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Ivo Terek Couto*

In this text we will briefly discuss Cartan’s formalism of differential forms in the
setting of vector bundles. We will:

• recall some definitions along the way;

• see how to apply this machinery for the tangent bundle of a pseudo-Riemannian
manifold;

• explicitly carry out the computations for several examples;

• see one of the most general setting on which the notion of second fundamental form
makes sense, deduce general versions of the Gauss and Codazzi equations, and;

• set up the Cartan formalism for the study of non-degenerate submanifolds of a
pseudo-Riemannian manifold.

This is by no means is self-contained, as I have written it mainly to try and or-
ganize some of this material for myself (so don’t expect these notes to be that great
– I haven’t organized everything neatly in definitions, lemmas, etc.). We will adopt
Einstein’s summation convention in full force. And even though this text has “Cartan
Formalism” in its title, I will try to achieve a healthy balance between forms and non-
forms computations – the goal is just to flesh out some basic Riemannian geometry
examples. The conclusion I have reached writing this is that Cartan computations are
efficient for studying the geometry of a manifold “on its own”, but as far the extrinsic
geometry goes, the fundamental equations are a more powerful tool, as that the most
standard examples of submanifolds for which we can actually do calculations are usu-
ally found “friendlier” ambients, such as flat vector spaces, or space forms. I have also
added some references in the end, from which I studied bits and pieces.

*terekcouto.1@osu.edu
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1 General definitions

Let Mn be a differentiable manifold π : E → M be a rank k real vector bundle over
M. A Koszul connection in E is a map ∇ : X(M)× Γ(E)→ Γ(E) such that

(i) ∇X1+ f X2ψ = ∇X1ψ + f∇X2ψ;

(ii) ∇X( f ψ) = f∇Xψ + X( f )ψ.

These conditions say that the value of ∇Xψ at a point p ∈ M depends on the
value X p and on the values of ψ in a neighborhood of p. So we may naturally restrict
∇ to open subsets of M. Usually, if (xj) is a coordinate system for M and (ea) are
local trivializing sections for E, one may write ∇∂j ea = Γb

jaeb (Einstein’s convention in

force), where the functions Γb
ja are called the connection coefficients of ∇ relative to (xj)

and (ea). Moreover, the curvature of ∇ is R∇ : X(M)× X(M)× Γ(E) → Γ(E) defined
by

R∇(X, Y)ψ = ∇X∇Y ψ−∇Y∇Xψ−∇[X,Y ]ψ,

where [X, Y ] denotes the Lie bracket of X and Y . It turns out that R∇ is a tensor
(precisely because of the perhaps artificial term −∇[X,Y ]ψ), which measures the non-
integrability of the horizontal distribution in TE associated to ∇. With respect to (xj)
and (ea), we may write R∇(∂j, ∂k)ea = R b

jka eb, where

R b
jka = ∂jΓb

ka − ∂kΓb
ja + Γc

kaΓb
jc − Γc

jaΓb
kc.

We will not follow this approach, but instead will try to understand Cartan’s formal-
ism with differential forms. Fixed X ∈ X(M), we write

∇Xea = ωb
a(X)eb and R∇(X, Y)ea = Ωb

a(X, Y)eb,

where ωb
a and Ωb

a are called the connection 1-forms and curvature 2-forms of ∇ relative
to (ea). Observe that ωb

a(∂j) = Γb
ja and Ωb

a(∂j, ∂k) = R b
jka . The C∞(M)-linearity of

∇ in the vector argument and the tensoriality and skew-(12) symmetry of R∇ ensure
that these objects are indeed differential forms. In the same way that one may express
R b

jka in terms of Γb
ja’s, there is an analogous relation between the connection 1-forms

and curvature 2-forms. The derivatives taken with respect to the coordinate vector
fields of (xj) are then replaced by the single exterior derivative operation. Here’s how:

Proposition (Second structure equations). Ωa
b = dωa

b + ωa
c ∧ωc

b.

Remark. One may write this simply as Ω = dω + ω ∧ω, thinking of matrices.

Proof: Compute

R∇(X, Y)eb = ∇X∇Y eb −∇Y∇Xeb −∇[X,Y ]eb

= ∇X (ωc
b(Y)ec)−∇Y (ωc

b(X)ec)−ωa
b([X, Y ])ea

= X(ωa
b(Y))ea + ωc

b(Y)ω
a
c(X)ea − Y(ωa

b(X))ea −ωc
b(X)ωa

c(Y)ea −ωa
b([X, Y ])ea

= (dωa
b(X, Y) + ωa

c(X)ωc
b(Y)−ωc

b(X)ωa
c(Y)) ea.
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As a consequence, keeping the same notation, we have the:

Proposition (Bianchi identity). dΩa
b = Ωa

c ∧ωc
b −ωa

c ∧Ωc
b.

Remark. Or dΩ = Ω ∧ω−ω ∧Ω.

Proof: Compute:

dΩa
b = d (dωa

b + ωa
c ∧ωc

b)

= 0 + dωa
c ∧ωc

b −ωa
c ∧ dωc

b

= (Ωa
c −ωa

d ∧ωd
c) ∧ωc

b −ωa
c ∧ (Ωc

b −ωc
d ∧ωd

b)

= Ωa
c −ωa

d ∧ωd
c ∧ωc

b −ωa
c ∧Ωc

b + ωa
c ∧ωc

d ∧ωd
b

= Ωa
c ∧ωc

b −ωa
c ∧Ωc

b,

by using that c and d are dummy indices in the triple wedge products.

Now, assume further that our vector bundle has been equipped with a pseudo-
Euclidean fiber metric g ∈ Γ(E∗ ⊗ E∗), that is, a smooth assignment to each fiber Ep
of a non-degenerate symmetric R-bilinear form gp : Ep × Ep → R. We will also write
g = 〈·, ·〉 for this fiber metric. With respect to local trivializing sections (ea) of E, we
set gab = g(ea, eb) = 〈ea, eb〉, and the non-degeneracy of g ensures the existance of
the inverse matrix to (gab), to be denoted (gab). This means that gacgcb = δa

b holds.
With those, we obtain natural identifications between the fibers of E and the fibers of
the dual bundle E∗, which rise to the level of sections: given ψ ∈ Γ(E), we define
ψ[ ∈ Γ(E∗) by ψ[ = g(ψ, ·). The inverse assigns to ξ ∈ Γ(E∗) the unique section
ξ] ∈ Γ(E) with ξ = g(ξ], ·). If (ea) are the local trivializing sections for E∗ dual to (ea)
(characterized by ea(eb) = δa

b), these so-called musical isomorphisms read

ψ = ψaea → ψb = gabψbea and ξ = ξaea → ξ] = gabξbea.

One usually drops the symbols [ and ] from the notation, writing simply ψa = gabψb

and ξa = gabξb. The similar relations (ea)] = gabeb and (ea)[ = gabeb also hold.
This process of raising and lowering indices using g (which is also done for sections

of the tensor bundles associated to E) can be also done for the connection and curva-
ture forms. For the record, we set ωab = gacωc

b, and Ωab = gacΩc
b. Intrinsically, we

have that ωab(X) = g(ea,∇Xeb) (proof: lower the index a in ωa
b(X) = gacg(ec,∇Xeb)).

Similarly, Ωab(X, Y) = g(R∇(X, Y)eb, ea) = R∇(X, Y , eb, ea), where the latter R∇ is ob-
tained from the first one with the aid of g. In other words, if one chooses a coordinate
system (xj) for M, then Ωab(∂j, ∂k) = Rjkba.

At this point, it is natural to ask if ∇ plays along well with the musical isomor-
phisms. Namely, if X ∈ X(M), ψ ∈ Γ(E) and ξ ∈ Γ(E∗) are given, one may form four
objects:

∇X(ψ[), (∇Xψ)[, ∇X(ξ
]) and (∇Xξ)],

where the connection induced by ∇ in E∗, also denoted by ∇, is characterized by
the Leibniz rule (∇Xξ)(ψ) = X(ξ(ψ)) − ξ(∇Xψ). One may also form the covariant
derivatives of the metric g itself, again by emulating a Leibniz rule:

(∇X g)(ψ1, ψ2) = X(g(ψ1, ψ2))− g(∇Xψ1, ψ2)− g(ψ1,∇Xψ2),

Then:
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Proposition. (∇Xψ)[ = ∇X(ψ[) and (∇Xξ)] = ∇X(ξ
]) for all X ∈ X(M), ψ ∈ Γ(E)

and ξ ∈ Γ(E∗) if and only if ∇g = 0. In this case, ∇ is called a metric connection.

Remark. ∇g = 0 reads as a simple product rule: X〈ψ1, ψ2〉 = 〈∇Xψ1, ψ2〉+ 〈ψ1,∇Xψ2〉.

Proof: Assume ∇g = 0. Let’s check, for example, the first identity (∇Xψ)[ = ∇X(ψ[)
(the other one being treated analogously). Let φ ∈ Γ(E) be any test section. We have:

(∇Xψ)[(φ) = 〈∇Xψ, φ〉 = X〈ψ, φ〉− 〈ψ,∇Xφ〉 = X(ψ[(φ))−ψ[(∇Xφ) = (∇X(ψ[)) (φ).

For the converse, assume that ∇ is compatible with the musical isomorphisms. We
compute

(∇X g)(ψ1, ψ2) = X〈ψ1, ψ2〉 − 〈∇Xψ1, ψ2〉 − 〈ψ1,∇Xψ2〉
= X((ψ1)[(ψ2))− 〈∇Xψ1, ψ2〉 − (ψ1)[(∇Xψ2)

= ∇X((ψ1)[)(ψ2)− 〈∇Xψ1, ψ2〉
= (∇Xψ1)[(ψ2)− 〈∇Xψ1, ψ2〉
= 0,

as wanted.

In terms of local trivializing sections and connection 1-forms, metric compatibility
reads as

dgab = gcbωc
a + gacωc

b = ωab + ωba.

This can be seen by making ψ1 = ea and ψ2 = eb in the expression given in the last
remark, and lowering the upper indices in the connection 1-forms. The middle expres-
sion can be written in matrix form as dg = gω + (gω)>. In general, there are plenty
of metric connections in a given vector bundle. To proceed further and obtain any sort
of classification, we need a bit more of structure.
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2 What happens in a tangent bundle

Assume now that E = TM, and that ∇ is any Koszul connection in the tangent
bundle TM. The torsion tensor of ∇ is the map τ∇ : X(M)× X(M) → X(M) defined
by τ∇(X, Y) = ∇XY − ∇Y X − [X, Y ]. Just like what happened with the curvature
R∇, the tensorial character of τ∇ is due to the last term −[X, Y ]. Recalling that given
f ∈ C∞(M), the covariant Hessian of f according to ∇ is the twice covariant tensor
field defined by

Hess∇( f )(X, Y) = ∇X(d f )(Y) = X(Y( f ))− d f (∇XY),

a simple interpretation of τ∇ is given in the following:

Proposition. τ∇ = 0 if and only if Hess∇( f ) is a symmetric tensor for every f ∈ C∞(M).

Proof: Hess∇( f )(X, Y)−Hess∇( f )(Y , X) = −τ∇(X, Y)( f ).

Now we turn back our attention to the connection 1-forms again. This torsion is
not only an obstacle for the symmetry of Hessian tensors, but also appears as a defect
in another set of Cartan’s structure equations:

Proposition (First structure equations). Let (Ei) be a local frame for M, and (θi) be the
dual coframe. Then dθi = θi ◦ τ∇ + θ j ∧ωi

j.

