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Introduction

Context. The topics investigated in this thesis belong to the branch of categorical logic. The main
logical language considered is the Martin-Löf Intuitionistic Type Theory[ML84], and the main cat-
egorical framework exploited is given by the elementary doctrines [MR13]. This work starts with
some considerations about setoids and their categorical descriptions.

Setoids are a concept of constructive mathematics, introduced by Bishop in [Bis67], which pro-
vide a constructive notion of set. In the seventies, Per Martin-Löf introduced the intuitionistic type
theory in order to give a foundation for constructive mathematics. This framework exploits the
notion of type and element of a type which is denoted with a : A. The main feature of intuitionistic
type theories, also called dependent type theories, is that types may depend on some parameters
of other types x : A ⊢ B(x). Following Bishops’s description of setoids as a collection of objects
with an equality relation, a setoid is given by a pair (X,R), whereX is a type in the empty context
and x1, x2 : X ⊢ R(x1, x2) is a dependent type which is an equivalence relation.

There exist various type theories, depending on the rules and type constructors assumed. For
instance, some of the usual type constructs assumed are the type of the pairs of two types, also called
the×-type , and the function type→ of functions between two types. Aprincipal distinction is given
by extensional and intensional type theorieswhich depends on the properties of the internal notion of
the equality of terms given by the identity type IdA. This notion is referred to as propositional equality
and it differs from the judgmental equality which is an external syntactic relation. When two terms
are judgmentally equal they are also propositionally equal. If the converse holds, the identity type
is called extensional, otherwise it is called intensional. Initially, the knownmodels could not separate
the two notions but, as shown in [HS98], intensional identity types conceal an higher structure
which has to be understood in terms of higher categorical structures.

Other properties of dependent type theories have been deeply studied by mathematicians, logi-
cians and also by computer scientists. Indeed, as advocated byMartin-Löf, dependent type theories
can be view as programming languages and nowadays there exist various computer formalizations
such as in [CC99; HKPM02]. Reasoning about the computational properties of these systems con-
tributed to the general understanding of the theory and setoids played an important role in the
interplay between intensional and extensional constructs.

The extensional constructs are desirable features of the system that permit to reasonmuch closer
to ordinary mathematics. Among the most important ones there are the functional extensionality
and the quotient types. The former is the property that two functions are equal if they have the same
values. The latter is the possibility to build a quotient of a type by an equivalence relation.

One possibility to obtain this constructs is to add suitable axioms, but this turns out to break
the good computational properties of the type theory. Since terms can be view as programs of
some specifications, it should always possible to decide if a program meets its specifications. This
property is called the decidability of type check. Moreover, a program which computes, for example,
a numerical result, should always be reduced to a numeral. This property is the existence of a
canonical form. Several attempts to add conservative quotient types such as in [Alt99; Mai99] and
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[Hof95a] led to undecidable type theories or the introduction of non-canonical elements. Notably,
the extensional identity types break the decidability of type check and the functional extensionality
axiom also implies the introduction of non-canonical elements. A possible solution to recover the
extensional constructs inside the intensional type theory was found by Hofmann in [Hof95b] who
exploited the so called setoid model.

A different approach is to adopt a finer system, called the homotopy type theory (HoTT), which
supports the homotopical view of the intensional identity types anticipated in [HS98] and later
in [AW09]. Awodey and Warren provided the first "homotopical model" of intensional type theo-
ries exploiting structures of homotopical algebra. In this view, types are thought as spaces and the
identity types are thought as path spaces. Independently, Voevodsky was working at a practical uni-
valent foundation of mathematics based on the notion of equivalence rather than equality of objects.
His research culminated with the introduction of the remarkable univalent axiom and many higher
inductive types to the intensional type theory. Assuming a universe type U whose elements are types,
the univalence axiom makes the identity type IdU (A,B) coincide with the type of equivalences be-
tween A and B. This notion is interpreted as the notion of homotopy equivalence in the homotopical
models of HoTT such as [KL21].

In this foundational approach, there is a clear stratification of mathematics which is given by
the syntactic notion of homotopy level of a type. For instance, the level of the logic is given by the
types called h-propositions that correspond to empty or contractible types. The level of set theory is
given by the types called h-sets, that are "discrete" types or types with trivial homotopical structure.
Mathematical constructs such as quotients are given by some higher inductive types. The main
reference for homotopy type theory is [Uni13].

A first categorical analysis of dependent type theory was provided by Seely in [See84] who
considered the category whose objects are types in the empty context and whose functions are
terms of the function type. This category is denoted here withML. For the extensional type theory,
the category ML turns out to be locally cartesian closed while, for the intensional type theory its
properties become less effective. Setoids and functions preserving relations form a category here
denoted as Std. The fact that setoids appear as a syntactic solution to take quotients of equivalence
relations has a category-theoretic counterpart given by the exact completion. As shown by Carboni
and Vitale [CV98], one can add well-behaved quotients to a category with weak finite limits in
a universal way. When a category with finite limits has "well-behaved" quotients, it is called exact
[Bar71]. A relevant example of this construction is given by the category Stdwhich can be obtained
as the exact completion of the syntactic category ML. The properties of the category of setoids
has been deeply studied for instance in [Wil10] and [Hof95c] and, in [MP00], the authors proved
that setoids form a ΠW -pretopos. This notion, as discussed in [Ber06], is a suitable candidate for a
predicative analogous of the notion of topos.

A different categorical setting to describe logical systems is given by the theory of fibered cat-
egories which relies on the concept of Grothendieck fibration [Gro71]. There are several structures
which exploit this notion, and in the recent years many of them have been used to describe de-
pendent type theories, such as in [Car86], [Jac93] and [Dyb96]. These structures rely on suitable
functors of the form P : E → C , or equivalently of the form P : C op → Cat with values in the cat-
egory of small categories and functors. This approach emphasizes the level of the contexts, given
by the category C , and the levels of the formulae or types in a context given by the values of P on
the objects of C . The substitution of terms is given by the values of the functor P on the arrows of
C . An exhaustive account of fibered categories and logical systems can be found in [Jac99].

To this family belong the elementary doctrines introduced by Maietti and Rosolini in [MR13].
The elementary doctrines are aweakened notion of Lawvere’s hyperdoctrines [Law69; Law70], given
by a functor P : C op → Pos from a category with strict finite products to the category of posets and
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order preserving functions.
Lawvere’s original remark is that the logical operations of first order logic, such as the existen-

tial and universal quantifications and the equality predicate, are expressed through suitable ad-
joint functors of the substitution functors. In this setting, many categorical semantics of first order
logic can be described using the elementary doctrines. The "standard interpretation" introduced
by Makkai and Reyes [MR77] can be described in terms of the elementary doctrine of subobjects.
The categorical Brouwer-Heyting-Kolmogorv (BHK) interpretation discussed in [Pal04] can be de-
scribed in terms of the elementary doctrine of weak subobjects.

Moreover, the theory of elementary doctrines gives a fruitful description of the constructions
used to develop constructive mathematics in foundation based on the intensional type theory.

In this framework, it is possible to define the notion of well-behaved quotient of a P-equivalence
relation and a universal construction which freely adds quotients to a suitable elementary doctrine
[MR13; MR12; MR16; MR15]. The elementary quotient completion is, to some extent, a general-
ization of the exact completion. However, the elementary quotient completion does not necessary
provide an exact category but it takes into account a wider class of categories with suitable well-
behaved quotients.

Dependent type theories give rise to rich elementary doctrines and setoids are an instance of the
elementary quotient completion applied to such doctrines.

Outline and main results. Taking into account the above situation, in this thesis we pursue three
main objectives. The first one is to study a particular class of setoids, that we have called homotopy
setoids, and their categorical properties using themachinery of the elementary quotient completion.
The second one is to introduce a more general framework in which to develop a generalized notion
of quotient completion which has the exact completion and the elementary quotient completion
as particular instances. The third objective is to provide a categorical semantic of first order logic
suitable for a large class of categories. Below, we outline the content and the main contribution of
each chapter in more detail.

In the first part of Chapter 1, we recall the precise definition of setoids and the connection with
the theory of the exact completion. In the second part, we recall the main notions and results of the
theory of elementary doctrines together with the elementary quotient completion. In particular,
we recall the description of setoids in this framework. In order to support the notions of the first
chapter, at the end of the thesis we provide two appendices. The first one is about some results of
the elementary doctrines and the second is about the syntax of the type theory we have considered.

In Chapter 2, we define the homotopy setoids, taking into account ideas from homotopy type
theory. Working into an intuitionistic type theory plus the functional extensionality axiom, we
study those setoids (X,R) such that X is an h-set and R is an h-proposition. However, we made
no assumption of the univalence axiom and of any higher inductive types. This class of setoids is
motivated by the fact that h-sets and h-propositions are the homotopy levels needed to provide the
set-based mathematics.

Hence, the first goal of this thesis is to study the category of h-setoids, denoted with Std0, and
to prove that it has good categorical properties such as the category Std. In particular, since se-
toids form a locally cartesian closed pretopos, we ask if Std0 appears as a weaker notion of locally
cartesian closed pretopos. The main problem is that Std0 does not provide an exact category, but
it has well-behaved quotients with respect to a suitable elementary doctrine. Notably, it appears as
an instance of elementary quotient completion.

The strategy adopted is to study the properties that the quotient completion inherits from the
starting structure. For the theory of the exact completion there are several results in this direction.
In particular, in [CR00] and [Emm20] the authors give a characterization of those categories whose
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exact completion is locally cartesian closed. In [GV98], the authors give a characterization of those
categories whose exact completion is lextensive. In [Men00], there is a characterization of those
categories whose exact completion is a topos.

We follow these ideas and give a characterization of the elementary doctrines whose elementary
quotient completion gives rise to a lextensive locally cartesian closed category (Theorem 2.3.7 and
Theorem2.5.6). A similar result about the local cartesian closure appeared recently in [MPR21]. We
dedicate a section to investigate the relationship between our result and the one in loc. cit.. Finally,
we prove that these results apply to the homotopy setoids which provide a non-trivial example of
a weaker notion of pretopos (Corollary 2.6.15).

In Chapter 3, we introduce the theory of the biased elementary doctrines (Definition 3.1.2) which
generalizes the theory of (strict) elementary doctrines. This new framework allow us to take into
account crucial examples of functors of the form P : C op → InfSL which are not in the realm of
the elementary doctrines due to the lack of strict finite products in C , which only appear in a weak
form. In order to do that, we exploit the notion of proof-irrelevant elements, which takes inspiration
from an example arising from intuitionistic type theory.

For these structures we provide a procedure, called strictification, which associates a strict ele-
mentary doctrine to a weak one in a suitable way (Theorem 3.3.5). Moreover, we provide a corre-
sponding construction of quotient completion (Theorem 3.4.15). As particular instances, we obtain
the elementary quotient completion and the exact completion in its more general form. The last
section is dedicated to a generalization of the result about the local cartesian closure proved in the
previous chapter (Theorem 3.7.5).

Chapter 4 deals with a categorical semantic of first order logic. The semantic developed follows
the standard interpretation of intuitionistic first order logic of Makkai and Reyes and the categor-
ical BHK interpretation. Both the interpretations lie on categories with strict finite products and
respectively strict and weak pullbacks. We consider the case of weak finite products and, in case
they are strict, we obtain the BHK interpretation.

In order to do that, we develop the ideas of the proof-irrelevant elements of the previous chapter
internally to a category with weak finite products and weak pullbacks. For this interpretation, we
discuss some soundness and completeness results for various fragments of intuitionistic first order
logic (Theorem 4.5.8, Proposition 4.5.9 and Theorem 4.7.3).

We can summarize the main contributions of this thesis as follows:

• In Theorem 2.3.7 and in Theorem 2.5.6, we give a characterization of the elementary doctrines
whose elementary quotient completion respectively gives rise to locally cartesian closed and
extensive categories. In Corollary 2.6.15, we prove that the category homotopy setoids pro-
vides an example of relative Π-pretopos.

• In Definition 3.1.2 we introduce the more general framework of the biased elementary doc-
trines. In Theorem 3.3.5, we prove the properties of the strictification. In Theorem 3.3.5, we
prove the universal property of the corresponding quotient completion. In Theorem 3.7.5, we
generalize Theorem 2.3.7 to this framework.

• In Theorem 4.5.8, Proposition 4.5.9 and Theorem 4.7.3 we prove the completeness and the
soundness results of more general categorical BHK interpretation for fragments of first order
logic in categories with weak finite products and weak pullbacks.



Chapter 1

Preliminaries

In this chapter, we will recall the main notions of type theory and category theory that will be
preliminary for the developments of the next chapters. The chapter is divided in two parts.

In the first part, we will recall the concept of setoid introduced by Bishop in [Bis67] and its ex-
pression in dependent type theories such as the Martin-Löf intuitionistic type theory [ML84]. We
will recall the categorical constructions arising from these syntactic objects and how setoids are
related with the theory of the exact completion [CV98].

In the second part, we will deal with the elementary doctrines introduced by Maietti and Rosolini
in [MR13]. Wewill recall themain results about these structures and the construction of the elemen-
tary quotient completion. The elementary doctrines provide a useful categorical tool to treat logical
systems, in particular dependent type theories. The concepts introduced in the previous section
will be view from this perspective. The theory of elementary doctrines will be the main categorical
language used in this thesis.

1.1 Setoids and exact completion

Setoids are a concept of constructive mathematics, introduced by Bishop in [Bis67]. Intuitively, a
setoid consists of a tangible collection of elements and a procedure to show when two elements
are equal. Dependent Type theories, such as Martin-Löf intuitionistic type theory [ML84], give a
fruitful logical description of these objects as types equipped with a dependent type which is an
equivalence relation.

Setoids have beenwidely studied in logic, category theory and computer science and, in [Hof95b],
Martin Hofmann used setoids to investigate relations between extensional and intensional type the-
ories. We recall that a type theory is called extensional if the reflection rule

x, y : X ⊢ p : IdX(x, y)
x = y

is derivable. Intuitively, the reflection rule implies that the "internal" notion of equality given by
identity type IdX coincideswith the judgmental equality=, which is the "external" notion of equality.
Elements that are judgmentally equal are also internally equal. The converse does not hold as
shown in the work [HS98], which predicted the homotopical view of types later crystallized in the
homotopy type theory [Uni13]. Intuitively, the extensional constructs are those that breaks the good
computational properties of a type theory such as the decidability of type check. Setoids offer a system
definable in intensional type theories that can recover the extensional constructs, without loosing
the good computational properties of the theory.

1



2 CHAPTER 1. PRELIMINARIES

In this work, wemainly considered an intensional Martin-Löf intuitionistic type theory with the
usual type constructors and a universe, such as the one described in [NPS90] or in [Coq89]. We
will denote this theory asML and refer to Appendix B for the rules and the notation adopted.

Notation. Given a type X in a context Γ , we will call the type X inhabited if there exists a term
Γ ⊢ r : X . In this case will adopt the notation Γ ⊢ X true without specifying any inhabitant term.
If U denotes the universe type, we will refer to the elements of U as small types. A closed type is a
type in the empty context, in this case we will omit the symbol ⊢.

We now give a precise formulation of setoids in type theory. The definition only exploits the
Π-type.

Definition 1.1.1. A setoid is a pair (X,R), such thatX is a closed type and R is a dependent type of
the form x, y : X ⊢ R(x, y) satisfying reflexivity, symmetry and transitivity conditions, i.e.∏

x:X

R(x, x) true, (1.1)

∏
x,y:X

R(x, y)→ R(y, x) true, (1.2)

∏
x,y,z:X

R(x, y)×R(y, z)→ R(x, z) true. (1.3)

Category theory provides an algebraic description of these syntactic objects and we now define
the category arising from small types and the category of setoids.

Given a type theory such asML, we can consider the associated syntactic category MLwhose

• objects are small closed types,

• arrows ⌊t⌉ : X → A are equivalence classes of terms x : X ⊢ t(x) : A up to functional
extensionality, i.e t and t′ : X → A are in relation if∏

x:X

IdA(t(x), t
′(x)) true. (1.4)

We will denote with ML the syntactic category arising from any dependent type theory with
enough type constructors. Every timewewill consider this category wewill specify the underlying
type theory. The category ML inherits properties from the type theory considered and we will
discuss them along the way. At the moment, we just provide the existence of limits inML.

Lemma 1.1.2. The categoryML has strict finite products and weak pullbacks.

Proof. IfX and Y are two closed types, we can consider the product typeX ×Y and the projection
arrows ⌊π1⌉ : X × Y → X and ⌊π2⌉ : X × Y → Y . If ⌊f⌉ : Z → X and ⌊g⌉ : Z → Y are two arrows,
then the introduction rule of ×-type provides a term

z : Z ⊢ (f(z), g(z)) : X × Y.

The induced arrow will be denoted with ⌊⟨f, g⟩⌉ : Z → X × Y and it satisfies ⌊π1⌉⌊⟨f, g⟩⌉ = ⌊f⌉
and ⌊π2⌉⌊⟨f, g⟩⌉ = ⌊g⌉. This arrow is the unique with such property thanks to the elimination rule
of ×-type.
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The identity types are used to build pullbacks. Indeed, given to arrows ⌊t⌉ : X → A and
⌊u⌉ : Y → A the diagram ∑

x:X,y:Y

IdA(t(x), u(y)) Y

X A.

π2

π1
u

t

(1.5)

may fail to be a strict pullback, since proofs of the same identity need not be unique.

A category with strict finite products and weak pullbacks will be often referred to as quasi left
exact (qlex). Equivalently, qlex categories can be defined as categories with strict finite products and
weak equalizers, or as categories with weak finite limits. This is a consequence of the description of
limits in term of pullbacks or equalizers that can be found in [Bor94, Proposition 2.8.2]. When the
category has weak finite products instead of strict ones and weak pullbacks (or weak equalizers),
we will call it weakly left exact (wlex). As observed by Carboni and Vitale in [CV98], wlex categories
are precisely categories with weak finite limits.

Observation 1.1.3. In case of the extensional type theory, the reflection rule implies that the di-
agram in (1.5) is a strict pullback and the category ML is locally cartesian closed (lcc). This is
discussed in detail in [See84] where the author proved a correspondence between extensional type
theories and lcc categories thorough the construction of a syntactic category actually equivalent to
ML. This correspondence, was thought to provide a semantic of extensional type theories in lcc cat-
egories but, as discovered later, there are some coherence problems about substitutions. A possible
syntactic solution to this problem can be found in [Cur93]. A categorical solution is given by the
theory of fibrations as explained in [Hof95c].

Another example of strict pullbacks will be given in the next chapter working inside an inten-
sional type theory.

We now define the category of setoids Std whose

• objects are setoids (X,R) where X is a small closed type,

• arrows between two setoids (X,R) and (Y, S) are the equivalence classes of the terms x : X ⊢
t(x) : Y , such that t preserves the relations, i.e.∏

x,y:X

R(x, y)→ S(t(x), t(y)) true, (1.6)

given by the following equivalence relation: the term t is in relationwith a term x : X ⊢ t′(x) :
Y if ∏

x,y:X

R(x, y)→ S(t(x), t′(y)) true. (1.7)

We will denote with Std the category of setoids arising from a any dependent type theory with
enough type constructors. Every timewewill consider this category wewill specify the underlying
type theory. As for the category of types, different type theories give rise to different category of
setoids. The setoids of the type theoryML have been widely studied in the literature and we have
the following well-known fact.

