 55.1, br(S

n) = 1 if r = n and br(S
n) = 0 if

1 ≤ r < n, so that (ii) follows.
In (iii) and (iv), let our Y, Y ′ be a one-point set and a linear subvariety of

codimension one over the scalar field K, as in Problem 5 of §54. Thus, U ≈
KPn−1, U ′ ≈ {0}, and, in (iii), U ∩ U ′ ≈ S2n−1, while, in (iv), U ∩ U ′ ≈
Sn−1. (See Problem 5 in §54 and Example 54.3(b).) For any n ≥ 1 we have
b2n−1(CPn) = 0, since (55.3) contains the fragment {0} → H2n−1CPn → {0} (by
(ii) and (52.1)). Another fragment is {0} → H2n−1S2n−1 → H2nCPn → {0} (cf.
(52.1)), and so b2nCn = b2n−1S

2n−1 = 1 from Problem 2 in §55 and (ii). Similarly,
the fragment {0} → HsCPn → HsCPn−1 → {0} in (55.3), for s = 2, . . . , 2n− 2,
shows that bs(CPn) is the same for all n ≥ s/2, with any fixed s ≥ 2. Also,
Lemma 55.1 implies, by induction on n, that b1(CPn) = 0 for all n ≥ 1. These
formulae, combined, easily give (iii), and a similar argument, with S2n−1 replaced
by Sn−1, yields (iv) (see Problem 2).

Proofs of (v), (ix) and (x) are left to the reader in the form of Problems 3, 4,
5 and 6.

Relations (vii) will be proved later, in §58, under the assumption that M and
N are compact.

Problems
1. For a manifold M having a finite number k of connected components U1, . . . , Uk,

exhibit for each r ∈ Z a natural isomorphism H rM ≈ H rU1 ⊕ . . . ⊕ H rUk.
(Hint below.)
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2. Verify (iv).
3. Prove (ix). (Hint below.)
4. Prove (v). (Hint below.)
5. Prove (x). (Hint below.)

Hint. In Problem 1, use the assignment

H rM 3 [ω] 7→ ([ω1], . . . , [ωk]) ∈ H rU1 ⊕ . . .⊕H rUk ,

ωq being the restriction of ω to Uq.
Hint. In Problem 3, choose the closed sets Y, Y ′ to be {p}×M and {q}×M for
two distinct points p, q ∈ S1, and use Problem 3 in §54 (for k = 1) along with (vi).
Hint. In Problem 4, use (ii) for n = 1, (ix) and induction on n.
Hint. In Problem 5, use (v) for n = 2 and (vii).

57. Stokes’s formula

Topics: Oriented integral of a compactly supported continuous highest-degree forms on oriented

manifolds; the Stokes formula (without a boundary term).

By an orientation in a real vector bundle η with a positive fibre dimension
over a manifold M we mean an assignment that associates with every x ∈ M an
orientation of the fibre ηx (cf. §70 in Appendix A) and is continuous in the sense
of being represented, in a suitable neighborhood of any point of M , by a local
trivialization of η. One calls η orientable if an orientation in η exists.

Similarly, an orientation of a manifold M with dimM ≥ 1 is any orientation
in the tangent bundle TM , and M is said to be an orientable manifold if TM is
an orientable vector bundle.

In addition, by an oriented bundle (or, manifold) we mean a pair consisting of
an orientable real vector bundle (or, manifold) and a fixed orientation for it.

A local coordinate system xj in an oriented manifold M is said to be compatible
with the orientation if, for every x in the coordinate domain, the basis pj(x)
represents the orientation chosen in TxM . Note that every coordinate system xj

can be “made” compatible with the orientation by changing the sign of x1 in
suitable connected components of the coordinate domain.

Let ω be a continuous differential n-form with a compact support on an n-di-
mensional oriented manifold M . We now define a number

(57.1)

∫
M

ω ∈ R

called the oriented integral of ω. To do this, we note that the fixed orientation
of M naturally determines a C∞ vector-bundle isomorphism between ΛnM and
the real-line bundle of densities on M , which assigns to an exterior n-form at a
point x ∈ M the density µ sending any (ordered) basis e1, . . . , en of TxM to
±µ(e1, . . . , en), with the sign indicating whether or not e1, . . . , en agrees with the
fixed orientation. We now declare (57.1) to be

∫
M
µ.

For instance, if supp ω is small in the sense of §36, and we choose a coordinate
system xj compatible with the orientation, which contains supp ω in its domain,
then

(57.2)

∫
M

ω =

∫
Rn

Ω1...n(x1, . . . , xn) dx1 . . . dxn.
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where Ω1...n is a function of n real variables with ω1...n = Ω1...n(x1, . . . , xn), for
the only “essential” component function ω1...n of ω (see Problem 1), characterized
by

ω1...n = ω(p1, . . . , pn) ,

that is
ω = ω1...n dx

1 ∧ . . . ∧ dxn

(cf. (51.2), (51.3)). The right-hand side of (57.2) makes sense as Ω1...n may be
trivially extended to a compactly supported continuous function on Rn.

The following classical result is know as Stokes’s theorem.

Theorem 57.1. Let θ be a compactly supported differential (n − 1)-form of
class C1 on an n-dimensional oriented manifold M . Then∫

M

dθ = 0 .

Proof. See Problem 7.

Given a n-dimensional manifold M which is both compact and oriented , we can
now define a linear function

(57.3)

∫
M

: HnM → R

called the integration of top cohomology classes, and assigning to each σ ∈ HnM
the value ∫

M

σ =

∫
M

[ω] =

∫
M

ω ,

with ω ∈ ΩnM = ZnM such that σ = [ω]. By the Stokes theorem,
∫
M
σ is well

defined (that is, independent of the choice of ω in the given cohomology class).

Remark 57.2. The integration (57.3) is always surjective (i.e., nonzero), as we
may choose ω with a small support and such that Ω1...n in (57.2) is nonnegative
but not identically zero.

Problems
1. Verify that the components (51.3) of any exterior (or differential) n-form ω in

an n-dimensional manifold M satisfy ωj1...jn = εj1...jn ω1...n, where εj1...jn is
the Ricci symbol (see the hint for Problem 11 in §8).

2. Show that
ω(u1, . . . , uk) = detB · ω(v1, . . . , vk)

whenever ω is a k-linear skew-symmetric mapping V × . . .× V →W between
real or complex vector spaces, and the vectors u1, . . . , uk ∈ V are combinations
of v1, . . . , vk ∈ V with the coefficient matrix B = [Bβα], so that uα = Bβαvβ ,
α, β ∈ {1, . . . , k}. (Hint below.)

4. Show that the integral in (57.1) is a linear function of ω.
5. Verify that

∫∞
−∞ f ′(t) dt = 0 for any compactly supported C1 function on R.

6. Show that
∫
Rn

[∂f/∂xj ] dx1 . . . dxn = 0 for any compactly supported C1 func-
tion on Rn and any j = 1, . . . , n. (Hint below.)

7. Prove Theorem 57.1. (Hint below.)
8. Verify that the integrals (57.1), (57.3) both change sign when the orientation of

the manifold in question is reversed.
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9. Verify that formula (52.8) expresses the oriented integral (57.1) in the case where
the manifold in question is S1 with the orientation that assigns to each z ∈ S1

the set of bases (i.e., nonzero vectors v) in TzS
1 given by (dt)(v) > 0, with dt

defined according to (52.7).
10. Show that every C1 diffeomorphism F between oriented connected manifolds

M,N with dimM = dimN = n ≥ 1 is either orientation-preserving or orien-
tation-reversing in the sense that, at every x ∈ M , the differential dFx sends
the orientation chosen in TxM onto that chosen in TF (x)N or, respectively, its
opposite (and the choice of one or the other option is the same for all x). Is the
connectedness assumption necessary?

Hint. In Problem 2, note that

ω(Bα1
1 vα1

, . . . , Bαkk vαk) = Bα1
1 . . . Bαkk ω(vα1

, . . . , vαk)

= εα1...αkB
α1
1 . . . Bαkk ω(v1, . . . , vk),

where εα1...αk is the Ricci symbol (Problem 1), while

εα1...αkB
α1
1 . . . Bαkk = det [Bβα] .

Hint. In Problem 6, use iterated integration and Problem 5.
Hint. In Problem 7, use a partition of unity to assume that θ is supported in a
coordinate domain, and note that, by Problem 6, each term of (dθ)1...n = ∂1θ2...n−
∂2θ13...n + . . .± ∂nθ1...n−1 then contributes zero to the integral

∫
M
dθ.

Hint. In Problem 9, note that due to linearity of either integral, we may assume
(using a partition of unity) that ω is supported in an open subset U of S1 that
is a diffeomorphic image under (52.7) of an open set in R. This makes t into
a coordinate (system) with the domain U , compatible with the orientation (as
(dt)(∂/∂t) = 1 > 0) and (52.8) is nothing else than (57.2) with n = 1, x1 = t and
Ω1 = f .

58. The fundamental class and mapping degree

Topics: Integration of top cohomology classes as an isomorphism for spheres; compactly sup-

ported antiderivatives for compactly supported closed forms in Euclidean spaces; integration as

an isomorphism between the top cohomology space of any compact oriented connected manifold

and the real line; the fundamental class; the mapping degree; examples.

Remark 58.1. Given a compact oriented n-dimensional manifold M , the fol-
lowing three conditions are equivalent:

a. For every n-form ω of class C∞ on M with
∫
M
ω = 0 there exists a

differential (n− 1)-form θ of class C∞ on M such that ω = dθ.
b. The oriented-integration operator (57.3) is an isomorphism.
c. dimHnM = 1.

In fact, (a) implies (b), and (b) implies (c). Now, assume (c), and let W be the
space of all ω ∈ ΩnM with

∫
M
ω = 0. By the Stokes theorem, BnM ⊂W ⊂ ZnM ,

while W 6= ZnM (see Remark 57.2), so that W = BnM as the image of W
under the projection into the 1-dimensional quotient space ZnM/BnM now must
be trivial.

Each of the equivalent three conditions (a) – (c) in Remark 58.1 is actually
satisfied by every n-dimensional manifold M which is compact, oriented and, in
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addition, connected. (See Theorem 58.5 below.) We have already established that
fact (namely, condition (b)) for all spheres; see (i) in §56.

We now need the following, more refined version of the Poincaré lemma.

Lemma 58.2. Suppose that K is a closed ball centered at 0 in Rn, while
U ⊂ Rn is an open set with K ⊂ U , and ω is a differential r-form of class C∞

on Rn such that

i. supp ω ⊂ K, and
ii. Either 1 ≤ r ≤ n− 1 and ω is closed, or r = n and

∫
Rn
ω = 0.

Then ω = dθ for some differential (r − 1)-form θ of class C∞ on Rn such that
supp θ ⊂ U .

Proof. Let K ′ be another closed ball centered at 0 with K ⊂ K ′ ⊂ U , and
let f : Rn → R be a C∞ function such that f = 0 on an open set containing K
and f = 1 on Rn \K ′ (Problem 18 in §6). Let us also identify Rn with Sn \{z}
for some z ∈ Sn as in Example 54.3(a). The center 0 of K and K ′ then becomes
the antipodal point −z of z, and the stereographic projection from −z provides
a diffeomorphism between both Sn \K, Sn \K ′ and suitable open Euclidean balls.
Regarding ω as an r-form of class C∞ on Sn, we have ω ∈ B rSn (by Remark ??,
(a) in Remark 58.1 and (i) in §56). Thus, there exists a differential (r − 1)-form
θ′ of class C∞ on Sn such that ω = dθ′. Next, the form obtained by restricting
θ′ to the “ball” Sn \K is obviosly closed. If r > 1, Poincaré’s Lemma for that
restricted form implies the existence of χ ∈ Ωr−2(Sn \K) with θ′ = dχ on Sn \K.
The form θ = θ′ − d(fχ) then satisfies our assertion. On the other hand, if r = 1,
the function θ′ with dθ′ = 0 on Sn \K equals a constant c there (as on Sn \K
is connected), and we may use θ = θ′ − c. This completes the proof.

Proposition 58.3. Let ω ∈ Z rM be a closed differential r-form of class C∞

on an n-dimensional manifold M such that supp ω is small in the sense of §36.
If, in addition, either

i. 1 ≤ r ≤ n− 1, or
ii. r = n, while M is orientable and

∫
M
ω = 0,

then ω ∈ B rM , that is, there exists a differential (r − 1)-form θ of class C∞ on
M such that ω = dθ.

Proof. Identifying U with an open ball centered at 0 in Rn, we may treat
ω as a compactly supported global form on Rn. Let K be the smallest closed ball
centered at 0 in Rn such that supp ω ⊂ K. Thus, K ⊂ U and the radius of
K equals the distance between supp ω and Rn \U . Applying Lemma 58.2 to ω,
the open ball U , and this K, we find the corresponding θ which has a compact
support contained in U , and so it may be treated as a form on M .

Remark 58.4. Note that the (r− 1)-form θ obtained in the above proof also
has the property that supp θ is small.

The following isomorphism theorem shows that the three equivalent conditions (a)
– (c) in Remark 58.1 hold for all compact, oriented, connected manifolds.

Theorem 58.5. For every compact, connected, oriented n-dimensional mani-
fold M , the integration of top cohomology classes is an isomorphism

(58.1) HnM 3 σ 7→
∫
M

σ ∈ R .
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Proof. We will prove condition (a) of Remark 58.1. Let ω ∈ ΩnM with∫
M
ω = 0. Choosing Uq and ϕq, q = 1, . . . , k, as in Lemma 36.4 we obtain

ω =
∑
q ω
′
q with ω′q = ϕqω. In addition, let us select compactly supported forms

χq ∈ ΩnM , q = 1, . . . , k, with χk = 0 and such that, for all q = 1, . . . , k − 1,
suppχq ⊂ Uq ∩ Uq+1 and

∫
M
χq = 1. (This is possible as Uq ∩ Uq+1 is nonempty.)

If we now set aq =
∑q
j=1

∫
M
ω′j for q = 0, . . . , k, then a0 = ak = 0. Formula

ωq = aq−1χq−1 + ω′q − aqχq ,

for q = 1, . . . , k, defines compactly supported n-forms ωq of class C∞, such that∫
M
ωq = 0, while supp ωq ⊂ Uq for all q = 1, . . . , k and, finally,

∑
q ωq =

∑
q ω
′
q =

ω. Thus, each ωq satisfies the hypotheses of Proposition 58.3, so that ωq ∈ BnM .
Consequently, ω ∈ BnM , which completes the proof.

Let us again consider a compact, connected, oriented manifold M of any dimension
n ≥ 1. The isomorphism (58.1) now singles out a distinguished nonzero element
σM of the top cohomology space HnM (n = dimM), characterized by

(58.2)

∫
M

σM = 1 .

One calls σM the orientation class (or fundamental class) of the manifold M .
Note that σM depends on the orientation, and is replaced with −σM when the
orientation is reversed. Furthermore, σM spans HnM and, for any σ ∈ HnM ,

(58.3) σ =

(∫
M

σ

)
σM .

Let F : M → N be any C∞ mapping between compact, connected, oriented
manifolds M,N of the same dimension n ≥ 1. The degree of F is by definition
the real number

(58.4) degF =

∫
M

F ∗σN .

In view of (58.2) and (58.3), we have

(58.5) F ∗σN = degF · σM

(since the integrals of both sides coincide) and∫
M

F ∗σ = degF ·
∫
M

σ

for each σ ∈ HnN . For σ = [ω] with any given ω ∈ ΩnN , this gives∫
M

F ∗ω = degF ·
∫
M

ω .

Thus, degF can be found from the formula

(58.6) degF =

∫
M
F ∗ω∫
M
ω

which is valid for any differential n-form ω of class C∞ on the n-dimensional
manifold N such that

∫
M
ω 6= 0.

In the following examples, F,M,N, n are as above.

Example 58.6. We have degF = 0 if F is a constant mapping. In fact, then∫
M
F ∗ω = 0 in (58.6).
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Example 58.7. More generally, degF = 0 if F is not surjective (that is, not
“onto” N. Namely, we then have

∫
M
F ∗ω = 0 for any ω ∈ ΩnN supported in the

(nonempty and open!) set N \F (M).

Example 58.8. The degree of a mapping changes sign when the orientation of
M or N is reversed, since so does

∫
M

and σN , respectively. Reversing both ori-
entations leaves the degree unchanged. This leads to an interesting situation when
M = N (and we choose to endow both “copies” of M with the same orientation).
Then M needs only to be orientable (but not necessarily oriented) for the degree
to be well-defined, by the formula F ∗σM = degF · σM (or (58.4), or (58.6), with
M = N). In other words, if n = dimM and F : M →M is a C∞ mapping,

F ∗ acts on HnM via multiplication by degF .

Applied to the identity mapping of M , this yields

(58.7) deg Id = 1 .

Example 58.9. For the composites of C∞ mappings between compact, con-
nected, oriented manifolds of the same dimension we have

deg(G ◦ F ) = degF · degG ,

by (58.4), (58.5) and (52.9). Now (58.7) yields

(58.8) degF · degF−1 = 1 , and so degF 6= 0

whenever F is a diffeomorphism.

Example 58.10. From the homotopy invariance of F ∗ (see §53) it follows that
homotopic mappings must have the same degree. In particular, if F is a homotopy
equivalence, (58.8) remains valid with F−1 replaced by a homotopy inverse of F .

Example 58.11. For every compact oriented n-dimensional manifold M there
exists a C∞ mapping F : M → Sn with degF = 1 for a suitable orientation of
the sphere Sn. (See Problem 8.)

Problems
1. Verify that, for a C∞ diffeomorphism F : M → N between compact, connected,

oriented manifolds M,N with dimM = dimN = n ≥ 1, we have degF = 1
if F is orientation-preserving (cf. Problem 10 in §48) and degF = −1 if F is
orientation-reversing.

2. Let F, F ′ : M → N be C∞ mappings between compact, connected, oriented
manifolds M,N. Show that if F and F ′ are C∞-homotopic (§53), then degF =
degF ′.

3. Show that for every Euclidean inner product 〈 , 〉 in a real vector space V of
any even finite dimension, V may be identified with the underlying real space
of some complex vector space in such a way that 〈 , 〉 becomes the real part of
a Hermitian inner product. (Hint below.)

4. Let F : Sn → Sn be the antipodal mapping of the unit sphere in Rn+1, that is,
the restriction to Sn of the multiplication by −1. Prove that degF = (−1)n+1.
(Hint below.)
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5. For a C∞ mapping F : S1 → S1 of the circle S1 = {z ∈ C : |z| = 1}, let us
define the function R 3 t 7→ z(t) ∈ C by z(t) = F (eit), and set ż(t) = dz/dt.
Prove that

degF =
1

2πi

∫ 2π

0

ż(t)

z(t)
dt .

(Hint below.)
6. Can a compact, connected, orientable manifold be homotopy equivalent to a

compact, connected, orientable manifold of some other dimension? (Hint below.)
7. Given an integer n ≥ 1, show thet there exists a C∞ mapping F : Rn → Sn

and a point z ∈ Sn such that F : U → Sn \{z} is a diffeomorphism (where
U = {x ∈ Rn : |x| < 1}) and F (y) = z for all y ∈ Rn \U . (Hint below.)

8. Prove the statement in Example 58.11. (Hint below.)

Hint. In Problem 3, fix a Hermitian inner product in a complex vector space W of
the same real dimension as V and choose a linear isometry between its underlying
real space of some and V .
Hint. In Problem 4, note that, when n is even, F is orientation-reversing (both in
Rn+1 and Sn), while, if n is odd, F is homotopic to the identity via the homotopy
(curve of mappings) whose tth stage, for t ∈ [0, π], is the multiplication by eit in
Rn+1 treated as C(n+1)/2, cf. Problem 3.
Hint. In Problem 4, note that ω = dt is a well-defined 1-form on S1, even though
t is not a well-defined function, and use (58.6).
Hint. In Problem 6, note that dimM equals the largest r satisfying the condition
H rM 6= {0}, which in turn is invariant under homotopy equivalences.
Hint. In Problem 7, let Sn = {(t,x) : t ∈ R, x ∈ Rn, t2 + |x|2 = 1} and then set
z = (−1,0) and

F (x) = (cos(ϕ(|x|)) , sin(ϕ(|x|)) · x/|x|) ,
where ϕ : R → R is a C∞ function such that ϕ(t) ≤ 0 for t ≤ 0, ϕ(0) = 0,
ϕ̇(0) = 1, ϕ(t) = 2π for t ≥ 1, and ϕ̇(t) > 0 for t ∈ (0, 1). (Take ϕ to be, e.g, a
multiple of an antiderivative for χ in Problem 16 in §83 of Appendix D.)

59. Degree and preimages

Topics: Integration as an isomorphism between the top cohomology space of any compact ori-

ented connected manifold and the real line; the fundamental class; the mapping degree; examples.

Given a linear operator Φ : V → W between two oriented real vector spaces
of the same positive, finite dimension, we define

sgn Φ ∈ {−1, 0, 1}
to be +1 if Φ is an isomorphism that preserves the orientation (i.e., maps the
distinguished orientation in V onto the distinguished orientation in W , to be −1
if Φ is an isomorphism that reverses (does not preserve) the orientation, and to be
0 if Φ is not an isomorphism.

Lemma 59.1. Let F : M → N be any C∞ mapping from a compact manifold
M into a manifold N , and let y ∈ N be such that dFx : TxM → TyN is injective
for every x ∈ F−1(y). Then the set F−1(y) is finite.

Proof. Suppose, on the contrary, that there is an infinite sequence of distinct
points xk ∈M with F (xk) = y. Replacing it with a subsequence, we may assume
that xk → x as k → ∞ for some x ∈ M . Then x ∈ F−1(y) and, by the
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rank theorem (cf. formula (9.6), F is injective on some neighborhood of x, which
contradicts the fact that such a neighborhood must contain infinitely many preim-
ages of y. This completes the proof.

We now prove what may be called the mapping degree theorem.

Theorem 59.2. Let F : M → N be any C∞ mapping between compact,
connected, oriented manifolds M,N of the same dimension n ≥ 1, and let y be
a regular value of F , that is, a point y ∈ N such that dFx : TxM → TyN is an
isomorphism for every x ∈ F−1(y). Then the set F−1(y) is finite, and the degree
of F can be written as

degF =
∑

x∈F−1(y)

sgn dFx ,

This is immediate from (58.6) applied to a differential n-form ω of class C∞

supported in a sufficiently small neighborhood of y and such that
∫
ω 6= 0.

Since regular values y as required in the above theorem always exists (see
Sard’s theorem in §57 of Appendix B), we obtain

Corollary 59.3. The degree degF of any C∞ mapping F between compact,
connected, oriented manifolds M,N of the same dimension n ≥ 1, is an integer:

degF ∈ Z .

Example 59.4. The fundamental theorem of algebra: every nonconstant poly-
nomial P with complex coefficients, viewed as a mapping C → C, is onto (and
hence has a root). In fact, we may treat C as an open subset of the Riemann
sphere S2, namely the domain of one of the two coordinate systems introduced
in Problem 8 of §2. Then C = S2 \ {∞} for a specific point ∞ ∈ S2, and the
other coordinate system has the domain U = S2 \{0}, with 0 ∈ C ⊂ S2, and
the coordinate mapping U 3 z 7→ 1/z ∈ C (where 1/∞ = 0). Our polyno-
mial P : C → C ⊂ S2 has an extension P : S2 → S2 given by P (∞) = ∞,
which is easily seen to be a C∞ mapping. Since the Riemann sphere is compact,
connected and orientable (Problems 19 and 15 in §3), P has a well defined map-
ping degree degP . Furthermore, degP coincides with the algebraic degree of P
(the integer k with P (z) = a0 + a1z + . . . + akz

k, where a0, a1, . . . , ak ∈ C and
ak 6= 0). In fact, P , as a mapping S2 → S2, is homotopic to each of the polyno-
mials Pt(z) = t(a0 + a1z + . . . + ak−1z

k−1) + akz
k, t ∈ [0, 1], including P0, and

P0 is in turn homotopic to F with F (z) = zk (write ak = reiθ and consider the
homotopy [0, 1] 3 t 7→ Ft with Ft(z) = (r − tr + t)eiθ(1−t)zk). Since degF = k
(by Theorem 59.2), we have degP = k > 0 and so P is surjective (Example 58.7),
as required.

Problems
1. Given a C∞ mapping F : S1 → S1 of the circle

S1 = {z ∈ C : |z| = 1

into itself, define the complex-valued function R 3 t 7→ F (eit) ∈ C. Prove that

(59.1) degF =
1

2πi

∫ 2π

0

ż(t)

z(t)
dt ,
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where, as usual, ( )˙ = d/dt. Thus, the integral in (59.1) is automatically real.
(Hint below.)
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CHAPTER 11

Characteristic Classes

60. The first Chern class

Topics: The (first) Chern form of a connection in a complex vector bundle; the first Chern class

for complex vector bundles; the first Chern class and operations on bundles.

Given a connection ∇ in a complex vector bundle η over a manifold M , we
define the (first) Chern form of ∇ to be the differential form c∇ ∈ Ω2M of degree
2 on M with

(60.1) c∇x (v, w) =
1

2π
Im [Trace (R∇x (v, w))]

for x ∈ M and v, w ∈ TxM (where Im means ’the imaginary part of’). Thus,
in terms of local coordinates xj for M and a local trivialization ea for η, the
component functions of c∇ are

(60.2) c∇jk =
1

2π
ImRjka

a .