Remark. Or dθ = τ − ω ∧ θ. Here, we understand τ as the column vector formed by
the 2-forms τi satisfying τ∇(X, Y) = τi(X, Y)Ei.

Proof: Write Y = θk(Y)Ek, and apply ∇X on both sides to obtain

∇XY = ∇X(θ
k(Y)Ek) = X(θk(Y))Ek + θk(Y)ωi

k(X)Ei.

Follow through with θi, so that X(θi(Y)) = θi(∇XY) − θ j(Y)ωi
j(X). Now compute

the exterior derivative:

dθi(X, Y) = X(θi(Y))− Y(θi(X))− θi([X, Y ])

= θi(∇XY)− θ j(Y)ωi
j(X)− θi(∇Y X) + θ j(X)ωi

j(Y)− θi([X, Y ])

= θi(τ∇(X, Y)) + (θ j ∧ωi
j)(X, Y).

To relate our structure equations and metric compatibility, we assume now that
(M, g) is a pseudo-Riemannian manifold.

Theorem. There is a unique torsion-free metric connection for (M, g). It is called the Levi-
Civita connection of (M, g).

One can give a coordinate-free proof of this theorem by showing that such a con-
nection ∇must satisfy the so-called Koszul formula

2〈∇XY , Z〉 = X〈Y , Z〉+ Y〈X, Z〉 − Z〈X, Y〉+ 〈[X, Y ], Z〉 − 〈[Y , Z], X〉 − 〈[X, Z], Y〉,
which proves uniqueness, and then defining the connection by this formula (possi-
ble due to the non-degeneracy of the metric) and checking that it satisfies everything
needed. But we wish to illustrate how this can also be achieved by using Cartan’s
formalism. So we’ll work with a slightly different statement:
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Theorem. Let (Ei) be a local frame for (M, g) and (θi) be the dual coframe. The connection
1-forms ωi

j for the Levi-Civita connection of (M, g) are completely determined by the relations

dθi = θ j ∧ωi
j and dgij = ωij + ωji.

Proof: First observe that dθi(Ej, Ek) = −θi([Ej, Ek]). Now use the structure equations
to compute

−θi([Ej, Ek]) = (θr ∧ωi
r)(Ej, Ek) = θr(Ej)ω

i
r(Ek)− θr(Ek)ω

i
r(Ej) = ωi

j(Ek)−ωi
k(Ej).

Now lower the index i and write −〈Ei, [Ej, Ek]〉 = ωij(Ek)− ωik(Ej). Consider cyclic
permutations of (ijk): 

−〈Ei, [Ej, Ek]〉 = ωij(Ek)−ωik(Ej)

−〈Ej, [Ek, Ei]〉 = ωjk(Ei)−ωji(Ek)

−〈Ek, [Ei, Ej]〉 = ωki(Ej)−ωkj(Ei)

We add the first two equations and subtract the last one. The left side is a combination
with Lie brackets that we’ll address shortly, while the right side becomes just

2ωij(Ek)− dgij(Ek) + dgjk(Ei)− dgik(Ej).

Solve for 2ωij(Ek) to recover the Koszul formula:

2ωij(Ek) = −〈Ei, [Ej, Ek]〉 − 〈Ej, [Ek, Ei]〉+ 〈Ek, [Ei, Ej]〉+ Ek〈Ei, Ej〉 − Ei〈Ej, Ek〉+ Ej〈Ei, Ek〉.

The explicit expression for ωi
j may then be obtained by raising i on both sides. We are

done.

The advantage here is that in some situations one may guess what the connection
1-forms are, and also that we are no longer bound to coordinate frames. In other
words, checking that the ωi

j satisfy the first structure equation is checking that the
connection defined on the domain of the ωi

j is torsion-free. Similarly, checking the
other relation with dgij is checking that said connection is metric compatible – it fol-
lows that it is the Levi-Civita connection. As for the curvature 2-forms, we may con-
sider the extra symmetries of the curvature tensor of the Levi-Civita connection of a
pseudo-Riemannian manifold (M, g) with a local frame (Ei):

• the skew-(34) symmetry R(Ei, Ej, Ek, E`) = −R(Ei, Ej, E`, Ek) then reads as
Ω`k(Ei, Ej) = −Ωk`(Ei, Ej), and since the indices i and j are arbitrary, we get
an equality between two forms. Renaming back (`, k) → (i, j) we obtain that
Ωij = −Ωji for all i and j.

• the Bianchi identity1 R(Ei, Ej)Ek + R(Ej, Ek)Ei + R(Ek, Ei)Ej = 0 reads as

Ω`
k(Ei, Ej) + Ω`

i(Ej, Ek) + Ω`
j(Ek, Ei) = 0,

for all choices of indices. In particular, one can lower ` everywhere and also
conclude that Ω`k(Ei, Ej) + Ω`i(Ej, Ek) + Ω`j(Ek, Ei) = 0.

1We have (d∇τ)(X, Y , Z) = R(X, Y)Z + R(Y , Z)X + R(Z, X)Y , where d∇ is the covariant exterior
derivative operator. So not only we see that this identity holds for every torsion-free connection, but it’s
content is trivial: the derivative of zero is zero. The second Bianchi identity, in turn, says that d∇R∇ = 0.
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3 Further notions of curvature and some useful things

Throughout this section, let (M, g) be a pseudo-Riemannian manifold.

3.1 Ricci curvature

The Ricci tensor of (M, g) is the map Ric : X(M) × X(M) → C∞(M) given by
Ric(X, Y) = tr(V 7→ R(V , X)Y). It can also be defined as trgR(·, X, Y , ·), and with
respect to any local frame (Ei), can be expressed by

Rij = Ric(Ei, Ej) = R k
kij = Ωk

j(Ek, Ei),

by using the symmetries of R. Considering also the dual coframe (θi), we may also
express this quantity in terms of the modified connection 2-forms (or, in other words,
lowering index k above), as

Rij = gk`Rki`j = gk`Ωj`(Ek, Ei) = Ωj`((θ
`)], Ei),

where (θ`)] is θ` turned into a vector field with the aid of g. The Ricci tensor of the
curvature of the Levi-Civita connection of a pseudo-Riemannian manifold is always
symmetric. It is also possible to define the Ricci tensor of any Koszul connection in
TM, but we might lose this symmetry.

3.2 Scalar curvature

The scalar curvature of (M, g) is the smooth map s : M → R defined as the con-
traction of the Ricci tensor: s = trg Ric. Again considering a frame (Ei) and its dual
coframe (θi), one may write (by employing symmetries of R) that

s = gijRij = gijΩj`(Ei, (θ`)]) = Ωij((θ
i)], (θ j)]),

where in the last step we rename `→ j after using the dummy index in the summation
forming (θi)]. Using the curvature 2-forms, we see this funny thing: it is easier to
compute s directly, completely bypassing the computation of Ric.

We’ll say that (M, g) is an Einstein manifold if there is λ ∈ R such that Ric = λg
If (M, g) is Einstein, we know exactly what λ should be: apply trg on both sides and
solve for λ = s/n. On the other hand, we see that s is necessarily constant. But what
if λ was not a constant? If dim M ≥ 3, it does not matter.

Theorem (Schur). Let (Mn, g) be a connected pseudo-Riemannian manifold with n ≥ 3, and
f ∈ C∞(M) be such that Ric = f g. Then f is constant and (M, g) is Einstein (hence with
constant scalar curvature).

Proof: Start with the second Bianchi identity, expressed in coordinates as

Rjk`m;i + Rki`m;j + Rij`m;k = 0.
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Raise the index m to get R m
jk` ;i + R m

ki` ;j + R m
ij` ;k = 0. Make m = k to obtain

−Rj`;i + Ri`;j + R m
ij` ;m = 0.

Note here that since the Ricci tensor is symmetric, we may indeed write Ri
j instead of

Ri
j or R i

j , as they’re all equal. Now, attack that expression with gi` and use that metric
contractions commute with covariant derivatives (as ∇g = 0) to obtain

−Ri
j;i + s;j + gi`R m

ij` ;m = 0.

Now, using the first Bianchi identity for that last term, we get

gi`R m
ij` ;m = −gi`R m

ji` ;m − gi`R m
`ij ;m = −Rm

j;m − 0 = −Rm
j;m,

by using symmetries of R. So s;j = 2Rm
j;m, which is to say, ds = 2 div Ric. With that

expression in place, let’s compute div( f g), as follows2:

( f g) m
j ;m = gim( f g)ji;m = gim( f;mgji + f gji;m) = δm

j f;m + 0 = f;j = ∂j f .

So div( f g) = d f . With this, we have

ds = 2 div Ric = 2 div( f g) = 2 d f ,

ds = d(trg Ric) = d
(
trg( f g)

)
= d(n f ) = n d f .

As n > 2, it follows that d f = 0.

3.3 Sectional curvature

If x ∈ M and v, w ∈ Tx M span a non-degenerate plane Π ⊆ Tx M, the sectional
curvature of Π as

K(Π) =
Rx(v, w, w, v)

〈v, v〉x〈w, w〉x − 〈v, w〉2x
.

This definition indeed does not depend on the choice of basis for Π, as replacing
v 7→ av + cw and w → bv + dw produces the non-zero determinant ad − bc both
in numerator and denominator of the above expression. So, if we have linearly inde-
pendent vector fields X and Y , at least on some open subset of M, we may make sense
of K(X, Y) there. So, if (Ei) is a local frame for M, we may write

Kij = K(Ei, Ej) =
R(Ei, Ej, Ej, Ei)

giigjj − g2
ij

=
Ωij(Ei, Ej)

giigjj − g2
ij

.

2A coordinate-free computation is as follows: note that, by definition, we have

div( f g)(Z) = tr((X, Y) 7→ ∇X( f g)(Y , Z)).

Now, we have ∇X( f g)(Y , ·) = (d f (X)g + f∇X g)(Y , ·) = d f (X)g(Y , ·), since ∇g = 0. Tracing gives
that div( f g) = 〈∇ f , ·〉 = d f , as wanted.
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Einstein’s convention behaves poorly because Kij is not a tensor. In particular, if the
chosen frame is orthonormal, then Kij = εΩij(Ei, Ej), where ε is 1 or −1 according
whether the plane spanned by Ei and Ej is spacelike or timelike, respectively. If
dim M = 2, there is only one plane to be considered in Tx M: Tx M itself. The quantity
K(x) is then called the Gaussian curvature of M at x. Two important results to know
about K are:

Proposition. If (M, g) is a pseudo-Riemannian manifold with constant sectional curvature
K, then

R(X, Y)Z = K(〈Y , Z〉X − 〈X, Z〉Y),
for all X, Y , Z ∈ X(M). In particular, we see that R = 0 if and only if K = 0.

Remark.

• The above formula is easy to remember, at least: R(X, Y) evaluated at any Z
should produce a combination of X and Y . As for the coefficients, we didn’t
really have much choice.

• Bearing in mind the Lagrange identity in an arbitrary pseudo-Euclidean vector
space (Vn, g), g(u1 × · · · × un−1, v1 × · · · × vn−1) = det(g(ui, vj))

n−1
i,j=1, for any

vectors ui, vj ∈ V, we may identify the bilinear map u1 ∧ u2 taking (v1, v2) to∣∣∣∣g(u1, v1) g(u1, v2)
g(u2, v1) g(u2, v2)

∣∣∣∣ = g(u1, v1)g(u2, v2)− g(u2, v1)g(u1, v2)

with a linear endomorphism u1 ∧ u2 of V acting on v1, by using the non-degene-
racy of g to write (u1 ∧ u2)(v) = 〈u2, v〉u1− 〈u1, v〉u2. With this notation, we can
say that if a pseudo-Riemannian manifold (M, g) has constant sectional curva-
ture K, then R(X, Y) = KX ∧ Y , for all X, Y ∈ X(M).