Fact 1. The category Std of setoids is ΠW -pretopos.
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Parts of the proof of the above fact can be found for instance in [MP00],[Wil10] and [Hof95c].
For a discussion about the differences between the setoids of intensional and extensional type the-
ories we refer to [Ber06].

We now recall the relations between setoids and the exact completion which rely on the concept
of quotient. One of themain extensional type constructor is the quotient typewhich builds quotients
of equivalence relations. Quotient type have been widely studied in the literature for example
in [Alt99], [Mai99] and [Hof95a], but all the attempts lead to the introduction of non-canonical
elements or to the undecidability of the type check. As we will clarify, setoids can recover the
quotient construction in place of the extensional quotient types. This process has a correspondent
construction in category theory which is the exact completion.

We now recall the definition of exact category and the construction of the exact completion.
Before this, the notion of pseudo-equivalence relation in a category is given by a pair of arrows

r1, r2 : R→ Y

which satisfies suitable reflexivity, symmetry and transitivity conditions, see Definition A.0.2.

Definition 1.1.4. A category C is called (Barr) exact when

1. it is left exact,

2. every effective equivalence relation (i.e. a kernel pair) has a coequalizer,

3. pullbacks of regular epimorphisms are regular epimorphisms

4. every equivalence relation is effective.

A category which satisfies only conditions 1-3 is called regular.

Starting from a category C with weak finite limits, we can form the category Cex (the exact
completion of C ) as follows.

Definition 1.1.5. Let C be a category with (weak) finite limits. The category Cex has objects given
by pseudo-equivalence relations. An arrow between two objects

r1, r2 : R→ X s1, s2 : S → Y

is given by an equivalence class of a pair (f, f̃) of arrows which makes the following diagram com-
mute component-wise

R S

X Y.

f̃

r1 s1 s2r2

f

Two pairs (f, f̃) and (g, g̃) are equivalent if there exists an arrow Σ : X → S such that s1Σ = f and
s2Σ = g. The arrow Σ is called a half-homotopy.

There are several exact completions depending on the assumptions of the categoryC . In [CV98],
the authors discuss the exact completion of lex, wlex and regular categories. What we called exact
completion is the more general form, i.e. the exact completion over a wlex category also denoted
by Cex/wlex. Every exact completion gives an exact category with a suitable universal property,
stated in terms of 2-categorical adjunctions, that can be found in detail in [CV98] and [Vit94]. We
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will recall them in Chapter 3 in order to give a more general formulation. Intuitively, the exact
completion adds well-behaved quotients to a category C with weak limits. Setoids are built in a
similar way and, thanks to Σ-types, there is a correspondence between the type theoretic notion of
equivalence relation and the categorical notion of pseudo-equivalence relation in the category Std.

Remark 1.1.6. Given an equivalence relation x, y : X ⊢ R(x, y) we can consider the arrows

π1, π2 :
∑
x,y:X

R(x, y)→ X (1.8)

of the projections on the first two components and obtain a pseudo-equivalence relation. Vice versa,
given a pseudo-equivalence relation r1, r2 : R→ X , we can consider the dependent type

x, y : X ⊢
∑
z:R

IdX(r1(z), x)× IdX(r2(z), y) (1.9)

and obtain witnesses of the fact that is a type theoretic equivalence relation. A similar correspon-
dence follows for the arrows that preserve the equivalence relations and half-homotopies between
pseudo-equivalence relations.

Hence, we can recall the following well-known fact.

Fact 2. The category Std of setoids is equivalent to the exact completionMLex of the syntactic categoryML.

The exact completion Cex inherits properties from the category C . It happens that assuming a
weaker version of the desired property in C implies that the whole property holds in Cex. In this
direction, we mention the following well-known results.

• In [CR00] and [Emm20] the authors characterize the categories C such that the exact com-
pletion Cex is (locally) cartesian closed.

• In [GV98] the authors characterize the categories C such that the exact completion Cex is
extensive.

• In [Men00] the author characterizes the categories C such that the exact completion Cex is a
topos.

It follows that a possible approach to studying the categorical properties of setoids can be to
consider the properties of the category of types ML. Another approach can be to work directly in
the category of setoids, as done in [MP00; Wil10] and in [Mai07] for a different type theory.

In the next chapter, we will define a particular class of setoids. Firstly, we will study directly
the corresponding category of setoids. Secondly, we will adopt the point of view of the elementary
doctrines. Our goal is to prove that, in a suitable form, the above facts about setoids hold for the
particular class we have considered.

1.2 Elementary doctrines

The elementary doctrines were introduced by Maietti and Rosolini in [MR13]. They are a weaker
notion of Lawvere’s hyperdoctrines [Law69; Law70], which are suitable categorical structures to
deal with logical languages. In particular, the elementary doctrines give an abstract description of
constructions based on intensional type theory such as those introduced in the previous section.
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We now recall the main definitions and examples which can be found in detail in [MR13; MR12;
MR15; MR16].

The underlying categorical structure, which we will refer to simply as doctrine, is given by func-
tors of the form

P : C op → Pos

from a category C with strict finite products to the category Pos of partially-ordered sets (posets)
and order-preserving functions. Intuitively, one should think of the base category C as the level of
the contexts and the fibers P(X) as the predicates in the context X ∈ C .

A first refinement of the definition of doctrine is given by what is called a primary doctrine.
Intuitively, primary doctrines are those doctrines fruitful to set up many-sorted logic with binary
conjunctions and true constant. Before proceeding with the definition, we fix the notation InfSL to
indicate the category of inf-semilattices. The objects of InfSL are posets with finite meets and order
preserving functions which preserve finite meets.
Definition 1.2.1. Let C be a category with strict finite products. A primary doctrine is a functor
P : C op → Pos which takes value in the category InfSL of inf-semilattices, i.e.:
P1 P(A) has finite meets, for every object A ∈ C ,
P2 for every arrow f : A→ B of C , the functor Pf : P(B)→ P(A) preserves finite meets.
The main logical example comes from first order theories. We now see how to organize these

languages in a primary doctrine.
Example 1.2.2. Given a first order theory T on a language L, we consider the category V built as
follows. Objects of V are lists of distinct variables x̄ := (x1, . . . , xn) and arrows are lists of substitu-
tions for variables [t̄/ȳ] : x̄→ ȳ. The composition of arrows is given by simultaneous substitutions.
The functor LT : Vop → InfSL sends a list of variables x̄ to the Lindenbaum-Tarski algebra LT (x̄)
defined as follows:

• objects are equivalence classes ofwell-formed formulae [φ] ofL, with free variables x1, . . . , xn,
with respect to equiprovability φ ⊣⊢T φ′,

• arrows [φ] ≤ [ψ] are provable consequences φ ⊢T ψ.
If [t̄/ȳ] : x̄→ ȳ is an arrow o f V , the functor LT ([t̄/ȳ]) : LT (ȳ)→ LT (x̄) sends the equivalence class
of a formula ⌊ψ(ȳ)⌉ to the equivalence class ⌊ψ([t̄/ȳ])⌉. The functor is a primary doctrine because
the posets LT (x̄) have finite meets given by the logical conjunctions and the top element is given
by the true predicate.

Among the primary doctrines there are those which can deal with the equality predicate which
are called elementary. This can be achieved requiring the existence of an element δX ∈ P(X × X)
satisfying suitable conditions. Before providing the definition of elementary doctrine, we fix some
notations.
Notation. Let C be a category with strict finite products and let X1, . . . , Xn be objects of C . If
j : {1, . . . , k} → {1, . . . , n} is an assignment with 1 ≤ k , then

⟨j(1), . . . , j(k)⟩ : X1 × · · · ×Xn → Xj(1) × · · · ×Xj(k)

will denote themap induced on the productXj(1)×· · ·×Xj(k) by projections pj(−) : X1×· · ·×Xn →
Xj(−). If k = 1, the arrows ⟨j(1)⟩ will always be denoted with pj(1). If k = 2 and n = 1, the arrow
⟨1, 1⟩ : X → X ×X will always be denoted with∆X .
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Definition 1.2.3. LetC be a categorywith strict finite products. A primary doctrineP : C op → InfSL
is called elementary doctrine if, for every objectX ∈ C , there exists an element δX ∈ P(X ×X) such
that:

E1 For every element α ∈ P(X), the assignment

∃∆X
(α) := Pp1(α) ∧X×X δX

is left adjoint of the functor P∆X
: P(X ×X)→ P(X).

E2 For every object Y ∈ C and arrow e := ⟨1, 2, 2⟩ : X × Y → X × Y × Y , the assignment

∃e(α) := P⟨1,2⟩(α) ∧X×Y×Y P⟨2,3⟩(δY )

for α in P(X × Y ) is left adjoint to Pe : P(X × Y × Y )→ P(X × Y ).

If P : C op → InfSL is an elementary doctrine andX is an object of C , we will refer to P(X) as the
fiber of P on X and we will refer to δX as the fibered equality on X .

The above Definition is one of the equivalent formulation of elementary doctrines which makes
use of adjoint functors in the stile of Lawvere. However, in a moment we will recall a well-known
equivalent definition of elementary doctrines which highlights the core properties of the element
δX . Before proceeding, we first recall the crucial definition of descent data.

Definition 1.2.4. Let P : C op → InfSL be a primary doctrine. If β ∈ P(X × X), then Desβ is the
sub-order of elements α ∈ P(X) satisfying

Pp1(α) ∧ β ≤ Pp2(α), (1.10)

where p1, p2 are the projections X p1← X ×X p2→ X .

For example, for every object X ∈ C , the sub-poset DesδX is given by the elements α ∈ P(X)
such that

Pp1α ∧ δX ≤ Pp2α.

Using an informal internal language, the elements of DesδX correspond to those α(x) in context
x : X such that

α(x1) ∧ x1 =X x2 ⊢ α(x2)

in context x1, x2 : X .
We now recall an equivalent definition of elementary doctrine that is discussed in [MR12, Re-

mark 2.3]. Since we were not able to find a proof of the equivalence between Definition 1.2.3 and
the following Definition 1.2.5 we provided it in appendix Proposition A.0.3.

Definition 1.2.5. LetC be a categorywith strict finite products. A primary doctrineP : C op → InfSL
is called elementary if, for every object X ∈ C , there exists an element δX ∈ P(X ×X) such that:

I ⊤X ≤ P∆X
(δX).

II P(X) = DesδX .

III δX ⊠ δY ≤ δX×Y , where δX ⊠ δY := P⟨1,3⟩δX ∧ P⟨2,4⟩δY .
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The first condition expresses the reflexivity of the equality predicate. The second expresses that
the descent data of the equality δX are the whole set of predicates in the context X . The last one
expresses a relation between the equality of the pairs and their components. In an informal internal
language, condition III becomes

x1 =X x2 ∧ y1 =Y y2 ⊢ (x1, y1) =X×Y (x2, y2).

The validity of this reasonable condition led to some considerations that have been developed in
Chapter 3.

We now mention the main examples of elementary doctrines.
Example 1.2.6. If C is a category with strict finite products and weak pullbacks, one can consider
the functor

PsubC : C op → InfSL.

Given an object A ∈ C , PsubC (A) is defined as the poset reflection of the comma category C /A.
Two arrows f, f ′ ∈ C /A satisfy f ≤ f ′ when there exists a map h making the following diagram
commute

X X ′

A,

h

f f ′

f and f ′ are equivalent when f ⋚ f ′. The objects of the poset PSubC (X) are called weak subobjects
or variations in [Gra00]. In [Pal04], they are also called pre-subobjects. If g : B → A is an arrow of
C , the functor Pg sends an equivalence class ⌊f⌉ to the equivalence class represented by the chosen
weak pullback π1g,f

Vg,α X

B A.

π2g,f

π1g,f f

g

(1.11)

The poset PsubC (A) is an inf-semilattices: the top element is given by the identity arrow ⌊1A⌉ and
the meet of two arrows ⌊f : X → A⌉ and ⌊g : B → A⌉ is given by the equivalence class of the
common value of the two composites of the diagram in (1.11). The functor PsubC is an elementary
doctrine and the fibered equality is given by the diagonal arrow δA := ⌊∆A⌉.
Example 1.2.7. If C is a category with strict finite products and strict pullbacks, one can consider
the elementary doctrine of subobjects

SubC : C op → InfSL.

If A is an object of C , the category SubC (A) is the poset reflection of monomorphisms over A for
every object A ∈ C . The action of SubC on arrows is similar to the action of PsubC .

The above examples encode two different notions of inner logic of a category. The elementary
doctrine of subobjects encodes the correspondence propositions as subobjects, introduced by Makkai
[MR77], for lex categories. The elementary doctrine of weak subobjects encodes the paradigm
propositions as objects discussed by Palmgren in [Pal04], for categories with strict finite products
andweak pullbacks. Wewill return on these aspects in Chapter 4 where we provide amore general
correspondence for categories with weak finite products and weak pullbacks.

We now discuss the example of main interest for our purposes, which comes from type theory.
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Example 1.2.8. As we have seen in the previous section, the intensional Martin-Löf intuitionistic
type theory gives rise to a syntactic categoryML of closed types and terms up to functional exten-
sionality. We now introduce the functor

FML : MLop → InfSL (1.12)
which sends a closed type A to FML(A) defined as the poset of equivalence classes of types de-
pending on A respect to equiprovability: x : A ⊢ B(x) and x : A ⊢ B′(x) are in the same equivalence
class if there exists a term of ∏

x:A

(B(x)→ B′(x))× (B′(x)→ B(x)). (1.13)

Thanks to the introduction and elimination rules of the Π-type, the above condition is equivalent
to the existence of two terms

x : A, p(x) : B(x) ⊢ q(x, p(x)) : B′(x) x : A, q′(x) : B′(x) ⊢ p′(x, q′(x)) : B′(x). (1.14)
Two equivalence classes are in relation ⌊B⌉ ≤ ⌊B′⌉ if there exists a term x : A, p(x) : B(x) ⊢
q : B′(x). The action of FML on the arrows is given by substitution. We will often, abusing the
notation, denote a type without brackets to indicate its equivalence class.

The functor FML is a primary doctrine: the meets are given by the product type × and the top
element is given by the one-element type 1. It is also an elementary doctrine and the fibered equality
is given by the identity types IdX . Condition I of Definition 1.2.5 follows from the canonical element
reflx : IdX(x, x), and conditions II and III of Definition 1.2.5 follow from the recursion principle of
the identity type. The elementary doctrine FML enjoys more properties and we will recall them
once we have introduced more expressive elementary doctrines.

Two dependent types x : A ⊢ B(x) and x : A ⊢ B′(x) that are equivalent as in (1.13) are
called logically equivalent. This notion is different from the homotopy equivalence that can be found
in [Uni13]. In homotopy type theory, this notion corresponds to the propositional equality through
the Voevodsky’s univalence axiom. However, if B and B′ are mere propositions, then the two notions
of equivalence coincide. Assuming the propositional truncation inductive type, it follows that B and
B′ are logically equivalent if and only if their propositional truncations are equivalent. We refer to
[Uni13] for further details.

The elementary doctrines form a 2-category denoted by ED. Objects of ED are elementary doc-
trines and 1-arrows from P to P′ are pairs (F, f) where F : C → C ′ is a functor which preserves
finite products and f : P ⇒ P ′ is a natural transformation such that, for every object A ∈ C , the
functor fA : P(A)→ P′(F (A)) preserves all the structure.

C op

InfSL

C ′op

P

F op

P′

f

In particular, fA preserves finite meets and
fA×A(δA) = P′

⟨F (pr1),F (pr2)⟩(δF (A)).
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A 2-arrow θ : (F, f)→ (G, g) is a natural transformation θ : F ⇒ G as in the following diagram

C op

InfSL,

C ′op

P

F op Gop

P′

f g
θop

such that, for every object A ∈ C and every element α ∈ P(A) it holds
fA(α) ≤ P′

θA
(gA(α)).

Set-like doctrines. We now recall a richer class of elementary doctrines. For these doctrines the
axiom of comprehension and an equality principle hold.
Definition 1.2.9. Let P : C op → InfSL be an primary doctrine and let X be an object of C . A
comprehension of an element α ∈ P(X) is an arrow {|α|} : C → X such that ⊤C ≤ P{|α|}α and which
satisfies the following universal property: for every arrow f : Y → X such that ⊤Y ≤ Pf (α), there
exists an arrow h : Y → C such that the following diagram commutes

C Y

X.

h

{|α|}
f

The comprehension {|α|} is called strict if the induced arrow h is unique. When h is not unique, the
comprehension {|α|} is called weak. A comprehension {|α|} : C → X is called full if α ≤ β whenever
⊤C ≤ P{|α|}β.

We will say that P has (full) (weak) comprehensions if, for every object X ∈ C , each element
α ∈ P(X) has a (full) (weak) comprehension.
Remark 1.2.10. Let P : C op → InfSL be a primary doctrine with (weak) comprehensions. If α ∈
P(A) and f : B → A is an arrow, then the following diagram

X ′ B

X A

{|Pfα|}

f

{|α|}

h

where h is the arrow induced by the comprehension {|α|}, is a (weak) pullback.
Definition 1.2.11. An elementary doctrine P : C op → InfSL has comprehensive diagonals if for every
pair of arrows f, g : A→ X such that ⊤A ≤ P⟨f,g⟩δX implies that f = g.

Equivalent definitions of comprehensive diagonals are discussed in [MR16, Lemma 2.9] and
reported here in Lemma A.0.5. In case of comprehensive diagonals and full comprehensions, it
follows that a comprehension is strict if and only if it is a monomorphism. This fact has been
observed in [MR13, Corollary 4.8] and reported here in Lemma A.0.6.

We now discuss the existence of comprehensions and comprehensive diagonals in the main
examples of elementary doctrine encountered.
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Example 1.2.12. Given a left exact category C , the elementary doctrine of subobjects SubC has strict
full comprehensions and comprehensive diagonals. A comprehension of an element ⌊m : Y ↣
X⌉ ∈ SubC (X) is given by the representant m. Since m is a monomorphism an easy verification
shows that it is a strict comprehension. Fullness is obvious. Diagonals are comprehensive because,
if f, g : X → Y are two arrows such that 1X ≤ SubC ⟨f,g⟩(⌊∆Y ⌉), tf means that the arrow ⟨f, g⟩
factors through the diagonal ∆Y , and hence f = g.

If C is weakly left exact, the elementary doctrine of weak subobjects PsubC has full weak com-
prehension and comprehensive diagonals. It is proved as for the above example but considering
that we are not working with monomorphisms.

The elementary doctrine FML arising from type theory has full weak comprehension and com-
prehensive diagonals. Indeed, if B(X) ∈ FML(X) is a dependent type, then we can consider the
projection

π :
∑
x:X

B(x)→ X (1.15)

which provides a full weak comprehension of B(x). The diagonals are comprehensive because the
arrows ofML are defined as equivalence classes of terms up to functional extensionality.