Furthermore, by (20.10),

Rjka
a = ∂kΓ

a
ja − ∂jΓ

a
ka ,

as the two terms quadratic in the Γ bja cancel each other after contraction (which
amounts to vanishing of the trace of the commutator of two square matrices). Thus,
by (51.2) and (51.10) we have

(60.3) c∇ = − 1

π
d (ImΓ aja dx

j) ,

so that c∇ is locally exact, and therefore it is closed:

d c∇ = 0 ,

i.e., c∇ ∈ Z2M . Any other connection ∇̃ in η can be written as ∇̃ = ∇+ F for
some C∞ section of the vector bundle T ∗M⊗Hom(η, η) = Hom(TM, Hom(η, η)).

(Problem 1 in §20.) Then, by (60.3), c∇̃ − c∇ = dθ/π, with the global 1-form
θ = ImF aja dx

j . (In component-free language this says θx(v) = Im [Trace (Fx(v))]
with Fx(v) ∈ Hom(ηx, ηx) for x ∈M and v ∈ TxM .) The cohomology class

(60.4) c1(η) = [c∇] ∈ H2M

thus depends on η alone, and not on the choice of the connection ∇. We call c1(η)
the (real) first Chern class of the complex vector bundle η.

The first Chern class c1(η) is well-defined for any complex vector bundle η
over a compact manifold M since, according to Problem 7(c) in §28, η then admits
a connection. However, a connection in η must exist even without compactness of
M . We will not prove that general fact, which is a consequence of the countability
axiom (cf. §14). Since our applications deal exclusively with compact manifolds,

175
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we will simply treat the existence of a connection/metric as an extra assumption
we choose to make in the noncompact case.

Example 60.1. Combining (60.1), (60.2) and (60.4) with curvature-components
formulae for connections obtained by applying natural operations to other connec-
tions (§27), we obtain the following results for complex vector bundles η, η′ over
a manifold M .

a. c1(η) = c1(η′) if η and η′ are isomorphic (Problem 2).
b. c1(η) = 0 if η is trivial (use (a) and a standard flat connection).
c. c1(η ⊕ η′) = c1(η) + c1(η′).
d. c1(η∗) = − c1(η).
e. c1(η⊗ η′) = q′c1(η) + q c1(η), where q and q′ are the fibre dimensions of η

and η′.
f. c1(η∧q) = c1(η), if q is the fibre dimension of η.
g. c1(F ∗η) = F ∗(c1(η)), whenever F : N →M is a C∞ mapping and F ∗η is

the bundle over N obtained as the F -pullback of a bundle η over M .

Problems
1. Verify that, in a real vector bundle over a compact manifold, the 2-form Rjka

a dxj∧
dxk is always exact. Give a description of this form that does not involve local
coordinates or a local trivialization. (Hint below.)

2. The same for the 2-form ReRjka
a dxj ∧ dxk in a complex vector bundle.

3. Prove the claim made in Example 60.1(a). (Hint below.)
4. Show that a complex line bundle η over a compact manifold has c1(η) = 0 if

and only if η admits a flat connection. (Hint below.)

Hint. In Problem 1, first use a connection compatible with a Riemannian fibre
metric, and then note that the cohomology class of the form in question does not
depend on the connection.
Hint. In Problem 3, use a connection in η and its push-forward under an isomor-
phism η → η′.
Hint. In Problem 4, assume exactness of c∇ and then conclude that another con-
nection in η, written as ∇̃ = ∇ + F . Let both connections be compatible with a
fized Hermitian fibre metric, so that Im in relevant expressions can be omitted.

61. Poincaré’s index formula for surfaces

Topics: Poincaré’s index theorem.

Proposition 61.1. Let η be a real vector bundle of fibre dimension n over a
compact n-dimensional manifold M . Then there exists a global C∞ section ψ of
η having only finitely many zeros.

Proof. Using Problem 7 in §28, we may choose a vector bundle ζ of some
fibre dimension k over M , an (n+k)-dimensional real vector space V , and a C∞

vector-bundle isomorphism h : η ⊕ ζ →M × V . Let us fix a positive-definite inner
product 〈 , 〉 in V , and denote

Σ = {u ∈ V : 〈u, u〉 = 1}
the corresponding unit sphere. Also, 〈 , 〉 gives rise to a Riemannian fibre metric
g in ζ characterized by gx(ξ, ξ′) = 〈hx(ξ), hx(ξ′)〉, and the set

N = {(x, ξ) : x ∈M, ξ ∈ ζx, gx(ξ, ξ) = 1}
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(called the total space of the unit sphere bundle of ζ) carries a natural structure of
a compact (n+ k − 1)-dimensional manifold, such that the mapping

F : N → Σ

given by

F (x, ξ) = hx(ξ)

is of class C∞. Note that every u ∈ V gives rise to a C∞ section ψ[u] of η, given
by

ψ[u](x) = πx(h−1
x (u)) ,

where π : η ⊕ ζ → η is the obvious projection morphism. As dimN = dim Σ, we
can use Sard’s theorem, to select a regular value u of F . By Lemma 59.1, F−1(u)
is finite, so that the section ψ = ψ[u] has finitely many zeros. This completes the
proof.

We can now prove Poincaré’s index theorem:

Theorem 61.2. Let η be an oriented real vector bundle of fibre dimension n
over a compact oriented n-dimensional manifold M . For any C∞ section ψ of η
which is defined and nonzero outside a finite set Sing (ψ) ⊂M , we then have

χ(η) =
∑

{x∈ Sing (ψ)}

indxψ .

in preparation

in preparation

Corollary 61.3. Given a C∞ vector field w defined and nonzero outside a
finite set Sing (w) ⊂M in a compact orientable manifold M , we have

χ(M) =
∑

{x∈ Sing (w)}

indxw .

Proof. This is Theorem 61.2 for η = TM .

Problems

in preparation

62. The Gauss-Bonnet theorem

Topics: The Gaussian curvature function of a Riemannian surface; the Gauss-Bonnet formula.

The Euler class becomes particularly useful in cases where the base manifold
M is compact and oriented, and the fibre dimension q of the oriented real vector
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bundle η over M iparticular interest arises when coincides with n = dimM . One
then defines the Euler number of η to be χ(η) =

∫
e(η), i.e.,

χ(η) =

∫
e(η) =

∫
E∇ ∈ R .

If, in addition, η = TM , this number is called the Euler characteristic of M and
denoted χ(M), so that

χ(M) = χ(TM) =

∫
e(TM)

and

(62.1) χ(M) =

∫
E∇

for any connection ∇ in TM , compatible with a Riemannian metric g on M . Note
that χ(η) changes sign when one of the orientations (of η or TM) is reversed, and
so it remains the same if both orientations are changed. Therefore, the Euler
characteristic χ(M) is well-defined for any compact manifold M which is just
orientable, not necessarily oriented. Obviously, by (62.1) and (63.4),

χ(M) = 0 if dimM is odd.

By a zero of a local section ψ of a vector bundle η over a manifold M we
mean any point x ∈ M lying in the domain of ψ and such that ψ(x) = 0. For a
compact orientable manifold M , we have

(62.2) χ(M) = 0 if M admits a global C∞ tangent vector field without zeros.

In fact, such a vector field w leads to the decomposition TM = η ⊕ η⊥, where η
is the line subbundle spanned by w, and we can use Example 3(c), with e(η) = 0
in view of (63.4). In dimension 2, we have the following classical result, known as

the Gauss-Bonnet theorem.

Theorem 62.1. Let (M, g) be a compact orientable Riemannian surface, that
is, a Riemannian manifold of dimension 2. Denoting K the Gaussian curvature
function of (M, g) (see (30.13)), we then have

(62.3)
1

2π

∫
Kν = χ(M) ,

where the integration opeator
∫

and the volume form ν refer to any fixed orienta-
tion of M .

Proof. Using the Levi-Civita connection in TM , we obtain

(62.4) Rx(v, w) = 2Kv ∧ w

in (63.2), in view of (30.6) (i.e., (30.9)) and (51.7), where the tangent vectors v, w
are treated as 1-forms via lowering of indices with the aid of g (so that vj = gjkv

k).
If v, w form an orthonormal basis of TxM , we thus have ν = ±2v ∧ w by (??),

so that, from (63.2), B(v, w) = ±K, and hence 2πE∇ = Kν. This completes the
proof.

Thus, for instance, the Euler characteristic of the 2-sphere is

χ(S2) = 2 .
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(To see this, we can use (62.4) with K = 1/r2 for a sphere of radius r (see ...),
while Area(S2

r ) = 4πr2 by (37.3) for n = 2.) Consequently, the tangent bundle
TS2 of the 2-sphere is not C∞ trivial. In fact, by (62.2), S2 does not admit a
global C∞ tangent vector field without zeros. By a local tangent frame in a surface
M we mean a pair e1, e2 of C∞ tangent vector fields on an open submanifold V of
M that form, at each point of V , an orthonormal basis of the tangent plane. The
corresponding connection form then is the 1-form ω on V with ω(v) = g(∇ve1, e2)
for C∞ tangent vector fields v on V . Thus,

∇ve1 = ω(v)e2, ∇ve2 = −ω(v)e1,

in view of orthonormality. We then also have

K
√

det[gjl] = ∂2ω1 − ∂1ω2,

K being the Gaussian curvature of the surface M .

63. The Euler class

Topics: Volumes of spheres; the Euler form of a connection, compatible with a Riemannian fibre

metric, in an oriented real vector bundle; the Euler class of an oriented real vector bundle; the

Euler class and operations on bundles; equality between Chern and Euler classes for complex

line bundles; the Euler number; the Euler characteristic of a compact orientable manifold; the

Gauss-Bonnet theorem for compact Riemannian surfaces; the Euler characterisic for spheres;

nonexistence of C∞ vector fields without zeros, and on even-dimensional spheres; nonexistence

of a nonzero proper C∞ vector subbundle in the tangent bundle of an even-dimensional sphere;

the Gauss-Bonnet-Chern formula.

The construction described below, require the existence in the given vector
bundle of a connection along with a compatible Riemannian fibre metric. We know
(Problem 7(c) in §28) that such objects exist whenever the base manifold M is
compact. Actually, this is true for every base manifold M , even without compact-
ness. We will not prove here that general existence result (which is a consequence
of the countability axiom, cf. §14). Since our applications deal exclusively with
compact manifolds, we will simply treat the existence of a connection/metric as an
extra assumption we choose to make in the noncompact case.

Example 63.1. For an n-dimensional sphere

Snr = {v ∈ V : |v| = r}

of radius r > 0 in an (n + 1)-dimensional Euclidean vector space V , with the
induced Riemannian metric g, we have

VolSnr =


2n+1πn/2(n/2)!

n!
rn , if n is even

2π(n+1)/2

[(n− 1)/2]!
rn , if n is odd.

See Problems ......

Let us now consider an oriented real vector bundle η of some fibre dimension
q ≥ 1 over a manifold M (see §48). and let g be a Riemannian (that is, positive-
definite) fibre metric in η. The volume form ν of g in η allows us to express any
ω ∈ (η∗x)∧q, or any section ω of (η∗)∧q, as a scalar (functional) multiple of νx or
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ν, with the coefficient that will be denoted 〈ν, ω〉; thus, suppressing x we have, in
either case

ω = 〈ν, ω〉ν
and

(63.1) 〈ν, ω〉 = ω(e1, . . . , ek)

with ea as in (...). Furthermore, suppose that we are given a connection ∇ in
η which is compatible with g (see §28). Recall that the g-modified curvature of
∇ at x (§28) assigns, to each x ∈ M and all v, w ∈ TxM , the skew-symmetric
bilinear form

Rx(v, w) ∈ η∧2
x ,

characterized by (28.10), i.e., ηx × ηx 3 (ψ, φ) 7→ 〈R∇(v, w)ψ, φ〉 ∈ R. This allows
us to introduce the tensor Bx ∈ L(TxM, . . . , TxM ; R) = [T ∗xM ]⊗q defined by

(63.2) Bx(v1, . . . , vq) = 〈νx, Rx(v1, v2) ∧ . . . ∧Rx(vq−1, vq)〉

for v1, . . . , vq ∈ TxM (if q is even), or Bx = 0 (if q is odd). Finally, one defines

the Euler form E∇ of ∇ (and g) to be the differential form E∇ ∈ ΩqM of degree
q on M , with

(63.3) E∇x =
(q!)2

(8π)q/2(q/2)!
SBx

for all x ∈ M , where S is the skew-symmetrization projection (see .....), applied
here to Bx. Note that, by definition,

(63.4) E∇ = 0 identically if the fibre dimension q is odd.

In terms of local coordinates xj for M and a local positive-oriented, orthonormal
trivialization ea for η, we thus have, by (63.1)
(63.5)

E∇x =
q!

(8π)q/2(q/2)!
εa1...aqRa1a2 ∧ . . . ∧Raq−1aq if the fibre dimension q is even

with the local 2-forms

(63.6) Rab = Rjkab dx
j ∧ dxk

(i.e., Rab(v, w) = 〈R∇(v, w)ea, eb〉) and the Ricci symbol εa1...aq analogous to that
in Problem 1 of §57.

For a fixed z ∈M , choose the ea at z with Γ bja(z) = 0 (§26). By (20.10) and
(28.11) with gab = δab, we then have ∂lRjkab + ∂jRklab + ∂kRljab = 0 at z, so

that, by (51.10), (dRab)(z) = 0. Hence, by (63.4) and (63.5), (dE∇)(z) = 0. Since
z ∈M was arbitrary, we obtain

dE∇ = 0 ,

i.e., E∇ ∈ ZqM . Furthermore, the cohomology class of E∇ does not depend on the
choice of the connection ∇ or the compatible Riemannian fibre metric g, and so it
is an invariant associated with the oriented real vector bundle η (of fibre dimension
q) alone. It is denoted

e(η) = [E∇] ∈ HqM

and called the Euler class of the oriented bundle η. Thus, by definition (see (63.4)),

e(η) = 0 if the fibre dimension of η is odd.
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To see the independence of [E∇] of ∇ or g, we may assume that the fibre
dimension q of η is even. First, let us fix g and consider two connections ∇
and ∇̃ in η both compatible with g. We can always find a curve [0, 1] 3 t 7→
∇(t) of connections in η which are all compatible with g, and such that for any
coordinate-and-trivialization domain U , the components Γ bja(t, x) of ∇(t) at x are

C∞ functions of (t, x) 3 (−ε, 1 + ε) × U for some ε > 0 and, finally, ∇(0) = ∇,

∇(1) = ∇̃. (For instance, set ∇(t) = ∇ + tF , where F is the C∞ section of

T ∗M ⊗ Hom(η, η) = Hom(TM, Hom(η, η)) with ∇̃ = ∇ + F , cf. Problem 1 in

§cc.) The Euler forms E(t) of ∇(t) then satisfy

d

dt
E(t) = dθ(t)

for a suitable curve [0, 1] 3 t 7→ θ(t) of (q − 1)-forms on M whose components
in any coordinate domain U are C∞ functions of (t, x) 3 (−ε, 1 + ε) × U with

some ε > 0. (See Problem ..). Then E∇̃ − E∇ = dω, with 1-form ω =
∫ 1

0
θ(t) dt.

Finally, for two Riemannian metrics g and g̃ in η and a connection ∇ in η,
compatible with g, we can find a bundle automorphism (gauge transformation)

F : η → η sending g onto g′ (see Problem ..), and the push-forward ∇̃ = F∇ of

∇ under F then is compatible with g̃ (Problem 2 in §25), so that E∇̃ = E∇ by
Problem ... This proves the independence property stated above.

Example 63.2. Combining (63.3), (63.4) and (63.6) with curvature-components
formulae for operations on connections (§17) (Homework #17, #18, #24), we
obtain the following results for oriented real vector bundles η, η′ over a manifold
M .

a. e(η) = e(η′) if η, η′ are isomorphic (Problem 2).
b. e(η) = 0 if η is trivial (use a flat connection).
c. e(η ⊕ η′) = e(η) ∪ e(η′). (See Problem ...)
d. e(F ∗η) = F ∗(e(η)) for pullbacks under C∞ mappings F : N →M .
e. e(η̃) = − e(η) if η̃ is obtained from η by reversing the orientation.
f. e(η) = c1(η) if the fibre dimension of η equals 2 and so a Riemannian fibre

metric along with the orientation make η into a complex line bundle. See
Problems .....

A generalization of these properties of S2 to spheres of higher (even) dimensions is
immediate. Specifically, we have

χ(Sn) = 2 whenever n ≥ 2 is even.

To see this, note that we have (62.4) for the sphere Snr of radius r with the
submanifold metric (again, from (..) with K = 1/r).

in preparation

Therefore, if n is even, TSn does not admit any nonzero proper C∞ vector
subbundle η. (If it did, we could apply Example 3(c) to TSn = η oplusη⊥ and
then use (??).) In particular, every global C∞ tangent vector field on Sn must
have at least one zero. For odd-dimensional spheres, see Problem ...
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Another interesting relation is the product formula

χ(M ×N) = χ(M)χ(N)

(Problem ...) for compact orientable manifolds M,N of arbitrary dimensions.
A generalization of the Gauss-Bonnet theorem to compact orientable Riemann-

ian manifolds of higher (even) dimensions is provided by the Gauss-Bonnet-Chern
formula

χ(M) =
1

(8π)n/2(n/2)!

∫ [
νj1...jnνk1...knRj1j2k1k2 . . . Rjn−1jnkn−1kn

]
ν .

See Problem ...

Problems
1. Verify that, in a real vector bundle, the 2-form Rjka

a dxj ∧dxk is always exact.
2. Isomorphic.
3.

e(η) = 0 if η admits a global C∞ section without zeros.

(Hint below.)
3. (Hint below.)
3. (Problem ...Use a connection in η and its push-forward under an isomorphism

η → η′.) (Hint below.)
3. χ(M) = #M if M is finite. Verify product. odd-dimensional spheres (Hint

below.)
3.

χ(η) =

∫
1

(n!)2
. . . εj1...jn εa1...anRj1j2a1a2 ∧ . . . ∧Rjn−1jnan−1an

(Hint below.)
3. By the cross product of a differential r-form ω on a manifold M and a differ-

ential s-form θ on a manifold N we mean the differential (r + s)-form ω × θ
on the product manifold M ×N given by

ω × θ = π∗Mω ∪ π∗Nθ ,

where πM and πN are the projection mappings of M × N onto M and N ,
respectively. Verify that then d(ω× θ) = (dω)× θ+ (−1)r ω× dθ. Suppose now
that M and N are both compact and oriented and r = dimM , s = dimN .
Prove that, if ω and θ are both continuous and compactly supported, then so
is ω × θ, and ∫

(ω × θ) =

(∫
ω

)
·
(∫

θ

)
.

(Hint below.)
3. Given manifolds M,N and cohomology classes α ∈ H rM , β ∈ HsN , one defines

their cross product α× β ∈ Hr+s(M ×N) by

α× β = π∗Mα ∪ π∗Nβ

with πM and πN as in Problem ... Verify that [ω] × [θ] = [ω × θ] whenever
ω ∈ Z rM and θ ∈ Z rM .

e(η × ζ) = e(η)× e(ζ) .

χ(η × ζ) = χ(η)χ(ζ) .
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T (M ×N) = TM × TN .

(Hint below.)
3. Given a finite-dimensional real or complex vector space V and a nondegenerate

symmetric bilinear form 〈 , 〉 on V , let us call a basis eα of V orthonormal if
〈eα, eβ〉 = 0 for α 6= β and 〈eα, eα〉 = εα = ± 1 for each α. Show that, for any
two orthonormal bases eα and eα′ of V , the transition matrix [Aαα′ ], defined
by eα′ = Aαα′eα, satisfies

det[Aαα′ ] = ±1 .

(Hint below.)
5. Let eα be an orthonormal basis for a nondegenerate symmetric bilinear form 〈 , 〉

in a finite-dimensional real or complex vector space V , α = 1, . . . , n = dimV .
Prove that, for any system v1, . . . , vn of vectors in V , one has

detG = ε
V

(detB)2 ,

where G = [〈vα, vβ〉] is the Gram matrix of the vα, and B = [Bβα] denotes
the coefficient matrix of the vα characterized by vα = Bβαeβ , α, β ∈ {1, . . . , n},
while ε

V
= (−1)r, r being the negative index of 〈 , 〉 (the number of minus signs

in its signature − . . . − + . . .+), i.e., ε
V

= ε1 . . . εn with εα = 〈eα, eα〉 = ±1.
(Hint below.)50.4.] Verify that, under any change of the coordinates xj in M

and the local trivialization ea in η,

Γ a
′

j′a′ = Ajj′Γ
a
ja + ∂j′ log |det[Acc′ ]| ,

where η is a C∞ vector bundle over a manifold M and Γ bja are the component

functions of any connection ∇ in η, with the transition functions pj
′

j = ∂jx
j′

(p. 8) and eaa′ = ea(ea′) (p. 23). (Hint below.)

Hint. In Problem 2, use a partition of unity to assume that θ is supported in a
coordinate domain, and note that, by Problem ... in §57, each term of (dθ)1...n =
∂1θ2...n − ∂2θ13...n + . . .± ∂nθ1...n−1 then contributes zero to the integral

∫
dθ.

Hint. In Problem 2, note that

ω(Bα1
1 vα1

, . . . , Bαkk vαk) = Bα1
1 . . . Bαkk ω(vα1

, . . . , vαk) = εα1...αkB
α1
1 . . . Bαkk ω(v1, . . . , vk) ,

εα1...αk being the Ricci symbol (see the hint for Problem 11 in §8), so that εα1...αkB
α1
1 . . . Bαkk =

det[Bβα].
Hint. In Problem 3, note that the matrices G = [〈eα, eβ〉], G′ = [〈eα′ , eβ′〉] and

A = [Aαα′ ] satisfy G′ = ATGA (i.e., 〈eα′ , eβ′〉 = Aαα′A
β
β′〈eα, eβ〉), while detG′ =

detG = ±1, so that (detA)2 = 1.
Hint. In Problem 5, 〈vα, vβ〉 = BραB

σ
β 〈eρ, eσ〉 =

∑
ρ ερB

ρ
αB

ρ
β , i.e., G = BTDB

with D = diag (ε1, . . . , εn).

Hint. In Problem50.4, use the transformation rule Γ b
′

j′a′ = Ajj′A
a
a′A

b′

b Γ
b
ja+Ab

′

c ∂j′A
c
a′

(formula (30.8)) and note that

Aa
′

a ∂j′A
a
a′ = ∂j′ log |det[Acc′ ]|

in view of (8.21) with t = xj
′

and F = [Acc′ ].
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CHAPTER 12

Elements of Analysis

64. Sobolev spaces

Topics: Sobolev norms; Sobolev spaces of sections of a vector bundle; the localization principle.

Let there be given a real/complex vector bundle η over a Riemannian manifold
(M, g), a Riemannian/Hermitian fibre metric 〈 , 〉 in η and a connection ∇ in η,
compatible with 〈 , 〉. For any open set U ⊂ M , we denote by C∞0 (U, η) the
real/complex vector space of all C∞ sections of η which have compact supports
contained in U. Whenever p ∈ [1,∞] and r is a nonnegative integer, we define
norms ‖ ‖p,r in C∞0 (U, η) by declaring the pth power ‖ψ‖pp,r of ‖ψ‖p,r to be

(64.1) ‖ψ‖pp,r = ‖ψ‖pp + ‖∇ψ‖pp + . . . + ‖∇rψ‖pp if p < ∞

where ∇r and ‖ ‖p denote the rth covariant derivative and the Lp norm, with

(64.2) ‖φ‖p =

[∫
M

|φ| dg
]1/p

,

and setting

(64.3) ‖ψ‖∞,r = max (‖ψ‖∞, ‖∇ψ‖∞, . . . , ‖∇rψ‖∞)

where ‖ ‖∞ is the L∞ (or supremum) norm, with ‖φ‖∞ = supM |φ|. When no
section ψ is mentioned, we will use the symbol Lpr for the norm ‖ ‖p,r with p <∞,
while ‖ ‖∞,r will be denoted by Cr. The terminology traditionally employed is:
the Sobolev norm Lpr (with r derivatives in Lp) and the Cr norm. If r = 0, we
will write ‖ ‖p and ‖ ‖∞ rather than ‖ ‖p,0 or ‖ ‖∞,0 for the Lp and C0 norms.

That ‖ ‖p,r is actually a norm follows from the Minkowski inequality (Prob-
lem 1). In the case where M is compact, we will use the symbols Lpr(U, η) and
Cr(U, η) for the completions of C∞0 (U, η) relative to the Lpr and Cr norms.

Problems
1. Given measurable functions f, h valued in [−∞,∞] on a fixed measure space

and p ∈ [1,∞], prove the Hölder inequality

(64.4) ‖fh‖1 ≤ ‖f‖p‖h‖q
q ∈ [1,∞] being uniquely determined by the condition

(64.5)
1

p
+

1

q
= 1

where 1/∞ = 0, and the Minkowski inequality

(64.6) ‖f + h‖p ≤ ‖f‖p + ‖h‖p .

(Hint below.)