Proof: This is a linear algebra fact: let (V, g) be a pseudo-Euclidean vector space and
R, R̃ be two curvaturelike (0, 4)-tensors on V determining the same sectional curva-
ture function: K = K̃. We will prove that R = R̃. This concludes the proof of the
proposition, since the formula for R given in the statement indeed produces constant
sectional curvature K. To wit,

K(X, Y) =
R(X, Y, Y, X)

g(X, X)g(Y, Y)− g(X, Y)2 =
R̃(X, Y, Y, X)

g(X, X)g(Y, Y)− g(X, Y)2 = K̃(X, Y)

readily implies that R(X, Y, Y, X) = R̃(X, Y, Y, X) for all pairs (X, Y) of vectors in V
spanning a non-degenerate plane. By a simple continuity argument, we have that
R(X, Y, Y, X) = R̃(X, Y, Y, X) holds for all X, Y ∈ V. Since the difference of curvature-
like tensors is again curvaturelike, we may assume that R̃ = 0 and show that R = 0.
This is done by polarizing twice. Namely, the first polarization gives

2R(X, Y, Y, Z) = R(X + Z, Y, Y, X + Z) = 0 =⇒ R(X, Y, Y, Z) = 0.

The second one goes in two parts:

0 = R(X, Y + W, Y + W, Z) = R(X, Y, W, Z) + R(X, W, Y, Z),

Page 10



Cartan Formalism and some computations Ivo Terek Couto

so that R is skew on the middle pair. Apply symmetries of R to bring X to the last
argument, obtaining

R(W, Z, Y, X) + R(Y, Z, W, X) = 0.

Now we apply the Bianchi identity on the first term (cycling through the first three en-
tries), and the middle-pair skew symmetry on the second term to finally get
3R(Y, Z, W, X) = 0. We are done.

Lemma (Schur). If (M, g) is a connected pseudo-Riemannian manifold with dim M ≥ 3 for
which the sectional curvature is pointwise constant (that is, K(v, w) depends only on the point
x ∈ M but not on the vectors v, w ∈ Tx M), then the sectional curvature of (M, g) is in fact
constant.

Proof: The previous result applied pointwise says that (say, in (0, 4) form) we have
R = KR0, where R0(X, Y , Z, W) = 〈Y , Z〉〈X, W〉 − 〈X, Z〉〈Y , W〉. Now, since ∇g = 0,
it also follows that ∇R0 = 0, and so ∇V R = V(K)R0 for all V ∈ X(M). With this, the
differential Bianchi identity

(∇X R)(Y , Z, V , W) + (∇Y R)(Z, X, V , W) + (∇ZR)(X, Y , V , W) = 0

becomes

X(K)R0(Y , Z, V , W) + Y(K)R0(Z, X, V , W) + Z(K)R0(X, Y , V , W) = 0,

for any fields X, Y , Z, V and W ∈ X(M). The proof is concluded once we verify that
X(K) = 0. For this end, we may make suitable choices for the other fields, since this
equality has a tensorial character and dim M ≥ 3. More precisely, fix x ∈ M, assume
that Xx 6= 0 and Yx 6= 0 are linearly independent, that Xx, Yx and Zx are pairwise
orthogonal, Zx is a unit vector (hence with constant causal type in a neighborhood of
x, say ε = ±1, and W x = Zx. Evaluating the Bianchi identity with these choices yields

−εXx(K)〈Yx, V x〉+ εYx(K)〈Xx, V x〉+ 0 = 0,

and since V was still arbitrary, it follows that −Xx(K)Yx + Yx(K)Xx = 0. By linear
independence, Xx(K) = 0. Since Xx ∈ Tx M and x ∈ M were arbitrary, dK = 0 and by
connected of M we get that K is constant, as wanted.

Corollary. Let (Mn, g) be a pseudo-Riemannian manifold with constant sectional curvature
K. Then Ric = (n− 1)Kg and s = n(n− 1)K. In particular, (M, g) is Einstein.

Proof: Trace R(X, Y , Z, W) = K(〈Y , Z〉〈X, W〉 − 〈X, Z〉〈Y , W〉) twice.

With those results set in place, we may also explore the direct relation between K
and s for surfaces:

Proposition. Let (M2, g) be a pseudo-Riemannian surface. Then:

(i) s = 2K.

(ii) If (E1, E2) is an orthonormal frame with E1 spacelike and g(E2, E2) = ε ∈ {−1, 1},
then we have dω1

2 = εKθ1 ∧ θ2.

Page 11



Cartan Formalism and some computations Ivo Terek Couto

(iii) If (E1, E2) is a Penrose frame, i.e., both E1 and E2 are lightlike with g(E1, E2) = 1, then
we have dω2

2 = −K θ1 ∧ θ2.

(iv) Ric ∝ g (i.e., Ric is a function multiple of g).

Proof:

(i) Raising and lowering the index 1 does not change any expression, while raising
and lowering 2 amounts to multiplying by ε. We may write the Gaussian curva-
ture as K = εR2112 = εR1221 = εR 1

122 , and then

s = R11 + εR22 = R 2
211 + εR 1

122 = εR2112 + K = K + K = 2K.

(ii) We have that dω1
2 = dω1

2(E1, E2) θ1 ∧ θ2, where (θ1, θ2) is the dual coframe to
(E1, E2). But the metric compatibility ωij + ωji = 0 implies (by raising i) that
ω1

1 = ω2
2 = 0. Then Ω1

2 = dω1
2, by the second structure equation. It follows

that Ω1
2(E1, E2) = Ω12(E1, E2) = εK, as wanted.

(iii) Let (θ1, θ2) again denote the dual coframe to (E1, E2). For a Penrose frame,
lowering or raising an index amounts to replacing it by the other one. Write
dω2

2 = dω2
2(E1, E2)θ

1 ∧ θ2. By definition of Gaussian curvature and noting that
g11g22− g2

12 = −1, we have that −K = Ω12(E1, E2) = Ω2
2(E1, E2). Now, the met-

ric compatibility ωij +ωji = 0 allows us to write Ω2
2 = dω2

2 (since ω1
2 = ω22 = 0

and ω2
2 = ω12, etc.).

(iv) The full force of Schur’s lemma won’t apply as dim M = 2 < 3, but we still
have the formula R(X, Y , Z, W) = K(〈Y , Z〉〈X, W〉 − 〈X, Z〉〈Y , W〉), where the
Gaussian curvature K may be nonconstant. Then Ric = Kg by tracing.

Remark. The above result means that for surfaces, the only quantity we really care
about is the Gaussian curvature K, which can be computed through the connection
forms only.
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4 Cartan Computations

4.1 Constant coefficients metric in Rn

Fix a nonsingular symmetric matrix (aij)
n
i,j=1, and take in Rn the pseudo-Riemannian

metric 〈·, ·〉 = aij dxidxj. Consider the natural coordinate frame (∂1, . . . , ∂n) and the
dual coframe (dx1, . . . , dxn). The (global) connection forms ωi

j are characterized by
0 = ωij + ωji and 0 = dxj ∧ωi

j. Since ωi
j = 0 for all choices of i and j fits the bill, this

must be the case (by the uniqueness previously proven). It also follows that Ωi
j = 0

and hence the Levi-Civita connection of this metric is flat. Hence Ric = 0, s = 0, the
metric is Einstein, etc..

4.2 Schwarzschild half-plane with mass M > 0

In PI = {(t, r) ∈ R2 | r > 2M}, take the Lorentzian metric

〈·, ·〉 = −h(r)dt⊗ dt + h(r)−1 dr⊗ dr,

where h(r) = 1− 2M/r is the Schwarzschild horizon function. Consider the natural
coordinate frame (∂t, ∂r) and the dual coframe (dt, dr). We can already observe from
the metric expression that lowering and raising indices amounts to multiplying or
dividing by ±h(r). Also, we have that

(dt)] = − 1
h(r)

∂t and (dr)] = h(r)∂r.

Connection 1-forms: We have four connection 1-forms here, ωt
t, ωr

t, ωt
r and ωr

r (we’re
dropping Einstein’s convention). It is easier to find first the versions with both lower
indices. We immediately have

2ωtt = ωtt + ωtt = dgtt = −h′(r)dr =⇒ ωtt = −
h′(r)

2
dr

and similarly

2ωrr = ωrr + ωrr = dgrr = −
h′(r)
h(r)2 dr =⇒ ωrr = −

h′(r)
2h(r)2 dr.

Raising the indices, we get

ωt
t = gttωtt + gtrωrt =

−1
h(r)

(
−h′(r)

2
dr
)
=

h′(r)
2h(r)

dr

and also

ωr
r = grtωtr + grrωrr = h(r)

(
− h′(r)

2h(r)2 dr
)
= − h′(r)

2h(r)
dr
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Since ωrt + ωtr = 0, to find the remaining 1-form we use the structure equations.
Lowering t and r on the following first and second equations, respectively, gives{

0 = d(dt) = dt ∧ωt
t + dr ∧ωt

r

0 = d(dr) = dt ∧ωr
t + dr ∧ωr

r
=⇒

{
dt ∧ωtt + dr ∧ωtr = 0
dt ∧ωrt + dr ∧ωrr = 0,

which simplifies to dt ∧ ωrt = 0 and dr ∧ ωrt = dt ∧ ωtt = −(h′(r)/2)dt ∧ dr. This
means that writing ωrt = ωrtt dt + ωrtr dr, we have

0 = dt ∧ωrt = ωrtr dt ∧ dr and − h′(r)
2

dt ∧ dr = dr ∧ωrt = −ωrttdt ∧ dr,

and so ωrt = (h′(r)/2)dt. Raising the index r, we obtain that

ωr
t = grtωtt + grrωrt =

h(r)h′(r)
2

dt.

Similarly

ωt
r = gttωtr + gtrωrr = −gttωrt =

1
h(r)

h′(r)
2

dt =
h′(r)
2h(r)

dt.

Let’s organize our results in tables:

ωt
t =

h′(r)
2h(r)

dr ωt
r =

h′(r)
2h(r)

dt

ωr
t =

h(r)h′(r)
2

dt ωr
r = −

h′(r)
2h(r)

dr

ωtt = −
h′(r)

2
dr ωtr = −

h′(r)
2

dt

ωrt =
h′(r)

2
dt ωrr = −

h′(r)
2h(r)2 dr

Curvature 2-forms: For the first one, we have

Ωt
t = dωt

t + ωt
t ∧ωt

t + ωt
r ∧ωr

t = 0 + 0 + 0 = 0.

Then

Ωt
r = dωt

r + ωt
t ∧ωt

r + ωt
r ∧ωr

r

=
2h′(r)2 − 2h(r)h′′(r)

4h(r)2 dt ∧ dr− h′(r)2

4h(r)2 dt ∧ dr− h′(r)2

4h(r)2 dt ∧ dr

=
−h′′(r)
2h(r)

dt ∧ dr.