The 2-full 2-subcategory of EDwhose objects are elementary doctrineswith full comprehensions
and comprehensive diagonals is denoted with EqD The 1-arrows of EqD are 1-arrows (F, f) of ED
such that F preserves comprehensions.

∃,∀,⇒ doctrines. We now recall the elementary doctrines that can express the existential and
universal quantification and the logical connective of implication. We start from the existential
quantification.

Definition 1.2.13. An elementary doctrine P : C op → InfSL is called existential if, for every pair
of objects X1, X2 ∈ C the functors Ppi : P(Xi) → P(X1 × X2), for i = 1, 2, have left adjoints
∃pi : P(X1 ×X2)→ P(Xi) which satisfy

• the Beck-Chevalley condition: for the pullback diagram

X1 × Y Y

X1 ×X2 X2

1X1
×f

p2

f

p2

the canonical arrow ∃p2 ◦P1X1
×f (−) ≤ Pf ◦ ∃p2(−) is an isomorphism. The analogous condi-

tion holds for p1.

• the Frobenius reciprocity: for any projection pi : X1 × X2→Xi, element α ∈ P(Xi), and β ∈
P(X1 ×X2), the canonical arrow ∃pi(Ppiα ∧ β) ≤ α ∧ ∃piβ is an isomorphism.

Remark 1.2.14. If P : C op → InfSL is an existential elementary doctrines then P has left adjoints to
all reindexings. If f : X → Y is an arrow of C then the functor which sends an element α ∈ P(X)
to

∃f (α) := ∃p2(Pp1α ∧ Pf×1Y δY ) (1.16)
where p1, p2 are the projections of X × Y , is left adjoint to the functor Pf : P(Y )→ P(X).
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Example 1.2.15. If C is a left exact category which is also regular, then the elementary doctrine of
subobjects SubC is existential. This is a well-known result used to interpret regular logic in regular
categories. If f : Y → X is an arrow of C , then the left adjoint of SubC f is given by the functor that
send an element ⌊m⌉ ∈ SubC to

∃f⌊m⌉ := ⌊Im(f ◦m)⌉

where Im(f ◦m) is the monomorphism given by the regular epi mono factorization of f ◦m.
If C has strict products and weak pullbacks, then the elementary doctrine of weak subobjects

PsubC is existential. If f : Y → X is an arrow of C , then the left adjoint of PsubC f is given by the
functor that send an element ⌊m⌉ ∈ PsubC to

∃f⌊m⌉ := ⌊f ◦m⌉.

The elementary doctrine FML arising from type theory is existential. The left adjoint to the
reindexing over an arrow ⌊t⌉ : X → Y is given by the functor which sends an element B(y) ∈
FML(Y ) to the Σ-type

x : X ⊢
∑
y:Y

B(x)× IdY (t(x), y).

We now define elementary doctrines which can express universal quantifications.

Definition 1.2.16. An elementary doctrine P : C op → InfSL is called universal if for every pair
of objects X1, X2 ∈ C , the functors Ppi : P(X) → P(X1 × X2), for i = 1, 2, have right adjoints
∀pi : P(X1 ×X2)→ P(Xi) which satisfy

• the Beck-Chevalley condition: for the pullback diagram

X1 × Y Y

X1 ×X2 X2

1X1
×f

p2

f

p2

the canonical arrow Pf ◦ ∀p2(−) ≤ ∀p2 ◦ P1X1
×f (−) is an isomorphism. The analogous condi-

tion holds for p1.

Example 1.2.17. The elementary doctrine FML is universal. If X and Y are closed types then the
right adjoint to the functorFML

p1 is given by the functor which sends an elementB(x, y) ∈ FML(X×
Y ) to the Π-type

x : X ⊢
∏
y:Y

B(x, y).

Finally, we define elementary doctrine which can express the implication.

Definition 1.2.18. A primary doctrine P : C op → InfSL is called implicational if for every object
X ∈ C and element α ∈ P(X) the functor α ∧ − : P(X) → P(X) has a right adjoint α ⇒ − :
P(X)→ P(X). Moreover, for every arrow f : Y → X of C and elements α, β ∈ P(X), it is required
that Pf (α⇒ β) = Pfα⇒ Pfβ.

In the following remark we observe some relations between universal and implicational doc-
trines.
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Remark 1.2.19. If P is an elementary doctrine implicational and universal, then for every f : X →
Y , the functor Pf has a right adjoint which sends α ∈ P(X) to

∀f (α) := ∀p2(Pf×1Y δY =⇒ Pp1α) (1.17)

where p1, p2 are the projections of X × Y .
Moreover, as observed in [MR13, Lemma 4.9] it is possible to build implications from full weak

comprehensions. Let P : C op → InfSL be a primary doctrinewith full weak comprehensions and as-
sume that, for every objectX ∈ C andα ∈ P(X), the reindexingP{|α|} over theweak comprehension
{|α|} has right adjoint ∀{|α|}. For every α′ ∈ P(X) we can define the implication

α =⇒ α′ := ∀{|α|}P{|α|}α
′. (1.18)

The above definition satisfies the adjoint property of Definition 1.2.18.
Example 1.2.20. This is the case of the elementary doctrine FML which is also implicational. The
implication is given by the arrow type: ifX is a closed type then the implication of two dependent
type B(x), B′(x) ∈ FML is given by the type

x : X ⊢ B(x)→ B′(x).

The adjoint condition is given by theCurring operation. Hence, Remark 1.2.19 implies that for every
arrow ⌊t⌉ : X → Y , the functor FML

t has a right adjoint which sends an element B(x) ∈ FML to
the Π-type

y : Y ⊢
∏
x:X

(B(x)→ IdY (f(x), y)). (1.19)

We have recalled the main notions about the elementary doctrines and we have seen that the
functor FML arising from type theory is a rich elementary doctrine. We can collect the properties
observed for FML in the following lemma which appears as [MR13, Proposition 7.2 and 7.2].
Proposition 1.2.21. The functor FML : MLop → InfSL of Example 1.2.8 is an existential, universal and
implicational elementary doctrine with full weak comprehensions and comprehensive diagonals.

1.3 Elementary quotient completion

The language of the elementary doctrines provides a more general framework to define the notion
of equivalence relation and quotient. The classical notions of pseudo-equivalence relation and coequal-
izer of category theory are obtained as a particular instance considering the elementary doctrines
of subobjects and weak subobjects. Moreover, the exact completion of a category with strict finite
products and weak pullbacks, is a particular instance of a more general construction, namely the
elementary quotient completion. This construction has been introduced by Maietti and Rosolini in
[MR13] and it provides a procedure to add well-behaved quotients in a suitable universal way that
will be recalled in this section. This framework is particularly useful to treat the quotient construc-
tion in foundations of constructive mathematics based on intensional type theory.

We start recalling the notion of equivalence relation and quotient relative to suitable doctrine.
Definition 1.3.1. Let P : C op → InfSL be an elementary doctrine. A P-equivalence relation on an
object X ∈ C is an element ρ ∈ P(X ×X) such that
ref) δX ≤ ρ,
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sym) P⟨2,1⟩ρ ≤ ρ,
trans) P⟨1,2⟩ρ ∧ P⟨2,3⟩ρ ≤ P⟨1,3⟩ρ,
Where the arrows ⟨2, 1⟩ : X ×X→X ×X and ⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩ : X ×X ×X→X ×X are induced
by the obvious projections.
Definition 1.3.2. LetP : C op → InfSL be an elementary doctrine and let ρ be aP-equivalence relation
on X . A quotient of ρ is an arrow q : X → C such that ρ ≤ Pq×qδC

1 and, for every arrow g : A→ Z
such that ρ ≤ Pg×gδZ , there exists a unique arrow h : C → Z such that g = h ◦ q.

A quotient is said stable when, for every arrow f : C → C ′, there is a pullback diagram

A′ C ′

A C

q′

f ′ f

q

in C such that the arrow q′ : A′ → C ′ is a quotient of the P-equivalence relation Pf ′×f ′ρ.
If f : A→ B is an arrow in C , the P -kernel of f is the P -equivalence relation Pf×f (δB).
A quotient q : A → B of the P-equivalence relation ρ is called effective if its P-kernel is ρ. The

quotient q is of effective descent if the functor

Pf : P(B)→ Desρ

is an isomorphism.
We will denote by QD the 2-full 2-subcategory of EqD whose objects are elementary doctrines

of EqD with stable effective quotients of P-equivalence relations and of effective descent. The 1-
arrows of QD are 1-arrows (F, f) of ED such that F preserves quotients and comprehensions.

We now recall the elementary quotient completion construction. Given an elementary doctrine
P : C op → InfSL, we can consider the category C whose

• objects are pairs (X, ρ), where X is an object of C and ρ is a P-equivalence relation on X ,
• arrows between two objects (X, ρ) and (Y, σ) are equivalence classes of the arrows f : X → Y

such that ρ ≤ Pf×f (σ). Two arrows f, f ′ are equivalent when ρ ≤ Pf×f ′(σ).
We now define the functor

P : C
op → InfSL

which sends an object (X, ρ) ∈ C to P(X, ρ) := Desρ and an arrow ⌊f⌉ to P⌊f⌉ := Pf . The functor P
is called the elementary quotient completion of P.

There is an obvious 1-arrow
(J, j) : P→ P

given by the functor J , which sends an object X ∈ C to (X, δX) ∈ C and an arrow f : X → Y to
the arrow ⌊f⌉ : (X, δX) → (Y, δY ). For every object X ∈ C the natural transformation j is defined
as jX := 1P(X).

The elementary quotient completion is the construction which freely adds quotients to an ele-
mentary doctrine in the sense of the following theorem which appears as [MR13, Theorem 5.8].

1If f : A → C and g : B → D are arrows of C , then f × g denotes the unique arrow A × B → C × D induced by
f ◦ p1 : A×B → C and g ◦ p2 : A×B → D.
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Theorem 1.3.3 (Maietti and Rosolini). For every elementary doctrine P : C op → InfSL in EqD, the
assignment P → P gives a left bi-adjoint to the forgetful 2-functor U : QD → EqD, i.e., pre-composition
with the 1-arrow (J, j)

C op

InfSL

Qop

P

Jop

P

j

induces an equivalence of categories

− ◦ (J, j) : QD(P, X) ∼= EqD(P,UX)

for every X in QD.

IfP is an elementary doctrine, thenP is an elementary doctrinewith quotients of allP-equivalence
relations. Given an object (X, ρ) ∈ C , a P-eq relation ρ′ on (X, ρ) is nothing but a P-eq.relation on
X such that ρ ≤ ρ′. A quotient of ρ′ is given by the arrow

⌊1X⌉ : (X, ρ)→ (X, ρ′). (1.20)

Observation 1.3.4. As shown in [MR12] it is possible to split the elementary quotient completion
in different steps. Instead of starting from doctrines of EqD, it is possible to freely add comprehen-
sions, comprehensive diagonals and quotients separately. Every construction comes equippedwith
a universal property in style of Theorem 1.3.3 between the right 2-categories. We refer to loc.cit. for
further details about these constructions.

We now discuss the relation between the exact completion discussed in Definition 1.1.5 and the
elementary quotient completion.

Example 1.3.5. WhenC is a categorywith finite strict products andweak pullbackswe can consider
the elementary doctrine of weak subobjects PsubC : C → InfSL of Example 1.2.6. As we observed,
this doctrine encodes the inner logic of weak subobjects. The notion of pseudo-equivalence relations
is nothing but the notion of equivalence relation in this logic. In particular, a pseudo-equivalence
relation on A is a pair of arrows

r1, r2 : R→ X

satisfying certain reflexive, symmetric and transitive conditions listed in Definition A.0.2. These
arrows induce an arrow

⟨r1, r2⟩ : R→ X ×X

and hence an element ⌊⟨r1, r2⟩⌉ ∈ PsubC (X×X)which is a PsubC -eq. relation onX . If r1, r2 : R→
X and s1, s2 : S → X are pseudo-equivalence relations and f, f̃ is a half-homotopy between them,
then an easy proof shows that ⟨r1, r2⟩ ≤ PsubC f×f ⟨s1, s2⟩. This association define a functor

Cex → C
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which turns out to be an equivalence of categories. We observe that it is not an isomorphismbecause
in Cex the objects are not considered up to the following equivalence relation. The pair r1, r2 : R→
X is equivalent to the pair r′1, r′2 : R′ → AX if and only if there exist two arrows h : R → R′ and
h′ : R′ → R such that the following diagrams commute for i = 1, 2

R R′

X.

h

ri r′i

R R′

X

ri r′i

h′

for i = 1, 2. If two pairs are in relation as above, then ⌊⟨r1, r2⟩⌉ = ⌊⟨r′1, r′2⟩⌉. A coequalizer of the
pseudo-equivalence relation r1, r2 : R→ A is a quotient of the PsubC -eq. relation ⌊⟨r1, r2⟩⌉.

If P : C op → InfSL is an elementary doctrine, then the elementary quotient completion provides
to add well-behaved quotients of P-equivalence relations. While, as we observed in the above ex-
ample, the exact completion provides to add well-behaved quotients of the PsubC -eq. relations (at
least when C has strict product and weak pullbacks). These operations in general do not coincide
and, moreover, the category C is not necessarily exact. In the next chapter, we will work with a
concrete example of this fact. However, under suitable hypothesis we obtain that the elementary
quotient completion yields a regular category.

The following is an immediate corollary of [MR13, Proposition 4.15]

Proposition 1.3.6. If P : C op → InfSL is an elementary doctrine with full weak comprehensions and
comprehensive diagonals, then the base category C of the elementary quotient completion P of P is a regular
category.

The elementary quotient completion P inherits some of the properties of P. We now list some
of the properties inherited by P that can be found in the mentioned literature.

Proposition 1.3.7. If P : C op → InfSL is an elementary doctrine, then:

1. if P has (full) weak comprehensions, then P has (full) strict comprehensions,

2. if P is existential, then P is existential,

3. if P is universal, then P is universal,

4. if P is implicational, then P is implicational.

We now discuss the elementary quotient completion of the elementary doctrine FML arising
from type theory.

Example 1.3.8. The elementary quotient completion of the elementary doctrine FML of Exam-
ple 1.2.8 is given by the functor

FML : C
op → InfSL

from the opposite of the category C whose

• objects are pair (X, ⌊R⌉) where X is a closed type and ⌊R⌉ is the equivalence class of a de-
pendent type

x1, x2 : X ⊢ R(x1, x2)

which is an equivalence relation,
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• arrows between two objects (X, ⌊R⌉) and (Y, ⌊S⌉) are equivalence classes of arrows f : X → Y
such that f preserves the relations R and S as in (1.6) and (1.7).

It turns out that the category of setoids is equivalent to the base category of the elementary quotient
completion of FML, i.e.

Std ∼= ML. (1.21)
Moreover, as observed by the authors of [MR13] the elementary doctrine FML is equivalent to
the elementary doctrine of weak subobjects PSubML of the weakly left exact category of typesML.
This result follows from the existence of comprehensions and existential functors which define the
one-arrows

MLop

InfSL.

MLop

IdML

PsubML

FML

∃(−)⊤(−) {|−|} (1.22)

The comprehensions provide a natural transformation

{|− |} : FML(X)→ PsubML(X)

which sends the equivalence class of a dependent type x : X ⊢ B(x) to the equivalence class of the
arrow

π :
∑
x:X

B(x)→ X.

The Σ-type defines a natural transformation

∃(−)⊤(−) : PsubML(X)→ FML(X)

which sends the equivalence class of an arrow f : Y → X to the dependent type

x : X ⊢
∑
y:Y

IdY (f(x), y)

up to logical equivalence. The above arrows provide an isomorphism of posets.
As an application of Example 3.4.4 we obtain a proof of the Fact 2 and in particular

ML ∼= Std ∼= MLex. (1.23)
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Chapter 2

Homotopy setoids

In this chapter, we study a particular class of setoids, which we will refer to as the homotopy se-
toids. Taking into account the homotopical perspective of the homotopy type theory (HoTT) , we
considered only "discrete" types equipped with an equivalence relation which only contains the
information of when two elements are related. In the HoTT notation [Uni13], the former types are
called h-sets and the latter are called h-propositions. However, the type theory we have considered
does not assume the univalence axiom or higher inductive types typical of HoTT but it is just the inten-
sional Martin-Löf intuitionistic type theory with the functional extensionality axiom (ML+ F.E.).

We studied the categorical properties of the homotopy setoids which form a full subcategory
Std0 of the category of setoids Std introduced in the previous chapter. Our goal is to prove that
Std0 has good categorical properties as Std does. In particular, since Std is a ΠW-pretopos, in this
chapter we ask if Std0

• has well-behaved quotients,

• is (locally) cartesian closed,

• is extensive.
In order to address the first one, we observe that the main difference with the classical setoids is

that in the homotopy setoids not every equivalence relation has quotient, but only those relatedwith
the h-propositions. Hence, Std0 is not the exact completion of a suitable category as it happens for
Std. For this reason, we adopted the categorical setting of the elementary doctrines introduced by
Maietti and Rosolini in [MR13], which allows us the possibility to consider quotients of equivalence
relations relative to a doctrine. IfML0 denotes the category of the h-sets, we can consider the functor

FML0 : MLop0 → InfSL

which sends an h-setX to the poset of the h-propositions depending onX up to logical equivalence,
and acts on arrows as substitution. We prove that this functor is an elementary doctrinewith several
properties and considering the elementary quotient completion

FML0 : ML0
op → InfSL

we obtain that Std0
∼= ML0. Hence, h-setoids are an instance of a more general form of quotient

completion and the quotients are well-behaved with respect to the doctrine FML0 .
Instead of working directly on Std0, we study the properties of the elementary quotient com-

pletion following the tradition started by Maietti, Rosolini. Hence, in Section 2.3 we will generalize

19
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to the context of the elementary quotient completion the result in [CR00] and [Emm20] about the
(local) cartesian closure of the exact completion. In Section 2.5, we will generalize the result in
[GV98] about the extensivity of the exact completion. In Section 2.6, we will apply these results to
FML0 and obtained that the homotopy setoids form a Π-pretopos relative to FML0 .

As we will discuss, this chapter has a non-trivial intersection with [MPR21]. In loc.cit. the au-
thors extend to the elementary quotient completion Menni’s characterization of the exact comple-
tions which are toposes [Men00] and give a different (but equivalent) proof of the result we ob-
tained for the (local) cartesian closure. The connection between our result and the one in [MPR21],
will be discussed in Section 2.4.

2.1 Definition and properties

In this section, we recall some notion of homotopy type theory and define the particular class of
setoids which will be studied in more detail along the chapter. In addition, we discuss the first
categorical properties of these setoids and the differences with the usual setoids introduced in Sec-
tion 1.1. For the homotopy type theoretical notions we refer to [Uni13] and [Rij18].

Before starting, we fix the type theory assumed for the rest of the chapter.
Remark 2.1.1. The type theory assumed is the intensional Martin-Löf intuitionistic type theory
with the functional extensionality axiom (ML + F.E.). All the notations and the type constructors
used can be found in Appendix B.