185
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Hint. In Problem 1, for (64.4) we may clearly assume that 1 < p < ∞ and
‖f‖p, ‖h‖q are both finite and positive, and then, normalizing, also assume that
‖φ‖p = ‖ψ‖q = 1. On the other hand, λaµb ≤ aλ + bµ for any a, b, λ, µ ∈
[0,∞) with a + b = 1, as one verifies by applying d/dλ to find the maximum of
λaµb − aλ− bµ, for fixed µ, a, b. Now (64.4) follows, via integration, from this last
inequality for λ = |φ|p, µ = |ψ|q, a = 1/p, b = 1/q. To prove (64.6) we may let
p > 1, and then use (64.4) with h replaced by |f + h|p−1.
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Hint. In Problem 1, find the maximum of λa11 . . . λakk − a1λ1 − . . . − akλk using
d/dλ1, with λ2, . . . , λk and all aj fixed.
Hint. In Problem

The localization principle:
The Sobolev lemma:

(64.7) Cr � Lps if M is compact and s >
n

p
+ r.

The Sobolev inequality :

(64.8) L
np/(n−rp)
s−r � Lps if M is compact, s ≥ r ≥ 1 and 1 < p <

n

r
.

Any compactly supported C1 function ϕ : Rn → R, n ≥ 2, satisfies the
following inequality (due to Gagliardo and Nirenberg, 1958):

(64.9) ‖ϕ‖n/(n−1) ≤
1

2

n∏
j=1

‖∂jϕ‖1/n1 .

In fact, 2|
∫ a
−∞ f(t) dt| ≤ ‖f‖1 for any a ∈ R and any L1 function f : R → R

with
∫∞
−∞ f(t) dt = 0, as one sees writing f = f+ − f− with f+ = max (0, f)

and f− = −min (0, f), so that f± ≥ 0 and 2‖f±‖1 = ‖f‖1, while 2|
∫ a
−∞ f dt| ≤

|2
∫ a
−∞ f+ dt− 2

∫ a
−∞ f− dt| which, being the distance between two numbers in the

interval [0, ‖f‖1], cannot exceed ‖f‖1. Fixing all but the jth component xj of
a point x ∈ Rn and applying this to f = ∂jϕ with t = xj , we get 2|ϕ(x)| ≤∫∞
−∞ |∂jϕ| dx

j and hence 2n |ϕ(x)|n ≤
∏n
j=1 ϕj , where ϕj =

∫∞
−∞ |∂jϕ| dx

j. (No

summing over j, in either relation!). Problem 4 now yields (64.9).

Problems
1. Verify that λa11 . . . λakk ≤ a1λ1+. . .+akλk whenever aj , λj ∈ [0,∞), j = 1, . . . , k,

and a1 + . . .+ ak = 1, with the convention that 00 = 0. (Hint below.)
2.
3. A generalized Hölder inequality. ‖h1 . . . hk‖q ≤ ‖h1‖p(1) . . . ‖hk‖p(k), if p(j) ∈

(1,∞) for j = 1, . . . , k, and q ∈ [1,∞) is given by q−1 = [p(1)]−1+· · ·+[p(k)]−1.
4. Given measurable functions ϕj : Rn → R, j = 1, . . . , n, with n ≥ 2, such

that each ϕj is independent of the jth coordinate xj, show that ‖ϕ1 . . . ϕn‖p ≤∏n
j=1 ‖ϕj‖1, for p = 1/(n−1). (The Lp “norm” is sometimes used, and defined

by the usual formula, also when 0 < p < 1. Here ‖ ‖p is applied to a function
Rn → R, while each ‖ϕj‖1 stands for the L1 norm of a function ϕj : Rn−1 →
R, with coordinates xk in Rn−1, such that k ∈ {1, . . . , n}\ {j}.) (Hint below.)

5.
6.
7.

Hint. In Problem 1, find the maximum of λa11 . . . λakk − a1λ1 − . . . − akλk using
d/dλ1, with λ2, . . . , λk and all aj fixed.
Hint. In Problem
Hint. In Problem
Hint. In Problem
Hint. In Problem
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65. Compact operators

Topics: Compact operators.

A linear operator A : V → W between real/complex normed vector spaces
V,W is called compact if the A-image of every bounded sequence in V contains
a Cauchy subsequence. If W is complete, this is equivalent to requiring that the
A-image of every bounded subset of V have a compact closure in W .

Every linear operator A : V → W with dimA(V ) < ∞ is clearly compact.
This is, for instance, the case if dimV <∞. Sums of compact operators V → W
are compact, and so are composites in which one operator is compact and the other
continuous.

Problems
1. Verify that, for normed vector spaces V,W , compact operators V →W form a

closed vector subspace of the normed space L(V,W ) (consisting of all continuous
linear operators V → W with the operator norm), and compact operators
V → V form a two-sided ideal in the associative algebra L(V, V ).

2. Verify that the identity operator V → V in an inner-product space V is com-
pact if and only if dimV <∞.

5.
6.
7.

Hint. In Problem 1, find

66. The Rellich lemma

Topics: Smoothing operators; the Rellich lemma.

Let η, ζ be real/complex vector bundles over compact manifolds M,N , and
let K be a C∞ section of the vector bundle Hom(π∗Mη, π

∗
Nζ) over M ×N , where

πM : M × N → M , πN : M × N → N are the projections. (Thus, K assigns to
(x, y) ∈ M × N a linear operator K(x, y) : ηx → ζy.) Also, let N carry a fixed
positive C∞ density ν. The smoothing operator SK with the kernel K assigns to
every L1 section ψ of ζ the section SKψ of η with

(SKψ)(x) =

∫
N

K(x, · )ψ ν

for x ∈M . Note that on the right-hand side we integrate a vector-valued function
N → ηx, given by y 7→ K(x, y)ψy. Clearly,

‖SKψ‖∞ ≤ ‖K‖∞‖ψ‖1 ,
and, for every nonnegative integer r,

∇r ◦ SK = S∇rK .

Thus, SK maps L1(M, ζ) into C∞(M,η) and, for every integer r ≥ 0, the operator
SK : L1(M, ζ) → C∞(M,η) is compact relative to the L1 norm in the first space
and the Cr norm in the second.

The simplest kind of smoothing operators over a compact manifold M are those
sending functions M → R to functions M → R. The kernel of such an operator
is just a C∞ function K : M ×M → R. For instance, choosing a Riemannian
metric g on M , we obtain both a positive C∞ density on M (namely, dg), and a
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special class of smoothing operators of this kind. Specifically, we fix a C∞ function
ϕ : [0,∞) → R such that ϕ = 0 everywhere in [δ2,∞) for some real number
δ > 0 satisfying the injectivity-radius bound r inj > δ on M , and then we set, for
integrable functions ψ : M → R,

(Φψ)(x) =

∫
TxM

(ϕ ◦ r2)(ψ ◦ expx) dgx ,

r : TxM → R being the norm. Thus, on the right-hand side we integrate the func-
tion TxM → R given by v 7→ ϕ(|v|2)ψ(expxv) relative to the Lebesgue measure
of the Euclidean space TxM .

The following result is known as the Rellich lemma.

Theorem 66.1. Let η be a vector bundle over a compact manifold M , and
let r be a positive integer. Then the inclusion operator Lpr(M,η) → Lpr−1(M,η)
is compact for each p ∈ [0,∞).

Proof. We may assume that s = r + 1, since the composite of a compact
operator and a continuous one is compact. Given L1 functions f, ϕ on Rn, for
n = dimM , of which one is valued in R and the other in a Euclidean space V , we
define their convolution f ∗ ϕ : Rn → V by

(66.1) (f ∗ ϕ)(x) =

∫
Rn
f(x− y)h(y) dy,

so that f∗ϕ is integrable by Fubini’s theorem:
∫ ∫
|f(x−y)h(y)| dy dx ≤ ‖f‖1‖ϕ‖1.

Also, ‖f ∗ ϕ‖∞ ≤ ‖f‖∞‖ϕ‖1, and f ∗ ϕ = ϕ ∗ f .
If B ⊂ Rn is a fixed open ball centered at 0, and 2B denotes the concentric

ball of twice the radius of B, while ϕ ∈ C∞0 (B ×R) (that is, ϕ is a C∞ function
Rn → R with a compact support contained in B), then the formula Aϕf = ϕ ∗ f
defines an operator Aϕ : L1(B × V )→ Cr0(2B × V ) which is compact (relative to
the L1 and Cr norms).

In fact, by the dominated convergence theorem, ϕ ∗ f is of class Cr, for every
r ≥ 0, and ‖ϕ ∗ f‖∞,r ≤ ‖ϕ‖∞,r‖f‖1. (Note that ∂j(ϕ ∗ f) = (∂jϕ) ∗ f .)

... eigenfunctions of the Laplacian ...

67. The regularity theorem

Topics: The regularity theorem for operators with an injective symbol.

... the regularity theorem for operators with injective symbol.

Theorem 67.1. Let η, ζ be vector bundles over a manifold M , and let a
differential operator P : C∞0 (η) → C∞0 (ζ) of essential order k have an injective
symbol. If ψ ∈ D(η) and Pψ ∈ L2

r,loc(ζ) for some r ∈ Z, then ψ ∈ L2
r+k,loc(η).

Proof.

The Poincaré inequality
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68. Solvability criterion for elliptic equations

Topics: The regularity theorem for operators with an injective symbol.

Theorem 68.1. Let η, ζ be vector bundles over a compact manifold M , and
let a differential operator P : C∞0 (η) → C∞0 (ζ) of essential order k have an
injective symbol. The image of P : L2

k(η) → L2(ζ) then coincides with the kernel
of the formal adjoint P ∗, that is, the space of those L2 sections φ of ζ for which
P ∗φ = 0 in the sense of distributions.

Proof.

69. The Hodge-de Rham decomposition theorem

Topics: The Hodge lemma; the theorem of Hodge and de Rham.

The following result is known as the Hodge-de Rham decomposition theorem.

Theorem 69.1. Let (M, g) be an n-dimensional compact Riemannian mani-
fold. For any r ∈ {0, 1, . . . , n} we then have an L2-orthogonal decomposition

Z rM = B rM ⊕ Hr(M, g),

which leads to an isomorphic identification H rM ≈ Hr(M, g).

Proof. The Hodge Laplacian dd ∗ +d ∗ d is a self-adjoint elliptic operator
sending the space of all differential r-forms on M into itself. Its image is therefore
the L2-orthogonal complement of its kernel Hr(M, g). (See Theorem 68.1.)

As a consequence, we obtain the Poincaré duality formula:

Corollary 69.2. The Betti numbers br of any compact orientable n-dimen-
sional manifold M satisfy the relations br = bn−r for r = 0, 1, . . . , n.

The next two consequences are due to Bochner:

Corollary 69.3. The first Betti number b1(M) is zero for any compact man-
ifold M admitting a Riemannian metric with positive Ricci curvature.

Corollary 69.4. If a compact Riemannian manifold (M, g) has nonnegative
Ricci curvature, then every harmonic 1-form on (M, ) is parallel.

A much more sweeping conclusion was obtained by Gallot and Meyer under a
similar assumption on the curvature operator rather than Ricci curvature:

Corollary 69.5. The Betti numbers br with 0 < r < n are all zero for any
compact n-dimensional Riemannian manifold with positive curvature operator.

Corollary 69.6. If a compact Riemannian manifold (M, g) has nonnegative
curvature operator, then every harmonic form on (M, ) is parallel.
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69. Affine spaces

An affine space is a triple (M,V,+) formed by a nonempty set M , a real vector
space V , and a mapping M × V 3 (x, v) 7→ x+ v ∈M such that:

a. (x + v) + w = x + (v + w) whenever x ∈ M and v, w ∈ V , the latter +
being the addition in V ;

b. x+ 0 = x for all x ∈M , where 0 stands for the zero vector of V ; and
c. for any x, y ∈M there is a unique v ∈ V (denoted by y−x) with x+v = y.

We then call V the translation (vector) space of the affine space (briefly denoted by
M rather than (M,V,+)), while dimV is called the dimension of M and denoted
by dimM . Elements of the set M are referred to as points, as opposed to vectors,
that is, elements of V .

Given affine spaces (M,V,+), (M ′, V ′,+), a mapping f : M → M ′ is called
affine if there is a linear operator ψ : W → W ′ (called the linear part of f), with
f(x + v) = f(x) + ψ(v) for all x ∈ M and v ∈ V . For instance, all constant
mappings f are affine (with ψ = 0). An affine isomorphism is an affine mapping
which is one-to-one and onto. Examples of affine isomorphisms M → M are the
translations x 7→ x+ v with v ∈ V .

A nonempty subset M ′ of M is called an affine subspace of the given affine
space (M,V,+) if there is a (vector) subspace V ′ of V with x + v ∈ M ′ and
y − z ∈ V ′ whenever x, y, z ∈M ′, v ∈ V ′.

Problems
12. For an affine subspace M ′ of (M,V,+), with V ′ as above and + restricted to

M ′ × V ′, show that (M ′, V ′,+) is an affine space.
13. Prove that an affine mapping f uniquely determines its linear part ψ, and

that f is an isomorphism if and only if ψ is. Conversely, if two affine mapings
M →M ′ have the same linear part, then either of them equals the other followed
by a translation in M ′.

14. Any vector space V may be thought of as the affine space (V, V,+). Prove that
every affine space is affinely isomorphic to its translation vector space.

15. Show that affine mappings between vector spaces are just linear operators fol-
lowed by translations.

16. Prove that affine subspaces of vector spaces coincide with cosets (i.e., translation
images) of vector subspaces.

17. Show that composites of affine mappings are affine, and images, as well as
nonempty preimages, of affine subspaces under affine mappings are affine sub-
spaces. (Note that, as a special case, the set of all solutions x to an equation
f(x) = y, where y is fixed and f : M → N is affine, is either empty, or an affine

191
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subspace of M . In fact, one-point subsets of an affine space are 0-dimensional
affine subspaces.) Verify that the inverse mapping of an affine isomorphism is
an affine isomorphism.

18. Two affine subspaces of a given affine space (M,V,+) are called parallel if
they have the same translation vector space. Show that, for such a subspace
(M ′, V ′,+), the quotient set M/M ′ of all affine subspaces of M which are par-
allel to M ′ carries a natural structure of a vector space canonically isomorphic
to V/V ′. On the other hand, for any fixed vector subspace V ′ of V , one can
form the affine quotient space M/V ′ by declaring x, y ∈M congruent modulo
V ′ if x− y ∈ V ′. Verify that in either case, the projection mapping of M onto
the quotient is affine.

19. Prove that any given affine space M can be canonically realized as an affine
subspace of a vector space V ′ with dimV ′ = dimM + 1, where ∞ + 1 = ∞.
(Hint below.)

Hint. In Problem 19, let V ′ be the dual space of the vector space W of all affine
functions (mappings) f : M → R, with the injective affine mapping M → V ′

sending any x onto the functional f 7→ f(x).

70. Orientation in real vector spaces

The set of all bases B(V ) of a given real vector space V with 0 < n = dimV <
∞ (which is an open subset of the nth Cartesian power of V , cf. Problem 5) has
precisely two connected components, called the orientations of V . (Problem 10.)
Moreover, two bases of V represent or determine (i.e., belong to) the same orien-
tation if and only if their transition determinant is positive (Problem 6).

Problems
5. Given a real or complex vector space V with dimV = n <∞ let B(V ) be the

subset of the nth Cartesian power V n = V × . . .×V consisting of all (ordered)
bases of V . Show that, when V n is treated as a vector space (the direct sum of
n copies of V ), the set B(V ) is open in V n and B(V ), as an open submanifold
of V n, is Cω-diffeomorphic to the underlying manifold of the Lie group GL(V ).
(Hint below.)

6. Let V be a real vector space V with 1 ≤ dimV <∞. Call two (ordered) bases
of V equivalent if the transition matrix between them has a positive determi-
nant. Verify that this actually is an equivalence relation and it has exactly two
equivalence classes. (These equivalence classes are called the orientations of V .)
Show that each connected component of B(V ) (Problem 5) is contained in a
unique orientation of V .

7. Let V be a real or complex vector space with 1 ≤ dimV = n <∞, carrying a
fixed inner product 〈 , 〉 (that is, a positive-definite form which is bilinear and
symmetric or, respectively, sesquilinear and Hermitian). The orthonormalization
eα of a basis vα of V , α = 1, . . . , n, is defined recursively by

eα = wα/|wα| , wα = vα −
∑
β<α

〈vα, eβ〉eβ .

Show that the eα is the unique orthonormal basis of V with

(70.1) Span (e1, . . . , eα) = Span (v1, . . . , vα) , α = 1, . . . , n ,
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(70.2) 〈eα, vα〉 ∈ (0,∞) , 1 ≤ α ≤ n .

8. For V , 〈 , 〉 as in Problem 7 and any basis vα of V , prove that the basis vα
and its orthonormalization eα lie in the same connected component of B(V )
(notation of Problem 5). (Hint below.)

9. Given a finite-dimensional complex inner-product space V , show that any two
orthonormal bases of V representing the same orientation can be joined by a
continuous curve in B(V ) consisting of orthonormal bases. (Hint below.)

10. For a real vector space V with 1 ≤ dimV < ∞, verify that B(V ) has exactly
two connected components, which coincide with the orientations of V . (Hint

below.)

Hint. In Problem 5, fix a basis (e1, . . . , en) of V and note that the n-fold Cartesian
product of the corresponding linear coordinate system in V is a linear coordinate
system in V n associating with each basis a transition matrix, which sends B(V )
onto the set of n×n matrices with det 6= 0. Finally, using a fixed basis (e1, . . . , en)
of V , identify each A ∈ GL(V ) with (Ae1, . . . , Aen) ∈ B(V ).
Hint. In Problem 8, use the sequence ek = (e1, . . . , ek, vk+1, . . . , vn), k = 0, . . . , n,
of n + 1 bases of V , Note that e0 = (v1, . . . , vn), en = (e1, . . . , en). Now, for
any k = 0, . . . , n − 1, formula [0, 1] 3 t 7→ ek(t) = (e1, . . . , ek, (1 − t)vk+1 +
tek+1, vk+2, . . . , vn) defines a continuous curve in B(V ) connecting ek with ek+1.
The fact that each ek(t) (and ek) is a basis follows since, from (70.1), the first k+1
vectors of ek(t) lie in Span (v1, . . . , vk+1) and the (k + 1)st vector is orthogonal
to e1, . . . , ek and nonzero (as its inner product with ek+1 is positive by (70.2)).
A continuous curve in B(V ) connecting e0 with en can be written in the form
[0, n] 3 s 7→ es with es = ek(t), where k = [s] is the integer part of s (the largest
integer not exceeding s), t = s− [s], and we set en(0) = en.
Hint. In Problem 9, denote by e0 and en = (e1, . . . , en) two given orthonormal
bases of V , and make them a part of a sequence ek, k = 0, . . . , n of n + 1
orthonormal bases, such that each ek shares the first k vectors e1, . . . , ek with en,
and each ek−1, 1 ≤ k ≤ n, can be connected with ek by a continuous curve of
orthonormal bases. To achieve this, use induction on k, assuming that 1 ≤ k < n
and e1, . . . , ek with the stated properties have already been constructed. Thus, ek
has the form ek = (e1, . . . , ek, vk+1, . . . , vn).

First, suppose that k = n−1, so vn = εen with ε = ± 1 (by orthonormality).
If both original bases determine the same orientation, then so do the intermediate
stages including en−1 (Problem 6); thus, ε = 1 and en = en−1 can be connected
with e0.

Now let k + 1 < n. Thus, we can choose a 2-dimensional subspace W of V
containing the vectors u = ek+1 and v = vk+1, and orthogonal to e1, . . . , ek. Let us
now complete u to an orthonormal basis u,w of the plane W . Thus, v = pu+qw
with scalars p, q such that p2 +q2 = 1, and so p = cos θ, q = sin θ for some θ > 0.
We can now define a continuous curve [0, θ] 3 t 7→ At of inner-product preserving
linear operators in V by Atu = (cos t)u−(sin t)w, Atw = (sin t)u+(cos t)w (so that
At(W ) ⊂ W ), and At = Id on the orthogonal complement of W . Consequently,
Ate1 = e1 , . . . , Atek = ek. A continuous curve of orthonormal bases connecting
ek to a basis of the form ek+1 = (e1, . . . , ek, ek+1, ∗, . . . , ∗) now can be defined by
[0, θ] 3 t 7→ (Ate1, . . . , Atek, Atvk+1, . . . , Atvn).
Hint. In Problem 10, use Problems 5, 6, 8 and 9.
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71. Complex lines versus real planes

Topics:

72. Indefinite inner products

Topics: Orthogonal complements relative to symmetric bilinear forms; degenerate and nonde-

generate subspaces; the inequality for the dimension of the complement of a subspace; equality

when the form or the subspace is nondegenerate; timelike, spacelike, null vectors and subspaces;

orthogonal and orthonormal bases; Sylvester’s law of inertia; rank, nullity, positive and negative

indices, signature for symmetric (0,2) tensors; Euclidean, pseudo-Euclidean and Lorentz inner

products.

27.3.] Given a finite-dimensional real or complex vector space V and a nonde-
generate symmetric bilinear form 〈 , 〉 on V , let us call a basis eα of V orthonormal
if 〈eα, eβ〉 = 0 for α 6= β and 〈eα, eα〉 = εα = ±1 for each α. Show that, for any
two orthonormal bases eα and eα′ of V , the transition matrix [Aαα′ ], defined by
eα′ = Aαα′eα, satisfies

det[Aαα′ ] = ±1 .

(Hint below.)27.4.] Given a symmetric bilinear form 〈 , 〉 in a finite-dimensional real
or complex vector space V , verify that the following three conditions are equivalent:

a. 〈 , 〉 is nondegenerate (i.e., V ⊥ = {0}),
b. detG 6= 0 for some (or any) basis vα of V , where G = [〈vα, vβ〉] is called

the Gram matrix of the vα,
c. V admits a 〈 , 〉-orthonormal basis (as defined in Problem.3). (Hint below.)

Hint. In Problem.4, (a) is equivalent to (b) since 〈vα, vβ〉wβ = 〈vα, w〉 for any
scalars wβ , where w = wβvβ .
Hint. In Problem27.3, note that the matrices G = [〈eα, eβ〉], G′ = [〈eα′ , eβ′〉] and

A = [Aαα′ ] satisfy G′ = ATGA (i.e., 〈eα′ , eβ′〉 = Aαα′A
β
β′〈eα, eβ〉), while detG′ =

detG = ±1, so that (detA)2 = 1.
Hint. In Problem27.4, (a) is equivalent to (b) since 〈vα, vβ〉wβ = 〈vα, w〉 for any
scalars wβ , where w = wβvβ .



Appendix B. Facts from Topology and Analysis

73. Banach’s fixed-point theorem

Topics: Metric spaces; convergence; Cauchy sequences; completeness; normed spaces; Banach

spaces; Banach’s contraction theorem; fixed point in a subset.

A metric space is a pair (X, d) consisting of a set X and a distance function
d : X ×X → [0,∞) such that d(x, x′) = d(x′, x), d(x, x′′) ≤ d(x, x′) + d(x′, x′′)
for any x, x′, x′′ ∈ X, and d(x, x′) > 0 unless x = x′. A sequence xk ∈ X, k =
1, 2, . . . of points in X then is said to converge to a limit x ∈ X if d(xk, x)→ 0 as
j →∞, and it is called a Cauchy sequence) if d(xk, xl)→ 0 as j, k simultaneously
tend to ∞. The metric space (X, d) is called complete if every Cauchy sequence
in (X, d) converges.

Any subset K ⊂ X of a metric space (X, d) forms a metric space (K, d)
with d restricted to K ×K.

The open ball Bz(r) ⊂ X (with the center z ∈ X and the radius r > 0) in the
metric space (X, d) is defined by Bz(r) = {x ∈ X : d(x, z) < r}. Similarly, the
closed ball Bz(r) ⊂ X is Bz(r) = {x ∈ X : d(x, z) < r}. A set U ⊂ X is called
open if it is the union of some (possibly empty, or infinite) collection of open balls.
A neighborhood of a point x ∈ X is any open set containing x ; as for manifolds, a
sequence xk, k = 1, 2, . . . of points in X converges to a limit x ∈ X if and only
if each neighborhood of x contains the xk for all but finitely many k.

A norm in a real or complex vector space V is a function V → [0,∞], usually
written as v 7→ ‖v‖ (or v 7→ |v|, when dimV < ∞), such that ‖v‖ > 0 if v 6= 0,
and ‖v+w‖ ≤ ‖v‖+ ‖w‖, ‖λv‖ = |λ| · ‖v‖ for v, w ∈ V and all scalars λ. With a
fixed norm, V is called a normed vector space, and it naturally becomes a metric
space (V, d) with d(v, w) = ‖v − w‖. A normed vector space is called a Banach
space if it is complete as a metric space.

The following result is known as Banach’s fixed-point theorem.

Theorem 73.1. Let Y ⊂ X be a subset of a metric space (X, d) such that
(Y, d) is complete and let h : Y → X be a mapping with d(h(x), h(x′)) ≤
C d(x, x′) for all x, x′ ∈ Y and some C with 0 ≤ C < 1. If, moreover,

(a) there is z ∈ Y with hk(z) ∈ Y for all integers k ≥ 0,

or

(b) Bz(r) ⊂ Y for some z ∈ Y and r = (1− C)−1 d(z, h(z)),

with Bz(0) = ∅, then there exists a unique x ∈ Y with h(x) = x.