The next one is

Ωr
t = dωr

t + ωr
t ∧ωt

t + ωr
r ∧ωr

t

= −h′(r)2 + h(r)h′′(r)
2

dt ∧ dr +
h′(r)2

4
dt ∧ dr +

h′(r)2

4
dt ∧ dr

= −h(r)h′′(r)
2

dt ∧ dr,
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and finally Ωr
r = dωr

r + ωr
t ∧ωt

r + ωr
r ∧ωr

r = 0 + 0 + 0 = 0. Let’s summarize it:

Ωt
t = 0 Ωt

r = −
h′′(r)
2h(r)

dt ∧ dr

Ωr
t = −

h(r)h′′(r)
2

dt ∧ dr Ωr
r = 0

With this in hand, we can compute further curvature invariants. Lowering all the
indices, we obtain also the following table:

Ωtt = 0 Ωtr =
h′′(r)

2
dt ∧ dr

Ωrt = −
h′′(r)

2
dt ∧ dr Ωrr = 0

Ric and s : First, we have that

Rtt = Ωtr((dr)], ∂t) =
h′′(r)

2
(dt ∧ dr)(h(r)∂r, ∂t) =

h′′(r)
2

∣∣∣∣ 0 1
h(r) 0

∣∣∣∣ = −h(r)h′′(r)
2

.

Then we have

Rtr = Ωrt((dt]), ∂t) = −
h′′(r)

2
(dt ∧ dr)

(
− 1
h(r)

∂t, ∂t

)
= 0.

By symmetry it also follows that Rrt = 0. Lastly, we obtain that

Rrr = Ωrt((dt)], ∂r) = −
h′′(r)

2
(dt ∧ dr)

(
− 1
h(r)

∂t, ∂r

)
=

h′′(r)
2h(r)

.

Putting all of this together, we conclude that

Ric = −h(r)h′′(r)
2

dt⊗ dt +
h′′(r)
2h(r)

dr⊗ dr =
h′′(r)

2
〈·, ·〉

Then s = h′′(r) = −4M/r3 < 0. We also get K = h′′(r)/2. All of those computa-
tions hold for half-planes equipped with more sophisticated horizon functions (e.g.,
Reissner-Nördstrom, Kerr-Newman horizons, etc.).

4.3 Hyperbolic half-space

In Hn+1 = Rn ×R>0, take the Riemannian metric

〈·, ·〉 = |dx|2 + dy2

y2
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and consider the natural frame (∂1, . . . , ∂n, ∂y) with dual coframe (dx1, . . . , dxn, dy).
For convenience, we may also set y = xn+1 and work with indices

A, B, C, D = 1, . . . , n and i, j, k, ` = 1, . . . , n + 1.

We have gij = δij/y2 and gij = δijy2, and in particular, we see that raising or lowering
an index amounts to multiplying or dividing by y2. We also have (dxi)] = δijy2∂j.
Connection 1-forms: Metric compatibility then reads

ωij + ωji =
−2δij

y3 dy

for all i and j. The structure equations become 0 = d(dxi) = dxj ∧ ωi
j, and we lower

the index i to obtain dxj ∧ωij = 0. Write ωij = ωijk dxk. Then

ωijkdxj ∧ dxk = 0 =⇒ ωijk = ωikj, for all i, j, k.

Let’s focus on the different types of connection 1-forms:

• We have 2ωyy = (−2/y3)dy, so ωyy = −dy/y3 and hence ω
y

y = −dy/y.

• By metric compatibility, ωABC = −ωBAC. And by the structure equations, we
also have ωABC = ωACB. It follows3 that ωABC = 0 for all A, B and C. So the
coefficient left to be found is ωABy. We have that

0 = dxj ∧ωyj = dxA ∧ωyA + dy ∧ωyy = −dxA ∧ωAy,

from which

0 = dxA ∧ (ωAyB dxB + ωAyy dy) = ωAyB dxA ∧ dxB + ωAyy dxA ∧ dy

implies that ωAyB = ωByA and ωAyy = 0. Thus

ωABy = ωAyB = ωByA = ωBAy = −2
δAB

y3 −ωABy =⇒ ωABy = −δAB

y3 .

Hence ωAB = −(δAB/y3)dy and ωA
B = −(δA

B /y)dy.

• Again, metric compatibility says that ωAy + ωyA = 0. So we’ll focus on the first
term. By the above, we have ωAyB = −δAB/y3, that together with the equality
ωAyy = 0 yields

ωAy = −δAB

y3 dxB =⇒ ωA
y = −1

y
dxA.

Similarly, we get

ωyB = −ωBy =
δAB

y3 dxA =⇒ ω
y
B =

δAB

y
dxA

3 ABC = −BAC = −BCA = CBA = CAB = −ACB = −ABC =⇒ ABC = 0.
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Let’s organize our results in tables:

ωA
B = −

δA
B
y

dy ωA
y = −1

y
dxA

ω
y
B =

δAB

y
dxA ω

y
y = −1

y
dy

ωAB = −δAB

y3 dy ωAy = −δAB

y3 dxB

ωyB =
δAB

y3 dxA ωyy = − 1
y3 dy

Curvature 2-forms: We’ll have four types of curvature 2-forms, as follows:

ΩA
B = dωA

B + ωA
C ∧ωC

B + ωA
y ∧ω

y
B = 0 + 0− δBC

y2 dxA ∧ dxC = −δBC

y2 dxA ∧ dxC.

The next one is

ΩA
y = dωA

y + ωA
C ∧ωC

y + ωA
y ∧ω

y
y

= − 1
y2 dxA ∧ dy− 1

y2 dxA ∧ dy +
1
y2 dxA ∧ dy

= − 1
y2 dxA ∧ dy.

Then

Ωy
B = dω

y
B + ω

y
C ∧ωC

B + ω
y
y ∧ω

y
B

=
δAB

y2 dxA ∧ dy− δBA

y2 dxA ∧ dy +
δBC

y2 dxC ∧ dy

=
δBC

y2 dxC ∧ dy

and also Ωy
y = dω

y
y + ω

y
B ∧ ωB

y + ω
y
y ∧ ω

y
y = 0 + 0 + 0 = 0. Organizing it all, we

have:

ΩA
B = −δBC

y2 dxA ∧ dxC ΩA
y = − 1

y2 dxA ∧ dy

Ωy
B =

δBC

y2 dxC ∧ dy Ωy
y = 0

Lower the indexes to get

ΩAB = −δADδBC

y4 dxD ∧ dxC ΩAy = −δAB

y4 dxB ∧ dy

ΩyB =
δBC

y4 dxC ∧ dy Ωyy = 0

With this, we can compute R explicitly. Namely, note that {y∂i}n+1
i=1 is an orthonor-

mal frame for Hn+1. Then consider R(y∂i, y∂j, y∂k, y∂`). It suffices to check three cases:
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• when y = xn+1 does not appear:

R(y∂A, y∂B, y∂C, y∂D) = y4R(∂A, ∂B, ∂C, ∂D) = y4ΩDC(∂A, ∂B)

= −y4 δDEδCF

y4 (dxE ∧ dxF)(∂A, ∂B)

= −δDEδCF(δ
E
AδF

B − δE
BδF

A)

= −(δADδBC − δBDδAC)

• when y = xn+1 appears exactly once: assume that it appears on the last argument
(apply symmetries of R and rename indices if needed) and compute

R(y∂A, y∂B, y∂C, y∂y) = y4R(∂A, ∂B, ∂C, ∂y) = y4ΩyC(∂A, ∂B)

= y4 δCD

y4 (dxD ∧ dy)(∂A, ∂B) = 0.

• when y = xn+1 appears twice, once in the first pair of arguments and once in the
second pair: assume that it appears in the first and last entry. Write

R(y∂y, y∂B, y∂C, y∂y) = y4R(∂y, ∂B, ∂C, ∂y) = y4ΩyC(∂y, ∂B)

= y4 δCD

y4 (dxD ∧ dy)(∂y, ∂B)

= δCD(−δD
B )

= −δBC

We conclude that Hn+1 has constant sectional curvature −1. It follows from this
that Ric = −n〈·, ·〉 and s = −n(n + 1).

4.4 Surfaces of Revolution in R3

Consider an open interval I ⊆ R, a smooth function f : I → R>0, and the warped
product I × f S1 with Riemannian metric given by

〈·, ·〉 = ds2 + f (s)2 dθ2.

Do note the abuse of notation: this dθ ∈ Ω1(S1) is not an exact form – it is just the
usual angle form, in the same way that ∂θ just denotes the rotation field tangent to
S1. This time we will not work with coordinate frames, and we’ll omit the point of
application s from f (s). Let’s define an orthonormal frame field by setting Es = ∂s
and Eθ = (1/ f )∂θ, so that the dual 1-forms are given by θs = ds and θθ = f dθ, and
〈·, ·〉 = θs ⊗ θs + θθ ⊗ θθ. As a consequence from this last expression, we may freely
raise and lower indexes without effectively changing anything.
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Connection 1-forms: We immediately get ωss = ωθθ = 0, and so ωs
θ = ωθ

θ = 0. Since
ωsθ + ωθs = 0, we may focus on the first term. From the structure equations, we see
that {

dθs = θs ∧ωs
s + θθ ∧ωs

θ

dθθ = θs ∧ωθ
s + θθ ∧ωθ

θ

=⇒

0 = θθ ∧ωs
θ

f ′

f
θs ∧ θθ = −θs ∧ωs

θ.

So, write ωs
θ = ωs

θsθ
s + ωs

θθθθ. The first equation gives ωs
θs = 0, while the second

yields ωs
θθ = − f ′/ f . So ωs

θ = (− f ′/ f )θθ and ωθ
s = ( f ′/ f )θθ. Let’s register this in a

table:

ωs
s = 0 ωs

θ = −
f ′

f
θθ

ωθ
s =

f ′

f
θθ ωθ

θ = 0

Even though it is easy to express these forms in terms of ds and dθ, one must remem-
ber that the connection forms found are the ones associated to (Es, Eθ) instead of the
coordinate frame (∂s, ∂θ).

Further curvatures: Let’s explore the fact that we’re dealing with a surface, compute
K without computing the curvature 2-forms, and from there obtain Ric and s. We have
that

dωs
θ = d

(
− f ′

f

)
∧ θθ − f ′

f
dθθ

=
( f ′)2 − f f ′′

f 2 ds ∧ θθ − f ′

f
( f ′ ds ∧ dθ)

=
( f ′)2 − f f ′′

f 2 θs ∧ θθ − ( f ′)2

f 2 θs ∧ θθ

= − f ′′

f
θs ∧ θθ.

It follows that K = − f ′′/ f , the Ricci tensor is Ric = −( f ′′/ f )〈·, ·〉 and s = −2 f ′′/ f .

4.5 A thickening of S2

Let I ⊆ R be an open interval with natural coordinate r, and let (θ, ϕ) be spherical
coordinates on S2. Consider in the product I × S2 the Riemannian metric

〈·, ·〉 = A(r)2 dr2 + r2 dθ2 + r2 sin2 θ dϕ2,

where A : I → R>0 is smooth. We will work with the orthonormal frame (Er, Eθ, Eθ)
given by

Er =
1

A(r)
∂r, Eθ =

1
r

∂θ, Eϕ =
1

r sin θ
∂ϕ.

Page 19



Cartan Formalism and some computations Ivo Terek Couto

The corresponding dual coframe is then

θr = A(r)dr, θθ = r dθ, θϕ = r sin θ dϕ.

We may raise and lower indices at will.

Connection 1-forms: Since ωij + ωji = 0, it immediately follows (by raising i) that
ωr

r = ωθ
θ = ω

ϕ
ϕ = 0. We also have skew-symmetry for distinct indices. The first

structure equations are 
dθr = θθ ∧ωr

θ + θϕ ∧ωr
ϕ

dθθ = θr ∧ωθ
r + θϕ ∧ωθ

ϕ

dθϕ = θr ∧ω
ϕ

r + θθ ∧ω
ϕ

θ

We will solve for ωr
θ, ωr

ϕ and ωθ
ϕ (the remaining ones are determined by symmetries).