We now recall the definition of the homotopy type and briefly discuss the geometrical intuition of
types as topological spaces, typical of the homotopy type theory.
Definition 2.1.2. The homotopy type of a type X is defined inductively as follows:

- type−2(X) :=
∑
x:X

∏
y:X

IdX(x, y)

- type−1(X) :=
∏

x,y:X

IdX(x, y)

- type0(X) :=
∏

x,y:X

type−1(IdX(x, y))

- typen+2(X) :=
∏

x,y:X

typen+1(IdX(x, y))

If n ≥ −2 is the first integer such that typen(X) is inhabited, then we will say that the homotopy
type of X is n.

By induction, we observe that ifX has homotopy type equal to n, then the typej(X) is inhabited
for every j ≥ n. If the homotopy type of X is equal to −2, then the type is called contractible.
The homotopical intuition is that the type X has an inhabitant x : X and every element of X
is propositional equal to x. If the type X has homotopy type equal to −1, then it is called an h-
proposition or mere proposition, using the notation in [Uni13]. The h-propositions were also called
mono types in [Mai98]. In this case, X can be only empty or contractible, which corresponds to the
truth values true and false. IfX has homotopy type equal to 0, it is called an h-set. The homotopical
intuition is that X corresponds to the set of its connected components. For 1 ≤ n types should
be thought as higher groupoids. This correspondence has been crystallized in [KL21] in which
the authors provide a model of the homotopy type theory in one of the possible formalization of
infinite-groupoids in higher category theory [Lur09].
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Example 2.1.3. The empty type 0 and the one element type 1 are h-propositions. The two elements
type 2 and the natural number type N are h-sets.

We mainly focused on h-sets equipped with an equivalence relation which is an h-proposition.
Definition 2.1.4. An homotopy setoid is a setoid (X,R) such thatX is an h-set andR is an h-proposition.

We could define the homotopy setoids with respect to a general homotopy type n, saying that
an n-setoid is a setoid (X,R) such that the type X has homotopy type equal to n and the type R
has homotopy type n-1. In this way, the homotopy setoids correspond to the 0-setoids. If we denote
with MLn the full subcategories of ML of closed types with homotopy type n and with Stdn the
full subcategory of Std of n-setoids, then we have the following diagram of inclusions

ML0 ML1 ML

Std0 Std1 Std

(•,Id•) (•,Id•)(•,Id•)

where the vertical arrows are given by functors which send a typeX to the free setoids (X, IdX) and
an arrow t : X → Y to the equivalence class ⌊t⌉ : (X, IdX)→ (Y, IdY ). The definition of homotopy
type ensures that this functor is well-defined for every degree n ≥ 0.
Remark 2.1.5. The homotopy types preserve various type constructors. For instance, as discussed
in [Uni13, Example 3.1.5, 3.1.6, 3.6.1 and 3.6.2] if X and Y are h-sets (h-propositions), then the
product typeX × Y is an h-set (h-proposition). IfX and Y are h-sets, then the sum typeX + Y is
an h-set. If X is any type and x : X ⊢ B(x) is an h-set (h-proposition), then the type∏

x:X

B(x)

is an h-set (h-proposition). For the h-sets, the functional extensionality axiom is needed in order
to obtain that dependent function type is an h-set. This is the main reason why we adopted this
axiom.

Moreover, if X is an h-set and x : X ⊢ B(x) is an h-set then the type∑
x:X

B(x)

in an h-set; similar properties hold for every homotopy type of level n ≥ 0.
However, not all type constructors preserve h-propositions. For instance, if X and Y are h-

propositions, the sum typeX + Y is not necessarily an h-proposition; the one element type 1 is an
h-proposition, but the sum 1+1 is an h-set. A similar issue happens for the Σ-type. If X is a type
and P is an h-proposition, the type ∑

x:X

P (x)

is not necessarily a h-proposition.
For these reasons we recall two useful results in order to have h-propositions preserved for Σ-

types and +-types. The following appears as [RS15, Lemma 2.2] but before we recall that, for a
type x : X ⊢ P (x), the type

at-most-one(X) :=
∏
x,y:X

P (x)→ P (y)→ IdX(x, y) (2.1)

expresses the property of P (x) to have at most one element for which it holds.
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Lemma 2.1.6 (Rijke-Spitters). If X is any type and x : X ⊢ P (x) is ah h-proposition such that the type
in (2.1) is inhabited, then the type ∑

x:X

P (x)

is an h-proposition.

The following result appears as [Uni13, Exercise 3.7].

Lemma 2.1.7. If X and Y are h-propositions and ¬(X × Y ) true, then X + Y is an h-proposition.

As we have seen in Section 1.1, the category of types ML has strict finite products and weak
pullbacks, hence all weak finite limits. For the subcategory of h-sets we obtain a stronger result.

Lemma 2.1.8. The categoryML0 is left exact.

Proof. Equivalently, we prove the existence of finite products and pullbacks. The existence of finite
products follows from Remark 2.1.5 and elimination rule of ×-types. This is a consequence of the
fact that for h-sets, the identity type is an h-proposition and hence, given two arrows between h-sets
⌊t⌉ : X → A and ⌊u⌉ : Y → A the diagram∑

x:X,y:Y

IdA(t(x), u(y)) Y

X A.

π2

π1
u

t

(2.2)

has the strict universal property of pullbacks.

We now discuss some categorical properties of the category Std0. In order to do that, we will
review the steps of a direct proof of the fact that Std is an exact category and observe that most of
the results hold for the category Std0.

Proposition 2.1.9. The category of Std0 is a regular category.

Before providing a proof of the above proposition, we prove some preliminary results. We start
recalling how finite products and equalizers are constructed in the category of setoids. If (X,R)
and (Y, S) are setoids, the the product is given by

(X × Y,R× S) (2.3)

where z : X × Y ×X × Y ⊢ R(z1, z3)×S(z2, z4) and zi := πi(z), for 1 ≤ i ≤ 4. A trivial verification
shows that the reduction rule implies the universal property of products.

Moreover, given two arrows ⌊f⌉, ⌊g⌉ : (X,R)→ (Y, S) then the arrow

⌊π⌉ : (
∑
x:X

S(f(x), g(x)), R′)→ (X,R) (2.4)

where R′(z1, z2) := R(πz1, πz2) for z1, z2 :
∑
x:X

S(f(x), g(x)), is the equalizer of ⌊f⌉ and ⌊g⌉.
The above argument can be repeated for the homotopy setoids.

Lemma 2.1.10. The category Std0 has finite products and equalizers.
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Proof. If (X,R) and (Y, S) are homotopy setoids, then Remark 2.1.5 implies that the setoids (X ×
Y,R× S) and (

∑
x:X

S(f(x), g(x)), R′) are h-setoids.

The above lemma implies that Std0, such as Std, has finite limits. For instance, a pullback of two
arrows ⌊f⌉ : (X,R)→ (Z, T ) and ⌊g⌉ : (Y, S)→ (Z, T ) is given by

(P, (R⊠ S)∗) (Y, S)

(X,R) (Z, T )

⌊π2⌉

⌊g⌉⌊π1⌉

⌊f⌉

(2.5)

where
P :=

∑
x:X

∑
y:Y

T (f(x), g(y))

and
(R⊠ S)∗(z1, z2) := R(π1z1, π1z2)× S(π2z1, π2x2),

for z1, z2 : P and π1 and π2 the canonical projections of P into X and Y respectively. If ⌊f⌉ = ⌊g⌉
we obtain a kernel pair of ⌊f⌉. If ⌊f⌉ : (X,R) → (Z, T ) is an arrow of Std, then the kernel pair of
⌊f⌉ is given by the following pair of arrows:

⌊π1⌉, ⌊π2⌉ : (P, (R⊠R)∗)→ (X,R) (2.6)

where P :=
∑
x1:X

∑
x2:X

T (f(x1), f(x2)). The quotient is obtained providing X with a suitable equiv-

alence relation. If we define x1, x2 : X ⊢ R(x1, x2) to be R(x1, x2) := T (f(x1), f(x2)), then the
coequalizer of ⌊π1⌉, ⌊π2⌉ is given by the arrow

⌊1X⌉ : (X,R)→ (X,R).

Indeed, if an arrow ⌊g⌉ : (X,R) → (Y, S) coequalizes ⌊π1⌉, ⌊π2⌉ it implies that ⌊g⌉(x1) = ⌊g⌉(x2)
when T (f(x1), f(x2)). Hence, g induces an arrow ⌊g⌉ : (X,R) → (Y, S) such that ⌊g⌉⌊1X⌉ = ⌊g⌉,
which is clearly unique.

In the following proposition we prove that kernel pairs have coequalizers also in Std0.
Proposition 2.1.11. In Std0 every kernel pair has coequalizer.

Proof. If ⌊f⌉ is an arrow of Std0, then the kernel pair is still in Std0. The construction of the co-
equalizer relies on R which is obviously an h-propostion if R is an h-proposition.

We now prove that regular epimorphisms are pullback stable. In order to do that, we recall a
characterization of epimorphisms in the category Std due toWilander in [Wil10]. There, the author
shows that an arrow ⌊f⌉ : (X,R) → (Y, S) is an epimorphism if and only if it is a surjective arrow,
i.e. the following type is inhabited:

surj(f) :=
∏
y:Y

∑
x:X

S(f(x), y). (2.7)

The left to right direction requires the assumption of a universe in the type theory; otherwise, there
is a model introduced by Smith in [Smi88] in which the statement does not holds. Instead, the fact
that every surjective arrow is an epimorphism holds without universes.
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Among the various notions of epimorphism in a category, there is that of coequalizer. In Std
this notion coincides with that of surjectivity.

Indeed, a term of surj(f) implies the existence of a section s : Y → X of f , which clearly induces
an arrow

⌊s⌉ : (Y, S)→ (X,R).

The arrow ⌊s⌉ is the inverse of the unique arrow induced by the universal property of the coequal-
izer ⌊1X⌉ : (X,R)→ (X,R). Hence, ⌊f⌉ is a coequalizer of its kernel pair.

Vice versa, if ⌊f⌉ is the coequalizer of two arrows ⌊g⌉, ⌊h⌉ : (Z, T ) → (X,R), then we can con-
sider the setoid arrow

⌊π⌉ : (
∑
y:Y

∑
x:X

S(f(x), y), S′)→ (Y, S), (2.8)

where S′(z1, z2) := S(π(z1), π(x2)), for z1, z2 :
∑
y:Y

∑
x:X

S(f(x), y). Since the above arrow coequalizes
⌊g⌉ and ⌊h⌉ it follows that there exists an arrow

s : Y →
∑
y:Y

(
∑
x:X

S(f(x), y))

from which we can extract a term of surj(f).
The same correspondence bettween surjective arrows and coequalizers holds for the homotopy

setoids.

Lemma 2.1.12. An arrow ⌊f⌉ : (X,R)→ (Y, S) of Std0 is surjective if and only if it is a coequalizer.

Proof. If ⌊f⌉ is an arrow of Std0 then the kernel pair and its coequalizer are in Std0. The same holds
for the arrow in (2.8). Hence, the argument is valid in Std0.

The above result and the one in [Wil10] imply the following characterization of epimorphisms
in Std and Std0.

Corollary 2.1.13. If ⌊f⌉ : (X,R) → (Y, S) is an arrow of Std the following conditions are equivalent, if
⌊f⌉ is an arrow of Std0, then the last two conditions are equivalent:

1. ⌊f⌉ is an epimorphism,

2. ⌊f⌉ is surjective,

3. ⌊f⌉ is an regular epimorphism.

This characterization of the epimorphisms helps to understand their stability properties. In Std
the regular epimorphisms are stable under pullback. This is better seen ifwe reason about surjective
arrows. Indeed, if ⌊f⌉ : (X,R) → (Z, T ) is a surjection and ⌊g⌉ : (Y, S) → (Z, T ) is an arrow, the
description of pullbacks in (2.5) implies that the statement is equivalent to prove that the arrow

⌊π2⌉ : (P, (R⊠ S)∗)→ (Y, S) (2.9)

is a surjection, where P :=
∑
x:X

∑
y:Y

T (f(x), g(y)) and

(R⊠ S)∗(z1, z2) := R(π1z1, π1z2)× S(π2z1, π2x2). (2.10)
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If s : surj(f) and for every z : Z the term s(z) := (s1(z), s2(z)) with s1(z) : X and s2(z) :
T (f(s1(z), z)) then

y : Y ⊢ (s1(g(z)), y, s2(g(z)), refl(y)) : surj(π2).

The same argument holds for homotopy setoids.
Proposition 2.1.14. In Std0 regular epimorphisms are stable under pullback.

Proof. If ⌊f⌉ and ⌊g⌉ are arrows as above between homotopy setoids and ⌊f⌉ is surjective, then the
arrow in (2.9) is an arrow of homotopy setoids and it is a surjection. The statement follows from
Corollary 2.1.13.

We can now collect the above results to prove Proposition 2.1.9.
Proof of Proposition 2.1.9. In Lemma 2.1.10 we have proved that Std0 has product and equalizers.
Proposition 2.1.11 implies that every kernel pair has coequalizer. Finally regular epimorphism are
pullback stable as shown in Proposition 2.1.14.

We now discuss the properties of monomorphisms of Std and Std0. As for surjectivity, the
injectivity of an arrow ⌊f⌉ : (X,R)→ (Y, S) can be expressed through the type

inj(f) :=
∏

x1,x2:X

S(f(x1), f(x2))→ R(x1, x2). (2.11)

We now prove that monomorphisms and injective arrows coincide both in Std and Std0.
Proposition 2.1.15. In Std and Std0 an arrow is a monomorphism if and only if it is injective.

Proof. Assuming ⌊f⌉ : (X,R) → (Y, S) injective, if ⌊g⌉, ⌊h⌉ : (Z, T ) → (X,R) are two arrows such
that ⌊f⌉⌊g⌉ = ⌊f⌉⌊h⌉, then we have a term of∏

z1,z2:Z

T (z1, z2)→ S(f(g(z1)), f(h(z2))))

that we can combine with a term of inj(f) in order to obtain a term of∏
z1,z2:Z

T (z1, z2)→ R(g(z1), h(z2))

which state that ⌊g⌉ = ⌊h⌉. Vice versa, if ⌊f⌉ is a monomorphism, thenwe can use left cancellability
of ⌊f⌉with the arrows obtained through the composition of the arrow

⌊π⌉ : (
∑

x1,x2:X

S(f(x1), f(x2)), (R⊠R)∗)→ (X ×X,R⊠R)

with the projections ⌊πi⌉ : (X ×X,R ⊠ R) → (X,R), for i = 1, 2, where (R ⊠ R)∗ is defined as in
(2.5). Hence, we obtain ⌊π1⌉⌊π⌉ = ⌊π2⌉⌊π⌉. Since

⌊π⌉ : (
∑

x1,x2:X

R(x1, x2), (R⊠R)∗)→ (X ×X,R⊠R)

is an equalizer of ⌊π1⌉ and ⌊π2⌉, we obtain an arrow

h :
∑

x1,x2:X

S(f(x1), f(x2))→
∑

x1,x2:X

R(x1, x2).

From this, we can extract a term of inj(f).
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Remark 2.1.16. We have now completed the discussion about the epimorphisms and monomor-
phisms of Std and Std0 and we have proved some relations with the arrow for which there is a
witness of the surjectivity (2.7) and of the injectivity (2.11). If we consider the arrows of ML or
ML0 and the types

surj(f) :=
∏
y:Y

∑
x:X

IdY (f(x), y) inj(f) :=
∏

x1,x2:X

IdY (f(x1), f(x2))→ IdX(x1, x2),

then, since we are considering arrows up to function extensionality, a trivial verification shows that
if an arrow is an injection (surjection), then it is also a monomorphism (epimorphism). Vice versa,
the argument of the proof of Proposition 2.1.15 can be used to show that every monomorphism is
an injection inML andML0.

At this point we ask if all the equivalence relations in Std0 are effective as it happens for the
pretopos Std. Unfortunately, the answer is negative due the homotopy restrictions on the types.
We now recall the proof of this fact for Std that can be found for instance in [MP00], in order to
underline the problems which occur in Std0.
Proposition 2.1.17. In Std every equivalence relation is effective.

Proof. Let ⌊r1⌉, ⌊r2⌉ : (Y, S) → (X,R) be an equivalence relation on (X,R). Define the dependent
type

x1, x2 : X ⊢ R(x1, x2) :=
∑
y:Y

R(r1(y), x1)×R(r2(y), x2). (2.12)

Since ⌊r1⌉, ⌊r2⌉ form an external equivalence relation, we can extract the terms witnessing that the
above type is an equivalence relation in the type theoretic sense. Moreover, using that ⌊r1⌉, ⌊r2⌉ are
jointly monomorphic, we can prove that (Y, S) is isomorphic to the domain of the kernel pair of the
arrow

⌊1X⌉ : (X,R)→ (X,R).

Unfortunately, the above argument does not work in Std0. Indeed, the relation in (2.12) is not
necessarily an h-proposition, and then not every equivalence relation in Std0 has a coequalizer.
This should not be surprising since, as we mentioned in Section 1.1, Std is equivalent to the exact
completion of the categoryML and, as observed inRemark 1.1.6, inML the internal and the external
notion of equivalence relation coincide. ForML0 this correspondence occurswith some restrictions.
Remark 2.1.18. If X is an h-set and x, y : X ⊢ R(x, y) is an equivalence relation which is an h-
proposition, then we can consider the arrows between h-sets

π1, π2 :
∑
x,y:X

R(x, y)→ X (2.13)

given by the projections on the first two components and obtain a pseudo-equivalence relation.
Since R(x, y) is an h-proposition, it has at most one inhabitant and, hence, π1, π2 are a jointly
monomorphic pair.

Vice versa, given a jointly monomorphic pseudo-equivalence relation r1, r2 : R → X , we can
consider the dependent type

x, y : X ⊢
∑
z:R

IdX(r1(z), x)× IdX(r2(z), y) (2.14)
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and obtain witnesses of the fact that is a type theoretic equivalence relation on X . The type
IdX(r1(z), x)× IdX(r2(z), y)

has at most one element with respect to z. Indeed, for every z, z′ : R if the type in (2.14) is inhab-
ited, it follows from the fact that r1r2 are jointly monomorphic that IdR(z, z′) is inhabited. Hence,
Lemma 2.1.6 implies that (2.14) is an h-proposition.

Intuitively, in Std0 only some quotients have been added, namely those of the equivalence rela-
tionswhich come from an h-propositions. These equivalence relation are those that arise in practice
when formalizing set-basedmathematics such as the usual algebraic structures. In the next section,
wewill make this discussion precise setting the study of homotopy setoids in the categorical setting
of the elementary doctrines.
Remark 2.1.19. Another possibility could be to add the propositional truncation higher inductive
type to the type theorywe have considered so far. The propositional truncation of a type, also called
squash type in [Men90] or bracket type [AB04], is an h-propositionwith a suitable recursion principle.
Adding this type constructor, we could consider the truncation of the type in (2.12). In this way,
the category Std0 becomes exact; we refer to [Uni13] for further details about the propositional
truncation.