Proof. Uniqueness of x is clear as C < 1. To establish its existence, set
zk = hk(z) as long as it makes sense for a given z ∈ Y and integers k ≥ 0. Then
d(zk, zk+1) ≤ Ck d(z, h(z)) (induction on k ≥ 0), and so, for integers l ≥ 0 such
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that zk+l exists,

(73.1) d(zk, zk+l) ≤
k+l−1∑
s=k

d(zs, zs+1) ≤

[ ∞∑
s=k

Cs

]
d(z, h(z)) =

Ck

1− C
d(z, h(z)) .

We may assume that h(z) 6= z. Then, for r as in (b), (73.1) yields d(zk, zk+l) <
r ; setting k = 0, we thus see that (b) implies (a). On the other hand, for z
as in (a), (73.1) shows that the zk form a Cauchy sequence, and we can take
x = limk→∞ zk.

Corollary 73.2. Given a complete metric space (X, d) and h : X → X such
that d(h(x), h(x′)) ≤ C d(x, x′) for all x, x′ ∈ X and some C with 0 ≤ C < 1,
there exists a unique point x ∈ X with h(x) = x.

Problems
1. Prove that

|‖v‖ − ‖w‖| ≤ ‖v − w‖
for any norm ‖ ‖ in any vector space V and any vectors v, w ∈ V .

2. Defining closed subsets of metric spaces as in the case of manifolds (Problem 5
in §1), verify that, both for manifolds and metric spaces, a subset is closed if
and only if it contains the limits of all sequences of its points that converge in
the ambient space.

3. A sequence xk ∈ X, k = 1, 2, . . . of points in a metric space (X, d) is called
bounded if it lies in a ball Bz(r) with some center z ∈ X and some radius
r > 0. Show that z then may be replaced by any other point z′ ∈ X, and that
every convergent sequence is Cauchy, while each Cauchy sequence is bounded.

4. Verify that any Cauchy sequence in a metric space that has a convergent subse-
quence, is itself convergent.

5. Defining compactness for subsets of metric spaces as in the case of manifolds
(§2), show that every compact metric space is complete.

6. Show that a subset of a metric space which is complete in the restricted distance
function must be closed, and that any closed subset of a complete metric space
is itself complete as a metric space.

7. Let | |E be the standard Euclidean norm in Rn, with |v|2E = |v1|2 + . . .+ |vn|2
for v = (v1, . . . , vn). Show that | |E is actually a norm and, for any norm | |
in Rn, we have the estimate |v| ≤ C|v|E for all v ∈ Rn and C ≥ 0 with
C2 = |e1|2 + . . .+ |en|2, e1, . . . , en being the standard basis of Rn with elj = δlj .
(Hint below.)

8. Verify that any norm | | in Rn is a continuous function Rn → R, i.e., |vk| → |v|
as k → ∞ whenever vk → v in Rn (the latter being the componentwise
convergence). (Hint below.)

9. Show that any two norms | |, | |′ in a finite-dimensional real or complex vector
space are equivalent in the sense that |v| ≤ C|v|′ and |v|′ ≤ C ′|v| for all v ∈ V ,
with suitable constants C,C ′ > 0. (Hint below.)

10. A finite-dimensional real vector space V constitutes both a metric space (with
any fixed norm | |), and a manifold (§1). Show that the resulting classes of
open/closed subsets of V , and the notions of convergence and limit for sequences
in V coincide for all these structures and, in particular, do not depend on the
choice of the norm. (Hint below.)
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Hint. In Problem 18, use the Schwarz inequality: |v| = |vjej | ≤ |vj ||ej | ≤ C|v|E.
Hint. In Problem 19, note that vk → v implies |vk − v|E → 0, so that we have
||vk| − |v|| ≤ |vk − v| → 0 in view of Problems 10 and 17.
Hint. In Problem 20, identify V with Rn and let one of the norms be | |E. Then
the other norm has a maximum and a positive minimum on the unit sphere Sn−1

(Problems 5, 6, 19 in §3).
Hint. In Problem 21, use Problem 20.

74. The inverse mapping theorem

Topics: The operator norm in finite dimensions; Newton’s method for approximating a solution

x to y = F (x) by the sequence xn = hn(x0) with h(x) = x + dF−1
x [y− F (x)]; use of

dF0 instead of dFx ; the inverse mapping theorem; the implicit mapping theorem.

Let V,W be finite-dimensional real or complex vector spaces carrying fixed
norms (both denoted by | |). Any linear operator T : V → W is bounded in the
sense that |Tv| ≤ C|v| for some constant C ≥ 0 and all v ∈ V (Problem 11).
The smallest constant C with this property is called the operator norm of T
and denoted by |T |. If, moreover, U ⊂ V is an open set, h : U → V is a
C1 mapping and x, z are points in U such that U contains the whole segment
xz = {z + t(x− z) : 0 ≤ t ≤ 1} connecting z to x, then we have the estimate (see
Problem 19)

(74.1) |h(x)− h(z)| ≤ |x− z| · sup
u∈ xz

|dhu|

involving the operator norm of dhu : V → W , the supremum (which, in fact,
is a maximum) being finite since xz is compact and the function u 7→ |dhu| is
continuous.

Lemma 74.1. Let U,U ′ be open sets in finite-dimensional vector spaces V,W ,
respectively, and let a Cl mapping F : U → U ′ with 1 ≤ l ≤ min(r,∞) be one-to-
one and onto, and such that, for each x ∈ U , the differential dFx : V → W is a
linear isomorphism. Then the inverse mapping F−1 : U ′ → U is also Cl-differen-
tiable.

Proof. Fix norms in V,W (both denoted by | |). For any fixed z ∈ V ,
differentiability of F at z means that

(74.2) F (x)− F (z) = dFz(x− z) + α(x, z) ,
α(x, z)

|x− z|
→ 0 as x→ z .

Since |dFz(x − z)| ≥ 2C|x − z| for some constant C > 0 (Problem 13), choosing
ε > 0 with |α(x, z)| ≤ C|x− z| for all x ∈ U with |x− z| < ε, we obtain, for such
x, |F (x)−F (z)| ≥ |dFz(x− z)| − |α(x, z)| in view of (74.2) and Problem 10 in §5,
i.e., |F (x)− F (z)| ≥ C|x− z| for all x sufficiently close to any fixed z ∈ U and a
suitable C > 0, depending on z. (Thus, F−1 is continuous.) Applying (dFz)

−1

to both sides of (74.2) and writing ζ = F (z), ξ = F (x), we obtain

(74.3) F−1(ξ)− F−1(ζ) = (dFz)
−1(ξ − ζ) + β(ξ, ζ)

with β(ξ, ζ) = −(dFz)
−1α(x, z). Thus, F−1 is differentiable at ζ and d(F−1)ζ =

(dFz)
−1 since |ξ − ζ|−1|β(ξ, ζ)| ≤ C−1|x − z|−1|β(ξ, ζ)| = C−1|(dFz)−1(|x −

z|−1α(x, z))| → 0 as ξ → ζ, due to the estimate |ξ − ζ| ≥ C|x − z|. Induc-
tion on s now shows that the mapping ζ 7→ d(F−1)ζ = (dFF−1(ζ))

−1 is Cs−1

differentiable for each s = 1, . . . , l. This completes the proof.
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The following fundamental result is known as the inverse mapping theorem.

Theorem 74.2. Let F : M → N be a Cl mapping between Cs manifolds,
1 ≤ l ≤ s <∞, and let z ∈M . If the differential dFz : TzM → TF (z)N is a linear
isomorphism, then, for a suitable neighborhood U of z in M , the image F (U) is
an open subset of N and F : U → F (U) is a Cl diffeomorphism.

Proof. Using local coordinates, we may assume that M,N are open subsets
of finite-dimensional real vector spaces V,W endowed with some fixed norms, both
denoted by | |. For any fixed y ∈ W , define the Cl mapping h : M → V by
h(x) = x + (dFz)

−1(y − F (x)). As dhx = Id − (dFz)
−1dFx, we have dhz = 0

and hence there is a closed ball Bz(ε) centered at z, of some radius ε > 0,
with the operator-norm inequality |dhx| ≤ 1/2 for all x ∈ Bz(ε). On the other
hand, d(z, h(z)) = |z − h(z)| ≤ |(dFz)−1|·|y − F (z)| and so, whenever y ∈ U ′ =
BF (z)(ε

′) with 2ε′|(dFz)−1| < ε, the assumptions of Banach’s fixed-point theorem
(§4, appendix) will be satisfied, according to (74.1), by X = V , Y = Bz(ε),
C = 1/2, our h (depending on y), and r = ε in assumption (b). The existence
of a unique x ∈ Y with h(x) = x, i.e., y = F (x), then means that F : U → U ′

is one-to-one and onto, where U = Y ∩ F−1(U ′), and the assertion follows from
Lemma 74.1.

Problems
11. Prove boundedness for linear operators between finite-dimensional normed vec-

tor spaces.
12. Let V,W be finite-dimensional normed vector spaces (with both norms denoted

by | |). Show that the operator norm of any linear operator T : V → W is
given by

(74.4) |T | = sup{|Tv| : v ∈ V , |v| = 1} = sup{|Tv| : v ∈ V , |v| ≤ 1}

(the supremum of an empty set of nonnnegative real numbers being 0 by defi-
nition). Can sup be replaced by max ?

13. Show that, if a linear operator T : V → W between normed vector spaces
V,W is injective and dimV < ∞, then there exists a constant C > 0 with
|Tv| ≥ C|v| for all v ∈ V .

14. For finite-dimensional normed vector spaces V1, V2, V3 and linear operators T :
V1 → V2, S : V2 → V3, verify the operator-norm inequality |ST | ≤ |S|·|T |.

15. (Riemann integral for vector-valued functions.) Let γ : [a, b] → V be a con-
tinuous curve in a finite-dimensional real vector space V , prove that there is

a unique vector v ∈ V with ξ(v) =
∫ b
a
ξ(γ(t)) dt for all ξ ∈ V ∗. (One writes

v =
∫ b
a
γ(t) dt and calls v the Riemann integral of γ.) Verify that the integra-

tion acts componentwise, i.e., for any basis ej of V ,
∫ b
a
γ(t) dt =

[∫ b
a
γj(t) dt

]
ej ,

where γ(t) = γj(t)ej .
16. For γ as in Problem 15, show that γ has a C1 antiderivative Γ : [a, b] → V

with Γ̇(t) = γ(t) for all t, and for any such Γ,
∫ b
a
γ(t) dt = Γ(b)− Γ(a).

17. Riemann-sum approximations. Given γ as in Problem 15 and any partition P =
{t0, . . . , tm} of [a, b], with a = t0 < . . . < tm = b, and any selection of numbers
t′j ∈ [tj−1, tj ], set δ(P) = max{tj − tj−1 : 1 ≤ j ≤ m}, j = 1, . . . ,m, and define

the corresponding Riemann sum by the familiar formula
∑m
j=1 γ(t′j)(tj − tj−1).



75. THE STONE-WEIERSTRASS THEOREM 199

Verify that, for any sequence of partitions Pk and selections such that δ(Pk)→
0 as k →∞, the resulting sequence of Riemann sums converges to

∫ b
a
γ(t) dt.

18. Given a continuous curve γ : [a, b]→ V in a finite-dimensional real vector space
V with a fixed norm | |, prove the following estimate: (Hint below.)∣∣∣∣∣

∫ b

a

γ(t) dt

∣∣∣∣∣ ≤
∫ b

a

|γ(t)| dt .

19. Prove the estimate (74.1). (Hint below.)
20. The implicit mapping theorem. Suppose that M,N,P are Cs manifolds, Φ :

M × N → P is a Cl mapping, 1 ≤ l ≤ min(s,∞), and x0 ∈ M , y0 ∈ N ,
z0 ∈ P are points such that Φ(x0, y0) = z0 and the differential of the mapping
N 3 y 7→ Φ(x0, y) ∈ P at y = y0 is a linear isomorphism Ty0N → Tz0P . Prove
that x0, y0 have neighborhoods U,U ′ in M,N , respectively, such that
(a) For each x ∈ U there is a unique y = y(x) ∈ U ′ with Φ(x, y(x)) = z0.
(b) The mapping U 3 x 7→ y(x) ∈ U ′ in (a) is Cl differentiable. (Hint below.)

21. Show that, in the definition of a Lie group of class Cs, s ≥ 1 (§4), the require-
ment that the group multiplication and the inverse be both of class Cs may be
replaced by Cs regularity of the multiplication alone. (Hint below.)

Hint. In Problem 18, use a Riemann-sum approximation (Problem 17).
Hint. In Problem 19, note that

(74.5) h(x)− h(z) =

∫ 1

0

d

dt
h(z + t(x− z)) dt =

[∫ 1

0

dhz+t(x−z) dt

]
(x− z) .

Hint. In Problem 20, apply the inverse mapping theorem (Theorem 74.2) to F :
M ×N →M × P given by F (x, y) = (x,Φ(x, y)).
Hint. In Problem 21, define the mapping a 7→ a−1 via the implicit mapping
theorem.

75. The Stone-Weierstrass theorem

By ‘a compact set’ we mean here either a compact subset of a manifold, or a
compact metric space; for readers familiar with general topology, it may also be
interpreted as a compact (Hausdorff) topological space. For a subset X of a mani-
fold M , open sets in X and neighborhoods of points in X are to be understood as
relatively open (intersections of open subsets of M with X). One trivially verifies
that, if X is compact, every open covering of X still has a finite subcovering (cf.
Theorem 14.2), while closed subsets of X are themselves compact, and continuous
preimages of open/closed sets are also open/closed.

The following fundamental result is known as the Stone-Weierstrass theorem.
Here C(X) is the algebra of all continuous functions X → R, and we say that a
set Y ⊂ C(X) separates the points of X if, for any x, y ∈ X with x 6= y, there
exists f ∈ Y with f(x) 6= f(y).

Theorem 75.1. Let X be a compact set and let Y be any subalgebra of C(X)
which contains all constant functions and separates the points of X. Then Y is
uniformly dense in C(X).

Proof. It suffices to show that the only closed subalgebra Z of C(X) which
contains all constants and separates the points of X is C(X) itself; our assertion
will follow if we apply this to to Z defined to be the closure of Y relative to the
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supremum norm, that is, the set of all uniform limits of sequences in Y. (Note that
the closure of a subalgebra is also a subalgebra.)

First, f1/2 ∈ Z whenever f ∈ Z and f > 0 everywhere in X. In fact,
multiplying f by a constant factor we may assume that 0 < f < 2 and so f = 1+h
with h ∈ Z and |h| < 1. Therefore, as X is compact, |h| ≤ r for some r ∈ (0, 1).
Since the Taylor series

∑
j≥0 ajt

j of the function (−1, 1) 3 t 7→ (1+ t)1/2 converges

uniformly on compact subintervals of (−1, 1), such as (−r, r), it now follows that
f1/2 is the uniform limit of the partial sums of the series fk =

∑
0≤j≤k ajh

j , while

fk ∈ Z. Thus, f1/2 ∈ Z.
Secondly, |f | ∈ Z whenever f ∈ Z. In fact, |f | is the limit of (f2 + ε)1/2 as

ε→ 0+ and the convergence is uniform, since, for ε > 0,

0 < (f2 + ε)1/2 − |f | ≤ ε

(f2 + ε)1/2 + |f |
≤ ε1/2.

As 2 max(s, t) = s+ t+ |s− t| and 2 min(s, t) = s+ t− |s− t| for s, t ∈ R, this
also shows that max(f, h) and min(f, h) are in Z whenever f and h are.

Next, given x, y ∈ X with x 6= y, there exists h ∈ Y such that 0 ≤ h ≤ 1,
while h = 0 on some neighborhood of x and h = 1 on some neighborhood of
y. In fact, choosing f ∈ Y with f(x) 6= f(y) and setting ϕ = αf + β for
suitable α, β ∈ R we get ϕ(x) < 0 and ϕ(y) > 1, so that we can define h by
h = max (0, min(h, 1)).

Similarly, given a closed set K ⊂ X and x ∈ X \K, there exists f ∈ Y such
that 0 ≤ f ≤ 1, while f = 0 on some neighborhood of x and f = 1 on some
open set containing K. Namely, choosing h = hy as above for this fixed x and
any given y ∈ K, so that hy = 1 on a neighborhood Uy of y, and noting that
a finite family Uy(1), . . . , Uy(l) will cover K due to its compactness, we may set
f = max(hy(1), . . . , hy(l)).

Furthermore, for any two disjoint closed sets K,K ′ ⊂ X and any p, q ∈ R
with p < q there exists h ∈ Y such that min(p, q) ≤ h ≤ max(p, q), while h = p
on some open set containing K and h = q on some open set containing K ′. In
fact, we may set p = 1 and q = 0 (since the general case then is easily obtained
if one replaces h by a suitable linear function of h); a compactness argument just
like above then is straightforward.

Finally, given f ∈ C(X), let us set V(f) = max(f) − min(f). We will now
show that, for any f ∈ C(X), there exists h ∈ Z with 5V(f − h) ≤ 2V(f).
This will imply our assertion since, if we repeat the step of replacing f by f − h
a sufficient number of times, each time multiplying the value of V by a factor
of 2/5 or less, we eventually get V(f − h′) < ε for any prescribed ε > 0 and
some h′ ∈ Z (which means that f − h′ is uniformly closer than the distance
ε/2 from some constant). To show that such h ∈ Z exists, we may assume that
V(f) 6= 0, for otherwise f is constant and we may choose h = 0. Let a = min(f),
b = max(f) and c = (b − a)/5, so that V(f) = 5c > 0, and let h ∈ Z be chosen
as in the last paragraph for p = a + c, q = a + 4c, K = f−1([a, a + 2c]) and
K ′ = f−1([a + 3c, b]). Thus, on K we have h = a + c and a ≤ f ≤ a + 2c,
so that |f − h| ≤ c. Similarly, |f − h| ≤ c on K ′. On X \ (K ∪ K ′), however,
a+c ≤ h ≤ a+4c and a+2c ≤ f ≤ a+3c, and so |f−h| ≤ 2c. Hence |f = h| ≤ 2c
on X, which completes the proof.
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Corollary 75.2. Let K be a compact subset of a Cs manifold M , with s =
1, 2, . . . ,∞. Every continuous mapping f : K → V , valued in a finite-dimensional
normed real vector space V , then is the limit of a uniformly convergent sequence of
mappings K → V which are restrictions to K of Cs mappings M → V .

In fact, in the case where V = R this follows since the restrictions to K of
Cs functions on M form a subalgebra Y of C(K) satisfying the assumptions of
Theorem 75.1 with X = K. (That Y separates the points of K is clear in view
of Problem 19 in §6.) The general case is now also immediate, as |f | ≤ |fa||ea|
whenever a function f : K → V is expanded into a combination f = faea for any
fixed basis ea of V .

76. Sard’s theorem

A point x ∈ M is called critical for a C1 mapping F : M → N between
manifolds, if dFx : TxM → TF (x)N is not surjective.

Sard’s Theorem. If F : M → N is a C1 mapping between manifolds of
the same dimension, then the F -image of the set of all critical points of F is of
measure zero in N .

Problems
1. Given a (bilinear, symmetric, positive-definite) inner product 〈 , 〉 in a real vector

space V and x, y ∈ V , prove the Schwarz inequality

(76.1) |〈x, y〉| ≤ |x||y|,
along with the conclusion about the equality case, without invoking the standard
discriminant argument. Here | | is, as usual, the norm in V corresponding to
〈 , 〉. (Hint below.)

2. Establish (76.1) for a (sesquilinear, Hermitian, positive-definite) inner product
〈 , 〉 in a complex vector space V and x, y ∈ V . (Hint below.)

3. Prove (76.1) for vectors x, y in a real (or, complex) vector space and a scalar-
valued form 〈 , 〉 which is bilinear symmetric (or, respectively, sesquilinear Her-
mitian) and positive semidefinite. (Hint below.)

4. For 〈 , 〉 as in Problem 3, verify that a vector x which is null (in the sense of
having 〈x, x〉 = 0) is necessarily 〈 , 〉-orthogonal to the whole space.

Hint. In Problem 1, |x|4|y|2 − 〈x, y〉2|x|2 is nonnegative, as it equals |z|2 for
z = |x|2y − 〈x, y〉x, and so (76.1) follows, since we may assume that x 6= 0.
Hint. In Problem 2, use Problem 1 for rm Re 〈 , 〉.
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Appendix C. Ordinary Differential Equations

78. Existence and uniqueness of solutions

Topics: Continuous, bounded and Lipschitz mappings between metric spaces; spaces of map-

pings with the uniform distance; ordinary differential equations; reduction of order to 1; existence

and uniqueness of solutions; autonomous equations.

A mapping f : K → X from a set K into a metric space (X, d) is said to be
bounded if its image f(K) is a bounded subset of (X, d) in the sense that it lies
in a ball Bz(r) with some center z ∈ X and some radius r > 0. Let us denote by
X = B(K,X) the set of all bounded mappings f : K → X and define the uniform
distance function d sup : X × X → [0,∞) by d sup(f, f ′) = sup { d (f(x), f ′(x)) :
x ∈ K}. Endowed with d sup), the set X becomes a metric space (Problem 1); the
convergence in (X , d sup) is called the uniform convergence of bounded mappings
K → X.

In the case where (X, d) is the underlying metric space of a normed vector
space (X, | |) (see §1, Appendix), and K is any set, it is clear that (X , d sup) =
(B(K,X), d sup) is the underlying metric space of the normed vector space (X , ‖ ‖sup)
with the valuewise operations on X-valued functions f on K and the supremum
norm ‖f‖sup = sup {|f(x)| : x ∈ K}.

If, moreover, K happens to be a manifold or a metric space, the set X =
B(K,X) contains the subset CB(K,X) formed by all bounded mappings K → X
which are also continuous. (In both cases, a mapping f : K → N is said to
be continuous if f(xk) → f(x) in X as k → ∞ whenever xk, k = 1, 2, . . . ,
is a sequence of points in K that converges to a point x ∈ K.) When K is
compact, we write C(K,X) rather than CB(K,X), deleting the subscript ‘B’ as
boundedness then follows from continuity (Problem 13 in §2). With the restriction
of the distance function d sup, the set CB(K,X) constitutes a metric space which
is complete whenever so is (X, d) (Problems 2, 3 below and 15 in §5).

We say that a mapping f : K → X between metric spaces (with both distances
denoted by d ) satisfies the Lipschitz condition if there exists a constant C ≥ 0
such that d(F (x), F (y)) ≤ C d(x, y) for all x, y ∈ K. For instance, Problem 12 in
§5 states that any norm satisfies the Lipschitz condition with C = 1. Note that
the Lipschitz condition implies continuity.

Let us now consider an open subset U of a finite-dimensional real vector space
V . By an ordinary differential equation of order k ≥ 1 in U we mean a mapping
F : I×U×V k−1 → V , where I ⊂ R is an open interval and V k−1 = V × . . .×V is
the (k− 1)st Cartesian power of V . A Ck-differentiable curve γ : I ′ → V defined
on a subinterval I ′ of I (open or not) is called a solution to the equation if

(78.1) γ(k) = F (t, γ, γ̇, . . . , γ(k−1))

203
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in the sense that γ(k)(t) = F (t, γ(t), γ̇(t), . . . , γ(k−1)(t)) for all t ∈ I ′, where γ(k) =
dkγ/dtk. Such a solution is said to satisfy the initial condition (t0, x0, v1, . . . , vk−1)
if (t0, x0, v1, . . . , vk−1) ∈ I × U × V k−1 and

(78.2) γ(t0) = x0 , γ̇(t0) = v1 , . . . , γ
(k−1)(t0) = vk−1 .

The mapping F is usually referred to as the right-hand side of the equation (rather
than being called the equation itself). Together, (78.1) and (78.2) are said to
form a kth order initial value problem. An initial value problem (78.1), (78.2) of
any order k > 1 can always be reduced to a first-order problem χ̇ = Φ(t, χ),
χ(t0) = z0 in the open set U × V k−1 of the higher-dimensional space V k, by
setting χ(t) = (γ(t), γ̇(t), . . . , γ(k−1)(t)) ∈ U × V k−1, Φ(t, x, w1, . . . , wk−1) =
(w1, . . . , wk−1, F (t, x, w1, . . . , wk−1)) for (t, x, w1, . . . , wk−1) ∈ I × U × V k−1, and
z0 = (x0, v1, . . . , vk−1). The theorem proved below for k = 1 can therefore be
easily extended to initial value problems of any order k (Problem 7).

We have the following existence and uniqueness theorem.

Theorem 78.1. Let I ⊂ R be an open interval, and let U be an open subset
of a finite-dimensional real vector space V . If F : I × U → V is continuous and
satisfies the Lipschitz condition in x ∈ U uniformly in t ∈ I, i.e., |F (t, x′) −
F (t, x)| ≤ C|x′ − x| for some fixed norm | | in V , some constant C ≥ 0, and all
t ∈ I, x, x′ ∈ U , then, for any initial condition (t0, x0) ∈ I×U there is ε > 0 such
that the equation γ̇ = F (t, γ) has a unique C1 solution γ : [t0 − ε, t0 + ε] → U
with γ(t0) = x0.

Remark 78.2. The condition imposed on ε is

(78.3) εsε < (1− Cε)δ ,

with C, | | as above, sε = sup {|F (t, x0)| : |t − t0| ≤ ε} and δ = inf{|y − x0| :
y ∈ V \U} ∈ (0,∞] equal to the distance between x0 and the complement (or
boundary) of U , where r =∞ if U = V . Since sε → |F (t0, x0)| as ε→ 0, (78.3)
holds for all sufficiently small ε > 0.