Focusing on those forms and rewriting the left side of the above equations in terms of
the dual coframe, we get

0 = θθ ∧ωr
θ + θϕ ∧ωr

ϕ

1
rA(r)

θr ∧ θθ = −θr ∧ωr
θ + θϕ ∧ωθ

ϕ

1
rA(r)

θr ∧ θϕ +
1

r tan θ
θθ ∧ θϕ = −θr ∧ωr

ϕ − θθ ∧ωθ
ϕ

For i, j, k ∈ {r, θ, ϕ}, write ωi
j = ωi

jkθk as usual. We’ll solve a system for all these
components. In terms of the components, it becomes



0 = −ωr
θrθr ∧ θθ −ωr

ϕrθr ∧ θϕ + (ωr
θϕ −ωr

ϕθ)θ
θ ∧ θϕ

1
rA(r)

θr ∧ θθ = −ωr
θθθr ∧ θθ + (−ωr

θϕ −ωθ
ϕr)θ

r ∧ θϕ −ωθ
ϕθθθ ∧ θϕ

1
rA(r)

θr ∧ θϕ +
1

r tan θ
θθ ∧ θϕ = (ωθ

ϕr −ωr
ϕθ)θ

r ∧ θθ −ωr
ϕϕθr ∧ θϕ −ωθ

ϕϕθθ ∧ θϕ.

Extracting coefficients, we get:

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 −1 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −1





ωr
θr

ωr
θθ

ωr
θϕ

ωr
ϕr

ωr
ϕθ

ωr
ϕϕ

ωθ
ϕr

ωθ
ϕθ

ωθ
ϕϕ


=



0
0
0
1

rA(r)
0
0
0
1

rA(r)
1

r tan θ
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As complicated as this looks, it is just a linear system. From the first row we get
ωr

θr = 0, and from the fourth that ωr
θϕ = −1/(rA(r)). Combining rows 3, 7 and 5 (in

this order) we get that ωr
θϕ = ωr

ϕθ = ωθ
ϕr = −ωr

θϕ, so all of those coefficients vanish.
In particular, we know now that

ωr
θ = −

1
rA(r)

θθ.

We proceed: row 2 gives ωr
ϕr = 0. By the above, ωr

ϕθ = 0, and row 8 says that
ωr

ϕϕ = −1/(rA(r)). Thus

ωr
ϕ = − 1

rA(r)
θϕ.

Finally, we already had ωθ
ϕr = 0. Now row 6 gives ωθ

ϕθ = 0, and row 9 says that
ωθ

ϕϕ = −1/(r tan θ). So

ωθ
ϕ = − 1

r tan θ
θϕ,

and we may organize our results in a table:

ωr
θ = −

1
rA(r)

θθ ωr
ϕ = − 1

rA(r)
θϕ ωθ

ϕ = − 1
r tan θ

θϕ

Curvature 2-forms: Again we may exploit symmetry and compute just the three rele-
vant curvature forms Ωr

θ, Ωr
ϕ and Ωθ

ϕ. First

Ωr
θ = dωr

θ + ωr
ϕ ∧ω

ϕ
θ

= d
(
− 1

rA(r)
θθ

)
+

(
− 1

rA(r)
θϕ

)
∧
(

1
r tan θ

θϕ

)
=

A(r) + rA′(r)
r2A(r)2 dr ∧ θθ − 1

rA(r)
dθθ

=
A(r) + rA′(r)

r2A(r)3 θr ∧ θθ − 1
rA(r)

1
rA(r)

θr ∧ θθ

=
A′(r)

rA(r)3 θr ∧ θθ,

then

Ωr
ϕ = dωr

ϕ + ωr
θ ∧ωθ

ϕ

= d
(
− 1

rA(r)
θϕ

)
+

(
− 1

rA(r)
θθ

)
∧
(
− 1

r tan θ
θϕ

)
=

A(r) + rA′(r)
r2A(r)2 dr ∧ θϕ − 1

rA(r)
dθϕ +

1
r2A(r) tan θ

θθ ∧ θϕ

=
A(r) + rA′(r)

r2A(r)3 θr ∧ θϕ − 1
rA(r)

(
1

rA(r)
θr ∧ θϕ +

1
r tan θ

θθ ∧ θϕ

)
+

1
r2A(r) tan θ

θθ ∧ θϕ

=
A′(r)

rA(r)3 θr ∧ θϕ,
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and lastly

Ωθ
ϕ = dωθ

ϕ + ωθ
r ∧ωr

ϕ

= d
(
− 1

r tan θ
θϕ

)
+

(
1

rA(r)
θθ

)
∧
(
− 1

rA(r)
θϕ

)
=

1
r2 tan θ

dr ∧ θϕ +
sec2 θ

r tan2 θ
dθ ∧ θϕ − 1

r tan θ
dθϕ − 1

r2A(r)2 θθ ∧ θϕ

=
1

r2 A(r) tan θ
θr ∧ θϕ +

1
r2 sin2 θ

θθ ∧ θϕ − 1
r tan θ

(
1

rA(r)
θr ∧ θϕ +

1
r tan θ

θθ ∧ θϕ

)
− 1

r2 A(r)2 θθ ∧ θϕ

=

(
1

r2 sin2 θ
− 1

r2 tan2 θ
− 1

r2A(r)2

)
θθ ∧ θϕ

=
1
r2

(
1− 1

A(r)2

)
θθ ∧ θϕ.

Thus we obtain another table:

Ωr
θ =

A′(r)
rA(r)3 θr ∧ θθ Ωr

ϕ =
A′(r)

rA(r)3 θr ∧ θϕ Ωθ
ϕ =

1
r2

(
1− 1

A(r)2

)
θθ ∧ θϕ

Ric and s: For the Ricci curvature, we use the formula Rij = Ωk
j(Ek, Ei) to obtain:

Rrr = Ωθ
r(Eθ, Er) + Ωϕ

r(Eϕ, Er) =
A′(r)

rA(r)3 +
A′(r)

rA(r)3 =
2A′(r)
rA(r)3

Rrθ = Ωϕ
θ(Eϕ, Er) = 0

Rrϕ = Ωθ
ϕ(Eθ, Er) = 0

Rθr = 0 (by symmetry)

Rθθ = Ωr
θ(Er, Eθ) + Ωϕ

θ(Eϕ, Eθ) =
A′(r)

rA(r)3 +
1
r2

(
1− 1

A(r)2

)
Rθϕ = Ωr

ϕ(Er, Eθ) = 0

Rϕr = 0 (by symmetry)
Rϕθ = 0 (by symmetry)

Rϕϕ = Ωr
ϕ(Er, Eϕ) + Ωθ

ϕ(Eθ, Eϕ) =
A′(r)

rA(r)3 +
1
r2

(
1− 1

A(r)2

)
.

As for the scalar curvature, note that since the frame we’re working with is already
orthonormal, we have

s = Rrr + Rθθ + Rϕϕ =
4A′(r)
rA(r)3 +

2
r2

(
1− 1

A(r)2

)
.

Particular cases (S3 and H3):

• Consider the unit sphere S3 = {(x, y, z, w) ∈ R4 | x2 + y2 + z2 + w2 = 1},
with the Riemannian metric induced from R4. Write x2 + y2 + z2 = 1− w2 and
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use spherical coordinates for the slices of radius r =
√

1− w2. More precisely,
consider in an adequate domain the relations

x = r sin θ cos ϕ

y = r sin θ sin ϕ

z = r cos θ

w =
√

1− r2.

With this, we compute all the products between the coordinate vector fields
∂r = sin θ cos ϕ ∂x + sin θ sin ϕ ∂y + cos θ ∂z −

r√
1− r2

∂w

∂θ = r cos θ cos ϕ ∂x + r cos θ sin ϕ ∂y − r sin θ ∂z

∂ϕ = −r sin θ sin ϕ ∂x + r sin θ cos ϕ ∂y

to obtain

gS3 = ι∗(dx2 + dy2 + dz2 + dw2) =
1

1− r2 dr2 + r2 dθ2 + r2 sin2 θ dϕ.

So the above calculations apply for A(r) = (1− r2)−1/2. We obtain, after simpli-
fications, that s = 2 + 2 + 2 = 6.

• Consider the hyperbolic spaceH3 = {(x, y, z, w) ∈ L4 | x2 + y2 + z2−w2 = −1},
with Riemannian metric induced from Lorentz-Minkowski space L4. Repeat the
strategy adopted for S3 and write x2 + y2 + z3 = 1 + w2. Take spherical coordi-
nates for the slices of radius r =

√
1 + w2. We obtain coordinates

x = r sin θ cos ϕ

y = r sin θ sin ϕ

z = r cos θ

w =
√

1 + r2,

for which
∂r = sin θ cos ϕ ∂x + sin θ sin ϕ ∂y + cos θ ∂z +

r√
1 + r2

∂w

∂θ = r cos θ cos ϕ ∂x + r cos θ sin ϕ ∂y − r sin θ ∂z

∂ϕ = −r sin θ sin ϕ ∂x + r sin θ cos ϕ ∂y,

and the same calculations done for S3 show that

gH3 = ι∗(dx2 + dy2 + dz2 − dw2) =
1

1 + r2 dr2 + r2 dθ2 + r2 sin2 θ dϕ2.

So the general calculations apply with A(r) = (1 + r2)1/2, and in particular we
get s = −2− 2− 2 = −6, after some simplifications.
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5 Subbundles and submanifolds

5.1 Fundamental equations

Let E→ M be a vector bundle equipped with a Koszul connection∇, and consider
two subbundles E± of E such that E = E+ ⊕ E−. That is to say, every ψ ∈ Γ(E)
decomposes uniquely as ψ = ψ+ + ψ−, where ψ± ∈ Γ(E±). We may use ∇ to define
connections in E± as follows: if φ ∈ Γ(E±), then φ is also a section of E, and so ∇Xφ
makes sense, for every vector field X ∈ X(M). To define a connection in E±, we’d
like our end result to be a section of E±, and so we project: ∇±X φ = (∇Xφ)±, where
(_)± : E → E± are the projections relative to the given decomposition (also in the
section level).

Now, once we have the connections ∇+ and ∇− in E+ and E−, we could consider
the van der Waerden-Bortolotti (direct sum) connection∇ = ∇+⊕∇− in E. The natural
thing one could wonder at this point is whether ∇ = ∇. In general, there is no reason
whatsoever for this to happen. So we look at the difference between those connections
(which is then a tensor). Fixed X ∈ X(M), we only need to understand how this acts
on E+ and on E− separately:

Definition. The second fundamental form of the decomposition E = E+ ⊕ E− relative to
the connection ∇ is the C∞(M)-bilinear map α : X(M)× Γ(E) → Γ(E) satisfying the
relations

∇Xφ = ∇±X φ + α(X, φ),

for all X ∈ X(M) and φ ∈ Γ(E±).

Note indeed that given ψ ∈ Γ(E), we have

∇Xψ + α(X, ψ) = ∇X(ψ
+ + ψ−) + α(X, ψ+ + ψ−)

= ∇+
X(ψ

+) +∇−X(ψ
−) + α(X, ψ+) + α(X, ψ−)

= ∇X(ψ
+) +∇X(ψ

−)

= ∇Xψ,

so that ∇ = ∇+ α. In particular, setting ψ− = 0 and taking the (_)+ projection, we
see that α(X, ψ+)+ = 0, and so α(X, ψ+) ∈ Γ(E−). Similarly, α(X, ψ−) ∈ Γ(E+). This
means that α carries E+ and E− into each other, and so we may consider the restrictions
α± : X(M)× Γ(E∓)→ Γ(E±).