2.2 Homotopy setoids as elementary quotient completion

In this section, we arrange h-sets and h-propositions in a suitable elementary doctrine and prove
that the homotopy setoids are obtained applying the elementary quotient completion to it. We
observe the first properties of this doctrine and recover the results of the previous section in this
framework. The comparison between setoids and homotopy setoids becomes, in this section, a
comparison between the new structure and the elementary doctrine FML arising from the type
theory.

We recall from Example 1.2.8 that the functor
FML : MLop → InfSL

which sends a closed typeX to the poset of dependent type x : X ⊢ B(x) up to logical equivalence,
and acts on arrows as substitution of terms, is an elementary doctrine. The identity type IdX ∈
FML(X ×X) plays the role of the fibered equality.
Remark 2.2.1. Since we are nowworking with the type theoryML plus the functional extensional-
ity axiom, wewill denote the corresponding elementary doctrine of 1.2.8 with FML+ . However, the
elementary doctrines FML+ and FML are very similar and Proposition 1.2.21 holds also for FML+ .
The main difference will be discussed in 2.6.8.

We now define suitable elementary doctrines for every homotopy type. For every subcategory
MLn ⊆ML, for n ≥ 0, we define the functor

FMLn : MLopn → InfSL (2.15)
which sends a type X of homotopy type n to the poset of the dependent types of homotopy type
n-1. The action on the arrows is given by substitution on a(ny) representative. The definition
of homotopy type implies that the identity type of X has homotopy type n-1 and hence IdX ∈
FMLn(X ×X) provides the fibered equality. With the notation adopted, the elementary doctrine
of homotopy setoids is FML0 . As discussed in Proposition 1.2.21 FML is a rich elementary doctrine
and we want to prove similar results of FML0 .
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Proposition 2.2.2. The functor FML0 : MLop0 → InfSL is an elementary doctrine with full strict com-
prehensions and comprehensive diagonals. Moreover, if m : X → Y is a monomorphism, then the functor
FML0
m has a left adjoint.

Proof. Remark 2.1.5 implies that h-propositions are preserved by the × constructor. Moreover, 1
is an h-proposition and it is obviously terminal. Hence, h-propositions up to logical equivalence
form an inf-semilattice.

The equivalence class of the identity type IdX provides the elementarity ofFML0 . If x : X ⊢ B(x)
is an h-proposition depending on the h-set X , then the equivalence class of the projection

π1 :
∑
x:X

B(x)→ X (2.16)

provides a full strict comprehension of B. Indeed, given an arrow f : Y → X , the equation
FML
f (B) = ⊤Y in the language of the type theory becomes the existence of a term y : Y ⊢ t(y) :
B(f(y)). If we denote with Z :=

∑
x:X

B(x), we can consider the arrow

f ′ : Y → Z

which sends a term y : Y to the pair (f(y), t(f(y))) :
∑
x:X

B(x). Obviously, π1 ◦ f ′ = f . We now
prove that the comprehension π is strict because it is a monomorphism. Equivalently, as discussed
in Remark 2.1.16, we can prove that it is an injection, which means that the type

inj(π1) :=
∏

z1,z2:Z

IdX(π1(z1), π1(z2))→ IdZ(z1, z2)

is inhabited. This follows from the description of the identity type of Z which can be found in
[Uni13, Theorem 2.7.2] where it is proved that there is a logical equivalence of the types

IdZ(z1, z2) ≡
∑

p:IdX(π1z1,π1z2)

IdB(π2z2)(p
∗(π2z1), π2z2)

where p∗ is the transport operator, see [Uni13, Lemma 2.3.1] for a detailed definition. However,
sinceB is an h-proposition we can extract a witness of IdB(π2z2)(p

∗(π2z1), π2z2) and hence of inj(π1).
The comprehensions are trivially full. In order to prove that FML0

m : FML0(Y )→ FML0(X) has
a left adjoint, we observe that given an h-proposition x : X ⊢ B(x) and an injection m : X → Y ,
the type

B(x)× IdY (m(x), y)

is true for at most one x in the sense of (2.1) and, hence, Lemma 2.1.6 implies that the type

y : Y ⊢
∑
x:X

B(x)× IdY (m(x), y) (2.17)

is an h-proposition. The correspondence which sends a typeB(x) ∈ FML0(X) to the type in (2.17)
trivially defines a left adjoint of FML0

m . Finally, diagonals are comprehensive because the arrows of
ML andML0 are defined up to functional extensionality.
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The equivalence observed in Example 1.3.8, between the elementary doctrine FML and the el-
ementary doctrine of weak subobjects PSubML of the weakly left exact category of types ML, con-
tinues to holds for the elementary doctrine FML+ .

MLop

InfSL.

MLop

IdML

PsubML

FML+

∃(−)⊤(−) {|−|} (2.18)

Using Proposition 2.2.2, we can prove that the elementary doctrine of h-sets FML0 is equivalent to
another elementary doctrine we encountered in the first chapter, namely the elementary doctrine
SubML0 of subobjects of the left exact categoryML0, see Example 1.2.7.

MLop0

InfSL

MLop0

IdML

SubML0

FML0

∃(−)⊤(−) {|−|} (2.19)

Proposition 2.2.3. The elementary doctrine FML0 is isomorphic to the elementary doctrine SubML0 of sub-
objects ofML0.

Proof. The functors are well-defined thanks to Proposition 2.2.2. For an h-set X ∈ ML0, we have
two functors between the posets

{|− |} : FML0(X) SubML0 : ∃(−)⊤(−).

If x : X ⊢ B(x) is an h-proposition, and Z :=
∑
x:X

B(x) is the domain of the comprehension
π1 : Z → X , then we want to prove that B(x) is logical equivalent to

x : X ⊢
∑
z:Z

IdX(π1(z), x)

which is obvious. Vice versa, if m : Y ↣ X is a monomorphism, then the left adjoint ∃m⊤Y is
given by the fibers

fibm(x) :=
∑
y:Y

IdX(m(y), x)

and the strict comprehension is given by

π1 :
∑
x:X

fibm(x)→ X.

The arrow h : Y →
∑
x:X

fibm(x), which sends a term y : Y to h(y) := (m(y), y, refl(m(y))) and the
arrow π2 :

∑
x:X

fibm(x)→ Y are such thatmπ2 = π1 and π1h = m. Hence,m and π1 are in the same
equivalence class.
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A FML0-eq. relation on an h-set X is exactly the equivalence class of an equivalence relation
x1, x2 : X ⊢ R(x1, x2), which is h-proposition, up to logical equivalence. This observation and
the above proposition recover the correspondence already observed in Remark 2.1.18 between the
internal and external notion of equivalence relation inML0.

Applying the elementary quotient completion to FML0 we obtain the elementary doctrine

FML0 : ML0
op → InfSL

and, by construction, we obtain the equivalence

Std0
∼= ML0. (2.20)

We recall that, since elementary quotient completion of the elementary doctrine of weak subobjects
of a weakly left exact category is equivalent to the exact completion, we obtain for the setoids the
equivalences

Std ∼= ML ∼= MLex. (2.21)
Applying Proposition 1.3.6, which state the regularity of the base category of suitable doctrines, to
FML0 , we recover the regularity of the category of h-setoids already proved in Proposition 2.1.9.
Remark 2.2.4. The equivalence in eq. (2.20) can be considered as a solution to the problem of
understanding if Std0 has well-behaved quotients. Thanks to 1.3.3, we obtain that ML0 has stable
effective quotients of FML0-equivalence relations and of effective descent.

We can now pursue the study of the categorical properties of h-setoids but, instead of working
directly on the categoryStd0, wewill study themas the elementary quotient completion ofFML0 . In
the next sections, we will provide the conditions on an elementary doctrine Pwhich are equivalent
to the (local) cartesian closure and to the extensivity of the base category of P. Doing so, the results
obtained will be usable for all the setoids built over the type theories that can be resembled in
suitable elementary doctrines.

2.3 (Locally) cartesian closed elementary quotient completion

In this section, we give the conditions on a suitable elementary doctrine P such that the base cate-
gory of P is (locally) cartesian closed. In order to do that, we will take advantages from the results
obtained by Carboni and Rosolini [CR00] and Emmenegger [Emm20] about the (local) cartesian
closure of the exact completion. A similar result about the local cartesian closure of the elementary
quotient completion can be found in [MPR21], in the next section we will discuss the differences
between our result and the one in loc. cit..

Wefirst recall theweak notion of cartesian closure in case of categorieswith strict finite products.
Definition 2.3.1. Let P : C op → InfSL be an elementary doctrine. The base category C is said
weakly cartesian closed if for every pair of objects X,Y ∈ C there exists an object Y X and an arrow
e : Y X ×X → Y satisfying the following weak universal property: for every arrow f : Z ×X → Y
there exists an arrow h : Z → Y X such that e ◦ (h × 1X) = f . The arrow e is usually called a weak
evaluation.

In case of the elementary doctrine of weak subobjectsPSubC , the above definition coincideswith
the notion of weak exponential given in [CR00].

We now provide the first result about the cartesian closure of the elementary quotient comple-
tion.
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Theorem 2.3.2. Let P : C op → InfSL be a universal elementary doctrine with full weak comprehensions.
The category C is weakly cartesian closed if and only if C is cartesian closed.

Proof. The cartesian closure of C trivially implies the weak cartesian closure of C . Vice versa, we
first prove the statement for two objects of the form (X, δX) and (Y, σ). Since C is weakly cartesian
closed, there exists an object Y X and a weak evaluation arrow

eX : Y X ×X → Y.

We define the following element of P(Y X × Y X)

εXσ := ∀⟨1,2⟩P⟨1,3,2,3⟩PeX×eX (σ) (2.22)

where ⟨1, 3, 2, 3⟩ : Y X × Y X × X → Y X × X × Y X × X is the arrow induced by the obvious
projections. Since σ is a P-eq. relation, it is straightforward to prove that also εXσ is P-eq. relation.
We now prove that the object of C

(Y X , εXσ )

is a strict exponential of (X, δX) and (Y, σ). In order to do that, we first prove that the weak evalu-
ation arrow eX induces an arrow

⌊eX⌉ : (Y X , εXσ )× (X, δX)→ (Y, σ)

which means that
εXσ ⊠ δX ≤ PeX×eXσ.

The above inequality is obtained through the following computation

εXσ ⊠ δX = ∀⟨1,2⟩P⟨1,3,2,3⟩PeY ×eY (σ)⊠ δX

= P⟨1,3⟩∀⟨1,2⟩P⟨1,3,2,3⟩PeY ×eY (σ) ∧ P⟨2,4⟩δX

≤ P⟨1,3,2⟩P⟨1,3,2,3⟩PeY ×eY (σ) ∧ P⟨2,4⟩δX

where ⟨1, 3, 2⟩ : Y X ×X × Y X ×X → Y X × Y X ×X . The inequality

P⟨1,3,2⟩P⟨1,3,2,3⟩PeY ×eY (σ) ∧ P⟨2,4⟩δX ≤ PeX×eXσ

is an immediate consequence of elementarity, indeed it holds the adjunction

P⟨1,3,2⟩(−) ∧ P⟨2,4⟩δX ⊣ P⟨1,3,2,3⟩(−).

The arrow ⌊eX⌉ shares the required universal property: if

⌊f⌉ : (Z, ζ)× (X, δX)→ (Y, σ)

is an arrow in C , then eX implies the existence of an arrow h : Z → Y X such that eX(h× 1X) = f .
We now prove that h induces an arrow

⌊h⌉ : (Z, ζ)→ (Y X , εXσ )
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such that ⌊eX⌉(⌊h⌉ × 1(X,δX)) = ⌊f⌉. In order to do that, we prove the inequality ζ ≤ Ph×hε
X
σ as

follows:

Ph×hε
X
σ = Ph×h∀⟨1,2⟩P⟨1,3,2,3⟩PeY ×eY (σ)

= ∀⟨1,2⟩Ph×h×1XP⟨1,3,2,3⟩PeY ×eY (σ) (B-C)
= ∀⟨1,2⟩P⟨1,3,2,3⟩Ph×1X×h×1XPeY ×eY (σ)

= ∀⟨1,2⟩P⟨1,3,2,3⟩Pf×fσ

≥ ∀⟨1,2⟩P⟨1,3,2,3⟩ζ ⊠ δX

≥ ζ. (P⟨1,2⟩ ⊣ ∀⟨1,2⟩)

The arrow ⌊h⌉ such that ⌊eX⌉(⌊h⌉ × 1(X,δX)) = ⌊f⌉ is unique. Indeed, if ⌊h′⌉ is a different arrow
such that ⌊eX⌉(⌊h′⌉ × 1(X,δX)) = ⌊f⌉, proceeding as in the above computation we obtain that

ζ ≤ Ph×h′ε
X
σ

and then ⌊h⌉ = ⌊h′⌉.
For the general case, consider two objects (X, ρ) and (Y, σ) in C . The equivalence relation εXσ is

not enough to build a strict exponential of (X, ρ) and (Y, σ), but we can use it as follows.
Let {|ρ|} : R → X × X be a weak full comprehension of ρ ∈ P(X × X). We fix the notation

ri := pi ◦ {|ρ|} for the post-composition with the projections pi, for i = 1, 2. The universal property
of the weak evaluation arrow implies the existence of two arrows

Y r1 , Y r2 : Y X → Y R

such that the the following diagram commutes for i = 1, 2

Y X ×R Y X ×X

Y R ×R Y.

1
Y X×ri

eXY ri×1R

eR

(2.23)

Given a weak full comprehension c : C → Y X of the element P⟨Y r1 ,Y r2 ⟩ε
R
σ , we prove that the object

(C,Pc×cε
X
σ )

is a strict exponential of the objects (X, ρ) and (Y, σ).
Firstly, we observe that since εXσ is a P-equivalence relation, so it is Pc×cεXσ . Secondly, we provide

an evaluation arrow of the form

(C,Pc×cε
X
σ )× (X, ρ)→ (Y, σ).

In order to do that, we consider the arrow eX(c× 1X) : C ×X → Y and prove that

Pc×cε
X
σ ⊠ ρ ≤ PeX(c×1X)×eX(c×1X)σ. (2.24)

The description of comprehensions in the elementary quotient completion, see Lemma A.0.14, im-
plies that the arrow

⌊c⌉ : (C,Pc×cεXσ )→ (Y X , εXσ )

is a full strict comprehension of P⟨Y r1 ,Y r2 ⟩ε
R
σ ∈ DesεXσ , and that the arrow
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⌊{|ρ|}⌉ : (R,P{|ρ|}×{|ρ|}δX×X ⊠ δX×X)→ (X ×X, δX×X)

is a full strict comprehension of ρ ∈ DesδX×X
. Hence, ?? implies that the arrow

⟨1(C,Pc×cεXσ ) × ⌊r1⌉, 1(C,Pc×cεXσ ) × ⌊r2⌉⟩

where ⌊ri⌉ := ⌊pi⌉ ◦ ⌊{|ρ|}⌉ are given by the post-composition of ⌊{|ρ|}⌉ with the projections
⌊pi⌉ : (X ×X, δX×X)→ (X, δX), is a strict comprehension of δ(C,Pc×cεXσ ) ⊠ ρ. The inequality (2.24)
is equivalent to

δ(C,Pc×cεXσ ) ⊠ ρ ≤ P(⌊c⌉×1(X,δX ))×(⌊c⌉×1(X,δX ))P⌊eX⌉×⌊eX⌉δ(Y,σ)

and, by fullness of comprehensions, it is equivalent to prove that

⊤ ≤ P{|δ
(C,Pc×cε

X
σ )

⊠ρ|}P(⌊c⌉×1(X,δX ))×(⌊c⌉×1(X,δX ))P⌊ex⌉×⌊ex⌉δ(Y,σ)

Since quotients are effective we can prove the above inequality in
P((C,Pc×cε

X
σ )× (R, δR)),

i.e. reindexing through the quotient arrow
1× q : (C,Pc×cεXσ )× (R, δR)→ (C,Pc×cε

X
σ )× (R,P{|ρ|}×{|ρ|}δX×X ⊠ δX×X)

where q : (R, δR)→ (R,P{|ρ|}×{|ρ|}δX×X ⊠ δX×X) is the obvious quotient arrow. The statement now
follows from the commutativity of the following diagram for i = 1, 2

(C,Pc×cε
X
σ )× (R, δR) (C,Pc×cε

X
σ )× (X, δX)

(Y X , εXσ )× (R, δR) (Y X , εXσ )× (X, δX)

(Y R, εRσ )× (R, δR) (Y, σ).

1×⌊ri⌉q

⌊c⌉×1 ⌊c⌉×1

1×⌊ri⌉q

⌊Y ri⌉×1 ⌊eX⌉

⌊eR⌉

We now prove that the evaluation arrow just found
⌊eX(c× 1X)⌉ : (C,Pc×cεXσ )× (X, ρ)→ (Y, σ)

has the required strict universal property. If ⌊f⌉ : (Z, ζ) × (X, ρ) → (Y, σ) is an arrow, the weak
evaluation eX implies the existence of an arrow h : Z → Y X such that eX(h × 1X) = f . Applying
the Beck-Chevalley conditions we obtain that

Ph×hPY r1×Y r2εRσ = · · · = ∀⟨1,2⟩P⟨1,3,2,3⟩P1Z×r1×1Z×r2Pf×fσ

and, since ζ ⊠ ρ ≤ Pf×fσ, it follows that
Ph×hPY r1×Y r2εRσ

= ∀⟨1,2⟩P⟨1,3,2,3⟩P1Z×r1×1Z×r2Pf×fσ

≥ ∀⟨1,2⟩P⟨1,3,2,3⟩P1Z×r1×1Z×r2ζ ⊠ ρ

≥ ∀⟨1,2⟩P⟨1,2⟩ζ (P⟨1,2⟩ ⊣ ∀⟨1,2⟩)
≥ ζ.
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Hence, applying P∆Z
, we obtain

⊤ ≤ PhP⟨Y r1 ,Y r2 ⟩ε
R
σ

and the universal property of weak comprehensions implies the existence of an arrow g : Z → C
such that c ◦ g = h. The arrow g induces an arrow

⌊g⌉ : (Z, ζ)→ (C,Pc×cε
X
σ )

such that ⌊f⌉ = ⌊eX(c×1X)⌉(⌊g⌉×1(X,ρ)). An easy verification shows that the arrow ⌊g⌉with such
properties is unique.

Remark 2.3.3. A result similar to Theorem 2.3.2 is [MR13, Proposition 6.7]. The results are very
similar but the authors assumes implications in place of fullness of comprehensions.

Before proceeding with the local cartesian closure of the elementary quotient completion we
make some observations.