Proof. For γ : [t0− ε, t0 + ε]→ U , the requirement that γ be C1 and satisfy
γ̇ = F (t, γ) and γ(t0) = x0, is equivalent to continuity of γ along with

(78.4) γ(t) = x0 +

∫ t

t0

F (τ, γ(τ)) dτ

for all t ∈ [t0− ε, t0 + ε]. Let Xε be the Banach metric space C([t0− ε, t0 + ε], V )
with the supremum norm ‖ ‖sup defined above using the norm | | in V . The
mapping hε : Kε → Xε from the subset Kε = C([t0− ε, t0 + ε], U) of Xε into Xε,
given by [hε(γ)](t) = x0 +

∫ t
t0
F (τ, γ(τ)) dτ then satisfies ‖hε(γ′) − hε(γ)‖sup ≤

Cε‖γ′ − γ‖sup, as the length of the integration interval is |t − t0| ≤ ε and C
is a Lipschitz constant for F . Denoting by z the constant curve x0 ∈ Kε and
setting rε = (1− Cε)−1‖z − hε(z)‖sup, we obtain rε ≤ (1− Cε)−1εsε. Thus, for
ε chosen as in (78.3), rε < δ and hence the ball Bz(rε) in Xε is contained in
Kε. The assumptions of Banach’s fixed-point theorem (§73) thus will be satisfied
if we replace X, d ,K, h, C, z, r in the statement of that theorem by Xε, d sup,
Kε, hε, Cε, z = x0, and, respectively, rε, for any ε with (78.3). The resulting
existence and uniqueness of γ ∈ Kε with hε(γ) = γ, i.e., (78.4), now proves our
assertion.
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Problems
1. Given a set K and a metric space (X, d), show that the distance function

d sup in X = B(K,X) is well-defined (i.e., the supremum is always finite), and
(X , d sup) is a metric space.

2. Prove that (X , d sup) in Problem 1 is complete as a metric space whenever so
is (X, d).

3. Show that, if K is a metric space or a manifold, and (X, d) is a metric space,
then CB(K,X) is a closed subset of B(K,X), i.e., taking uniform limits pre-
serves continuity.

4. Given real numbers a, b, c with a ≤ 0 ≤ b and c > 1, verify that γ : R → R
given by γ(t) = −|t − a|c if t ≤ a, γ(t) = 0 if a ≤ t, and γ(t) = |t − b|c if
t ≥ b is a C1 solution to the equation γ̇ = c|γ|1−1/c. Explain why this is not a
counterexample to the existence and uniqueness theorem for ordinary differential
equations.

5. Let V,W be finite-dimensional real vector spaces with fixed norms (both de-
noted by | |), and let U be an open subset of V . We say that a mapping
F : U → W is locally Lipschitz if, for each x ∈ U there exists a neighborhood
Ux of x in U and a constant C ≥ 0 satisfying |F (x′)−F (x′′)| ≤ C|x′−x′′| for
all x′, x′′ ∈ Ux. Show that every C1 mapping is locally Lipschitz. (Hint below.)

6. Verify that the above existence and uniqueness theorem for any (t0, x0) ∈ I×U
(with a suitable ε > 0 depending on t0 and x0) remains valid under the weaker
assumption that the continuous mapping F : I × U → V is locally Lipschitz in
x ∈ U , locally uniformly in t ∈ I, which means that, with some fixed norm | |
in V , for each (t0, x0) ∈ I × U there exist neighborhoods I ′ of t0 in I and
U ′ of x0 in U and a constant C ≥ 0 satisfying |F (t, x′)−F (t, x)| ≤ C|x′− x|
for all t ∈ I ′, x, x′ ∈ U ′. Prove that uniqueness then holds in every interval on
which a C1 solution can be defined. (Hint below.)

7. Extend the above existence and uniqueness theorem in the “locally Lipschitz”
version as in Problem 6 (including the “global uniqueness” statement) to initial
value problems (78.1), (78.2) of any order k ≥ 1.

8. Those equations of type (78.1) for which the right-hand side F does not depend
explicitly on t ∈ I, i.e.,

(78.5) γ(k) = F (γ, γ̇, . . . , γ(k−1))

with F : U × V k−1 → V (where U is a fixed open subset of a finite-dimen-
sional real vector space V ), are called autonomous kth order equations. Show
that every kth order equation (78.1) is equivalent to an autonomous first-order
equation χ̇ = Φ(χ) in a suitable (possibly higher-dimensional) space. Verify
that a solution γ to any autonomous equation, and any constant c, lead to a
solution given by t 7→ γ(t+ c) on a suitable interval. (Hint below.)

9. Verify that a solution γ to the autonomous first-order initial value problem
γ̇ = F (γ), γ(t0) = x0 in an open interval U ⊂ R, where F : U → R is
continuous, x0 ∈ U and t0 ∈ R, can be defined by
(a) γ(t) = x0 for all t ∈ R if F (x0) = 0.
(b) γ(t) = Ψ−1(t − t0) for all t ∈ Ψ((a, b)), where (a, b), −∞ ≤ a < b ≤ ∞,

is the largest subinterval of U containing x0 with F 6= 0 everywhere in
(a, b) and Ψ : (a, b)→ R is the (strictly monotone) antiderivative of 1/F
with Ψ(x0) = 0 (if F (x0) 6= 0). (Hint below.)
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10. Let γ : I → R be the solution to the initial value problem γ̇ = F (γ), γ(t0) = x0,
where U ⊂ R is an open interval, F : U → R is locally Lipschitz, x0 ∈ U ,
t0 ∈ R, and I is the largest interval in R containing t0 on which such a solution
γ exists. Prove that the length |I| of I is |I| =∞ if F (x0) = 0, and is given
by

|I| =

∣∣∣∣∣
∫ b

a

dx

F (x)

∣∣∣∣∣ ∈ (0,∞] ,

if F (x0) 6= 0, where ∞ ≤ a < b ≤ ∞ are the endpoints of the largest subinterval
(a, b) of U containing x0 with F 6= 0 everywhere in (a, b). (Hint below.)

11. Let γ be a solution to the autonomous order equation (78.5). Verify that, for
any real number c, the assignment t 7→ γ(t+ c) defines a solution to (78.5).

Hint. In Problem 5, use estimate (74.1) and Problem 1 in §2.
Hint. In Problem 6, uniqueness follows from a continuity argument: Given two
C1 solutions γ, γ′ : (a, b) → U , set t1 = sup{t ∈ [t0, b) : γ = γ′ on [t0, t)}, so
t1 ≤ b ≤ ∞ must be equal to b, or else γ, γ′ would coincide in [t1, t1 + ε) for
some ε > 0 due to the local uniqueness of solutions with the initial condition
(t1, γ(t1)) = (t1, γ

′(t1)).
Hint. In Problem 8, set χ(t) = (t, γ(t), γ̇(t), . . . , γ(k−1)(t)).
Hint. In Problem 9(b), γ̇(t) = 1/Ψ′(Ψ−1(t− t0)) = F (Ψ−1(t− t0)) = F (γ(t)).
Hint. In Problem 10, suppose that γ is different from a constant solution, i.e, x0 ;
thus, γ̇ 6= 0 everywhere in I. (Otherwise, with γ̇(t1) = 0 at some t ∈ I, the
equation would yield F (γ(t1)) = 0 and so γ would be the constant solution γ(t1)
due to the uniqueness statement of Problem 6 for the initial condition (t1, γ(t1)).)
Therefore F (γ(t)) 6= 0 for all t ∈ I and so γ is a strictly monotone function on I
valued in the interval (a, b) with a, b defined as in part (b) of Problem 9. Thus, γ
has (one-sided) limits at the endpoints of I and the limit at each finite endpoint c
of I must itself be infinite, or else it would provide an initial condition that would
allow us to extend γ beyond c. We only need to show that I = Ψ((a, b)) with Ψ
as (b) of Problem 9. According to Problem 9, Ψ((a, b)) ⊂ I. Since Ψ is strictly
monotone on (a, b), its image Ψ((a, b)) is (c, d) or (d, c), where c, d ∈ [−∞,∞]
are the limits of Ψ at a, b. If we had (c, d) 6= I, for instance c ∈ I, then both c
and the limit γ(c) of γ at c would be finite, contradicting the previous conclusion.

79. Global solutions to linear differential equations

Topics: Uniform estimates for differential inequalities; global existence of solutions for linear

ordinary differential equations.

Given an interval I ⊂ R containing more than one point and otherwise arbi-
trary (so that I may be open, closed, or half-open, bounded or unbounded), and
a nonnegative continuous function h : I → [0,∞), we set

(79.1)

∫
I

h(t) dt = sup
a,b∈I

∫ b

a

h(t) dt ∈ [0,∞] .

Note that
∫
I
h(t) dt equals the limit of

∫ b
a
h(t) dt as a→ inf I(+) and, simultane-

ously, b→ sup I(−). (The limit always exists for reasons of monotonicity.)
The following results concerning differential inequalities will later be applied to

linear ordinary differential equations and the local regularity theorem.
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Lemma 79.1. Suppose that I ⊂ R is an interval, h : I → [0,∞) is a continu-
ous function, and γ : I → V is a C1 mapping of I into a finite-dimensional real
vector space V with an inner product 〈 , 〉. Furthermore, assume that

(79.2) C =

∫
I

h(t) dt < ∞ ,

and let

(79.3) |γ̇| ≤ h|γ|

everywhere in I, | | being the norm in V determined by 〈 , 〉. Then

(79.4) sup
I
|γ| ≤ eC inf

I
|γ| .

Remark 79.2. From (79.3) it is clear that, whenever γ, h, I, V, 〈 , 〉 satisfy the
hypotheses of the lemma, then either γ = 0 identically, or γ 6= 0 everywhere in I.
This fact, however, will have to be established separately in the course the following
proof.

Proof. We may assume that γ is not identically zero. By the Schwarz in-
equality and (79.3), ϕ = 〈γ, γ〉 : I → [0,∞) satisfies |ϕ̇| = 2|〈γ, γ̇〉| ≤ 2hϕ. Thus,
if a, b ∈ I and γ 6= 0 everywhere in the closed interval ab connecting a and b,
we have

(79.5) |γ(b)| ≤ |γ(a)| · exp

[∫
ab

h(t) dt

]

as 2 log |γ(b)| − 2 log |γ(a)| = logϕ(b)− logϕ(a) =
∫ b
a
ϕ−1ϕ̇ dt ≤ 2

∫
ab
h(t) dt. Con-

sequently, γ 6= 0 everywhere in I. In fact, otherwise, we could select a maximal
open subinterval I ′ of I with γ 6= 0 everywhere in I ′, so that γ(c) = 0 for at least
one endpoint c ∈ I of I ′ ; fixing b ∈ I ′ and letting a ∈ I ′ vary, we would obtain
the contradiction 0 < |γ(b)| ≤ 0 by taking the limit of (79.5) as a→ c and noting
that

∫
cb
h(t) dt <∞. Therefore, by (79.5), |γ(b)| ≤ eC |γ(a)| for all a, b ∈ I, with

C as in (79.4), and we can take the supremum over b and infimum over a.

Corollary 79.3. Let γ, h, I, V, 〈 , 〉 satisfy the hypotheses of Lemma 79.1.
Then γ has a limit at each finite endpoint of I, while the endpoint itself does not
have to belong to I.

Proof. By (79.3), (79.4) we have
∫
I
|γ̇(t)| dt ≤ CeC inf

I
|γ|, and so we can

use Problem 2.

Let U now be an open subset of a finite-dimensional real vector space V , and let
I ⊂ R be an open interval. A kth order ordinary differential equation (78.1) in
U , i.e.,

γ(k) = F (t, γ, γ̇, . . . , γ(k−1)) ,

is called linear if its right-hand side

F : I × U × V k−1 → V

has the form

F (t, x, w1, . . . , wk−1) = B0(t)x+B1(t)w1 + . . .+Bk−1(t)wk−1
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with some coefficient functions (curves) B0, B1, . . . , Bk−1 : I → Hom(V, V ) valued
in the vector space of all linear operators V → V . In other words, a linear kth
order equation reads

(79.6) γ(k) = B0(t)γ +B1(t)γ̇ + . . .+Bk−1(t)γ(k−1) .

Note that, due to linearity of the B0(t), B1(t), . . . , Bk−1(t), we may always assume
that U = V .

A linear equation (79.6) of any order k > 1 can always be reduced to a first-
order linear equation χ̇ = A(t)χ in a higher-dimensional space, with the coefficient
curve t 7→ A(t) of the same regularity as the original B0, B1, . . . , Bk−1 (Problem 6).

Proposition 79.4. Suppose that V is a finite-dimensional real vector space
and I ⊂ R is an open interval. If F : I × V → V is continuous and locally
Lipschitz in x ∈ U , locally uniformly in t ∈ I (Problem 6 in Appendix II above),
and satisfies the inequality

(79.7) |F (t, x)| ≤ h(t)|x|

for all (t, x) ∈ I × V , where h : I → [0,∞) is a continuous function and | | is a
fixed norm in V , then for any (t0, x0) ∈ I × V the initial value problem

(79.8) γ̇ = F (t, γ) , γ(t0) = x0

has a unique solution γ : I → V defined everywhere in I.

Proof. We may assume that | | is the norm determined by an inner product
〈 , 〉 in V (Problem 18 in §5). Let γ : (a, b)→ V be the (unique) solution to (79.8)
defined on the largest possible interval (a, b) ⊂ I with t0 ∈ (a, b) (Problem 5). To
show that (a, b) = I, suppose on the contrary that, for instance, b ∈ I. Applying
Corollary 79.3 to [t0, b] instead of I, we see that γ(t) has a limit y0 as t→ b(−),
and so from the existence theorem (see, e.g., Problem 6 in the preceding appendix),
there is ε > 0 with b+ε ∈ I and a C1 curve γ1 : [b, b+ε)→ V with γ̇1 = F (t, γ1)
and γ1(b) = y0. Combining γ with γ1 as in Problem 1, we obtain a C1 solution
to (79.8) defined on (a, b + ε), which contradicts maximality of (a, b) and thus
completes the proof.

We can now prove a global existence theorem for linear ordinary differential equa-
tions

Theorem 79.5. Every linear initial value problem

(79.9)
γ(k) = B0(t)γ +B1(t)γ̇ + . . .+Bk−1(t)γ(k−1) ,

γ(t0) = x0 , γ̇(t0) = v1 , . . . , γ
(k−1)(t0) = vk−1

of order k ≥ 1 in a finite-dimensional real vector space V , with continuous co-
efficient functions B0, B1, . . . , Bk−1 : I → Hom(V, V ), where I ⊂ R is an open
interval, has a unique solution γ : I → V defined on the whole interval I.

Proof. Fix a norm | | in V . We may assume that k = 1 (Problem 6), so
that (79.9) becomes γ̇ = B(t)γ with γ(t0) = x0. Thus, (79.7) is satisfied by
F (t, x) = B(t)x and h(t) = |B(t)| (the operator norm; see Appendix II above),
and h : I → [0,∞) is continuous according to Problem 18 or Problem 20 in §5).
The assertion is now immediate from Proposition 79.4.
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Problems
1. Let a, t0, b be real numbers with a < t0 < b and let γ1 : (a, t0] → U , γ2 :

[t0, b)→ U , be C1 solutions to the first-order initial value problem

(79.10) γ̇ = F (t, γ) , γ(t0) = x0

in an open subset U of a finite-dimensional real vector space V . Verify that the
curve γ : (a, b)→ U with

γ =

{
γ1 on (a, t0]

γ2 on [t0, b)

then is a C1 solution to (79.10).
2. Let γ : (a, b) → V , −∞ ≤ a < b ≤ ∞, be a C1 curve in a finite-dimensional

real vector space V with a fixed norm | |, such that
∫ b
a
|γ̇(t)| dt <∞ (notation

of (79.1)). Prove that γ then has one-sided limits at a and b. (Hint below.)
3. Verify that for any C1 curve γ : (a, b) → V in a finite-dimensional real vector

space V with a norm | |, such that −∞ < a < b < ∞ and sup {|γ̇(t)| : t ∈
(a, b)} <∞, there must exist one-sided limits of γ(t) as t→ a and t→ b.

4. Solve the initial value problem γ̇ = γ, γ(0) = 1 for γ : (−ε, ε) → R with an
appropriate ε > 0 by retracing the steps used in the proofs of the existence
and uniqueness theorem (Appendix II above) and Banach’s fixed-point theorem
(§73), i.e., constructing the approximating sequence γk = hkε(z), choosing z =
γ0 to be the constant function 1. (Hint below.)

5. For F, I, U, t0, x0 satisfying the hypotheses of Problem 6 in Appendix II above,
verify that there exists the largest open interval (a, b) ⊂ I with t0 ∈ (a, b) such
that the initial value problem γ̇ = F (t, γ), γ(t0) = x0 in U has a solution
γ : (a, b)→ U , and that this solution is unique. (Hint below.)

6. Let the coefficient curves B0, B1, . . . , Bk−1 of a kth order linear equation (79.9)
be all Cl-differentiable, l = 0, 1, 2, . . . ,∞. Verify that the standard order-
reduction procedure (Appendix II above) then transforms (79.9) into a lin-
ear first-order equation χ̇ = A(t)χ in the higher-dimensional space V k, with
t 7→ A(t) of class Cl.

7. Given a finite-dimensional real or complex vector space V and a linear mapping
A ∈ Hom(V, V ), define eA ∈ Hom(V, V ) by eA = Γ(1), where Γ : R →
Hom(V, V ) is the unique (global) solution to the linear initial value problem

(79.11) Γ̇(t) = AΓ(t) , Γ(0) = Id .

The assignment A → eA is called the exponential mapping. Show that Γ(t) =
etA for all t ∈ R, and so (Hint below.)

(79.12)
d

dt
etA = AetA .

8. For V,A as in Problem 7 and any s, t ∈ R, verify that (Hint below.)

(79.13) e(t+s)A = etAesA .

9. For any linear operator A ∈ Hom(V, V ) of a finite-dimensional real or complex
vector space V , show that eA : V → V is a linear isomorphism and (eA)−1 =
e−A.
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10. For V,A as in Problem 7, prove that eA commutes with A, and that the
exponential mapping A → eA = Γ(1) could also be defined using the initial

value problem Γ̇(t) = Γ(t)A, Γ(0) = Id instead of (79.11). (Hint below.)
11. A kth order linear differential equation (79.6) in a finite-dimensional real or

complex vector space V is said to have constant coefficients if its coefficient
functions B0, B1, . . . , Bk−1 : I → Hom(V, V ) are all constant. Verify that the
order-reduction procedure (Appendix II above) then leads to a first-order linear
equation with constant coefficients.

12. Show that the unique solution γ : R → V to a first-order linear equation
γ̇(t) = Aγ(t) with constant coefficients in a finite-dimensional real or complex
vector space V (so that A ∈ Hom(V, V ) is independent of t ∈ R), satisfying
the initial condition γ(t0) = x0 ∈ V , is given by

γ(t) = e(t−t0)Ax0 .

13. Prove that, for V,A as in Problem 7,

(79.14) eA =

∞∑
k=0

1

k!
Ak ,

and derive the conclusions of Problems 7 through 11 and 13 from formula (79.14)
treated as the definition of eA, without using any theorems on differential equa-
tions. Also, verify that the exponential mapping A → eA is continuous. (Hint

below.)
14. Generalize Corollary 79.3 replacing (79.3), (79.2) with

|γ̇| ≤ h|γ| + f

and

C ′ =

∫
I

√
[h(t)]2 + [f(t)]2 dt < ∞ .

with an additional continuous function f : I → [0,∞). (Hint below.)
15. Generalize Proposition 79.4 replacing (79.7) with

|F (t, x)| ≤ h(t)|x| + f(t) ,

where f : I → [0,∞) is an additional continuous function. (Hint below.)
16. Generalize the Global Existence Theorem to the case of nonhomogeneous linear

ordinary differential equations, with the equation in (79.9) replaced by

γ(k) = u(t) + B0(t)γ +B1(t)γ̇ + . . .+Bk−1(t)γ(k−1) ,

with an additional continuous function u : I → V . (Hint below.)

Hint. In Problem 2, set F (c, d) =
∫ d
c
|γ̇(t)| dt for any c, d ∈ (a, b), so that

|γ(d)− γ(c)| ≤ |F (c, d)| → 0 as c, d simultaneously approach either a or b. Thus,
whenever a sequence tk in (a, b) converges to a or b, the values γ(tk) form a
Cauchy sequence.
Hint. In Problem 4, condition (78.3) amounts to 0 < ε < 1, and γk(t) =∑k
j=0 t

k/k! is the kth partial sum of the exponential series for γ(t) = et.

Hint. In Problem 5, let (a, b) be the union of all (a′, b′) ⊂ I with t0 ∈ (a′, b′)
on which a solution exists, and then use the uniqueness statement of Problem 6 in
Appendix II above.
Hint. In Problem 7, fix λ ∈ R and note that Γλ with Γλ(t) = Γ(λt) satisfies

Γ̇λ = λAΓλ, Γλ(0) = Id, so eλA = Γλ(1) = Γ(λ).
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Hint. In Problem 8, use (79.12) to observe that the curves t 7→ e(t+s)A, t 7→ etAesA

are solutions to the same initial value problem, and so they must coincide.
Hint. In Problem 9, note that the curve t 7→ B(t) = AetA− etAA satisfies Ḃ(t) =
AB(t) with B(0) = 0 and hence B(t) = 0 for all t due to uniqueness of solutions.
Hint. In Problem 13, fix a norm | | in V and note that (79.14), as a series of
functions of A ∈ Hom(V, V ), converges absolutely and uniformly on each bounded
subset K of Hom(V, V ) due to the operator-norm estimate |Ak| ≤ |A|k (Prob-
lem 14 in §8), which shows that the partial sums of (79.14) restricted to A ∈ K
form a d sup-Cauchy sequence of continuous functions of A, and we may use Prob-
lems 2 – 3 in Appendix II above to establish convergence and continuity. Therefore,
the same applies to the derivative series

∞∑
k=0

d

dt

(
1

k!
tkAk

)
,

where A is fixed and t varies in an interval of the form [−t0, t0]. We now derive
both (79.12) and its “mirror version” in Problem 10 using integration over t. The
statement of Problem 9 can be obtained by differentiating etAe−tA with respect
to t, and so the solutions Γ to (79.11) and (79.13) to γ̇(t) = Aγ(t), γ(t0) = x0

are both unique since by differentiating e−tAΓ(t) or e(t0−t)Aγ(t) we see that it
must be constant. As for the assertion of Problem 8, it can be obtained either from
the previous uniqueness conclusion applied to t 7→ e−sAe(t+s)A, or from a standard
series multiplication argument.
Hint. In Problem 14, use the new C1 mapping Γ : I → W into the direct-sum
vector space W = V ×R with the direct-sum inner product (involving the standard
inner product in R), given by

(79.15) Γ(t) = (γ(t), 1) .

By the Schwarz inequality and (79.3), |Γ̇| = |γ̇| ≤ h|γ| + f ≤
√
h2 + f2 ·√

|γ|2 + 1 = H|Γ|, with H =
√
h2 + f2, so that we can apply Corollary 79.3

to the primed data.
Hint. In Problem 15, proceed as in the original proof of Proposition 79.4, replacing
Corollary 79.3 by its generalized version (Problem 14).
Hint. In Problem 16, proceed as in the original proof of the global existence theo-
rem, replacing Proposition 79.4 by its generalization given in Problem 15, or simply
note that (79.15) then defines a solution to a homogeneous linear differential equa-
tion in the new vector space W = V ×R and apply to it the original theorem.

80. Differential equations with parameters

Topics: Ordinary differential equations with parameters; the regularity theorems; initial condi-

tions as parameters.

Let U ⊂ V , U ′ ⊂ V ′ be open subsets of finite-dimensional real vector spaces
V and V ′. A kth order ordinary differential equation in U is said to depend on
the parameter ξ ∈ U ′ if it has the form (cf. (78.1))

(80.1) γ(k) = F (ξ, t, γ, γ̇, . . . , γ(k−1))

with the right-hand side F : U ′ × I × U × V k−1 → V . Together with an ini-
tial condition (78.2), i.e., γ(t0) = x0 , γ̇(t0) = v1 , . . . , γ

(k−1)(t0) = vk−1, where
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(t0, x0, v1, . . . , vk−1) ∈ I×U ×V k−1, (80.1) then is referred to as a kth order initial
value problem with a parameter.

Lemma 80.1. Let a C1 curve γ : I → V in a finite-dimensional real vector
space V be defined on an interval I ⊂ R of length Λ <∞ and satisfy the estimate

(80.2) |γ̇| ≤ p|γ| + q

with some constants p > 0 and q ≥ 0, | | being a fixed Euclidean norm in V . If
γ(t) = 0 for some t ∈ I, then

(80.3) |γ| ≤ q

p
(epΛ − 1)

everywhere in I.