The next step would be to relate the curvature tensors of all of those connections.
The first one is clear: R∇ = R+ ⊕ R−, where R± is the curvature of ∇±. Namely, we
have

R∇(X, Y)ψ = R+(X, Y)(ψ+) + R−(X, Y)(ψ−),

for all X, Y ∈ X(M) and ψ ∈ Γ(E). To avoid the initial clutter with ±’s and α±’s, we
organize ourselves with the general:

Lemma. Let E→ M be a vector bundle with a connection∇, and F : X(M)× Γ(E)→ Γ(E)
be a tensor. Consider the connection ∇′ = ∇+ F. The relation between R′ and R is given by

R′(X, Y)ψ = R(X, Y)ψ +∇X(F(Y , ψ))− F(Y ,∇Xψ)−∇Y(F(X, ψ)) + F(X,∇Y ψ)

+ F(X, F(Y , ψ))− F(Y , F(X, ψ))− F([X, Y ], ψ).
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If one fixes any connection ∇TM in the tangent bundle of M and uses ∇TM ⊕ ∇ to form
covariant derivatives of F (which we’ll abuse notation and still denote by ∇F, the dependence
on ∇TM being understood), the above relation can be rewritten as

R′(X, Y)ψ = R(X, Y)ψ + (∇X F)(Y , ψ)− (∇Y F)(X, ψ)

+ F(X, F(Y , ψ))− F(Y , F(X, ψ)) + F(τ(X, Y), ψ),

where τ is the torsion of∇TM. Usually, we take∇TM to be the Levi-Civita connection of some
pseudo-Riemannian metric in M.

Proof: This is just brute force: compute

∇′X∇′Y ψ = ∇X∇′Y ψ + F(X,∇′Y ψ)

= ∇X∇Y ψ +∇X(F(Y , ψ)) + F(X,∇Y ψ) + F(X, F(Y , ψ)),

switch the roles of X and Y , subtract, and subtract ∇′[X,Y ]ψ = ∇[X,Y ]ψ + F([X, Y ], ψ).

For the second part, write [X, Y ] = ∇TM
X Y −∇TM

Y X − τ(X, Y), and use the definition

(∇X F)(Y , ψ) = ∇X(F(Y , ψ))− F(∇TM
X Y , ψ)− F(X,∇Xψ).

Remark. We might as well register what the relation between R′ and R is, with respect
to a coordinate system (xj) on M and local trivializing sections (ea) of E. Writing
F(∂j, ea) = Fb

jaeb, we have

R′ b
jka = R b

jka + ∂jFb
ka − ∂kFb

ja + Fc
kaΓb

jc − Fc
jaΓb

kc − Fb
kcΓc

ja + Fb
jcΓc

ka + Fc
kaFc

jb − Fc
jaFb

kc.

If one sets F b
jka

.
= ∂jFb

ka − ∂kFb
ja + Fc

kaFc
jb − Fc

jaFb
kc, mimicking the explicit expression for

R, the formula writes simply as

R′ b
jka = R b

jka + F b
jka + Fc

kaΓb
jc − Fc

jaΓb
kc − Γc

jaFb
kc + Γc

kaFb
jc,

emphasizing that the new curvature is the sum of the curvatures of R and F, with an
interplay between them (perhaps seen as a difference of anticommutators of F and Γ).

Back to the main discussion on E = E+ ⊕ E−, we apply the lemma for the decom-
position ∇ = (∇+ ⊕∇−) + α, to obtain

R∇(X, Y)ψ = R+(X, Y)(ψ+) + R−(X, Y)(ψ−) + (∇Xα)(Y , ψ)− (∇Y α)(X, ψ)

+ α(X, α(Y , ψ))− α(Y , α(X, ψ)) + α(τ(X, Y), ψ),

for all ψ ∈ Γ(E), where τ is the torsion of a connection in TM, also used to form the
covariant derivatives of α. Using that the above is linear in ψ = ψ+ + ψ− and that α
“switches” E+ and E−, we may set ψ = ψ±, to get

R∇(X, Y)(ψ±) = R±(X, Y)(ψ±) + (∇Xα∓)(Y , ψ±)− (∇Y α∓)(X, ψ±)

+ α±(X, α∓(Y , ψ±))− α±(Y , α∓(X, ψ±)) + α∓(τ(X, Y), ψ),

where we use that ∇X(ψ
±) = ∇±X(ψ±) (by definition) to conclude that the restric-

tion commutes with the covariant derivatives: (∇Xα)(Y , ψ±) = (∇Xα∓)(Y , ψ±). The
fundamental equations of pseudo-Riemannian geometry are obtained by taking the
components of this last expression:
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• The Gauss formula:

R±(X, Y)(ψ±) = (R∇(X, Y)(ψ±)
)± − α±(X, α∓(Y , ψ±)) + α±(Y , α∓(X, ψ±)).

Here, we have solved for R±, thinking that the curvature of the subbundle should
be computed in terms of the curvature of the ambient bundle and the second fun-
damental form

• The Codazzi equation:(
R∇(X, Y)(ψ±)

)∓
= (∇Xα∓)(Y , ψ±)− (∇Y α∓)(X, ψ±) + α∓(τ(X, Y), ψ±).

A very particular situation is when E is also equipped with a parallel pseudo-
Euclidean fiber metric g ∈ Γ(E∗ ⊗ E∗) (that is,∇g = 0), and E+ ⊥ E−. In this case, we
have two useful properties:

• ∇±g = 0, where we again denote by g its restriction to E±: let ψ±1 , ψ±2 ∈ Γ(E±).
So we have:

X(g(ψ±1 , ψ±2 )) = g(∇X(ψ
±
1 ), ψ±2 ) + g(ψ±1 ,∇X(ψ

±
2 ))

= g(∇±X(ψ
±
1 ) + α∓(X, ψ±1 ), ψ±2 ) + g(ψ±1 ,∇±X(ψ

±
2 ) + α∓(X, ψ±2 ))

= g(∇±X(ψ
±
1 ), ψ±2 ) + g(ψ±1 ,∇±X(ψ

±
2 )),

as wanted.

• α+(X, ·) and α−(X, ·) are negative adjoints: let ψ+ ∈ Γ(E+) and ψ− ∈ Γ(E−), so
that g(ψ+, ψ−) = 0. Apply X to get

0 = X(g(ψ+, ψ−))

= g(∇X(ψ
+), ψ−) + g(ψ+,∇X(ψ

−))

= g(∇+
X(ψ

+) + α−(X, ψ+), ψ−) + g(ψ+,∇−X(ψ
−) + α+(X, ψ−))

= g(α−(X, ψ+), ψ−) + g(ψ+, α+(X, ψ−)).

Using the last condition above, we may rewrite the Gauss formula by considering
the fully covariant (0, 4)-curvature tensors. Namely, consider also φ± ∈ Γ(E±) and set
g = 〈·, ·〉, so that

R±(X, Y , ψ±, φ±) = R∇(X, Y , ψ±, φ±)

+ 〈α∓(Y , ψ±), α∓(X, φ±)〉 − 〈α∓(X, ψ±), α∓(Y , φ±)〉.

As a concrete example of the above situation, let (M, g) be a pseudo-Riemannian
manifold, and M ⊆ M be a non-degenerate submanifold. We have the orthogonal
decomposition into non-degenerate subbundles, TM

∣∣
M = TM ⊕ TM⊥. Here we’ll

slightly change notation: let∇ be the Levi-Civita connection of (M, g). Then the Levi-
Civita connection ∇ of M with the induced metric is obtained by projecting ∇ to TM,
as it is metric compatible (by the above), while being torsion-free is clear. Let’s trans-
late what we discussed above in this setting. First, we’ll denote by∇⊥ the projection of
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∇ in TM⊥. Given Y ∈ X(M) and ξ ∈ X⊥(M)
.
= Γ(TM⊥), we set Aξ(X) = −α+(X, ξ),

so that
∇XY = ∇XY + α(X, Y) and ∇Xξ = −Aξ(X) +∇⊥X ξ.

In particular, we observe that in contrast to what we see in most Riemannian geometry
books, the second fundamental form actually is a map X(M)× X(M) → X(M) (here
X(M) = Γ(TM

∣∣
M)) instead of a map X(M)×X(M) → X⊥(M), the latter being just a

convenient restriction. Moreover, the shape operators Aξ are part of such object. The fact
that α+(X, ·) and α−(X, ·) are negative adjoints becomes 〈α(X, Y), ξ〉 = 〈Aξ(X), Y〉,
showing us that the negative sign in the definition of Aξ is indeed natural. Next, by
making the correct choices of ±, the fundamental equations read:

• The Gauss formulas: given X, Y , Z, W ∈ X(M) and ξ, η ∈ X⊥(M), we have

R(X, Y , Z, W) = R(X, Y , Z, W) + 〈α(Y , Z), α(X, W)〉 − 〈α(X, Z), α(Y , W)〉,
R⊥(X, Y , ξ, η) = R(X, Y , ξ, η) + 〈Aξ(Y), Aη(X)〉 − 〈Aξ(X), Aη(Y)〉.

Since α is symmetric in this case, each shape operator is self-adjoint, and thus we
may rewrite the second formula (also known as the Ricci equation) as

R⊥(X, Y , ξ, η) = R(X, Y , ξ, η) + 〈[Aξ , Aη](X), Y〉,

where [·, ·] denotes the commutator of endomorphisms in TM.

• The Codazzi equations: here we’re considering Levi-Civita connections, so the
torsion term vanishes and we obtain(

R(X, Y)Z
)⊥

= (∇Xα)(Y , Z)− (∇Y α)(X, Z)(
R(X, Y)ξ

)>
= A∇⊥X ξ(Y)− (∇X Aξ)(Y)− A∇⊥Y ξ(X) + (∇Y Aξ)(X).

For the second relation, just recall that (∇X Aξ)(Y) = ∇X(Aξ(Y))− Aξ(∇XY),
and use the definition of the covariant derivative of α.

In particular, if X, Y are vector fields tangent to M along some open subset, span-
ning non-degenerate 2-planes, we have

K(X, Y) = K(X, Y) +
〈α(X, X), α(Y , Y)〉 − 〈α(X, Y), α(X, Y)〉

〈X, X〉〈Y , Y〉 − 〈X, Y〉2 .