If P : C op → InfSL is an elementary doctrine with weak comprehension and comprehensive
diagonals, we can build weak pullbacks through weak comprehensions. Indeed, given two arrows
x : X→A and y : Y→A in C the following diagram is a weak pullback for x and y

C Y

X × Y

X A

{|γ|}2

{|γ|}1

x

y

{|γ|}

p1

p2

(2.25)

where γ := Px×yδA and {|γ|}i := pi{|γ|}, for i = 1, 2. Vice versa given a weak pullback of the arrows
x and y

C Y

X × Y

X A

π2

π1

x

y

⟨π1,π2⟩

p1

p2

(2.26)

the arrow ⟨π1, π2⟩ is a weak comprehension of γ. A proof of this correspondence can be found in
Lemma A.0.7 and Lemma A.0.8. In light of this, we obtain that any slice category C /A has weak
binary products given by the common value of the two composites of (2.25) and, without loss of
generality, we can assume that a weak product of the objects x : X → A, y : Y → A of C /A is built
through the weak comprehension of γ := Px×yδA. Similarly, if x, y and z : Z → A are three arrows
of C then a weak limit of x, y, z is given by a weak comprehension of

γ := Px×y×z(P⟨1,2⟩δA ∧ P⟨2,3⟩δA)

T

X Y Z

A

{|γ|}1 {|γ|}2
{|γ|}1

x
y

z
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where {|γ|}i := pi{|γ|}, and the pi are the projections of the product X × Y × Z for i = 1, 2, 3.
The existence of weak finite products in the slices C /A is related to the existence of strict pull-

backs in the slices C /(A, δA) of the elementary quotient completion. Indeed, if the diagram 2.26 is
a weak pullback and ρ ∈ P(X × X) and σ ∈ P(Y × Y ) are P-eq. relations on X and Y such that
ρ ≤ Px×xδA and σ ≤ Py×yδA the the following diagram is a strict pullback

(C,P{|γ|}×{|γ|}(ρ⊠ σ)) (Y, σ)

(X, ρ) (A, δA).

⌊π2⌉

⌊y⌉⌊π1⌉

⌊x⌉

⌟ (2.27)

Actually, strict finite products exist in every slice (not only for the slices over objects of the form
(A, δA)) and this is an immediate consequence of the construction of comprehensions in C , see
Lemma A.0.14.

We now provide a preliminary definition before that of extensional exponentials.
Definition 2.3.4. Let P : C op → InfSL be an elementary doctrine with weak comprehensions and
comprehensive diagonals. Given three objects x : X→A, y : Y→A and z : Z → A ∈ C /A and a
weak product w of x and y as in (2.25), an arrow h : w → z preserves projections with respect to a
P-eq. relation σ ∈ P(Z × Z), such that σ ≤ Pz×zδA, if

P⟨π1,π2⟩×⟨π1,π2⟩(δX ⊠ δY ) ≤ Ph×h(σ),

where γ := Px×yδA.
We now translate the notion of extensional exponential introduced by Emmenegger in [Emm20]

in the language of the elementary doctrines.
Definition 2.3.5. Let P : C op → InfSL be an elementary doctrine with weak comprehensions and
comprehensive diagonals. If A ∈ C , the slice C /A has an extensional exponential of x : X → A and
y : Y → A with respect to a P-eq. relation σ ∈ P(Y × Y ), if there exist an object yx and an arrow
e : u→ y from a weak product yx π1← u

π2→ x such that
(i) The evaluation e preserves projections w.r.t. σ.

(ii) For every object z : Z → A and arrow f : u′ → y from a weak product z π1← u′
π2→ x that

preserves projections w.r.t. σ, there exist two arrows l,mmaking the following diagram com-
mute:

z u′

yx u x

y

l m

ef

The slice C /A has P-extensional exponentials if for every pair of objects maps x, y ∈ C /A and P-eq.
relation σ ∈ P(Y × Y ) there exists an extensional exponential of x and y with respect to σ.
Remark 2.3.6. In case of the elementary doctrine of weak subobjects PSubC , the above definition
coincides with the one given by Emmenegger in [Emm20] for categories with strict finite products
and weak pullbacks.
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We now state the main theorem of the section.

Theorem 2.3.7. Let P : C op → InfSL be an existential and universal elementary doctrine with weak full
comprehensions and comprehensive diagonals. The following are equivalent:

(i) Every slice C /A has P-extensional exponentials and P has right adjoints to weak pullback projections,

(ii) C is locally cartesian closed.

Before proving Theorem 2.3.7 we make some considerations. In order to prove that (i) implies
(ii)we have to prove that the slices ofC are cartesian closed. Unfortunately, we are not able to apply
Theorem 2.3.2 for several reasons that will be discussed in detail in Remark 2.6.14. For instance,
there is no possibility to consider an elementary doctrine over the slices of C whose elementary
quotient completion are the slices of C . This happens because the above assumptions only imply
the existence of weak finite products in C /A, as we observed in (2.25). Hence, in order to prove
the statement, we adapt the methods used in the proof of Theorem 2.3.2 for the slices of the form
C /(A, δA).

The first step consists in providing a strict exponential of two objects of the form ⌊x⌉ : (X, δX)→
(A, δA) and ⌊y⌉ : (Y, σ) → (A, δA). Following the proof of Theorem 2.3.2, where a strict exponen-
tial of two objects (X, δX) and (Y, σ) was obtained through a weak exponential Y X and the P-eq.
relation

εXσ := ∀⟨1,2⟩P⟨1,3,2,3⟩PeY ×eY (σ), (2.28)

we adapt this construction using an extensional exponential yx, of two object x, y of the slice C /A,
and a suitable equivalence relation in style of (2.28). The second step is to use comprehensions to
build a strict exponential of two objects of the form (X, ρ)→ (A, δA) and (Y, σ)→ (A, δA).

In order to explicit this construction for the slice C /(A, δA), we first fix some notations. Let
x : X → A and y : Y → A two objects of C /A such that σ ≤ Py×yδA and let yx : E → A be an
extensional exponential of x and y w.r.t. σ. We consider the following weak pullbacks

W X V Y G E

X A Y A E A

{|χ|}2

x

x

{|χ|}1 {|ι|}1

y

{|ι|}2

y {|γ|}1

yx

{|γ|}2

yx

obtained as in (2.25) through the comprehensions {|χ|} : W → X × X , {|ι|} : V → Y × Y and
{|λ|} : G → E × E of χ := Px×xδA, ι := Py×yδA and γ := Pyx×yxδA. We will denote by w : W → A,
v : V → A and g : G→ A respectively the common value of the two composites in the left, central
and right above diagram. Moreover, we consider the weak pullback

U X K U

E A U A

{|µ|}2

x{|µ|}1

yx

{|κ|}1

u

{|κ|}2

u

obtained through the comprehensions {|µ|} : U → E ×X and {|κ|} : K → U × U of µ := Pyx×xδA
and κ := Pu×uδA, where u : U → A is the common value of the two composites of the left diagram
and k : K → A is that of the right diagram. Now, given a weak product of yx, yx and x
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T

E E X

A

{|τ |}1 {|τ |}2
{|τ |}3

yx
yx

x

obtained through the weak comprehension {|τ |} : T → E × E × X of τ := Pyx×yx×x(P⟨1,2⟩δA ∧
P⟨2,3⟩δA), we will denote by t : T → A the common value of the three composites of the above
diagram. If u←z→u is a weak product, then we will denote by

⟨1, 3, 2, 3⟩A : t→ k ⟨1, 2⟩A : t→ g

the two arrows induced by the obvious projections and by

e×A e : k → v

the arrow induced by the weak evaluation e : u → y. As observed in Remark 1.2.14 and Re-
mark 1.2.19, the functors Pf have left and right adjoints. Hence, we can define the element of
P(E × E)

εxσ := ∃{|γ|}∀⟨1,2⟩AP⟨1,3,2,3⟩APe×AeP{|ι|}σ (2.29)
which provides the corresponding of the P-eq. relation in (2.28) for the extensional exponential yx.
At this point, it only remains to prove that the object ⌊yx⌉ : (Y, εxσ)→ (A, δA) is a strict exponential
of ⌊x⌉ : (X, δX)→ (A, δA) and ⌊y⌉ : (Y, σ)→ (A, δA).

However, thanks to Remark 1.2.19 we can use implications to give an handier description of εxσ.
Indeed, in appendix in Lemma A.0.19 we give the proof of the equality of the terms

εxσ = ∀⟨1,3⟩((P⟨2,4⟩δX ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ ∀{|µ|}2Pe×eσ) ∧ γ
= ∀⟨1,3⟩∀{|µ|}2(P{|µ|}2(P⟨2,4⟩δX ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ Pe×eσ) ∧ γ.

(2.30)

Where ⟨1, 3⟩ : E × X × E × X → E × E is the arrow induced by the obvious projections and
{|µ|}2 := {|µ|}×{|µ|}. The proof of this fact uses the Beck-Chevalley condition for particular diagrams.
This properties will be used in the rest of the chapter and, when they occur, we have referred to
various results that are proved in the appendix.

We are now ready to prove one of the implications of Theorem 2.3.7. The proof follows the ideas
developed in the proof of [Emm20, Theorem 3.6].

Proof of Theorem 2.3.7. (i) ⇒ (ii) Using the notation developed in the above discussion, we first
prove that the slices of the form C /(A, δA) are cartesian closed.

Consider two objects of C /(A, δA) of the form ⌊x⌉ : (X, ρ) → (A, δA) and ⌊y⌉ : (Y, σ) → (A, δA)
(hence we are assuming that ρ ≤ χ and σ ≤ γ) and an extensional exponential yx : E → A of x
and y w.r.t σ. We define the element of P(E × E)

ερσ := ∀⟨1,3⟩((P⟨2,4⟩ρ ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ ∀{|µ|}×{|µ|}Pe×eσ) (2.31)

and consider a weak comprehension {|P∆E
ερσ|} : C → E of P∆E

ερσ. If we denote by c the object of
C /A given by the composition yx ◦ {|P∆E

ερσ|}, then we can prove that the object of C /(A, δA)

⌊y⌉⌊x⌉ := ⌊c⌉ : (C,ω)→ (A, δA) (2.32)
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is a strict exponential of ⌊x⌉ and ⌊y⌉, where ω denotes for short P{|P∆E
ερσ |}×{|P∆E

ερσ |}ε
x
σ. Indeed, the

weak pullbacks
U ′ X U X

C A E A

{|µ′|}2

x{|µ′|}1

c

{|µ|}1

yx

{|µ|}2

x

where µ′ := Pc×xδA, induce an arrow h : U ′ → U which makes the obvious diagram commute.
If u′ : U ′ → A denotes the common value of the two composites of the left diagram above, then a
trivial computation shows that u′ induces an object

⌊u′⌉ : (U ′,P{|µ′|}×{|µ′|}(ω ⊠ ρ))→ (A, δA)

of C /(A, δA). The evaluation arrow

⌊e′⌉ : ⌊y⌉⌊x⌉ × ⌊x⌉ → ⌊y⌉

is given by the composition e′ := e ◦ h : U ′ → Y .
Now consider an object ⌊z⌉ : (Z, ζ)→ (A, δA) of C /(A, δA) and an arrow

⌊f⌉ : ⌊z⌉ × ⌊x⌉ → ⌊y⌉. (2.33)

The weak evaluation arrow e induces two arrows l : z → yx andm : n→ u, where n is the common
value of the two composites of the following weak pullback

N X

Z A

{|ν|}2

x{|ν|}1

z

with ν := Pz×xδA, such that the proper diagram commutes. We now prove that ⊤ ≤ PlP∆E
ερσ in

order to obtain an arrow l′ : Z → C such that l = {|P∆E
ερσ|} ◦ l′:

PlP∆E
ερσ

= P∆Z
Pl×l∀⟨1,3⟩((P⟨2,4⟩ρ ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ ∀{|µ|}×{|µ|}Pe×eσ) (def. of ερσ)

= P∆Z
∀⟨1,3⟩((P⟨2,4⟩ρ ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ ∀{|ν|}×{|ν|}Pm×mPe×eσ) (def. of l,m + B-C)

since f = e◦m and, by assumption, the arrow in (2.33) implies P{|ν|}×{|ν|}(ζ⊠ρ) ≤ Pf×fσ, we obtain
that

P∆Z
∀⟨1,3⟩((P⟨2,4⟩ρ ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ ∀{|ν|}×{|ν|}Pm×mPe×eσ)

≥ P∆Z
∀⟨1,3⟩((P⟨2,4⟩ρ ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ ∀{|ν|}×{|ν|}P{|ν|}×{|ν|}(ζ ⊠ ρ)

≥ P∆Z
∀⟨1,3⟩((P⟨2,4⟩ρ ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ (ζ ⊠ ρ)) (P(−) ⊣ ∀(−))

≥ P∆Z
∀⟨1,3⟩P⟨1,3⟩ζ (α ∧ (−) ⊣ α⇒ (−))

≥ P∆Z
ζ

≥ ⊤.

A similar computation implies that the arrow l′ : Z → C induces an arrow

⌊l′⌉ : (Z, ζ)→ (C,ω)
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and, hence, we obtain an arrow of C /(A, δA) of the form
⌊l′⌉ : ⌊z⌉ → ⌊c⌉

such that ⌊e′⌉(⌊l′⌉ × 1⌊x⌉) = ⌊f⌉. Indeed, the arrow
⌊l′⌉ × 1⌊x⌉ : (N,P{|ν|}×{|ν|}(ζ ⊠ ρ))→ (U ′,P{|µ′|}×{|µ′|}(ω ⊠ ρ)))

is represented by an arrow m′ : N → U ′ such that {|µ′|}m′ = (l′ × 1X){|ν|} and the following
computation implies that ⌊e′⌉(⌊l′⌉ × 1⌊x⌉) = ⌊e′ ◦m′⌉ = ⌊f⌉:

Pe′m′×fσ = Phm′×mPe×eσ (f = e ◦m, e′ = e ◦ h)
≥ Phm′×mP{|µ|}×{|µ|}∀{|µ|}×{|µ|}Pe×eσ (P(−) ⊣ ∀(−))
= P{|ν|}×{|ν|}Pl×l∀{|µ|}×{|µ|}Pe×eσ (def. of l′)
= P{|ν|}×{|ν|}∀{|ν|}×{|ν|}Pm×mPe×eσ (B-C)
≥ P{|ν|}×{|ν|}∀{|ν|}×{|ν|}P{|ν|}×{|ν|}(ζ ⊠ ρ) (f = e ◦m)
≥ P{|ν|}×{|ν|}(ζ ⊠ ρ).

The arrow ⌊l′⌉ such that ⌊e′⌉(⌊l′⌉× 1⌊x⌉) = ⌊f⌉ is unique. Indeed, if ⌊l̂⌉ : ⌊z⌉ → ⌊c⌉ is an arrow such
that ⌊e′⌉(⌊l̂⌉ × 1⌊x⌉) = ⌊f⌉, and the product ⌊l̂⌉ × 1⌊x⌉ is represented by an arrow m̂ : N → U ′ such
that {|µ′|}m̂ = (l̂ × 1X){|ν|}, then the following computation shows that ζ ≤ Pl×l̂ω:

Pl×l̂ω = Pl×l̂P{|P∆E
ερσ |}×{|P∆E

ερσ |}ε
x
σ

= Pl′×{|P∆E
ερσ |}l̂(∀⟨1,3⟩((P⟨2,4⟩δX ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ ∀{|µ|}×{|µ|}Pe×eσ) ∧ γ)

≥ ∀⟨1,3⟩((P⟨2,4⟩δX ∧ P⟨1,2⟩ν ∧ P⟨3,4⟩ν)⇒ ∀{|ν|}×{|ν|}Pm×hm̂Pe×eσ) ∧ ζ (B-C)
= ∀⟨1,3⟩((P⟨2,4⟩δX ∧ P⟨1,2⟩ν ∧ P⟨3,4⟩ν)⇒ ∀{|ν|}×{|ν|}Pe′m̂×fσ) ∧ ζ
≥ ∀⟨1,3⟩((P⟨2,4⟩δX ∧ P⟨1,2⟩ν ∧ P⟨3,4⟩ν)⇒ ∀{|ν|}×{|ν|}P{|ν|}×{|ν|}(ζ ⊠ ρ)) ∧ ζ
≥ ζ (α ∧ (−) ⊣ α⇒ (−))

This ends the proof of the cartesian closure of C /(A, δA), now we consider a slice of the form
C /(A,α). If ⌊x⌉ : (Xρ)→ (A,α) and ⌊y⌉ : (Y, σ)→ (A,α) are two objects, then we provide a strict
exponential through the exponential of the reindexings ⌊x∗⌉ and ⌊y∗⌉ of the arrows ⌊x⌉ and ⌊y⌉
over the quotient arrow q := ⌊1A⌉ : (A, δA)→ (A,α)

(X∗, ρ∗) (X, ρ)

(A, δA) (A,α)

qX

⌊x∗⌉

q

⌊x⌉
⌟

(Y ∗, σ∗) (Y, σ)

(A, δA) (A,α).

qY

⌊y∗⌉

q

⌊y⌉
⌟

By Lemma A.0.14, the right diagram denotes compactly the diagram

(Y ∗,P{|γy |}×{|γy |}δA ⊠ σ) (Y, σ)

(A× Y, δA ⊠ σ)

(A, δA) (A,α)

⌊{|γy |}2⌉

⌊{|γy |}1⌉

q

⌊y⌉

⌊{|γy |}⌉
⌟
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where {|γy|} : Y ∗ → A× Y is a weak comprehension of γy := P1A×yα. The pullback of ⌊x⌉ and q is
obtained similarly . Hence, we can consider the exponential

⌊y∗⌉⌊x∗⌉ := ⌊c∗⌉ : (C∗, ω∗)→ (A, δA)

where
ω∗ := P{|P∆E∗ ε

ρ∗
σ∗ |}×{|P∆E∗ ε

ρ
σ∗ |}ε

x∗
σ∗

and

εx
∗
σ∗ := ∀⟨1,3⟩(((P⟨2,4⟩δX∗ ∧ P⟨1,2⟩µ

∗ ∧ P⟨3,4⟩µ
∗))⇒ ∀{|µ∗|}×{|µ∗|}Pe∗×e∗P⌊{|γy |}⌉×⌊{|γy |}⌉δA ⊠ σ) ∧ γ∗.

The relation εx∗σ∗ on E∗ expresses that two functions in E∗ are related when they have the same
evaluation in (Y ∗, σ∗). This means that the evaluations have the same A components and σ-related
Y components. In order to provide the exponential of ⌊x⌉ and ⌊y⌉, we consider those functions
which have A components that are α-related and Y components that are σ related:

ε̃ := ∀⟨1,3⟩((P⟨2,4⟩δX∗ ∧ P⟨1,2⟩µ
∗ ∧ P⟨3,4⟩µ

∗)⇒ ∀{|µ∗|}×{|µ∗|}Pe∗×e∗P⌊{|γy |}⌉×⌊{|γy |}⌉α⊠ σ) ∧ γ∗. (2.34)

If we denote with ω̃ := P{|P∆E∗ ε
ρ∗
σ∗ |}×{|P∆E∗ ε

ρ
σ∗ |}ε̃ then we obtain the following commutative diagram

(C∗, ω∗) (C∗, ω̃)

(A, δA) (A,α).