Proof. Let [a, b] be any closed subinterval of I on which the function f = |γ|
is positive. From (80.2) and the Schwarz inequality, |ḟ | ≤ pf + q on [a, b]. Since
f+q/p > 0 on [a, b], rewriting the last inequality as |(f+q/p) |̇ ≤ p(f+q/p), then
dividing it by f + q/p and, finally, integrating over [a, b] and using Problem 18 in
§74 (Appendix B), we obtain | log[f(b) + q/p] − log[f(a) + q/p]| ≤ p(b − a) ≤ pΛ.
Thus,

(80.4) e−pΛ ≤ f(b) + q/p

f(a) + q/p
≤ epΛ .

Let us denote (c, d) the maximal open subinterval of I containing [a, b] and such
that γ 6= 0 everywhere on (c, d). Since γ = 0 somewhere in I, at least one of
c, d must be an element of I at which γ = 0. Now, if c ∈ I and f(c) = 0 (or,
d ∈ I and f(d) = 0), taking the limit of (80.4) as a → c(+) (or, as b → d(−))
and writing t = b (or, t = a), we obtain f(t) ≤ qp−1(epΛ − 1). Thus, (80.3) holds
wherever γ 6= 0 and, consequently, everywhere in I. This completes the proof.

Lemma 80.2. Given finite-dimensional real vector spaces V, V ′ and open sub-
sets U ⊂ V , U ′ ⊂ V ′, let

(80.5) γ̇ = F (ξ, t, γ) , γ(t0) = x0 .

be the first-order initial value problem in U with a parameter ξ ∈ U ′ obtained
by fixing an open interval I ⊂ R, a mapping F : U ′ × I × U → V , and a pair
(t0, x0) ∈ I ×U . If F is of class Cl+1 on U ′× I ×U , then, for any ξ0 ∈ U ′ there
exist a neighborhood U ′′ of ξ0 in U ′ and a real number ε > 0 such that for every
ξ ∈ U ′′ a solution γ = γξ to (80.5) can be defined on the interval (t0 − ε, t0 + ε)
of the variable t and the mapping (t0 − ε, t0 + ε)× U ′′ 3 (t, ξ) 7→ γξ(t) ∈ U is of
class Cl.

Proof. We use induction on l ≥ 0. The mapping
The induction step: Suppose that our assertion is true for a given l ≥ 0, and

let F be of class Cl+2. Let us now set m = dimV ′ and consider the initial value
problem

(80.6)
γ̇ = F (ξ, t, γ) , γ̇λ =

∂F

∂ξλ
(ξ, t, γ) + γaλ

∂F

∂γa
(ξ, t, γ) ,

γ(t0) = x0 , γλ(t0) = 0 , λ = 1, . . . ,m ,

imposed on a curve t 7→ (γ(t), γ1(t), . . . , γm(t)) valued in U × V m (where V m

is the mth Cartesian power of V ), with γa and γaλ, λ = 1, . . . ,m, standing for
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the ath component of the curve γ (or γλ) relative to some fixed basis of V . The
right-hand side of (80.6) thus is of class Cl+1 in (ξ, t, γ).

We now obtain what is known as the regularity theorem.

Theorem 80.3. Let (80.1) be a system of ordinary differential equations with
a parameter, of any order k ≥ 1, whose right-hand side is of class Cl+1 in all
quantities involved, l = 0, 1, 2, . . . ,∞. The solutions to (80.1) with any given initial
conditions then depend Cl-differentiably on the parameter, the independent variable,
and the initial conditions, i.e., on the (k + 3)-tuple (ξ, t, t0, x0, v1, . . . , v(k−1)) ∈
U ′×I2×U×V k−1, wherever they are defined, while the subset of U ′×I2×U×V k−1

on which they are defined is open.

Proof. Using any fixed initial condition (78.2), and proceeding as in the para-
graph preceding the Existence and Uniqueness Theorem (§4, Appendix II), we may
rewrite (80.1) as a first-order initial value problem with parameters. In other words,
we may assume that k = 1, and so our initial value problem has the form

(80.7) γ̇ = F (ξ, t, γ) , γ(t0) = x0 .

Denoting t 7→ γξ(t) the unique solution to (80.7) for any given value of the param-
eter(s) ξ, let us now “pretend” that the assertion we are trying to prove holds in
this particular case. Applying to (80.7) the partial derivatives of all orders up to l,
relative to the components ξλ of ξ, using the chain rule, and setting

γλ1...λs =
∂sγ

∂ξλ1 . . . ∂ξλs

for any s ∈ {1, . . . , l}, we thus get a system consisting of

γ̇ = F (ξ, t, γ) , γ̇λ =
∂F

∂ξλ
(ξ, t, γ) + γaλ

∂F

∂γa
(ξ, t, γ) ,

then,

γ̈λµ =
∂ 2F

∂ξµ∂ξλ
+ γaµ

∂ 2F

∂γa∂ξλ
+ γaµλ

∂F

∂γa
+ γaλγ

b
µ

∂ 2F

∂γa∂γb
,

(with (ξ, t, γ) omitted for brevity), etc., the right-hand sides of which involve partial
derivatives of F up to order l. These come along with the initial conditions

γ(t0) = x0 and γλ1...λs(t0) = 0 for all s ∈ {1, . . . , l} .
This new system with the parameter ξ has the unknown functions γ and γλ1...λs ,
for all s = 1, . . . , l, and its right-hand side depends continuously on (ξ, t, γ). By
Lemma 80.2,

......
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Appendix D. Some More Differential Geometry

81. Grassmann manifolds

Let V be a n-dimensional real/complex vector space, 1 ≤ n < ∞. For any
integer q with 0 ≤ q ≤ n we denote by Grq(V ) the set of all q-dimensional
real/complex vector subspaces of V .

Let d ∈ {1, 2} now be the dimension of the scalar field K over R (so that
the real dimension of V is dn). Denote by ea, a = 1, . . . , q the standard basis of
Kq with ea = (δ1

a, . . . , δ
q
a). For every surjective linear operator f : V → Kq, set

Af = f−1(e1) × . . . × f−1(eq) (this is an affine space whose the translation space
is the direct sum of q copies of Kerf , cf. Problem 21). Also, setting

Uf = {W ∈ Grq(V ) : f(W ) = Kq},
we define ϕf : Uf → Af to be the mapping sending each W onto (w1, . . . , wk),
where wa is the unique intersection point of W with f−1(ea). The family

(81.1) A = {(Uf , ϕf ) : f is a K-linear mapping of V onto Kq}
then is an atlas on Grq(V ) (involving affine model spaces, as in §2), making
Grq(V ) a Cω manifold of dimension qd(n− q), known as the Grassmann manifold
(or Grassmannian) of q-planes in V . See Problem 22.

Problems
1. Show that the Cartesian product of a finite collection of affine spaces is naturally

an affine space, whose translation vector space is the direct sum of those of the
factors.

2. For V, n, q, Grq(V ),K and d as above, prove that (81.1) is a Hausdorff atlas
on Grq(V ) and that it makes Grq(V ) the underlying set of a Cω manifold of
dimension qd(n− q). (Hint below.)

3. Let V, V ′ be finite-dimensional real or complex vector spaces. Verify that, for
any linear isomorphism F : V → V ′, the assignment W 7→ F (W ) is a Cω

diffeomorphism Grq(V )→ Grq(V
′). State and prove a similar result in the case

where F : V → V ′ is merely linear and injective.
4. For V , n, q as in Problem 2, verify that

(a) if q = 1, we have Grq(V ) = P (V ) and the above atlas coincides with the
one described in §2,

(b) setting F (W ) = {h ∈ V ∗ : h = 0 on W}, we obtain a Cω diffeomorphism
F : Grq(V )→ Grn−q(V

∗).
5. For V , n, q as in Problem 2, prove that the Grassmann manifold Grq(V ) is

compact. (Hint below.)

Hint. In Problem 2, let (Uf , ϕf ), Uh, ϕh) ∈ A, and let Z be the vector space
of all q × q matrices over K. A Cω mapping F : Af → Z can be defined by

215
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letting F (w1, . . . , wq) be the matrix with column vectors h(w1), . . . , h(wq). Now
ϕf (Uf ∩ Uh) ⊂ Af is given by det ◦F 6= 0 and so it is open in Af . Compatibility

follows since (ϕh ◦ϕ−1
f )(w1, . . . , wk) = Ca1wa, . . . , C

a
qwa), where C ∈ Z is given by

C = [F (w1, . . . , wq)]
−1 (matrix inverse). The Hausdorff axiom is clear as any two

points lie in a common chart of our atlas.
Hint. In Problem 5, fix a Euclidean/Hermitian inner product in V and apply
Problems 4(a),5 in §3 to the mapping Span : K → Grq(V ), where K is the subset
of the direct sum of q copies of V formed by all q-tuples of orthonormal vectors.

82. Affine bundles

As in the case of vector bundles, we can define a real or complex affine bundle
ζ over a set B to be a family B 3 x 7→ ζx, parametrized by B, of real or complex
affine spaces ζx of some finite dimension q, independent of x. The notions of
fibre dimension (or rank), base, fibre, section (with a domain K ⊂ B) now can
be introduced by repeating the corresponding definitions for vector bundles. Every
affine bundle ζ over B gives rise to a vector bundle η over B (its associated vector
bundle), the fibre ηx of which at any x ∈ B is the translation vector space of ζx.
We can thus add sections of η to those of ζ (if their domains agree), obtaining
sections of ζ.

Let ζ be an affine bundle over a set B, of some fibre dimension q, and let η be
its associated vector bundle. A trivialization of ζ over a set K ⊂ B then consists of
a section o of ζ, defined on K, and a trivialization e1, . . . , eq of η over K. Such a
trivialization will be written o, ea, where a varies in the fixed range {1, . . . , q}. For
x ∈ K and ξ ∈ ζx, we define the components ξa of ξ relative to the trivialization
o, ea over K to be the scalars characterized by ξ = o(x) + ξaea(x). Similarly,
the scalar-valued component functions χa : K → R or χa : K → C of any
section ψ of ζ over K then are given by χa(x) = [χ(x)]a. Thus, χ = o + χaea.
Another such trivialization (over a set K ′ ⊂ B) will be denoted by o′, ea′ ; it leads
to the scalar-valued transition functions ca, eaa′ on K ∩K ′ given by o′ = o+ caea,
ea′ = eaa′ea.

Consider now a affine bundle ζ whose base set, denoted by M , carries a fixed
structure of a Cr manifold , r ≥ 1. By a local section (trivialization) of ζ we
then mean a section χ (or, trivialization o, ea) whose domain is an open set U ⊂
M . (When U = M , the section or trivialization is called global .) Two local
trivializations o, ea and o′, ea′ with domains U,U ′ are called Cs compatible (0 ≤
s ≤ r) if the scalar-valued transition functions ca and eaa′ on U ∩ U ′ are all of
class Cs. Compatibility is, again, a symmetric relation. A Cs atlas B for ζ is
a collection of local trivializations which are pairwise Cs compatible and whose
domains cover M . Such an atlas is said to be maximal if it is not contained in any
other Cs atlas. Every Cs atlas B for ζ is contained in a unique maximal Cs atlas
Bmax, formed by all local trivializations of ζ that are Cs compatible with each of
the local trivializations constituting B.

We define a Cs affine bundle over a Cr manifold M (0 ≤ s ≤ r) to be any
affine bundle ζ over M endowed with a fixed maximal Cs atlas Bmax. Note that,
to describe a Cs affine bundle ζ over M , it suffices to provide just one Cs atlas
B contained in its maximal Cs atlas Bmax.

A local section χ of a Cs affine bundle ζ is said to be of class Cl, 0 ≤ l ≤ s,
if its components χa relative to all local trivializations o, ea forming the maximal
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atlas Bmax of η, are Cl functions. This is a local geometric property (§2): to verify
that χ is Cl, we only need to use, instead of Bmax, just any Cs atlas B contained
in Bmax. Cf. Problem 11 in §20.

Problems
1. In notations as above, verify the transformation rule

χa
′

= ea
′

a (χa − ca)

for component functions of sections of affine bundles under a change of a trivi-
alization.

83. Abundance of cut-off functions

Functions on manifolds that are C∞-differentiable and vanish on a nonempty
open set, but not identically, are used for a variety of purposes. The following
problems establish the existence of a large supply of such functions.

Problems
13. Let f : (a, b) → R be a differentiable function, −∞ < a < b ≤ ∞, such

that L = limx→a(+) f
′(x) exists and is finite. Show that f has a differentiable

extension to [a, b), also denoted by f , with f ′(a) = L.
14. Define f : (0,∞) → R by f(x) = e−1/x. Verify that, for each integer k ≥ 1,

the kth derivative f (k)(x) is a finite combination, with constant coefficients, of
terms having the form x−se−1/x, where the s are positive integers.

15. Prove that the function f : R → R given by f(x) = e−1/x for x > 0 and
f(x) = 0 for x ≤ 0 is of class C∞.

16. For any real numbers a, b with a < b, show that there is a C∞ function χ :
R→ R with χ = 0 on (−∞, a], χ > 0 on (a, b), and χ = 0 on [b,∞).

17. Given real numbers a, b with a < b, prove the existence of a C∞ function
φ : R→ R with φ = 0 on (−∞, a], 0 < φ < 1 on (a, b), and φ = 1 on [b,∞).

18. For real numbers a, b with 0 < a < b and an integer n ≥ 1, show that there
exists a C∞ function φ : Rn → [0, 1] such that φ(x) = 1 if |x| ≤ a and φ = 0
whenever |x| ≥ b.

19. Existence of cut-off functions. Given a closed subset K of a Cr manifold M ,
0 ≤ r ≤ ∞, and a point x ∈ M \K, prove the existence of a Cr function
φ : M → R with 0 ≤ φ ≤ 1 on M , φ = 1 in a neighborhood of x, and φ = 0
in some open set containing K.

20. Global extensibility of germs. For a point x in a Cr manifold M , 0 ≤ r ≤ ∞,
and any l = 0, 1, 2, . . . , r, show that each germ of a Cl function at x, is realized
by a Cl function defined on the whole of M .

84. Partitions of unity

Topics: Locally finite open coverings; locally finite partitions of unity; existence theorems.

Lemma 84.1. Every manifold M is the union M =
⋃∞
j=1 Uj of open sets Uj

such that each Uj has a compact closure contained in Uj+1.

in preparation
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Proof.

A family S of subsets of a manifold M is called locally finite if every point of M
has a neighborhood intersecting only finitely manu sets from S.

We can now establish an important consequence of the countability axiom
(§14): the condition that, according to the following theorem, is satisfied by every
manifold, is known as paracompactness.

Theorem 84.2. For every open covering U of a manifold M there exists a
locally finite open covering of M subordinate to U .

Proof. Let us choose the Uj as in Lemma 84.1, and let Yj be their (compact)
closures. In view of the Borel-Heine theorem, for each j ≥ 1 some finite subfamily
Uj of U covers Yj , and so does the finite family U ′j of open sets given by U ′j =

{U \Yj−1 : U ∈ Uj} (where we have set Y0 = Ø). The union U ′ =
⋃∞
j=1 U ′j clearly

is an open covering of M subordinate to U . To see that it is locally finite, let
x ∈ M and let us fix a neighborhood of x having a compact closure Y . The
Borel-Heine theorem applied to Y and the sets Uj shows that Y ⊂ Uj for some
j, so that the only sets in the family U ′ that might possibly intersect Y are
those belonging to Uk for k ∈ {1, . . . , j}. The latter sets are finite in number, as
required.

By a locally finite partition of unity we mean

in preparation

We say that a locally finite partition of unity is subordinate to an open covering
U if

in preparation

Corollary 84.3. For every open covering U of a manifold M , there exists
a locally finite partition of unity subordinate to U .

in preparation

Proof.

Problems
1. Using Corollary 84.3, generalize Problem 3 in §36 to the case where, instead of

compactness of K ′, one just assumes both sets K,K ′ to be closed.
2. Show that every C∞ real/complex vector bundle over a C∞ manifold satisfying

the countability axiom admits a C∞ (positive-definite) Riemannian/Hermitian
metric g and a connection ∇ compatible with g. (Hint below.)

3. Show that a positive C∞ density exists on every manifold. (Hint below.)
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4. Prove that every manifold admits an atlas that has unimodular transition map-
ping in the sense that det[pjj′ ] = 1 for any two charts of this atlas. (Hint

below.)

Hint. In Problem 1, apply Corollary 84.3 to the open covering of M formed by
the two sets M \K and M \K ′, then select those functions from your locally finite
partition of unity whose supports are contained in M \K ′. The sum f of the
selected functions is still equal to 1 on K, but is 0 on K ′. We may now replace
f with τ ◦ f , for a C∞ function τ : [0, 1] → [0, 1] equal to 0 near 0 and to 1
near 1.
Hint. In Problem 2,
Hint. In Problem 3, use a locally finite partition of unity.
Hint. In Problem 4, use Problem 3 to select a positive C∞ density on the given
manifold, and then apply Problem 2 in §37 with ϕ = 1.

85. Flows of vector fields

Topics: Integral curves and the flow of a vector field; the homomorphic property.

Suppose that w is a fixed Cl vector field on a manifold M , 1 ≤ l ≤ ∞.
A C1 curve γ : I → M defined on an interval I ⊂ R is called an integral

curve of w if γ̇(t) = w(γ(t)) for each t ∈ I. If, in addition, t ∈ I is fixed and
γ(t) = z ∈M , we say that γ is a solution to the initial value problem

(85.1) γ̇ = w(γ) , γ(t) = z

in M . In any local coordinates xj at z, (85.1) is clearly equivalent to the initial
value problem

γ̇j = Ψj(γ1, . . . , γn) , γj(t) = zj , j = 1, . . . , n = dimM

in an open subset of Rn, with the unknowns γj = xj ◦ γ, where Ψj are the
functions of n variables characterized by wj = Ψj(x1, . . . , xn), and zj = xj(z).
Therefore, according to the the existence and uniqueness theorem on p. 32, for
each t ∈ R and z ∈ M , (85.1) has a unique C1 solution γ : I → M defined on
some open interval I containing t. Furthermore, there is always a largest possible
open interval I = Imax with this property, and a solution γ is also unique on the
whole of Imax (Problem 3).

For each x ∈ M , let Ix ⊂ R with −∞ ≤ inf Ix < 0 < sup Ix ≤ ∞ be the
largest interval on which an integral curve γx : Ix →M of w with γx(0) = x can
be defined. Denote Yw the subset of M ×R given by Yw = {(x, t) ∈M ×R : t ∈
Ix}, and define the flow of w to be the mapping Yw 3 (x, t) 7→ etwx ∈M with

etwx = γx(t) .

We will use the phrase “etwx exists” to express that (x, t) ∈ Yw, i.e., t ∈ Ix.
The above notation is consistent in the sense that etwx depends only on x and

the product vector field tw, rather than t and w separately. In fact, if tw = 0, we
have e0x = x, since either t = 0, or w = 0 and all integral curves γx are constant.
Futhermore, if u = λw with λ ∈ R, then λ−1Ix 3 s 7→ γ̃x(s) = γx(λs) ∈ M
is an integral curve of u with γ̃x(0) = x, defined on the largest possible interval
(Problem 4). For any x ∈ M and t, s ∈ R with tw = su, i.e., t = λs, this shows
that etwx exists if and only if so does esux, and then etwx = esux.
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Note that, since Ix 3 t 7→ etwx is an integral curve of w, it obeys the standard
“exponential derivative” rule

(85.2)
d

dt
etwx = w(etwx) , e0x = x ,

the exponent 0 now being the zero vector field.
For each t ∈ R, let Ut ⊂M be the set of all x ∈M for which etwx exists, i.e.,

(x, t) ∈ Yw. Thus, x ∈ Ut if and only if w has an integral curve γ with γ(0) = x
defined on an interval containing both 0 and t. Note that Ut may be empty for
some t, even though U0 = M and Us ⊂ Ut whenever 0 ≤ t ≤ s or s ≤ t ≤ 0. We
denote etw : Ut →M the mapping sending each x ∈ Ut onto etwx.

Lemma 85.1. Let w be a Cl vector field on a manifold M , 1 ≤ l ≤ ∞, and
fix x ∈M and t ∈ R such that etwx exists. Then, for any s ∈ R, the conditions

a. eswetwx exists,
b. e(s+t)wx exists,

are equivalent, and either of them implies that

(85.3) e(s+t)wx = eswetwx .

Proof. Note that Ix− t 3 s 7→ γ(s) = e(s+t)wx = γx(s+ t) ∈M is an integral
curve of w with γ(0) = γx(t) = etwx, defined on the largest possible interval
(Problem 4), and so γ(s) = eswetwx.

Remark 85.2. If w is a Cl vector field on a manifold M , 1 ≤ l ≤ ∞, and
t ∈ R, then etw is a bijective mapping of Ut onto U−t and its inverse mapping is
e−tw. In fact, this is immediate from the above lemma for s = −t.

Proposition 85.3. Suppose that w is a Cl vector field on a manifold M ,
1 ≤ l ≤ ∞. Then Yw is an open subset of M × R and the flow mapping Yw 3
(x, t) 7→ etwx ∈M is Cl-differentiable.

Proof. We only need to show that, for each (x, t0) ∈ Yw,

(85.4)

There exists an open set U ⊂M and an open interval I ⊂ R

with x ∈ U and 0, t0 ∈ I, such that U × I ⊂ Yw and the

mapping U × I 3 (z, t) 7→ etwz ∈M is Cl-differentiable.

Fix x ∈ M . By the local regularity theorem (p. 40), (85.4) holds whenever t0 is
sufficiently close to 0. To prove (85.4) for all t0 ∈ Ix, suppose that for instance
t0 > 0 and let t1 > 0 be the supremum of those t0 > 0 which satisfy (85.4)
with the given x. The assertion will follow if we now show that t1 = sup Ix.
Let us assume, on the contrary, that t1 ∈ Ix. According to the local regularity
theorem, there exists a neighborhood U ′ of et1wx in M , positive numbers ε, δ,
and a Cl mapping (y, t′, t) 7→ γ(y, t′, t) ∈M defined for y ∈ U ′ and real t, t′ with
|t′ − t1| < δ and |t − t′| < ε, such that for any such y and t′, the assignment
(t′ − ε, t′ + ε) 3 t 7→ γ(y, t′, t) ∈ M is an integral curve of w with γ(y, t′, t′) = y.

Now let us fix t′ with 0 < t1 − t′ < min(δ, ε) and such that et
′wx ∈ U ′ (the latter

being possible by continuity of t 7→ etwx at t = t1). Since (85.4) holds for some
t0 > t′, we may choose U in (85.4) so that, in addition, etw(U) ⊂ U ′ for all t
sufficiently close to t′. According to Problem13.1, formula

etwz = γ(et
′wz, t′, t)
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now defines a Cl-differentiable extension of the flow mapping to z ∈ U and 0 ≤
t < t′ + ε ; since t′ + ε > t1, this contradicts our choice of t1, thus completing the
proof.

Combining this result with Problem2.7 and the preceding remark, we obtain

Corollary 85.4. For any Cl vector field w on a manifold M , 1 ≤ l ≤ ∞,
and t ∈ R, the set Ut = {x ∈ M : (x, t) ∈ Yw} is open in M and, if it is
nonempty, etw : Ut → U−t is a Cl diffeomorphism with the inverse diffeomorphism
e−tw : U−t → Ut.

Problems
1. Verify that, for any linear vector field w = A on a finite-dimensional real or

complex vector space V (Problem16.9) and any t ∈ R, the flow mapping etw

coincides with etA defined in Problem14.2.
2. Describe the flow mapping (x, t) 7→ etwx and its domain Yw for the vector field

w on R given by w(x) = x2 + 1 ∈ R = TxR, x ∈ R.
3. Prove that, for any C1 vector field w on a manifold M , any point z ∈M and

a real number t, a C1 solution γ : I → M to the initial value problem (85.1)
on any open interval I containing t on which it can be defined, and that there
exists the largest possible interval Imax with this property. (Hint below.)

4. Given two intervals I, I ′ ⊂ R, a C1 function ϕ : I → I ′, and a C1 curve
γ : I ′ →M in a manifold M , verify the chain rule

(γ◦ϕ) ˙ = ϕ̇(γ̇◦ϕ) ,

i.e., d
dtγ(ϕ(t)) = ϕ̇(t)γ̇(ϕ(t)), where ( ) ˙ stands for the differentiation with

respect to either parameter (in I or in I ′).
5. Let f : U → R be a function defined on an open subset U of a manifold M .

We say that f is locally Lipschitz if so is f ◦ ϕ−1 : ϕ(U ∩ U ′) → R (in the
sense defined in Problem 12.5, with some norm in Rn, n = dimM) for each
coordinate system (U ′, ϕ) in M . Prove that this is a local geometric property,
i.e, it can be verified using any particular set of coordinate systems covering U .
Show that every locally Lipschitz function is continuous, and every C1 function
is locally Lipschitz. (Hint below.)

6. Show that the class of all locally Lipschitz functions U → R on a fixed open
subset U of a manifold M forms an algebra, i.e., is closed under addition and
multiplication of functions. (Hint below.)

7. A vector field w on a manifold M is said to be locally Lipschitz if so are its
component functions wj relative to any local coordinates xj in M . Verify that
this is a local geometric property (p. 4). Prove that the initial value problem
(85.1) then has a unique C1 solution γ : I →M defined on the largest possible
open interval I ⊂ R containing t.

8. A mapping F : M → N between manifolds is called locally Lipschitz if it is
continuous and its components Fα = yα ◦ F , relative to any local coordinates
yα in M , are locally Lipschitz functions in M . Verify that this is a local
geometric property (p. 4). Show that composites of locally Lipschitz mappings
between manifolds are again locally Lipschitz.