Another very important object is mean curvature vector of Mn, defined as

H =
1
n

trgα =
1
n

gijαij,

where αij = α(Ei, Ej) and (Ei) is any local tangent frame for M. We’ll say that M is

critical if H = 0, and marginally trapped in Mn+k if H is lightlike. If (ξλ) is a local
orthonormal normal frame along M, we may also write

H =
1
n
(ε1tr(Aξ1

) + · · ·+ εktr(Aξk
)),

where ελ = g(ξλ, ξλ) ∈ {−1, 1}.
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5.2 In terms of differential forms

Assume again the same setting, the direct sum decomposition of a vector bundle
E = E+ ⊕ E− over M, equipped with a Koszul connection ∇, and now consider: a
local coordinate system for M, and local trivializing sections (e+a , e−λ ) adapted to the
decomposition, i.e., where e+a ∈ Γ(E+) and e−λ ∈ Γ(E−), for all a and λ. The relation
∇X(ψ

±) = ∇±X(ψ±) + α(X, ψ±) gives us the four relations

∇+
∂j

e+a = Γb
jae+b , α(∂j, e+a ) = Γµ

jae−µ , ∇−∂j
e−λ = Γµ

jλe−µ and α(∂j, e−λ ) = Γb
jλe+b ,

where all of those connection components are relative to the original connection∇. In
terms of the connection 1-forms of ∇, we have

∇+
X e+b = ωa

b(X)e+a , α(X, e+b ) = ωλ
b(X)e−λ , ∇−X e−µ = ωλ

µ(X)e−λ , α(X, e−µ ) = ωa
µ(X)e+a ,

and we see that the second fundamental form essentially carries information about
the “mixed” coefficients. The issue, however, is that the curvature 2-forms of R± are
not the curvature 2-forms of ∇. To illustrate this, note that if E− = L is a line bundle
and we take a local trivializing section eL for L, then the curvature 2-form of ∇L is
just dωL

L, without the extra terms coming from the structure equations. This can be
improved:

Proposition. Let E = E+ ⊕ L be a vector bundle over M equipped with a Koszul connection
∇ and a parallel pseudo-Euclidean fiber metric 〈·, ·〉 ∈ Γ(E∗ ⊗ E∗) such that L is a non-
degenerate subbundle and E+ ⊥ L. Then the projected connection ∇L is flat.

Proof: Let eL be a unit local trivializing section for L and write ∇L
XeL = ωL

L(X)eL (no
summation). We will show that ωL

L = 0. Since 〈eL, eL〉 is constant, apply any X to
obtain 0 = 2〈∇L

XeL, eL〉 = 2ωL
L(X)〈eL, eL〉. So ωL

L = 0, and the (single) curvature
2-form of ∇L is dωL

L = 0. Thus RL = 0.

Remark. In the above proof, we are not claiming that ∇L = 0. If ψ is any section of L
and ψ = f eL, then ∇L

Xψ = ∇L
X( f eL) = d f (X)eL, which has no reason to vanish. We

do again recognize, though, that ∇L is a flat connection from this formula (by using
the definition of RL, for example). This has a funny consequence: if we have such a
decomposition of E with ∇L non-flat, then every pseudo-Euclidean fiber metric on E
is either non-parallel, or degenerates L.

Corollary. Every non-degenerate hypersurface in a pseudo-Riemannian manifold has flat nor-
mal bundle.

The relations between the curvature forms of ∇ and its projections on the factors
E± is, not surprinsingly, given by the fundamental equations discussed in the previous
section. Here’s how to translate the Gauss formulas: they are a straight consequence
of the curvature structure equations, again using the fact that the connection 1-forms
of ∇± are a subset of the connection 1-forms of ∇:

Ωa
b = dωa

b + ωa
c ∧ωc

b + ωa
λ ∧ωλ

b = (Ω+)a
b + ωa

λ ∧ωλ
b

Ωλ
µ = dωλ

µ + ωλ
c ∧ωc

µ + ωλ
ν ∧ων

µ = (Ω−)λ
µ + ωλ

c ∧ωc
µ

As an example of this technique, we have the:
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Theorem (Theorema Egregium). Let (M3, g) be a pseudo-Riemannian manifold and con-
sider M2 ⊆ M be a non-degenerate surface. Let N be a (Gauss) unit normal vector field along
M, and write g(N, N) = η ∈ {−1, 1}. Then for all p ∈ M we have

K(p) = K(TpM) + η det(AN(p)).

Proof: Consider a local orthonormal frame (E1, E2, E3 = N) to M, with E1 spacelike
and g(E2, E2) = ε ∈ {−1, 1}. We have seen that since N is a unit vector field, then
∇⊥X N = 0, and so AN(X) = −(∇X N)>, where ∇ denotes the Levi-Civita connection
of (M, g) (the tangent projection here being superfluous and written for clarity). If
(ωi

j)
3
i,j=1 denotes the matrix of connection 1-forms of∇, then the block (ωi

j)
2
i,j=1 is the

matrix of connection 1-forms for the Levi-Civita connection ∇ of M.
Note here the raising/lowering the index 2 amounts to multiplying by ε, and same

for the index 3 with η. Thus we write

AN(Ei) = −ω1
3(Ei)E1 −ω2

3(Ei)E2, i = 1, 2,

and so

det(AN) =

∣∣∣∣∣−ω1
3(E1) −ω1

3(E2)

−ω2
3(E1) −ω2

3(E2)

∣∣∣∣∣ = (ω1
3 ∧ω2

3)(E1, E2) = ε(ω13 ∧ω23)(E1, E2).

With this set in place, we use the structure equation for the curvature 2-form Ω1
2 of∇:

Ω12 = Ω1
2 = dω1

2 + ω1
1 ∧ω1

2 + ω1
2 ∧ω2

2 + ω1
3 ∧ω3

2

= dω1
2 + ω1

3 ∧ω3
2

= dω1
2 + η ω13 ∧ω32

= dω1
2 − η ω13 ∧ω23.

Here, we use that since (E1, E2) is an orthonormal frame tangent to M, the middle two
terms in the first line of the above calculation vanish. Now evaluate at (E1, E2), at a
point p ∈ M, to get εK(TpM) = εK(p) − εη det(AN(p)). Cancel ε and reorganize to
conclude that K(p) = K(TpM) + η det(AN(p)), as wanted.

Now, assume again the case that we have a pseudo-Riemannian manifold (M, g)
and a non-degenerate submanifold M. Assume that (Ei, ξλ) is a local frame for TM|M
adapted to M, i.e., all the Ei are tangent to M while the ξλ are normal. Let also (θi, Ξλ)
be the dual coframe. The connection 1-forms carry all the information about the shape
operators: we that

Aξλ
(Ej) = −α+(Ej, ξλ) = −ωi

λ(Ej)Ei =⇒ tr(Aξλ
) = −ωi

λ(Ei) = −ωiλ((θ
i)]).

Also, we have

H =
1
n

trgα =
1
n

gijαij =
1
n

gijωλ
j(Ei)ξλ =

1
n

ωλ
j((θ

j)])ξλ =
1
n

ωλi((θ
i)])(Ξλ)],
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and putting all of it together with ωiλ + ωλi = 0 gives

H =
1
n

tr (Aξλ
)(Ξλ)].

Usually (ξλ) will be an orthonormal normal frame, so that (Ξλ)] = ±ξλ, which will
make the calculations easier. For completeness, another point of view/notation (obvi-
ously equivalent to the previous one) which can be adopted when studying this: write
αij = αλ

ijξλ and Aξλ
(Ej) = α i

λ jEi. These coefficients are related by the components of
the g and their inverses. So

nH = gijαij = gijαλ
ijξλ = gijgλµgikα

k
µ jξλ = δ

j
kα

k
µ j(Ξ

µ)] = α
j

λ j(Ξ
λ)] = tr(Aξλ

)(Ξλ)],

as wanted again. In particular, if (Mn+1, g) is a given pseudo-Riemannian manifold,
Mn ⊆ Mn+1 is a non-degenerate hypersurface, and N is a Gauss unit normal vector
field along M with g(N, N) = η ∈ {−1, 1}, we have that the vector equivalent to the
dual one-form to N with respect to any local tangent frame (Ei) to M, is just ηN. So

H =
η

n
tr(AN)N =

−η

n
ωi

n+1(Ei)N.
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6 Computations for submanifolds (Cartan and non-Cartan)

6.1 Pseudo-spheres (de Sitter, anti-de Sitter, hyperbolic spaces, etc.)

Let (V, g) be a pseudo-Euclidean vector space, and Σ = {p ∈ V | 〈p, p〉 = c},
where c 6= 0. Then Σ is a regular hypersurface in V. As a pseudo-Riemannian man-
ifold, the Levi-Civita connection ∇ is the standard flat one, for which all connection
1-forms vanish when taken with respect to any orthonormal basis for V. To wit, if (ei)
is a basis for V, then we have a global coordinate system V 3 v = viei 7→ (vi) ∈ Rn

for which all the coordinate fields (given by ∂i|p = ei for all p ∈ V) are parallel. Now,
consider the unit normal vector field N : Σ→ V given by N(p) = p/

√
|c|. Let’s show

that Σ has constant sectional curvature. Consider the second fundamental form α of
Σ. Since Σ has codimension 1, we get

α(X, Y) = 〈N, N〉〈α(X, Y), N〉N =
c
|c| 〈AN(X), Y〉N

= − c
|c| 〈∇X N, Y〉N = − c

|c|3/2 〈X, Y〉N.

So, if we take an orthogonal basis (X, Y) for any non-degenerate 2-plane tangent to Σ,
we have α(X, Y) = 0 and so

K(X, Y) =
〈α(X, X), α(Y , Y)〉
〈X, X〉〈Y , Y〉 =

c2

|c|3 〈N, N〉 = 1
|c|

c
|c| =

c
c2 =

1
c

.

In particular, we see that in the concrete case where Rn
ν is the space Rn equipped with

the index ν metric tensor

〈·, ·〉ν = dx1 ⊗ dx1 + · · ·+ dxn−ν ⊗ dxn−ν − dxn−ν+1 ⊗ dxn−ν+1 − · · · − dxn ⊗ dxn,

the pseudo-spheres Sn
ν = {p ∈ Rn+1

ν | 〈p, p〉ν = 1} and the pseudo-hyperbolic spaces
Hn

ν = {p ∈ Rn+1
ν+1 | 〈p, p〉ν+1 = −1} have constant curvatures equal to 1 and −1. This

conclusion includes the n-dimensional de Sitter (Sn
1 ) and anti-de Sitter (Hn

1 ) spaces.

6.2 Marginally trapped pseudo-paraboloid

Let (V, g) be a pseudo-Euclidean vector space, and W ⊆ V a lightlike subpace for
which W ∩W⊥ = Ru, where u ∈ V is a lightlike vector. Choose a subspace X ⊆ V
such that W = X⊕Ru. Such X must necessarily be non-degenerate, for the following
reason: the g-radical of X is contained in the (g|W)-radical of X, and the latter is trivial,
as 〈x, w〉 = 0 for all w ∈W implies x ∈W ∩W⊥ = Ru, and so x ∈ X ∩Ru = {0}.

Now, consider f : X → R given by f (x) = 〈x− o, x− o〉+ a, where o ∈ X is a fixed
“origin” and a > 0. Note that d fx(v) = 〈v, x− o〉. Let M = {x + f (x)u | x ∈ X}.
Let’s show that M is marginally trapped in V. Consider the global parametrization
Φ : X → M given by Φ(x) = x + f (x)u, and note that dΦx(v) = v + 〈v, x− o〉u for all
v ∈ X. From this, we see that

〈dΦx(v), dΦx(w)〉 = 〈v + 〈v, x− o〉u, w + 〈w, x− o〉u〉 = 〈v, w〉,
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so that M is non-degenerate, by using that u is orthogonal to all vectors in W, and
a fortiori to vectors in X. Moreover, if ∇ denotes the (standard flat) Levi-Civita con-
nection of V, ∇ denotes the Levi-Civita connection of M, α is the second fundamental
form of M, and we take coordinates (xi) for X, then

∇dΦ(∂i)
dΦ(∂j) =

∂2Φ
∂xi∂xj (x) = giju,

and 〈
∂2Φ

∂xi∂xj (x),
∂Φ
∂xk (x)

〉
= 〈giju, ∂k + 〈∂k, x− o〉u〉 = 0,

which says that ∂2Φ/∂xi∂xj is always normal to M. Thus ∇dΦ(∂i)
dΦ(∂j) = 0 and we

conclude that M is flat. Finally, we get that

α(∂i, ∂j) =
∂2Φ

∂xi∂xj = giju =⇒ H =
1

dim M
gijgiju =

1
dim M

(dim M) u = u,

and M is totally umbilic and marginally trapped, as wanted.