⌊1C∗⌉

⌊y⌉⌊x⌉⌊y∗⌉⌊x∗⌉

q

where ⌊y⌉⌊x⌉ := ⌊c∗⌉. Thanks to the pasting law of the pullbacks, the product ⌊c∗⌉×⌊x∗⌉ inC /(A, δ)
is isomorphic to the product ⌊y⌉⌊x⌉×⌊x⌉ in C /(A,α). The commutativity of the above diagram and
the description of pullbacks implies that, up to isomorphism, we are in the following situation

(N,P{|ν|}×{|ν|}ω
∗ ⊠ ρ) (N,P{|ν|}×{|ν|}ω̃ ⊠ ρ) (X, ρ)

(C∗, ω∗) (C∗, ω̃) (A,α)
⌊1C∗⌉ ⌊y⌉⌊x⌉

⌊x⌉⌊{|ν|}1⌉

⌊{|ν|}2⌉

⌊{|ν|}1⌉

⌊1N ⌉

where {|ν|} : N → C∗ ×X is a weak comprehension of ν := Pc∗×1Xα. The evaluation arrow

⌊e∗⌉ : ⌊y∗⌉⌊x∗⌉ × ⌊x∗⌉ → ⌊y∗⌉

is represented by an arrow

⌊e∗⌉ : (N,P{|ν|}×{|ν|}ω̃ ⊠ ρ)→ (Y ∗, σ∗).

The evaluation arrow
⌊e⌉ : ⌊y⌉⌊x⌉ × ⌊x⌉ → ⌊y⌉

is given by e := {|γy|}2 ◦ e∗.

Before providing the proof of the other implication of Theorem 2.3.7 we give the following def-
inition.
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Definition 2.3.8. Let P : C op → InfSL be an elementary doctrine with weak comprehensions and
comprehensive diagonals. If A ∈ C and X

x→ A and Y
y→ A are two objects of C /A and σ ∈

P(Y × Y ) is a P-eq. relation, then two arrows f, g : x→ y are called σ-related if

δX ≤ Pf×gσ.

Proof of Theorem 2.3.7. (ii) ⇒ (i) Let x : X → A and y : Y → A be two objects of C /A and let
σ ∈ P(Y × Y ) be a P-eq. relation on Y such that σ ≤ Py×yδA. We consider a strict exponential
⌊yx⌉ : (E, ε)→ (A, δA) of ⌊y⌉ and ⌊x⌉ and the evaluation arrow

⌊e⌉ : ⌊y⌉⌊x⌉ × ⌊x⌉ → ⌊y⌉

which is represented by an arrow e : u→ y, from a weak product yx←u→x given by

U X

E A

{|µ|}1

{|µ|}2

yx

x

where µ := Pyx×xδA. The arrow e has the following property: for every arrow z : Z → A and arrow
f : v → y from a weak product z π1← v

π2→ x which preserves projections w.r.t. σ, there exist two
arrows l : z → yx andm : v → u such that e◦m and f are σ-related. Hence, if {|σ|} : K → Y ×Y is a
weak comprehension of σ and U := dom(u) and V := dom(v), then there exists an arrow j making
the following diagram commute

K Y × Y

V.

{|σ|}

⟨em,f⟩
j

We now consider a weak pullback of {|σ|}1 and e

K ′ U

K Y
{|σ|}1

π1

π2

e (2.35)

and observe that this induces a weak pullback of yx and x:

K ′ X

E A.
yx

{|µ|}2π2

x{|µ|}1π2

The arrow e′ := {|σ|}2π1 : K ′ → Y provides the desired evaluation arrow. Indeed, theweakpullback
2.35 induces an arrow m′ : V → K ′ such that π2m′ = j and π1m′ = m. Hence, we obtain that
m′e′ = f .

Remark 2.3.9. In case of the elementary doctrine of weak subobjects PsubC , we obtain [Emm20,
Theorem 3.6], for categories with strict products and weak pullbacks. Actually, as we will discuss
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in the next section, we could use instead of extensional exponentials the notion of weak exponential
(Definition 2.4.2) adapted for the slices of C and obtain [CR00, Theorem 3.3]. As pointed out by
Emmenegger, the notions of weak and extensional exponential coincide under some circumstances,
for instance, when the category C is left exact. In the next section, we will prove that since the base
categories of the elementary doctrines have strict finite products by definition, then there is an
equivalence of these exponentials and of a third one introduced in [MPR21] in order to prove a
result equivalent to Theorem 2.3.7.

2.4 Relations to the work of Maietti, Pasquali and Rosolini.

As already mentioned, a result similar to Theorem 2.3.7 was already claimed by Maietti, Pasquali
and Rosolini in [MPR17] and it recently appeared in [MPR21]. In this section, we discuss the
differences between the two statements and prove that they are equivalent. In order to do that we
discuss the different notions of weak exponential that appeared in [CR00], [Emm20] and [MPR21].

The following definition of exponentials is introduced in [MPR21] and we will refer to as a very
weak kind of exponentials.

Definition 2.4.1. Let C be a category with weak pullbacks and let A be an object of C . A very weak
exponential of the objects x : X → A and y : Y → A of C /A is an object yx : E → A with an arrow
e : u→ y from a weak product yx←u→x such that

• For every z : Z → A and arrow f : v → y from a weak product z←v→x, there exist two
arrows l,mmaking the following diagram commute:

z v

yx u x

y.

l m

f
e

C is said slice-wise weakly cartesian closed if, for everyA ∈ C and x, y ∈ C /A, there exists a very weak
exponential of x and y.

We referred to the above exponentials as "very weak" in order to distinguish them from theweak
exponentials introduced in [CR00]. We now recall the former notion in the case of the slices of a
category with weak pullbacks.

Definition 2.4.2. Let C be a category with weak pullbacks and let A be an object of C . A weak
exponential of the objects x : X → A and y : Y → A of C /A is an object yx : E → A with an arrow
e : u→ y from a weak product yx π1← u

π2→ x such that

• e equalizes any pair of arrows which π1, π2 jointly equalizes, i.e. for every v1, v2 : v → u such
that π1v1 = π2v2 then ev1 = ev2.

• For every z : Z → A and arrow f : v → y from aweak product z π1← v
π2→ xwhich equalizes all

pair of arrows which π1, π2 jointly equalizes, there exist two arrows l,mmaking the following
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diagram commute:
z v

yx u x

y.

l m

f
e

The above exponentials, which can be seen as formulated for the elementary doctrine PSubC

of weak subobjects, can be trivially defined for every elementary doctrine P with weak compre-
hensions and comprehensive diagonals. Actually, as already observed by Emmenegger, the weak
and very weak exponentials are particular instances of the extensional exponentials and they are
obtained as follows.

Observation 2.4.3. Let P : C op → InfSL be an elementary doctrine with weak comprehensions and
comprehensive diagonals and let A be an object of C . If x : X → A and y : Y → A are objects of
C /A, then an arrow yx : E → A is said

• a weak exponential of x and y if it is an extensional exponential of x,y w.r.t. σ := δY .

• a very weak exponential of x and y if it is an extensional exponential of x,y w.r.t. σ := ⊤Y×Y .

The following result appears as [MPR21, Theorem 7.14] and uses the very weak exponentials to
give an equivalent condition to the local cartesian closure of a suitable doctrine.

Theorem 2.4.4 (Maietti, Pasquali and Rosolini). Let P : C op → InfSL be an existential and universal
elementary doctrine with weak full comprehensions and comprehensive diagonals. The following are equiva-
lent:

(i) C is slice-wise weakly cartesian closed

(ii) C is locally cartesian closed.

In general, the three notions of exponentials discussed are not equivalent, in the sense that the
existence of one of them implies the existence of the others. This was pointed out by Emmenegger
in [Emm20], who discovered an invalid argument in the proof of [CR00, Theorem 3.3] and fixed
it by the use of extensional exponentials. However, there are cases in which the three exponentials
are equivalent. For instance, if the slices C /A have strict products, then every arrow preserves
projection with respect to any P-eq. relation and hence the three notions coincide. Below, we prove
that the common hypothesis of Theorem 2.3.7 and Theorem 2.4.4 implies the equivalence of all the
notions of exponential introduced. Before doing that, we provide a useful technical lemma.

Lemma 2.4.5. Let P : C op → InfSL be an implicational and universal elementary doctrine with full com-
prehensions and comprehensive diagonals. If A ∈ C andX x→ A,W w→ A and B b→ A are objects in C /A,
for a map f : u→ b, from a weak pullback w {|ρ|}1← u

{|ρ|}2→ x we have the following equivalent conditions:

(i) f preserves projections w.r.t. σ ∈ P(B ×B),

(ii) ⊤W ≤ P∆W
∀{|ρ|}1×{|ρ|}1(P{|ρ|}×{|ρ|}P⟨2,4⟩δX ⇒ Pf×fσ),

where ρ := Pw×xδA.
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Proof.

⊤W ≤ P∆W
∀{|ρ|}1×{|ρ|}1(P{|ρ|}×{|ρ|}P2,4δX ⇒ Pf×fσ)

δW ≤ ∀{|ρ|}1×{|ρ|}1(P{|ρ|}×{|ρ|}P⟨2,4⟩δX ⇒ Pf×fσ)

P{|ρ|}1×{|ρ|}1δW ≤ P{|ρ|}×{|ρ|}P⟨2,4⟩δX ⇒ Pf×fσ

P{|ρ|}×{|ρ|}(P⟨1,3⟩δW ∧ P⟨2,4⟩δX) ≤ Pf×fσ

P{|ρ|}×{|ρ|}(δW ⊠ δX) ≤ Pf×fσ.

Proposition 2.4.6. Let P : C op → InfSL be an existential universal elementary doctrine with full compre-
hensions and comprehensive diagonals. If P is implicational then, for every A ∈ C , the slice C /A has weak
or very weak exponentials if and only if it has extensional exponentials.

Proof. We only need to show that existence of very weak exponentials imply the existence of exten-
sional exponentials. The case with weak exponentials is proved similarly.

Given two objects x : X → A and y : Y→A of C /A. Let yx : E → A be a very weak exponential
of x and y, and let e : u → y be an evaluation map, where u is a weak product with projections
yx

{|µ|}1← u
{|µ|}2→ x and µ := Pyx×xδA. If σ ∈ P(Y × Y ) is a P-eq. relation on Y , consider the object

φ := ∀{|µ|}1×{|µ|}1(P{|µ|}×{|µ|}P<1,3>δX ⇒ Pe×eσ),

in P(E × E). If {|P∆E
φ|} : C → E is a weak comprehension of P∆E

ϕ and c {|µ′|}1← u′
{|µ′|}2→ x is a weak

pullback of c := yx{|P∆E
φ|} and x, with µ′ = Pc×xδA, then the weak universal property of u induces

an arrow hwhich makes the following diagram commute

U ′ X

U Y

C A

E.

{|µ′|}2

{|µ′|}1

h
x

{|µ|}1

{|µ|}2

e

c

{|P∆E
φ|} yx

We now prove that the arrow e′ := e ◦ h preserves projections w.r.t. σ, using Lemma 2.4.5:

P∆C
∀{|µ′|}1×{|µ′|}1(P{|µ′|}×{|µ′|}P⟨2,4⟩δX ⇒ Pe′×e′σ)

= P∆C
∀{|µ′|}1×{|µ′|}1(Ph×hP{|µ|}×{|µ|}P⟨2,4⟩δX ⇒ Ph×hPe×eσ)

= P∆C
∀{|µ′|}1×{|µ′|}1Ph×h(P{|µ|}×{|µ|}P⟨2,4⟩δX ⇒ Pe×eσ)

≥ P∆C
P{|P∆E

φ|}×{|P∆E
φ|}∀{|µ|}1×{|µ|}1(P{|µ|}×{|µ|}P⟨2,4⟩δX ⇒ Pe×eσ)

= P{|P∆E
φ|}P∆E

φ

≥ ⊤C .

We now prove that e′ has the weak universal property of extensional exponential from the weak
universal property of the very weak exponential e. Indeed, given z : Z→A ∈ C /A and an arrow
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f : v → y, from a weak product z←v→x, that preserves projections w.r.t. σ, then e implies the
existence of two arrows l,mmaking the following diagram commute

z v

yx u x

y,

l

{|ν|}1
{|ν|}2

m

f
e

where ν := Pz×xδA. We obtain the following derivation

PlP∆E
φ = PlP∆E

∀{|µ|}1×{|µ|}1(P{|µ|}×{|µ|}P⟨2,4⟩δX ⇒ Pe×eσ)

= P∆Z
Pl×l∀{|µ|}1×{|µ|}1(P{|µ|}×{|µ|}P⟨2,4⟩δX ⇒ Pe×eσ)

= P∆Z
∀{|ν|}1×{|ν|}1Pm×m(P{|µ|}×{|µ|}P⟨2,4⟩δX ⇒ Pe×eσ) (Lemma A.0.16)

≥ P∆Z
∀{|ν|}1×{|ν|}1Pm×mPe×eσ

= P∆Z
∀{|ν|}1×{|ν|}1Pf×fσ

≥ P∆Z
∀⟨1,3⟩∀{|ν|}×{|ν|}P{|ν|}×{|ν|}δZ ⊠ δX

≥ ⊤Z .

hence, the comprehension {|P∆Eφ|} implies existence of a map l′ : Z → C such that {|P∆W
φ|}l′ =

l. If m′ : v → u′ is an arrow induced by l′ and 1x, then e′ ◦ m′ and f are σ-related. Finally, an
extensional exponential of x and y with respect to σ is obtained in the same way of the proof of
Theorem 2.3.7 (ii)⇒ (i).

The above proposition implies that our Theorem 2.3.7 is equivalent to Theorem 2.4.4.

2.5 Extensive elementary quotient completion

In this section we give equivalent conditions to the extensivity of the base category C of the ele-
mentary quotient completion of a suitable elementary doctrine P : C op → InfSL. In particular, we
generalize, in the case of categories with strict finite products and weak pullbacks, the well-known
result [GV98, Proposition 2.1], which states the extensivity of the exact completion. We mention
that this section has a non-trivial intersection with [MPR21, §7.2]. Indeed, in loc.cit. the authors
provide conditions on P such that C has disjoint and distributive coproducts. In addition, we estab-
lish the conditions which provides the universality of coproducts in C . Before starting we fix some
notations.

Notation. In this section wewill denote withX+Y the coproduct of two objectsX and Y andwith
iX : X → X + Y and iY : Y → X + Y the canonical injections. The initial object will be denoted
by 0. If f : X → A and g : Y → A are two arrows, then [f, g] : X + Y → A will denote the unique
arrow such that [f, g]iX = f and [f, g]iY = g. If f : X → A and g : Y → B are two arrows, then
f+g : X+Y → A+B will denote the unique arrow such that (f+g)iX = iAf and (f+g)iY = iBg.

We now recall an equivalent formulation of extensivity for left exact categories. For a detailed
discussion about the equivalent definitions of extensive categories we refer to [CLW93].
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Definition 2.5.1. A left exact category C with finite coproducts is called lextensive if

(i) Sums are disjoint:

I.a) Coprojections of sums X iX→ X + Y
iY← Y are monomorphisms,

I.b) If 0 is an initial object, then the following is a pullback

0 Y

X X + Y.

iY

iX

(ii) Sums are universal: If the first two diagrams are pullbacks, then also the third one is a pullback

PX X

X + Y

A B,

iX

PY Y

X + Y

A B,

iY

PX + PY X + Y

A B.

We now recall the notion of weak extensivity which was introduced in [GV98]. The idea is to
give a weak version of some of the above conditions. In order to do that, the authors observed that
condition II of the above definition is equivalent to the following conditions:

- Distributivity of coproducts: given three objects X,Y and Z the arrow

[1X × iY , 1X × iZ ] : (X × Y ) + (X × Z)→ X × (Y + Z)

is an isomorphism. For the rest of the section we will denote the above arrow with e,

- if the first two diagrams are equalizers, then also the third one is an equalizer

EX X Z, EY Y Z, EX + EY X + Y Z.

We recall that the distributivity of coproducts implies the following important properties:

- initial objects are strict , i.e. every arrow into an initial object is an isomorphism,

- for every pair of objects X,Y the injections iX , iY into the coproduct X + Y are monomor-
phisms,

- for every object X , the projection p2 : X × 0→ 0 is an isomoprhism

a proof of these facts can be found in [CLW93, Propositions 3.2, 3.3. and 3.4].

Definition 2.5.2. A weakly left exact category with sums C is called weakly lextensive if

1. Sums are disjoint,

2. Initials are strict,
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3. For each choice of weak products X × Y and X × Z, the sum (X × Y ) + (X × Z), with the
obvious projections, is a weak product of X and (Y + Z).

4. For each choice of weak equalizers EX X Z, EY Y Z, then
EX + EY X + Y Z is a weak equalizer,

In [GV98, Proposition 2.1] the authors proved that a weakly left exact category C is weakly
lexextensive if and only if the exact completion Cex is lextensive. We will follow this idea and first
we will formulate the notion of weakly lextensivity in the language of doctrines.

In order to do that, we observe that assuming distributive coproducts in a category C with strict
product and weak pullbacks implies that, for every object X ∈ C , the poset PSubC (X) has finite
joins and, for every arrow f of C , the functor PSubC (f) preserves them. Hence, we will consider
doctrines which have sums both at the level of the contexts and at the level of the logic.

From now on, we will say that an elementary doctrine P : C op → InfSL has finite joins meaning
that P(X) has finite joins and that Pf preserves them, for every object X ∈ C and arrow f in C .

Definition 2.5.3. Let P : C op → InfSL be an existential elementary doctrine with full weak com-
prehensions, comprehensive diagonals and finite joins. The category C is called P-weakly extensive
if

1. C has disjoint coproducts,

2. C has finite coproducts and they are distributive,

3. If f : X → A, g : Y → A and α ∈ P(A), then {|Pf (α)|}+{|Pg(α)|} is a comprehension of P[f,g]α.

Observation 2.5.4. As already observed, distributive coproducts imply that the injections of a co-
product are always monomorphisms. Hence, in the above definition the assumption of monomor-
phic injections is always verified.

Condition I.b of Definition 2.5.1 stated in the internal logic of P becomes

PiX×iY δX+Y = ⊥X×Y . (2.36)

Now, if the domain of {|⊥X×Y |} is initial then the conditions (2.36) and I.b are equivalent. In case
of strict initials, condition I.b implies that the domain of {|⊥X×Y |} is initial.

Condition 3 of Definition 2.5.3 corresponds to the weak notion of universality of sums with
respect to the internal logic of P.

We now discuss useful properties of disjoint and distributive coproducts.

Remark 2.5.5. We observe that if P : C op → InfSL is an elementary doctrine and C has distributive
finite coproducts , then if 0 ∈ C is the initial object it follows that

δ0 = ⊤0×0. (2.37)

This is a consequence of the fact that, for every X ∈ C , the projection p2 : X × 0 → 0 is an
isomorphism. Indeed, since δ0 = ∃∆0⊤0, applying first ∃p2 and then Pp2 we obtain

Pp2∃p2δ0 = ⊤0×0

and the term on the left is equal to δ0 because p2 is an isomorphism.
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Moreover, if coproducts are also disjoint and the domain of {|⊥X×Y |} is the initial object, then
for every α ∈ P(X) and β ∈ P(Y ) we have

∃iXα ∧ ∃iY β = ⊥X+Y . (2.38)

Intuitively, an element ofX+Y can not be an element of bothX and Y . Formally, from the pullback

0 Y

X × Y

X X + Y

0Y

iY0X

iX

{|⊥X×Y |}
⌟

and the Frobenius condition we obtain that

∃iXα ∧ ∃iY β = ∃iX (α ∧ PiX∃iY β)
= ∃p2∃{|⊥X×Y |}P{|⊥X×Y |}Pp1β (Lemma A.0.4)
∃p2(Pp1β ∧ ⊥X×Y )

= ⊥X×Y .