Hint. In Problem 3, use the hints for Problems12.6 and 13.5.
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Hint. In Problem 5, the geometric-property assertion follows from the obvious fact
that composites h ◦ F of locally Lipschitz mappings between open sets in finite-
dimensional normed vector spaces are again locally Lipschitz; this can in turn be
applied to h = f ◦ ϕ−1 and F = ϕ ◦ ϕ̃−1 for two coordinate mappings ϕ, ϕ̃ in M .
Hint. In Problem 6, use local boundedness (or continuity) of locally Lipschitz
functions f, h in a normed vector space, along with |f(x)h(x) − f(z)h(z)| ≤
|f(x)||h(x)− h(z)|+ |h(z)||f(x)− f(z)|.

86. Killing fields

Topics: Killing vector fields on Riemannian manifolds and flows consisting of local isometries.

87. Lie brackets and flows

Topics: Commutation between the flows of two vector fields, versus the vanishing of their Lie

bracket.

For any C1 diffeomorphism F : M → N between manifolds and any vector
field w on M , there exists a unique vector field v on N which is F -related to w in
the sense that (16.6) holds (see Problem16.5). We then simply write v = (dF )w
and call v the push-forward of w under F . In view of (16.7), if w is of class Cl ,
l = 0, 1, . . . ,∞ and F is Cl+1-differentiable, then v = (dF )w is also of class Cl .
Thus, if l = 1 and w′ is another C1 vector field on M , Theorem.... implies

(87.1) (dF )[w,w′] = [(dF )w, (dF )w′] .

Let w be a fixed C2 vector field on a manifold M , and let the open sets Ix ⊂ R ,
Yw ⊂ M ×R and Ut ⊂ M , for any x ∈ M and t ∈ R , be defined as on p. 47. If
u is a C1 vector field on M , the push-forward (detw)u of the restriction of u to Ut
under the C1 diffeomorphism etw : Ut → U−t is a C1 vector field on U−t (provided
that Ut is nonempty, which is guaranteed if t is sufficiently close to 0). Since, for
any fixed y ∈ M , the set of all t ∈ R with y ∈ U−t is the open interval −Iy , and
the resulting curve −Iy 3 t 7→ [(detw)u](y) ∈ TyM if of class C1 (in view of the
proposition on p. 48 and formula (16.7)), the derivative

(87.2)
d

dt
[(detw)u]

is a well-defined vector field on U−t , assigning to each y ∈ U−t the vector d{[(detw)u](y)}/dt .
Also note that, for u = w and any t ∈ R we have

(87.3) [(detw)w] = w

everywhere in U−t = etw(Ut) . In fact, by (85.2) and (85.3), w(x) = d
ds e

swx s=0 for

x ∈ Ut , and so [(detw)w](etwx) = (detw)x[w(x)] = d
ds e

tweswx
s=0

= d
ds e

(t+s)wx
s=0

=
d
ds e

sw
s=t = w(etwx) (see also Problem 4 in §85).

Proposition 87.1. Given a C2 vector field w and a C1 vector field u on a
manifold M , we have, for each t ∈ R ,

(87.4)
d

dt
[(detw)u] = (detw)[u,w] .

everywhere in the open set U−t = {y ∈M : e−twy exists} .
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Proof. Denote vt the vector field (detw)u on U−t and, for any given t such
that Ut is nonempty, let xj and yα be local coordinates at fixed points x0 ∈ Ut and,
respectively, y0 = etwx0 ∈ U−t in the open submanifolds Ut , U−t of M . Writing
vα(t, y) instead of vαt (y) and φ(t, x) instead of etwx , with φα(t, x) = yα ◦φ(t, x) for
x near x0 and y near y0 , we will apply to both resulting component functions the
partial derivative ∂/∂t . Thus, vt is characterized by vt(φ(t, x)) = d[φ(t, ·)]x[u(x)] ,
i.e., in view of (16.7),

(87.5) vα(t, φ(t, x)) = uj(x)(∂jφ
α)(t, x)

for x near x0 . On the other hand, by (85.2),

(87.6)
d

dt
φα(t, x) =

∂φα

∂t
(t, x) = wα(φ(t, x)) ,

so that the relation
d

dt
[∂jφ

α(t, x)] =
∂2φα

∂t∂xj
(t, x) =

∂

∂xj
∂φα

∂t
(t, x) =

∂

∂xj
wα(φ(t, x))

and the chain rule yield

(87.7)
d

dt
[∂jφ

α(t, x)] = (∂βw
α)(φ(t, x))(∂jφ

β)(t, x) .

Applying d/dt to (87.5) we now obtain, setting y = φ(t, x),

∂vα

∂t
(t, y) +

∂vα

∂yβ
(t, y) · ∂φ

β

∂t
(t, x) = uj(x)

d

dt
[(∂jφ

α)(t, x)]

and so it follows from (87.5) – (87.7) that, at points y near y0 , the component
functions of (87.2) are given by

∂vα

∂t
(t, ·) = vβ(t, ·)∂βwα − wβ∂βvα(t, ·) .

In view of (16.4), this shows that dvt/dt = [vt, w] , i.e.,

d

dt
[(detw)u] = [(detw)u,w] ,

and (87.4) is immediate from (87.1) and (87.3).

Corollary 87.2. For a C2 vector field w and a C1 vector field u on a manifold
M , the following two conditions are equivalent:

a. [u,w] = 0 identically on M ;
b. u is invariant under the flow of w in the sense that

(detw)u = u

everywhere in the open set U−t = etw(Ut) , for each t ∈ R such that Ut =
{x ∈M : etwx exists} is nonempty.

This is a direct consequence of (87.4) and the fact that [(detw)u]
s=0

= u .
The Lie bracket [w, u] of two vector fields w, u on a manifold M vanishes if and

only if their flows commute. More precisely, we have the following result.

Theorem 87.3. Suppose that we are given a C2 vector field w and a C1 vector
field u on a manifold M . Then [w, u] = 0 everywhere if and only if, for all real t, s,

etwesu = esuetw

at all points in M where both composites make sense.
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Remark 87.4. Note that, for C1 vector fields w, u on M , the set of those
(x, t, s) ∈ M ×R2 for which etwesux exists is open and contains M × {(0, 0)}. In
fact, this is just the preimage of the open set Yw under the C1 mapping R× Yu 3
(t, (x, s)) 7→ (t, esux) (see the proposition on p. 48). Therefore, the same holds for
the set of (x, t, s) such that etwesux and esuetwx both exist.

Proof. Condition [w, u] = 0 means that u is invariant under the flow of w
(the corollary on p. 52), which in turn is equivalent (see Problem 2) to requiring
that the composite s 7→ etwesux of each flow mapping etw with any integral curve
s 7→ esux of u contained in the domain Ut of etw (bottom of p. 47) be the integral
curve of u having the value etwx at s = 0, i.e., coincide with s 7→ esuetwx. This
completes the proof.

Problems
1. Given C1 mappings Φ : M → N , Ψ : N → P between manifolds and C1 vector

fields w on M , v on N and u on P such that (dΦ)w = v on Φ(M) and (dΨ)v = u
on Ψ(N) , prove that (d[Ψ ◦ Φ])w = u on Ψ(Φ(M)) .

2. Let F : M → N be a C1 mapping between manifolds and let w, v be C1 vector
fields on M and N , respectively. Show that (dF )w = v on F (M) (p. 44) if and
only if, for every integral curve γ of w , the composite F ◦ γ is an integral curve
of v .

88. Completeness of vector fields

Topics: .

A C1 vector field w on a manifold M is said to be complete if Yw = M × R
(notation as on p. 47), i.e., if each maximal integral curve of w is defined on the
whole real line R. Removing from a manifold M a point x with w(x) 6= 0 for a
given C1 vector field w we are obviously left with a non-complete vector field on the
open submanifold U = M \ {x}, namely, the restriction of w. In fact, γ : (0, ε)→ U
given by γ(t) = etwx for a sufficiently small ε > 0 then is an integral curve of w
restricted to U that cannot be extended (in U) to t < 0. For a more general class
of examples, see Problem 6.

Examples of complete vector fields. Each of the following assumptions on the
manifold M and the C1 vector field w on M guarantees completeness of w :

a. M × (−ε, ε) ⊂ Yw for some ε > 0, i.e., for each x ∈ M there is an in-
tegral curve γ of w with γ(0) = x, defined on the interval (−ε, ε) with ε
independent of x. See Problem 7.

b. M is separable (p. 29) and w is compactly supported , i.e., vanishes outside a
compact subsetK ofM . In fact, for each x ∈M , there is a product neighbor-
hood Ux×(−εx, εx) of (x, 0) in M×R contained in Yw, and choosing a finite
set Γ ⊂M with K ⊂

⋃
x∈Γ Ux (Problem11.8) we obtain M × (−ε, ε) ⊂ Yw,

as in (a), for ε = min {εx : x ∈ Γ}.
c. M is a compact separable manifold (and w is any C1 vector field on M);

this is (b) with K = M .
d. M = V is a finite-dimensional real or complex vector space and w is a

linear vector field on V (Problem16.9). Completeness of w follows here from
the global existence theorem for linear differential equations (p. 37); for an
explicit description of the flow of w, see Problem 1 in §85.
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e. More generally, a C1 vector field w on a finite-dimensional real or complex
vector space M = V is complete whenever it has linear growth in the sense
that |w(x)| ≤ C|x| for some norm | | in V , a constant C ≥ 0 and all x ∈ V ,
where w is identified with a mapping V → V as in Problem16.8. This is
clear from the proposition on p. 37 applied to F (t, x) = w(x), h(t) = C and
I = R. (For generalizations, see Problems 8 and 9.)

f. Another condition ensuring completeness of a C1 vector field w on a finite-
dimensional vector space M = V is its boundedness as a mapping V → V in
the sense that |w(x)| ≤ C for some (or any) norm | | in V , a constant C ≥ 0
and all x ∈ V . (This terminology agrees with that introduced on p. 31, but
not with the use of the term ‘bounded’ for linear operators on p. 14.) In
fact, any integral curve γ : (a, b) → V of w with a > −∞ or b < ∞ must
have a limit at a or b (Problem13.3), and hence one can extend it beyond a
or b as in Problem13.1, using such a limit as the initial value at a or b. (See
also Problems 5, 8 and 9.)

Problems
1. Let V,W be real or complex vector spaces and letK be a subset of V . A mapping

F : K → W is said to be homogeneous of degree k ∈ Z if F (λv) = λkF (v) for
any nonzero scalar λ and any vector v ∈ K with λv ∈ K. We also say that
F : K → W is positively homogeneous of degree a ∈ R if F (λv) = λaF (v) for
all vectors v ∈ K and all positive real scalars λ such that λv ∈ K. Prove that,
under the assumption that V,W are both finite-dimensional,
(a) If F is positively homogeneous of degree 0, K is nonempty and contains

λv whenever v ∈ K and λ ∈ [0, 1), and F is continuous at 0, then F is
constant.

(b) If K is an open subset of V , F is C1-differentiable and (positively) homoge-
neous of some degree a, and v ∈ V , then dvF is (positively) homogeneous
of degree a− 1.

(c) If K = V and F is C1-differentiable and positively homogeneous of degree
1, then F : V →W is a real-linear mapping.

(Hint below.)
2. Suppose that V,W are finite-dimensional real or complex vector spaces, U is an

open subset of V , and F : U →W is a C1 mapping. The identity mapping Id :
V → V can naturally be identified with a vector field on V as in Problem16.8;
it is then referred to as the radial vector field on V . Show that
(a) dIdF = aF whenever F is positively homogeneous of degree a ∈ R.
(b) If the intersection of U with every real half-line [0,∞) ·v emanating from

0 in V (where v ∈ V \ {0}) is connected, and dIdw = aw for some a ∈ R,
then w is positively homogeneous of degree a.

(Hint below.)
3. Let V be a finite-dimensional real vector space and let U be an open subset

of a V . Any given C1 mapping w : U → V , as well as the identity mapping
Id : V → V can be regarded as vector fields on U and V (Problem16.8). Verify
that
(a) The Lie bracket [Id , w] is given by [Id , w] = dIdw − w, i.e., [Id , w](x) =

(dxw)(x)− w(x) for x ∈ U .
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(b) Under the same assumption about U as in (b) of Problem 2, positive ho-
mogeneity of degree a ∈ R for w is equivalent to the condition [Id , w] =
(a− 1)w.

(Hint below.)
4. For a C2 vector field w and a C1 vector field u on a manifold M , prove that the

following three conditions are equivalent:
(a) [u,w] = λu everywhere in M , for some real number λ ;
(b) (detw)u = eλtu everywhere in U−t = etw(Ut), for some real number λ and

each t ∈ R such that Ut = {x ∈M : etwx exists} is nonempty;
(c) u is invariant, up to constant factors, under the flow of w in the sense that,

everywhere in U−t,

(detw)u = c(t)u

for each t ∈ R such that Ut is nonempty, and some c(t) ∈ R.
(Hint below.)

5. Let w be a C1 vector field on a manifold M , and let γ : (a, b) → M , −∞ ≤
a < b ≤ ∞, be a maximal integral curve of w. Show that if a limit lim

t→a(+)
γ(t)

or lim
t→b(−)

γ(t) exists, then the corresponding endpoint (a or b) is infinite. (Hint

below.)
6. Let w be a C1 vector field on a manifold M , and let K be a closed subset of M

which is not a union of (images of) maximal integral curves of w. Show that the
vector field on the open submanifold U = M \K obtained by restricting w to U
is not complete. (Hint below.)

7. Let w be a C1 vector field on a manifold M such that M × (−ε, ε) ⊂ Yw for
some ε > 0 (notation as on p. 47). Prove that w is complete. (Hint below.)

8. Prove completeness of any C1 vector field w on a finite-dimensional real or
complex vector space V that has nonhomogeneous linear growth, i.e., |w(x)| ≤
C0|x| + C1 for some norm | | in V , some constants C0, C1 ≥ 0 and all x ∈ V ,
where w is regarded as a mapping V → V (Problem16.8). (Hint below.)

9. Let w be a C1 vector field on a finite-dimensional real or complex vector space V
satisfying the estimate |w(x)| ≤ C|x|+C ′ for some norm | | in V , some compact
subset K of V , some constants C,C ′ ≥ 0, and all x ∈ V \K. Show that w is
complete. (Hint below.)

Hint. In Problem 1, to obtain (c) apply (a) to dvF for each v ∈ V using (b).
Hint. In Problem 2, note that x = Idx = d

dt tx t=1
.

Hint. In Problem 3, use Problem16.8.
Hint. In Problem 4, (a) implies (b) via (87.4) and the “global uniqueness” theorem
for ordinary differential equations (Problem12.6), and (c) implies (a) with λ = ċ(0)
again by (87.4), since the function t 7→ c(t) must be of class C1 unless u = 0
identically (in view of the proposition on p. 48).
Hint. In Problem 5, if for instance γ had a limit x at b with b <∞, the assignment
(a, b) 3 t 7→ γ(t), [b + ε) 3 t 7→ e(t−b)wx would define, for a suitable ε > 0, an
integral curve of w (see Problem13.1), contradicting the maximality of b.
Hint. In Problem 6, note that the images of the maximal integral curves of w in
M are pairwise disjoint and their union equals M , so by the assumption on K one
of these images intersects both U and K, thus providing an integral curve of w
restricted to U that cannot be extended in U to the whole real line.
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Hint. In Problem 7, let γ : (a, b)→ V be a maximal integral curve of w. To show
that (a, b) = R, suppose on the contrary that, for instance, b < ∞. Choosing c
with a < c < b and b − c < ε, we may extend γ to an integral curve of w defined
(a, c + ε) and given by (a, c] 3 t 7→ γ(t) and [c, c + ε) 3 t 7→ e(t−c)w[γ(c)] (see
Problem13.1), which contradicts the maximality of b.
Hint. In Problem 8, for any maximal integral curve χ : I → V of w we have
|χ̇| ≤ C(|χ|+ 1) with C = max (C0, C1), and so the curve I 3 t 7→ γ(t) = (χ(t), 1)
in V ⊕ R satisfies |γ̇| ≤ C|γ| for the norm |(x, λ)| = |x| + |λ|. If I were not the
whole of R, γ (and χ) would have a limit at a finite endpoint of I (by the corollary
on p. 36), which contradicts the statement of Problem 5.
Hint. In Problem 9, apply Problem 8 to C0 = C and C1 = C ′ + sup {|w(x)| : x ∈
K}.
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Appendix E. Measure and Integration

89. The Hölder and Minkowski inequalities

(89.1) ‖fh‖1 ≤ ‖f‖p‖h‖q .
For p ∈ [1,∞],

(89.2) ‖f + h‖p ≤ ‖f‖p + ‖h‖p .
In fact, we may let p > 1, and then apply (89.1) to h replaced by |f + h|p−1.

90. Convergence theorems

Topics: B. Levi’s monotone convergence theorem; Fatou’s lemma; Lebesgue’s dominated con-

vergence theorem.

f ∗ h =

∫
V

f(y − z)h(z) dz

‖f ∗ h‖1 ≤ ‖f‖1‖h‖1 .
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Appendix F. More on Lie Groups

96. The exponential mapping

Topics: The exponential mapping associated with a Lie group G; relation with C1 homomor-

phisms R→ G; the geodesic exponential mapping for a connection in the tangent bundle TM ;

normal (geodesic) coordinates; the standard left- and right-invariant connections on a Lie group.

For a Lie group G of class Cr, r ≥ 2 , and a C1 curve γ : I → G defined on an
interval I , the requirement that

(96.1) γ̇ = γv

with a fixed vector v ∈ T1G , that is, γ̇(t) = γ(t)v for each t ∈ I (with the multipli-
cation of elements of G by tangent vectors defined as in (11.3)) may be thought of
as an ordinary differential equation of order 1 in G , since in any given coordinate
system xj for G , (96.1) becomes a system of such equations with the unknown
functions t 7→ γj(t) defined on subintervals of I . In fact, choosing the Φj as in
(11.8), we can rewrite (96.1) as

(96.2) γ̇j(t) = vα
∂Φj

∂yα
(γ1(t), . . . , γn(t), u1, . . . , un) ,

where u stands for 1 ∈ G . Consequently, given t0 ∈ R and x0 ∈ G , (96.1) will have
a C1 solution t 7→ γ(t) with γ(t0) = x0 , defined on some open interval containing
t0 . Furthermore, such a solution γ is unique on every interval I with t0 ∈ I on
which it exists, and it is of class Cr (since the ∂Φj/∂yα in (96.2) are of class
Cr−1). Thus, (96.1) with the initial condition γ(t0) = x0 has a unique C1 solution
γ defined the maximal possible open interval containing t0 (i.e., the union of all
such intervals on which solutions exist).

The same conclusion remains valid when (96.1) is replaced by the equation

γ̇ = vγ

with v ∈ T1G .

Lemma 96.1. Given a Lie group G of class Cr, r ≥ 2 , and a C1 curve γ :
I → G defined on an interval I containing 0 , the following three conditions are
mutually equivalent:

i. γ is the restriction to I of a C1 homomorphism R→ G,
ii. γ is a solution to (96.1), for some v ∈ T1G, with the initial condition γ(0) =

1,
iii. γ satisfies (96.1) and γ(0) = 1 for some v ∈ T1G .

Proof. Assume (i). Then γ̇(t) = d
ds s=0γ(t + s) = d

ds s=0γ(t)γ(s) = γ(t)v
with v = γ̇(0) . This yields (ii), as well as (iii) (since (i) implies γ(t+s) = γ(s+t) =
γ(t)γ(s) = γ(s)γ(t)). Now, if (ii) holds, and s ∈ I is fixed, the curves γ and t 7→

231
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[γ(s)]−1γ(s+ t) both satisfy (96.1) with the same initial value 1 ∈ G at t = 0 . The
uniqueness of solutions (as mentioned above) now shows that γ(s + t) = γ(s)γ(t)
whenever s, t and s + t are all in I . To extend γ to a C1 homomorphism, choose
ε > 0 with [0, ε] ⊂ I or [−ε, 0] ⊂ I and then set γ(kε + s) = [γ(ε)]kγ(s), noting
that every real number can be uniquely written as kε+ s with k ∈ Z and s ∈ [0, ε)
or, respectively, s ∈ (−ε, 0]. Thus, (ii) implies (i). Similarly, (i) will follow from
(iii) if we use the curve t 7→ γ(s+ t)[γ(s)]−1.

Proposition 96.2. Let G be a Lie group of class Cr, r ≥ 2. Then

a. For every v ∈ T1G there exists a unique C1 homomorphism γv : R → G
with

γ̇v(0) = v .

b. γ = γv is a solution to both (96.1) and (79.10) with the initial condition
γ(0) = 1.

c. For all s, t ∈ R and v ∈ T1G we have

γsv(t) = γv(st) .

d. The mapping R × T1G 3 (t, v) 7→ γv(t) is of class Cr−1, and each homo-
morphism γv is of class Cr.

Proof. (a) and (b) are immediate from the lemma and the preceding remarks
on the existence and uniqueness of solutions to ordinary differential equations.
Assertion (c) easily follows from the uniqueness of solutions. Finally, (d) is a
consequence of the regular dependence of solutions to ordinary differential equations
on parameters, the latter being in this case the vectors v ∈ T1G.

For a Lie group G of class Cr, r ≥ 2 , we define the exponential mapping

(96.3) exp : T1G→ G ,

also written as v 7→ ev , by

exp v = ev = γv(1)

with γv introduced in the above proposition. Assertion (c) with t = 1 now yields

(96.4) γv(t) = etv

for all t ∈ R and v ∈ T1G. Thus,

e(s+t)v = esvetv

and, by (b),
d

dt
etv = vetv = etvv , e0 = 1 .

In particular,

(96.5)
d

dt
etv →

t=0
= v .

Consider now two Lie groups G,H of class Cr, r ≥ 2 , and a C1 homomorphism
f : G→ H . For any v ∈ T1G , formula γ(t) = f(etv) defines a C1 homomorphism
γ : R → H with γ̇(0) = f∗v (notation of (12.1)), i.e., γ = γf∗v . By (96.4), we
must have γ(t) = exp(tf∗v) , the symbol exp being also used for the exponential
mapping of H . With t = 1 , this becomes

(96.6) f(ev) = ef∗v



Problems 233

for all v ∈ T1G , that is

f ◦ exp = exp ◦f∗ .
Let ∇ now be a connection in TM . The (geodesic) exponential mapping

(96.7) expx : Ux → M

of the connection ∇ at any point x ∈ M is defined as follows. Its domain Ux is
the subset of TxM consisting of those v ∈ TxM for which there exists a geodesic
t 7→ x(t), defined on the whole interval [0, 1], and such that x(0) = x, ẋ(0) = v. For
such v and x(t), we set expx v = x(1). (One traditionally writes expx v, without
parentheses, rather than expx(v).) It is obvious from the Regularity Theorem in
§80 that the set Ux is open in TxM (and contains 0), and the mapping expx is of
class C∞. Furthermore, the geodesic x(t) with x(0) = x and ẋ(0) = v is given by
x(t) = expx tv, as one sees fixing t ∈ [0, 1] and noting that [0, 1] 3 t′ 7→ x(tt′) then
is a geodesic with the value and velocity at t′ = 0 equal to x and, respectively,
tv. In particular, d[expx tv]/dt at t = 0 equals v while, obviously, expx 0 = x; in
other words, the differential of the mapping (96.7) at the point 0 ∈ Ux is given by

(96.8) d(expx)0 = Id : TxM → TxM .

According to Theorem 74.2, there exist a neighborhood U of y in M and a
neighborhood U ′ of 0 in TxM such that U ′ ⊂ Ux and expx : U ′ → U is a
C∞-diffeomorphism. Its inverse diffeomorphism may be thought of as a coordinate
system x1, . . . , xn with the domain U (after one has identified TxM with Rn,
n = dimM , using any fixed linear isomorphism). A coordinate system obtained as
a local inverse of expx is called a normal, or geodesic, coordinate system at x, for
the iven connection ∇ in TM . Note that if the connection ∇ is torsionfree, its
component functions Γ ljk satisfy

(96.9) Γ ljk(x) = 0 in normal coordinates at x .

To see this, note that under the identification U ′ ≈ U provided by expx, geodesics
emanating from 0 ≈ x appear as the radial line segments t 7→ tv, and so we have
ẍj = 0. For such a geodesic, the system (22.6) gives, at t = 0, Γ jkl(x)vkvl = 0 for
all v, which in view of the symmetry (21.4) implies (96.9).

Problems
1. Given a Lie group G of class Cr, r ≥ 2 , verify that the exponential mapping

(96.3) is of class Cr−1.
2. For a Lie group G of class Cr, r ≥ 2 , show that the differential d(exp)0 at

0 ∈ T1G of the exponential mapping (96.3) coincides with the identity mapping
T1G = T0(T1G)→ T1G . (Hint below.)