6.3 Graphs of holomorphic functions

Let U ⊆ C be open, and f = ϕ + iψ : U → C be a holomorphic function. Consider
the graph of f in C2 ∼= R4 (with coordinates (x, y, z, w)):

gr( f ) = {(x, y, ϕ(x, y), ψ(x, y)) ∈ R4 | (x, y) ∈ U}.

Let’s study gr( f ), by looking at the global coordinate system given by

U 3 (u, v) 7→ (u, v, ϕ(u, v), ψ(u, v)) ∈ gr( f ).

Since the Cauchy-Riemann equations read ϕu = ψv and ψu = −ϕv, we may immedi-
ately obtain a tangent frame to gr( f ) in terms only of ϕ:

∂u = ∂x + ϕu∂z − ϕv∂w and ∂v = ∂y + ϕv∂z + ϕu∂w.

So, by inspection, we see that an orthonormal normal frame to gr( f ) is given by

ξ3 =
−ϕu∂x − ϕv∂y + ∂z√

1 + ϕ2
u + ϕ2

v
and ξ4 =

ϕv∂x − ϕu∂y + ∂w√
1 + ϕ2

u + ϕ2
v

.

This is perhaps easier to see identifying vectors and points, so that ∂u = (1, 0, ϕu,−ϕv)
and ∂v = (1, 0, ϕv, ϕu), and moving 1’s and 0’s to the last two components is something
natural to try.

The geometry of gr( f ) will be controlled by its second fundamental form α. But
since we already have the frame (ξ3, ξ4), let’s compute the corresponding shape oper-
ators. We organize ourselves:
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• Computing Aξ3
: first we have

Aξ3(∂u) = −(∇∂u ξ3)
>

=

(
∇∂u

ϕu∂x + ϕv∂y − ∂z√
1 + ϕ2

u + ϕ2
v

)>
(†)
=

1√
1 + ϕ2

u + ϕ2
v

(
∇∂u(ϕu∂x + ϕv∂y − ∂z)

)>
=

1√
1 + ϕ2

u + ϕ2
v

(
ϕuu∂x + ϕuv∂y

)>
(‡)
=

1√
1 + ϕ2

u + ϕ2
v

(
ϕuu

1 + ϕ2
u + ϕ2

v
∂u +

ϕuv

1 + ϕ2
u + ϕ2

v
∂v

)
=

ϕuu∂u + ϕuv∂v

(1 + ϕ2
u + ϕ2

v)
3/2 .

In (†) we use the product rule for∇ and that ϕu∂x + ϕv∂y− ∂z is normal to gr( f ),
while in (‡) we use that ∂u and ∂v are orthogonal, so that the projection in the
tangent planes to gr( f ) is the sum of the projections onto ∂u and ∂v. We proceed:

Aξ3
(∂v) = −(∇∂v ξ3)

>

=

(
∇∂v

ϕu∂x + ϕv∂y − ∂z√
1 + ϕ2

u + ϕ2
v

)>
(†)
=

1√
1 + ϕ2

u + ϕ2
v

(
∇∂v(ϕu∂x + ϕv∂y − ∂z)

)>
=

1√
1 + ϕ2

u + ϕ2
v
(ϕuv∂x + ϕvv∂y)

>

(‡)
=

1√
1 + ϕ2

u + ϕ2
v

(
ϕuv

1 + ϕ2
u + ϕ2

v
∂u +

ϕvv

1 + ϕ2
u + ϕ2

v
∂v

)
=

ϕuv∂u + ϕvv∂v

(1 + ϕ2
u + ϕ2

v)
3/2 .
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• Computing Aξ4
: we’ll just repeat the strategy adopted for Aξ3

. We start with

Aξ4
(∂u) = −(∇∂u ξ4)

>

=

(
∇∂u

−ϕv∂x + ϕu∂y − ∂w√
1 + ϕ2

u + ϕ2
v

)>
(†)
=

1√
1 + ϕ2

u + ϕ2
v

(
∇∂u(−ϕv∂x + ϕu∂y − ∂w)

)>
=

1√
1 + ϕ2

u + ϕ2
v
(−ϕuv∂x + ϕuu∂y)

>

(‡)
=

1√
1 + ϕ2

u + ϕ2
v

(
−ϕuv

1 + ϕ2
u + ϕ2

v
∂u +

ϕuu

1 + ϕ2
u + ϕ2

v
∂v

)
=
−ϕuv∂u + ϕuu∂v

(1 + ϕ2
u + ϕ2

v)
3/2

and lastly:

Aξ4
(∂v) = −(∇∂v ξ4)

>

=

(
∇∂v

−ϕv∂x + ϕu∂y − ∂w√
1 + ϕ2

u + ϕ2
v

)>
(†)
=

1√
1 + ϕ2

u + ϕ2
v

(
∇∂v(−ϕv∂x + ϕu∂y − ∂w)

)>
=

1√
1 + ϕ2

u + ϕ2
v
(−ϕvv∂x + ϕuv∂y)

>

(‡)
=

1√
1 + ϕ2

u + ϕ2
v

(
−ϕvv

1 + ϕ2
u + ϕ2

v
∂u +

ϕuv

1 + ϕ2
u + ϕ2

v
∂v

)
=
−ϕvv∂u + ϕuv∂v

(1 + ϕ2
u + ϕ2

v)
3/2

Now, let’s put all of this together and find α. We have

α(∂u, ∂u) = 〈Aξ3
(∂u), ∂u〉ξ3 + 〈Aξ4

(∂u), ∂u〉ξ4 =
ϕuuξ3 − ϕuvξ4√

1 + ϕ2
u + ϕ2

v

α(∂u, ∂v) = 〈Aξ3
(∂u), ∂v〉ξ3 + 〈Aξ4

(∂u), ∂v〉ξ4 =
ϕuvξ3 + ϕuuξ4√

1 + ϕ2
u + ϕ2

v

α(∂v, ∂v) = 〈Aξ3
(∂v), ∂v〉ξ3 + 〈Aξ4

(∂v), ∂v〉ξ4 =
ϕvvξ3 + ϕuvξ4√

1 + ϕ2
u + ϕ2

v

Thus
H = tr(Aξ3

)ξ3 + tr(Aξ4
)ξ4 =

4ϕ ξ3 + 0 · ξ4
(1 + ϕ2

u + ϕ2
v)

3/2 = 0,
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since f holomorphic implies that ϕ is harmonic. In other words, graphs of holomorphic
functions are minimal surfaces. Recall that in R3, minimal surfaces always had non-
positive curvature. This phenomenon also happens here, since

K(∂u, ∂v) = K(∂u, ∂v) +
〈α(∂u, ∂u), α(∂v, ∂v)〉 − 〈α(∂u, ∂v), α(∂u, ∂v)〉

〈∂u, ∂u〉〈∂v, ∂v〉 − 〈∂u, ∂v〉2

=
1

(1 + ϕ2
u + ϕ2

v)
3 (ϕuu ϕvv − ϕ2

uv − (ϕ2
uv + ϕ2

uu))

=
−‖∇2ϕ‖2

(1 + ‖∇ϕ‖2)3 ,

using one last time that ϕvv = −ϕuu.

6.4 Non-zero curvature planes in H3

Let H3 = {(x, y, z) ∈ R3 | z > 0} be the hyperbolic half-space, with the usual
Riemannian metric

ds2 =
dx2 + dy2 + dz2

z2 .

From our previous calculations, we have (identifying (x, y, z) ↔ (1, 2, 3), as always)
that the connection 1-forms for the Levi-Civita connection of H3 are

(ωi
j)

3
i,j=1 =

1
z

−dz 0 −dx
0 −dz −dy

dx dy −dz

 ,

and it immediately follows that∇∂x ∂y = 0,∇∂x ∂z = −(1/z)∂x and∇∂y ∂z = (−1/z)∂y,
etc..

• Consider the vertical plane Πvert : x = 0, z > 0. A unit normal field to Πvert is
given by N(0, y, z) = z∂y. Let’s compute the Gaussian curvature of Πvert. The
computation

AN(∂x) = −∇∂x(z∂y) = 0− z∇∂x ∂y = 0− 0 = 0

says that ∂x ∈ ker AN , so that det(AN) = 0 and so the Gaussian curvature of
Πvert is constant K = K(Πvert) = −1. Since rotations about the z axis and hori-
zontal translations (with no vertical component) are isometries of H3, our calcu-
lation actually holds for all vertical planes in H3.

• Consider a horizontal plane Πhor,z0 : z = z0 > 0. Let’s find the Gaussian curva-
ture of Πhor,z0 in terms of the height z0. This time, we see that N(x, y, z0) = z0∂z
is a unit normal field to Πhor,z0 . The metric induced in Πhor,z0 is a constant mul-
tiple of the standard flat metric, so we already see that the Gaussian curvature
vanishes. But to ilustrate the technique, let’s compute AN , by using the tangent
frame (∂x, ∂y) to Πhor,z0 . We have

AN(∂x) = −∇∂x(z0∂z) = −z0∇∂x ∂z = −z0

(
− 1

z0
∂x

)
= ∂x
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and

AN(∂y) = −∇∂y(z0∂z) = −z0∇∂y ∂z = −z0

(
− 1

z0
∂y

)
= ∂y

So AN is the identity endomorphism, and we conclude from the Theorema Egre-
gium that K(Πhor,z0) = −1 + 1 = 0. Also, we see that in this case

H =
1
2

tr(AN)N = z0∂z,

so this plane is not a minimal surface in H3.

• Let m > 0 and consider the slant plane Πm : z = my > 0. A tangent frame to Πm
is (∂x, ∂y + m∂z), and so a normal field to Πm at the point (x, y, my) is−m∂y + ∂z.
Normalizing, we obtain the unit normal field

N(x, y, my) =
my√

1 + m2

(
−m∂y + ∂z

)
Let’s compute AN . First, we have

AN(∂x) = −∇∂x

(
my√

1 + m2

(
−m∂y + ∂z

))
= − my√

1 + m2

(
−m∇∂x ∂y +∇∂x ∂z

)
= − my√

1 + m2
(−m0− 1

my
∂x)

=
1√

1 + m2
∂x,

and then

AN(∂y + m∂z) = −∇∂y+m∂z

(
my√

1 + m2

(
−m∂y + ∂z

))
= − m√

1 + m2
(−m∂y + ∂z)−

my√
1 + m2

(−m∇∂y ∂y +∇∂y ∂z)−
m2y√
1 + m2

(−m∇∂z ∂y +∇∂z ∂z)

= − m√
1 + m2

(−m∂y + ∂z)−
my√

1 + m2

(
−m

(
1

my
∂z

)
− 1

my
∂y

)
− m2y√

1 + m2

(
−m

(
− 1

my
∂y

)
− 1

my
∂z

)
= − m√

1 + m2

(
−m∂y + ∂z − ∂z −

1
m

∂y + m∂y − ∂z

)
=

1√
1 + m2

(∂y + m∂z).

So:

AN =
1√

1 + m2
Id2 =⇒ K(Πm) = −1 +

1
1 + m2 =

−m2

1 + m2 .

Note that limm→+∞ K(Πm) = −1 and limm→0+ K(Πm) = 0, keeping consistency
with the previous two computations for Πvert and Πhor,z0 .
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