3. Let G be a Lie group of class Cr, r ≥ 2 . Prove that there exists an open set
U ⊂ T1G such that 0 ∈ U , exp(U) is an open subset of G and

(96.10) exp : U → exp(U)

is a Cr−1 diffeomorphism. (Hint below.)
4. For Lie groups G,H of class Cr, r ≥ 2 , and a C1 homomorphism f : G → H ,

show that the restriction of f to a neighborhood exp(U) of 1 chosen as in
Problem 3 is completely determined by f∗ : T1G → T1H (that is, f ′∗ = f ′′∗ for
two such homomorphisms f ′, f ′′ implies that f ′ = f ′′ on exp(U)). (Hint below.)
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5. Given C1 curves I 37→ at ∈ G I 37→ bt ∈ G in a a Lie group G of class Cr

(r ≥ 2), both defined on a common interval I containing 0 and satisfying a0 = 1 ,
b0 = 1 , verify that

(96.11)
d

dt
atbt →

t=0
= ȧ0 + ḃ0 .

6. For at, bt, I and G as in Problem 5, choose U satisfying the condition stated in
Problem 3. Show that

lim
t→0

1

t
exp−1(atbt) = ȧ0 + ḃ0 ,

where the limit may be one-sided if 0 is an endpoint of I, and t varies in a
sufficiently small subinterval I ′ of I containing 0 and such that atbt ∈ exp(U)
for all t ∈ I ′, while exp−1 is the inverse mapping of (96.10). (Hint below.)

7. With the same assumptions and notations as in Problem 6, verify that, for any
vectors v, w ∈ T1G ,

v + w = lim
t→0

1

t
exp−1(etvetw) .

Hint. In Problem 2, use (96.5).
Hint. In Problem 3, combine Problem 2 with the inverse mapping theorem (The-
orem 74.2).
Hint. In Problem 4, note that by (96.6) we have, on exp(U) ,

f = exp ◦ f∗ ◦ exp−1 .

Hint. In Problem 6, note that the expression under the limit symbol is a difference
quotient, and use (96.11) and the fact that

d(exp−1)1 = Id ,

according to Problem 2 and the statement preceding Problem4.1.

97.

Topics: .

Given a group G whose operation is written as a multiplication, an element
a ∈ G and subsets K,L ⊂ G , let us set aK = {ax : x ∈ K} , Ka = {xa : x ∈ K} ,
KL = {xy : x ∈ K , y ∈ L} and K−1 = {x−1 : x ∈ K} . Thus, a subgroup of
G is any nonempty subset H ⊂ G with HH ⊂ H and H−1 ⊂ H . By a normal
subgroup of G we mean, as usual, a subgroup H ⊂ G with aHa−1 ⊂ H whenever
a ∈ G (that is, aHa−1 = H for all a ∈ G); in other words, a subgroup is called
normal if it is closed under all inner automorphisms of G ((iii) of #12).

For a fixed subgroup H of a group G , the left cosets of H are defined to be all
sets of the form aH for some a ∈ G . They form a disjoint decomposition of G into
a union of subsets, one of which is H . The same is true for the right cosets of H ,
which are the sets of the form Ha with a ∈ G . One easily sees that H is a normal
subgroup if and only if the families of its left and right cosets coincide.

Suppose now that G is a Lie group of class Cr, 0 ≤ r ≤ ω . By the iden-
tity component of G we mean the connected component G0 of the manifold G ,
containing 1 ( 1 is often called the identity of G). We then have G0G0 ⊂ G0 ,
(G0)−1 ⊂ G0 , and aG0a−1 ⊂ G0 for all a ∈ G , as G0G0 , (G0)−1 and aG0a−1
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are connected subsets of G containing 1 (Problems 3.2, 3.3). The connected com-
ponents of G are nothing else than the left (or right) cosets of G0 ; this is immediate
from Problem 13.5. Furthermore, G0 regarded as an open submanifold of G is a
Lie group of class Cr (with the group operation inherited from G ; see Problem
14.1). The identity inclusion mapping G0 → G now is a Cr homomorphism of
Lie groups, inducing as in (12.1) the familiar identification T1G

0 = T1M , so that,
when r ≥ 3 , the Lie algebras of G and G0 are naturally isomorphic.

In other words, the algebraic structure (i.e., isomorphism type) of the Lie alge-
bra g of a Lie group G depends solely on the connected Lie group G0. Thus, the
only conclusions about G that may be expected to follow from assumptions about g
are those that pertain toG0 alone. Examples

i. The Cω Lie group GL (V ) for a finite-dimensional vector space V over the
field K of real or complex numbers ((iii) of #5), is connected when K = C ,
and has two connected components when K = R and dimV > 0 . In the
latter case, the identity component of GL (V ), denoted GL+(V ), consists
of all linear isomorphisms A : V → V with detA > 0 . See Problem 14.8.

ii. In particular, the matrix Lie group GL (n,C) is connected, while GL (n,R)
with n ≥ 1 has two components, the one containing the identity being the
group GL+(n,K) of all real n× n matrices having positive determinants.
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PROBLEMS

14.1. Let H be a subgroup of a Lie group G of class Cr, r ≥ 0 , which at
the same time is an open subset of G . Verify that the group multiplication of G
restricted to the open submanifold formed by H turns H into a Lie group of class
Cr, and the identity inclusion mapping H → G then is a Cr homomorphism of
Lie groups whose differential at 1 is an isomorphism T1H → T1M . 14.2. For

a continuous homomorphism f : G → H of Lie groups, show that f(G0) ⊂ H0.
14.3. Given a real or complex vector space V with dimV = n <∞ , let B(V ) be

the subset of the nth Cartesian power V n = V × . . .× V consisting of all (ordered)
bases of V . Show that, when V n is treated as a vector space (the direct sum of n
copies of V ), the set B(V ) is open in V n and, as an open submanifold of V n, B(V )
is Cω diffeomorphic to the underlying manifold of the Lie group GL (V ) . (Hint

below.)14.4. Let V be a real vector space V with dimV = n , 1 ≤ n < ∞ .

Call two (ordered) bases of V equivalent if the transition matrix between them
has a positive determinant. Verify that this actually is an equivalence relation and
it has exactly two equivalence classes. (These equivalence classes are called the
orientations of V .) Show that each connected component of B(V ) (Problem 14.3)
is contained in a unique orientation of V . 14.5. Let V be a real or complex vector

space with 1 ≤ dimV = n <∞ , carrying a fixed inner product 〈 , 〉 (that is, a posi-
tive-definite form which is bilinear and symmetric or, respectively, sesquilinear and
Hermitian). The orthonormalization eα of a basis vα of V , α = 1, . . . , n , is defined
by the recursive formula

eα = wα/|wα| , wα = vα −
∑
β<α

〈vα, eβ〉eβ .

Show that the eα is the unique orthonormal basis of V with (70.1) and

(97.1) 〈eα, vα〉 ∈ (0,∞) , 1 ≤ α ≤ n .
14.6. For V , 〈 , 〉 as in Problem 14.5 and any basis vα of V , prove that the basis

vα and its orthonormalization eα lie in the same connected component of B(V )
(notation of Problem 14.3). (Hint below.)14.7. For V , 〈 , 〉 as in Problem 14.5,

show that

i. If V is complex, any two orthonormal bases of V can be connected by a
continuous curve in B(V ) consisting of orthonormal bases.

ii. If V is real, any two orthonormal bases of V representing the same orienta-
tion can be joined by a continuous curve in B(V ) consisting of orthonormal
bases. (Hint below.)

14.8. Prove the statement of Example (i) above. (Hint below.)
Hint. In Problem 14.3, fix a basis (e1, . . . , en) of V and identify each A ∈ GL (V )
with (Ae1, . . . , Aen) ∈ B(V ) .
Hint. In Problem 14.6, use the sequence of n+1 bases ek = (e1, . . . , ek, vk+1, . . . , vn)
of V , k = 0, . . . , n . Note that e0 = (v1, . . . , vn) , en = (e1, . . . , en) . Now,
for any k = 0, . . . , n − 1 , formula [0, 1] 3 t 7→ ek(t) = (e1, . . . , ek, (1 − t)vk+1 +
tek+1, vk+2, . . . , vn) defines a continuous curve in B(V ) connecting ek with ek+1 .
The fact that each ek(t) (and ek) is a basis follows since, from (70.1), the first k+1
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vectors of ek(t) lie in Span (v1, . . . , vk+1) and the (k + 1)st vector is orthogonal
to e1, . . . , ek and nonzero (as its inner product with ek+1 is positive by (97.1)).
A continuous curve in B(V ) connecting e0 with en can be written in the form
[0, n] 3 s 7→ es with es = ek(t) , where k = [s] is the integer part of s (the largest
integer not exceeding s), t = s− [s] , and we set en(0) = en .
Hint. In Problem 14.7, denote e0 and en = (e1, . . . , en) two given orthonormal
bases of V , and make them a part of a sequence ek , k = 0, . . . , n of n + 1
orthonormal bases, such that each ek shares the first k vectors e1, . . . , ek with en ,
and each ek−1 , 1 ≤ k ≤ n , can be connected with ek by a continuous curve of
orthonormal bases. To achieve this, use induction on k, assuming that 1 ≤ k < n
and e1, . . . , ek with the stated properties have already been constructed. Thus, ek
has the form ek = (e1, . . . , ek, vk+1, . . . , vn) .

First, suppose that k = n− 1 , so vn = zun for some scalar z with |z| = 1 (by
orthonormality). In the case where V is reaI, we have z = ±1 , and if both original
bases determine the same orientation, then so do the intermediate stages including
en−1 (Problem 14.4); thus, z = 1 and en = en−1 can be connected with e0. On
the other hand, if V is complex, the curve [0, ϕ] 3 s 7→ (e1, . . . , ek, e

isvn) , with
ϕ > 0 such that z = eiϕ, connects en−1 with en .

Now let k + 1 < n . Thus, we can choose a 2-dimensional subspace W of V
containing the vectors u = ek+1 and v = vk+1, and orthogonal to e1, . . . , ek. Let
us also select a scalar z with |z| = 1 and 〈u, zv〉 ∈ R (in the real case, we may set
z = 1). There exists an orthonormal basis (u,w) of W with 〈zv, w〉 ∈ R ; to obtain
w, pick a unit vector in W orthogonal to u, and multiply it by a suitable unit scalar.
Therefore, zv = pu + qw with real scalars p, q. Since p2 + q2 = |zv| = |v| = 1 ,
we have p = cos θ , q = sin θ for some θ > 0 . We can now define a continuous
curve [0, θ] 3 t 7→ At ∈ GL (V ) of inner-product preserving linear operators in V
by Atu = (cos t)u− (sin t)w , Atw = (sin t)u+ (cos t)w (so that At(W ) ⊂W ), and
At = Id on the orthogonal complement of W . Thus, Ate1 = e1 , . . . , Atek = ek .
A continuous curve of orthonormal bases connecting ek to a basis of the form
ek+1 = (e1, . . . , ek, ek+1, ∗, . . . , ∗) consists of two stages (segments). The former is
trivial in the real case (a constant curve) and, in the complex case, is given by

[0, ϕ] 3 s 7→ (e1, . . . , ek, e
isvk+1, . . . , e

isvn) ,

where ϕ > 0 is chosen so that z = eiϕ. The latter (connecting (e1, . . . , ek, zvk+1, . . . , zvn)
to (e1, . . . , ek, ek+1, ∗, . . . , ∗)) is defined by

[0, θ] 3 t 7→ (Ate1, . . . , Atek, At(zvk+1), . . . , At(zvn)) .

Hint. In Problem 14.8, use Problems 14.3, 14.4, 14.6 and 14.7.

98.

Topics: .

Given real or complex vector spaces V , W , a mapping F : V → W is called
affine if it is the composite of a linear operator followed by a translation, i.e., there
exist a linear operator A : V →W and a vector b ∈W with

(98.1) F (x) = Ax+ b

for all x ∈ V . Such a mapping F is called an affine isomorphism if it is one-to-one
and onto.
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Let V be a finite-dimensional real or complex vector space. The set GA (V ) of
all affine isomorphisms V → V then is a group (Problem 15.1(ii),(iii)). Moreover,
the assignment

(98.2) GA (V ) 3 F 7→ (A, b) ∈ GL (V )× V
characterized by (98.1) is one-to-one and onto (Problem 15.1(i)), and so it identifies
GA (V ) with an open subset of the vector space gl (V )×V . This provides GA (V )
with the structure of a Cω manifold. The group structure in GL (V )× V obtained
from that of GA (V ) via the identification (98.2) then is given by the multiplication

(98.3) (A, b)(A′, b′) = (AA′, Ab′ + b) ,

which is an analytic (in fact, polynomial) function of (A, b) and (A′, b′) . The
manifold GA (V ) thus becomes a Cω Lie group. According to (98.2), Example
(i) of #14 and Problems 3.3, 13.5, GA (V ) is connected if V is complex, and has
two connected components when V is real and V 6= {0} . In the latter case we
denote GA+(V ) the identity component of GA+(V ) ; the group GA+(V ) thus
consists of all affine isomorphisms F : V → V whose “linear part” A has a positive
determinant.

The 2-dimensional Lie group GA+(R) turns out to be the “simplest” (e.g.,
lowest–dimensional) example of a Lie group that is connected but non-Abelian.
See Problem 15.2 and #17.

PROBLEMS

15.1. Let F : V → W be an affine mapping between real or complex vector
spaces V , W , given by (98.1). Verify that

i. A and b in (98.1) are uniquely determined by F ;
ii. F is an affine isomorphism if and only if A is a linear isomorphism, and then

F−1 is also affine;
iii. Composites of affine mappings are affine;
iv. Affine mappings V →W with valuewise operations form a vector space.

15.2. Show that the Lie group GA+(V ) is non-Abelian unless V = {0} . 15.3.

Under (98.2), the 2-dimensional Lie group GA+(R) is identified with the half-plane
R2

+ = (0,∞)×R = {(a, b) : a > 0 , b ∈ R} , and the multiplication formula (98.3)
becomes

(98.4) (a, b)(a′, b′) = (aa′, ab′ + b) .

(Note that GL+(R) = GL+(1,R) = (0,∞) .) The Lie group R2
+ is an open

subset of R2 , and so its Lie algebra (i.e., tangent space at the unit element) is
canonically identified with the vector space R2 itself. Write an explicit formula for
the resulting Lie-algebra multiplication [ , ] in R2 . (Hint below.)15.4. Given a

a finite-dimensional real or complex vector space V , note that the set ga (V ) all
affine mappings V → V is a vector space closed under the composition (Problem
15.1(iii),(iv)). Do these operations turn ga (V ) into an algebra? (Hint below.)15.5.

Let V be a finite-dimensional real or complex vector space with a fixed skew-sym-
metric bilinear mapping V × V 3 (u, v) 7→ [u, v] ∈ V . Show that any of the
following assumptions implies that V and [ , ] constitute a Lie algebra, i.e., the
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Jacobi identity [[u, v], w] + [[v, w], u] + [[w, u], v] = 0 (formula (10.1)) is satisfied by
all u, v, w ∈ V :

i. dimV ≤ 2 ;
ii. dimV = 3 and (10.1) holds for just one basis (u, v, w) of V .

15.6. Show that in dimension 2 there exist exactly two isomorphism types of
Lie algebras: one Abelian, one non-Abelian. The multiplication [ , ] of the latter is
given, in a suitable basis (u, v) , by [u, v] = u . Verify that the non-Abelian 2-dimen-
sional real Lie algebra is isomorphic to the Lie algebra of the connected Lie group
GA+(R) . 15.7. Let V be an oriented Euclidean 3-space, that is, a real vector

space with dimV = 3 , carrying a fixed orientation (Problem 14.4) and a fixed
inner product 〈 , 〉. The vector product [u, v] ∈ V of vectors u, v ∈ V (sometimes
also called the cross product and denoted u× v ) is uniquely characterized by

i. 〈u, [u, v]〉 = 〈v, [u, v]〉 = 0 .
ii. 〈[u, v], [u, v]〉 = 〈u, u〉〈v, v〉 − 〈u, v〉2. (This is nonnegative by the Schwarz

inequality, and vanishes only if u, v are linearly dependent.)
iii. If u, v are linearly independent, then the basis (u, v, [u, v]) of V belongs to

the distinguished orientation. (That this is then a basis follows from (ii) and
(i).)

Verify that

(98.5) [u, v] = w

whenever (u, v, w) is an orthonormal basis of V compatible with the orientation.
15.8. Show that any oriented Euclidean 3-space V , with the corresponding vector

multiplication, is a Lie algebra. (Hint below.)15.9. For V as in Problem 15.8,

prove that the adjoint representation Ad : V → D(V ) of the Lie algebra V ((vii)
of #10) sends V isomorphically onto the Lie subalgebra so (V ) defined in Problem
10.3. (Hint below.)15.10. Let V be an oriented Euclidean 3-space. Prove that

every skew-adjoint linear operator A : V → V consists in a rotation by the right
angle about some axis (a 1-dimensional subspace L of V ) followed (or preceded)
by a dilation (multiplication by a scalar λ ∈ R). (Hint below.)15.11. Given an

oriented Euclidean 3-space V with the standard norm | | , so that |v| =
√
〈v, v〉 ,

show that |[u, v]| coincides, for any u, v ∈ V , with the area (i.e., base times height)
of the parallelogram spanned by the vectors u and v. (Hint below.)
Hint. In Problem 15.3, note that (1, 0) is the unit element for (98.4), and the
inverse of any (a, b) ∈ R2

+ is

(a, b)−1 = (1/a,−b/a) .

Also, for (a, b), (c, d) ∈ R2
+ and (p, q) ∈ R2 = T(a,b)R

2
+ , we have, according to

(11.3),

(a, b)(p, q) = (ap, aq) , (p, q)(a, b) = (pa, pb+ q) .

Applying (13.4) to a C2 curve t 7→ (at, bt) ∈ R2
+ defined on an open interval

containing 0 with a0 = 1 , b0 = 0 , we obtain, for any (p, q) ∈ R2 = T(1,0)R
2
+ ,

[(ȧ0, ḃ0), (p, q)] = d
dt t=0(at, bt)(p, q)(at, bt)

−1 = d
dt t=0(p, at(q − pbt)) = (0, ȧ0q −

ḃ0p) . In other words,

[(x, y), (x′, y′)] = (0, xy′ − x′y)
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for all (x, y), (x′, y′) ∈ R2 .
Hint. In Problem 15.4, no: distributivity fails (from one side).
Hint. In Problem 15.8, the unique operation [ , ] with (i) – (iii) is bilinear and
skew-symmetric since (i) – (iii) are easily verified when [ , ] is given by the formal-
determinant expression

[u, v] =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

e1 e2 e3

∣∣∣∣∣∣ ,
where ej is a fixed orthonormal basis of V compatible with the orientation and
u = ujej , v = vjej . The Jacobi identity now follows from (98.5) and Problem
15.5(ii).
Hint. In Problem 15.9, Ad is injective by (98.5) and is valued in skew-adjoint
linear operators V → V since 〈v, (Adu)v〉 = 0 for all u, v ∈ V (Problem 15.7(i)).
Now Ad(V ) = so (V ) since both are 3-dimensional.
Hint. In Problem 15.10, let A : V → V be a nonzero skew-adjoint linear operator
A : V → V . By Problem 15.9, there is a unique (nonzero) vector u ∈ V with Av =
[u, v] for all v ∈ V . Set L = Span (u) . Thus, A = 0 on L and, by skew-adjointness,
A leaves the plane L⊥ invariant. Considering the matrix of A restricted to L⊥ in

any orthonormal basis we find that it has the skew-symmetric form

[
0 −λ
λ 0

]
with

some real λ, as required.
Hint. In Problem 15.11, we may assume u 6= 0 6= v. The area in question then
equals |u||v| sin θ, where θ is the angle between u and v, characterized by

〈u, v〉 = |u||v| cos θ , 0 ≤ θ ≤ π .

Our assertion now follows from condition (ii) of Problem 15.7.

99.

Topics: .

Given a Lie group G of class Cr, r ≥ 2 , an open set D ⊂ R2 in the plane
R2 = {(s, t) : s, t ∈ R} with the coordinates denoted s, t , and a C1 mapping
F : D → H , let us set

(99.1) S = F−1 ∂F

∂s
, T = F−1 ∂F

∂t
,

that is, S, T : D → T1G are the mappings given by S(s, t) = [F (s, t)]−1 d
ds F (s, t)

(and similarly for T ), where d
ds F (s, t) ∈ TF (s,t)G is the velocity at any given s of

the curve I 3 s 7→ F (s, t) ∈ G (and I is any interval with I × {t} ⊂ D). If F is of
class C2, we can also form partial derivatives such as

∂S

∂t
,
∂T

∂s
: D → T1G .

On the other hand, [S, T ] : D → T1G will denote the mapping with

(99.2) [S, T ](s, t) = [S(s, t), T (s, t)] ,

[ , ] on the right-hand side being the Lie algebra multiplication in the tangent space
T1G = g (#11).
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Proposition. Suppose that G is a Lie group of class Cr, r ≥ 3 , and F is a C2

mapping from an open set in the s, t-plane into G . In the notations of (99.1) and
(99.2), we then have

(99.3)
∂S

∂t
− ∂T

∂s
= [S, T ] .

Proof. We need to show that

Corollary. Given a Lie group G of class Cr, r ≥ 3 , and a C3 mapping F from an
open rectangle (δ, η)× (−ε, ε) in the s, t-plane into G . If, for each s ∈ (δ, η) , the
curve t 7→ F (s, t) is the restriction to (−ε, ε) of a group homomorphism R → G ,
then we have the Jacobi equation

∂2S/∂t2 = [ ∂S/∂t , T ] .

Proof. The homomorphism assumption means that ∂S/∂t = 0 (and F (s, 0) = 1
for all s). Thus, applying ∂/∂t to (99.3), we obtain (....).

Consider the function Q : R→ R given by

Q(λ) =


1− e−λ

λ
, if λ 6= 0

1 , if λ = 0,

Clearly, Q is analytic and can be expanded into the Taylor series

Q(λ) =

∞∑
k=0

(−1)k

(k + 1)!
λk

convergent everywhere in R . Therefore (see Problems 21...) we can apply Q to
linear operators A : V → V of any finite-dimensional real vector space V into itself,
obtaining the linear operator Q(A) : V → V with

(99.4) Q(A) =

∞∑
k=0

(−1)k

(k + 1)!
Ak

Lemma. Let G and F satisfy the same assumptions as in the Corollary of #20.
Then, setting v(s) = T (s, t) and w(s) = (∂S/∂t)t=0 , and using the notation of
(99.4), we have

(99.5) S(s, t) = t [Q(tAd v(s))]w(s) .

Proof. Equation (...) reads

∂2

∂t2
S(s, t) = −[Ad v(s)]

∂

∂t
S(s, t) .

Solving this for ∂S/∂t ( Problem ...), we obtain

∂

∂t
S(s, t) = e−[Ad v(s)] w(s) .

As S(s, 0) = 0 , the latter equation can be solved for S(s, t) as in Problem 21....,
which proves (99.5).

Corollary. Given a Lie group G of class Cr, r ≥ 3 , and any vector v ∈ T1G , let
Φv : T1G→ T1G be the linear operator given by

Φv = d (Le−v ◦ exp)v
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(with the identification Tv(T1G) = T1G). Then

Φv = Q(Ad v) .

In other words, the differential d(exp)v : T1G→ TevG of the exponential mapping
at any v ∈ T1G is given by

d(exp)vw = ev[Q(Ad v)w]

for all w ∈ T1G .
Proof. As w = d

ds s=0(v + sw) , (...) implies Φvw = e−v dds s=0e
v+sw . The above

lemma now can be applied to F (s, t) = et(v+sw) . Since v(s) = T (s, t) = v+ sw and
w(s) = (∂T/∂s+ [S, T ])t=0 = w , (by (99.3) with S t=0 = 0), we obtain, from (...),
S(s, t) = t[Q(tAd v)]w . Now (...) follows as Φvw = S(0, 1) .

Remark. Note that, according to (...), the differential of exp at v is an isomor-
phism if and only if so is Q(Ad v) .

Proposition. Let G be a Lie group of class Cr, r ≥ 3 , and let U ⊂ T1G be a
neighborhood of 0 that exp maps diffeomorphically onto a neighborhood of 1 in
G . For any u ∈ T1G , denote ũ the unique left-invariant vector field on G whose
value at 1 is u . Then, the push-forward (d exp−1)ũ under exp−1 of the restriction
of ũ to exp(U) is the vector field on U given by

U 3 v 7→ [Q(Ad v)]−1u .

(Note that the inverse of Q(Ad v) exists, according to the preceding remark.)
Proof. Fix v ∈ U and set w = [(d exp−1)ũ]v . By the chain rule for composite
mappings (p. 10), d(exp)vw = ũ(ev) and so, by (11.5), d(exp)vw = evu . Thus,
(...) implies u = Q(Ad v)w , as required.

Theorem. For every Lie group G of class Cr, r ≥ 3 , the maximal Cr atlas of
the underlying manifold of G contains a unique maximal Cω atlas making G a Lie
group of class Cω.
Proof.

PROBLEMS

1. Given a finite-dimensional real associative algebra A with unit, a fixed
element a ∈ A , and an interval I containing 0 , show that formula

x(t) = tQ(ta)

defines the unique C1 curve I 3 t 7→ x(t) ∈ A with

ẋ(t) = e−ta , x(0) = 0 .

2. Given a finite-dimensional real vector space V , a vector w ∈ V , a linear

operator A : V → V , and an interval I containing 0 , verify that

u(t) = t [Q(tAd v)]w

is the unique C1 solution I 3 t 7→ u(t) ∈ A to

u̇(t) = e−tAd vw , u(0) = 0 .
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