A similar computation and the fact that X × 0 ∼= 0 imply that for every ρ ∈ P(X × X) and σ ∈
P(Y × Y ) then

PiX×iY (ρ⊞ σ) = ⊥X+Y . (2.39)
We now formulate the main result of the section.

Theorem 2.5.6. If P : C op → InfSL is an existential elementary doctrine with full weak comprehensions,
comprehensive diagonals and finite joins, then C is P-weakly extensive if and only if C is extensive.

Before providing a proof of Theorem 2.5.6 we define suitable equivalence relations on the co-
product of two objects.
Lemma 2.5.7. Let P : C op → InfSL be an existential elementary doctrine with full weak comprehensions,
comprehensive diagonals and finite joins. Assuming that C has finite coproducts, if X,Y are two objects of
C , and ρ is a P-eq. relation on X and σ is a P-eq. relation on Y , then

ρ⊞ σ := ∃iX×iXρ ∨ ∃iY ×iY σ

is a P-eq. relation on X + Y . Moreover, δX ⊞ δY = δX+Y .

Proof. By fullness of comprehensions, the reflexivity of ρ⊞ σ is equivalent to

⊤X+Y ≤ P∆X+Y
(ρ⊞ σ).

The Beck-Chevalley condition implies that the right term is equal to ∃iX⊤X ∨ ∃iY ⊤Y . Since

⊤X ≤ PiX∃iX⊤X ≤ PiX (∃iX⊤X ∨ ∃iY ⊤Y )

and the same holds for iY , denoting with k := {|∃iX⊤X ∨∃iY ⊤Y |} : K → X+Y we have two arrows
f : X → K, g : Y → K such that iX = h ◦ f and iY = k ◦ g and then 1X+Y = k[f, g]. The inequality
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follows by fullness of comprehension and {|⊤X+Y |} = 1X+Y .
The symmetry of ρ ⊞ σ easily follows from the Beck-Chevalley condition. For the transitivity, we
observe that

P⟨1,2⟩(∃iX×iXρ) ∧ P⟨2,3⟩(∃iX×iXρ)

where ⟨1, 2⟩, ⟨2, 3⟩ : (X+Y )× (X+Y )× (X+Y )→ (X+Y )× (X+Y ) are the obvious projections,
is equal to

∃iX×iX×iX (P⟨1,2⟩ρ ∧ P⟨2,3⟩ρ)

where ⟨1, 2⟩⟨2, 3⟩ : X×X×X → X×X are the obvious projections. This is obtained applying twice
the Frobenius condition and observing that, since iX is a monomorphism, the following diagram
is a pullback

X ×X ×X (X + Y )×X ×X

X ×X × (X + Y ) (X + Y )3.

iX×1X×1X

1X+Y ×iX×iX1X×1X×iX

iX×iX×1X+Y

⌟

The transitivity of ∃iX×iXρ follows from the transitivity of ρ and from the distributivity of meets
and joins.

The last part of the statement follows observing that by adjunctions we have that
∃iX×iX δX ≤ δX+Y

and the same holds for ∃iY ×iXY δY .
Proof of Theorem 2.5.6. If C is extensive, then Lemma 2.5.7 implies that restricting to the objects of
the form (X, δX) it follows that C has distributive coproducts. Moreover, since C is extensive the
initial object is strict, and it provides a strict initial object of C . Coproducts are disjoint in C because
they are disjoint in C and initials are strict. Condition 4 of Definition 2.5.3 follows through the
description of comprehensions in C .

Vice versa, if (X, ρ) and (Y, σ) are objects of C , then by Lemma 2.5.7 we can consider the object
(X + Y, ρ⊞ σ)

of C . It is a coproduct since, given two arrows ⌊f⌉ : (X, ρ) → (Z, ζ) and ⌊g⌉ : (Y, σ) → (Z, ζ), the
coproduct X + Y implies the existence of an arrow [f, g] : X + Y → Z which makes the obvious
diagram commute. This arrow induces an arrow

⌊[f, g]⌉ : (X + Y, ρ⊞ σ)→ (Z, ζ)

because ∃iX×iXρ ≤ P[f,g]×[f,g]ζ if and only if ρ ≤ PiX×iXP[f,g]×[f,g]ζ, which is true by the definition
of ⌊f⌉. The same holds for ∃iY ×iY σ. This arrow is unique in the sense that if there exists an arrow
⌊h⌉ : (X + Y, ρ⊞ σ)→ (Z, ζ) such that ⌊h⌉⌊iX⌉ = ⌊f⌉ and ⌊h⌉⌊iY ⌉ = ⌊g⌉ then

ρ ≤ PhiX×fζ σ ≤ PhiY ×gζ.

Since f = [f, g]iX and g = [f, g]iY , by adjunctions we obtain
∃iX×iXρ ≤ Ph×[f,g]ζ ∃iY ×iY σPh×[f,g]ζ

and hence ⌊h⌉ = ⌊[f, g]⌉. Distributivity of coproducts in C means that given three objects (X, ρ),
(Y, σ) and (Z, ζ) then the canonical arrow

⌊e⌉ : ((X × Y ) + (X × Z), (ρ⊠ σ)⊞ (ρ⊠ ζ))→ (X × (Y + Z), ρ⊠ (σ ⊞ ζ))
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is an isomorphism. In order to prove that, it is enough to show the equality

(ρ⊠ σ)⊞ (ρ⊠ ζ) = Pe×e((ρ⊠ (σ ⊞ ζ)).

For instance, the distibutivity ofmeets and joins implies that the part of the equationwhich concerns
ρ and σ is obtained as follows:

Pe×e(P⟨1,3⟩ρ ∧ P⟨2,4⟩∃iY ×iY σ) = Pe×e(P⟨1,3⟩ρ ∧ ∃1X×iY ×1X×iY P⟨2,4⟩σ (B-C)
= Pe×e∃1X×iY ×1X×iY (P1X×iY ×1X×iY P⟨1,3⟩ρ ∧ P⟨2,4⟩σ) (Frobenius)
= ∃iX×Y ×iX×Y (P⟨1,3⟩ρ ∧ P⟨2,4⟩σ).

In order to prove that coproducts are disjoint, we observe that the initial object of C is (0, δ0),
where 0 is the initial object of C . Hence, Remark 2.5.5 and the description of pullbacks in C (see
Lemma A.0.7) imply that the following diagram is a pullback

(0, δ0) (Y, σ)

(X, ρ) (X + Y, ρ⊞ σ).
⌊iX⌉

⌊iY ⌉
⌟

The injections are obviously monomorphisms and it remains only to prove condition II of Defi-
nition 2.5.1. Given three arrows ⌊f⌉, ⌊g⌉ and ⌊h⌉ as below and the following pullbacks

(PX ,P{|γX |}×{|γX |}α⊠ ρ)) (X, ρ) (PY ,P{|γY |}×{|γY |}α⊠ σ) (Y, σ)

(A,α) (B, β) (A,α) (B, β)
⌊f⌉

⌊g⌉

⌊f⌉

⌊h⌉

where γX := Pf×gβ and γY := Pf×hβ and PX := dom({|γX |}) and PY := dom({|γY |}), we want
to prove that the sum of the above diagrams

(PX + PY ,P{|γX |}×{|γX |}α⊠ ρ)⊞ P{|γY |}×{|γY |}α⊠ σ)) (X, ρ) + (Y, σ)

(A,α) (B, β)
⌊f⌉

[⌊g⌉,⌊h⌉] (2.40)

is a pullback of the arrows ⌊f⌉ and [⌊g⌉, ⌊h⌉], which is given, up to isomorphism, by the diagram

(PX+Y ,P{|γ|}×{|γ|}α⊠ (ρ⊞ σ)) (X + Y, ρ⊞ σ)

(A,α) (B, β)

[⌊g⌉,⌊h⌉]

⌊f⌉

where γ := Pf×[g,h]β and PX+Y := dom({|γ|}). But, since e ◦ f × [g, h] = [f × g, f × h] if we denote
with γ′ := P[f×g,f×h]β, then we obtain that

{|γ|} = e ◦ {|γ′|}

which is, by condition 3 of Definition 2.5.3, equal to e ◦ ({|γX |} + {|γY |}). Hence, the diagram (2.40)
is a pullback of ⌊f⌉ and [⌊g⌉, ⌊h⌉].
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Remark 2.5.8. In case of the elementary doctrine PsubC of a category with strict finite products
an weak pullbacks, we obtain the characterization of Gran and Vitale in [GV98, Proposition 2.1].
Indeed, as already observed, in case of strict products, distributivity of coproducts implies strict
of initials and that injections are monomorphisms. Hence, Definition 2.5.2 and Definition 2.5.3
coincide.

2.6 Std0 is a "relative" Π-pretopos

We end this chapter introducing a doctrinal version of pretopos in order to emphasize the struc-
tures which appear when taking the elementary quotient completions of the doctrines of types.
The results of the previous sections imply that the elementary quotient completions of suitable
elementary doctrines are instances of this definition. We prove that those results apply to the ele-
mentary doctrine FML0 of h-sets and h-prop. Hence, we obtain that the homotopy setoids provide
a non-trivial example of a locally cartesian closed relative pretopos.

We first recall that a pretopos is a category which is both exact and extensive. A Π-pretopos is
a locally cartesian closed pretopos. We refer to [Joh02; FS90] for further details about pretoposes.
The structures we have considered are similar to pretopos but the behavior of quotients is regulated
by a suitable elementary doctrine and not necessarily by the elementary doctrine of subobjects.

Definition 2.6.1. A relative pretopos is an elementary doctrine P : C op → InfSL in QD such that C is
an extensive category. In this case, C is said to be a pretopos relative to P.

Obviously, every pretoposC is a pretopos relative to SubC and Theorem 2.3.7 and Theorem 2.5.6
imply the following corollary.

Corollary 2.6.2. Let P : C op → InfSL an existential universal and implicational elementary doctrine with
full weak comprehensions and comprehensive diagonals. If C has distributive finite coproducts, P has finite
joins and every slice C /A has P-extensional exponentials, then C is a Π-pretopos relative to P.

Remark 2.6.3. As already mentioned, the above result generalizes various properties of the exact
completion to the case of the elementary quotient completion. However, there exists a different no-
tion of quotient completion which has not been mentioned yet. In [BM18], the authors introduce
the path categories, a categorical framework to deal with homotopy theory, and a construction called
homotopy exact completion which adds quotients of homotopy equivalence relations. If C is a path cat-
egory, the homotopy exact completion Hex(C ) of C turns out to be an exact category and, among
the various results, the authors prove two results about the local cartesian closure and the lexten-
sivity of Hex(C ). In order to do that, the authors define the notions of weak homotopy exponential
and homotopy extensivity taking into account the homotopical structure of the path categories.

The author is not aware of the precise relation between the homotopy exact completion and the
elementary quotient completion. However, it is plausible that former is an instance of the latter. In
fact, a future investigation would be to study if the structure of a path category C gives rise to an
elementary doctrine which associates to every objects X ∈ C the poset reflection of the fibrations
over X . Achieved that, it would become an exercise to verify that the results obtained in [BM18]
are particular instances of Corollary 2.6.2.

The category of setoids can be obtained as an instance of the homotopy exact completion. How-
ever, since this construction leads to an exact category, the homotopy setoids cannot be obtained in
this way. One possibility could be to obtain the category of homotopy setoids as a variation of the
homotopy exact completion, in which one considers only particular equivalence relations such that
the underlying fibrations have somehow “contractible” fibers.
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We now come back to homotopy setoids and prove that they are a relative Π-pretopos. In order
to do that, we first prove that the elementary doctrine FML0 satisfies hypothesis of Theorem 2.3.7
and Theorem 2.5.6.

Extensivity of Std0. It is well known that the syntactic category arising from a type theory with
sum types has coproducts. A discussion about that can be found for example in [EP20]. We now
briefly recall the main points and conclude that Theorem 2.5.6 applies to the elementary doctrine
FML0 .

The coproduct of two closed typesX and Y is given by the sum typeX+Y and the initial object
is given by the empty type 0. In particular, if X and Y are h-sets, then the sum is an h-set and the
same holds for every homotopy type, see [Uni13]. In §2.12 of loc.cit., there is an explicit description
of the identity types of the elements of X + Y which is:

IdX+Y (inl(x1), inl(x2)) ∼= IdX(x1, x2)

IdX+Y (inr(y1), inr(y2)) ∼= IdX(y1, y2)

IdX+Y (inl(x), inr(y)) ∼= 0
(2.41)

The first two conditions imply that inML, and hence inML0, the injections

iX := ⌊inl⌉ : X → X + Y

iY := ⌊inr⌉ : Y → X + Y
(2.42)

are monomorphisms. The last condition of (2.41) and the fact that 0 is an h-set imply that coprod-
ucts are disjoint both inML andML0. The distributivity of coproducts corresponds to proving that
the arrow represented by the term

Ind+(1X × iY , 1X × iZ) : (X × Y ) + (X × Z)→ X × (Y + Z) (2.43)

induced by the induction principle of coproducts

(A→ C)→ (A→ C)→ (A+B → C)

is an isomorphism. Using again the recursion principle with A := Y , B = Z and C := X →
(X × Y ) + (X × Z) we obtain

Ind+(iX×Y , iX×Z) : (Y + Z)→ (X → (X × Y ) + (X × Z)) (2.44)

such that
Ind+(iX×Y , iX×Z)(x, iY y) := iX×Y (x, y)

Ind+(iX×Y , iX×Z)(x, iZz) := iX×Z(x, z).
(2.45)

An easy verification show that the terms in (2.43) and in (2.44) induces inverse arrows in ML and
ML0. It remains to prove condition 3 of Definition 2.5.3 which corresponds to the fact that given
two arrows ⌊f⌉ : X → A and ⌊g⌉ : Y → A and a dependent type a : A ⊢ P (a), then the arrow

Ind+(f(πX), g(πY )) :
∑
x:X

P (f(x)) +
∑
y:Y

P (g(y))→ A (2.46)

is a comprehension of the dependent type

z : X + Y ⊢ P (ind+(f, g)(z)).
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This follows from the equivalence between the types∑
z:X+Y

P (rec(f, g)(z))
∑
x:X

P (f(x)) +
∑
y:Y

P (g(y))

which is a more general form of distributivity of sums and products.

Remark 2.6.4. We underline the fact that the results and definitions of this section hold also for
elementary doctrines not necessarily with all finite joins. Indeed, we actually used the joins only in
case of the coproductX + Y of two objectsX,Y ∈ C . In particular, we exploited the P-eq. relation
ρ ⊞ σ on X + Y built from two P-equivalence relations ρ ∈ P(X × X) and σ ∈ P(Y × Y ) and
we needed the distributivity of ⊞ and ⊠ and the Frobenius recirocity. In the following lemma, we
prove that this holds for elementary doctrine FML0 of h-sets and h-props, which does not have all
finite joins as observed in Remark 2.1.5.

Lemma 2.6.5. If X and Y are two types and x1, x2 : X ⊢ R and y1, y2 : Y ⊢ S are dependent types, then
the type

R⊞ S :=
∑

x1,x2:X

R(x1, x2)× IdX+Y (z1, iX(x1))× IdX+Y (z2, iX(x2)) +

+
∑

y1,y2:X

S(y1, y2)× IdX+Y (z1, iY (y1))× IdX+Y (z2, iY (y2))

which depends on z1, z2 : X + Y , is an h-proposition.

Proof. The argument follows from Lemma 2.1.7. Indeed, due to the description of the identity type
of the sum X + Y , the two components of the above sum can not be simultaneously inhabited.

Hence, the categories ML and ML0 are respectively FML+ and FML0-weakly extensive. The
same holds for FML. Theorem 2.5.6 implies the following result.

Corollary 2.6.6. The categories ML and ML0 are extensive.

A discussion about coproducts in Std can be found in [Wil10]. The author shows that, in order
to have disjoint coproducts, it is necessary to assume a universe in the type theory. The argument
relies on the Smith’s model of Martin-Löf intuitionistic type theory without universes [Smi88]. For a
discussion about extensivity of setoids arising from a different type theory, we refer to [Mai09].

Local cartesian closure of Std0. Wenowprove thatFML0 satisfies the hypothesis of Theorem2.3.2
and Theorem 2.3.7. The following result was already observed for the elementary doctrine FML in
[MR13, Proposition 7.3].

Proposition 2.6.7. The elementary doctrine FML0 is implicational, universal andML0 is weakly cartesian
closed.

Proof. The implication is given by the arrow type: if X is an h-set, and A(x) and B(x) are h-
propositions, then

x : X ⊢ A(x)→ B(x)

is a particular form of dependent product type and by Remark 2.1.5 it is an h-proposition. The
adjunction property of the implication is trivially verified by Currying and λ-abstraction.
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We now prove that fML0 has right adjoint to all reindexings. Given an arrow f : X → Y and an
h-proposition x : X ⊢ B(x), define the type

y : Y ⊢
∏
x:X

(IdY (f(x), y)→ B(x)) (2.47)

which is an h-proposition because of Remark 2.1.5. Again the adjunction property follows from
λ-abstraction. The Beck-Chevalley condition on pullback diagrams

V :=
∑
x:X

∑
y:Y

IdZ(f(x), g(y)) Y

X Z

π2

g
π1

f

is given, for every x : X ⊢ B(x), by the logical equivalence of the types∏
v:V

IdY (π2(v), y)→ B(π1(v))
∏
x:X

IdZ(f(x), g(y))→ B(x)

given by the arrow
h(v, p) 7−→ h̃(x, q) := h(x, y, p, refly).

A weak exponential of the h-sets X and Y is given by the arrow type X → Y which is an h-set
because we have assumed the functional extensionality axiom. The term

f : X → Y, x : X ⊢ λx.f(x) : Y

provides an evaluation e, which is actually strict because we have assumed the functional exten-
sionality axiom.

Remark 2.6.8. The main difference between the syntactic category ML arising fromML and the
one arising fromML+F.E. is that the former has only weak exponentials while the latter has strict
exponentials due to the functional extensionality axiom.

Proposition 2.6.9. The elementary doctrine FML0 has right adjoints to weak pullback projections and the
slices ofML0 have FML0-extensional exponentials.

Proof. The first part follows fromProposition 2.6.7. For the second part, consider an h-setA and two
arrows f : X → A and g : Y → A. If S is an equivalence relation on Y which is an h-proposition,
we build the extensional exponential of f and g with respect to S by steps. First we consider the
dependent type

a : A ⊢
∑
x:X

IdA(f(x), a)→
∑
y:Y

IdA(g(y), a) (2.48)

and denote it with Funfg(a), which is an h-set. Second we consider the type∑
a:A

∑
m:Funfg(a)

∏
x1,x2:X

∏
p1:Ida(f(x2),a)

∏
p2:Ida(f(x2),a)

(IdA(x1, x2)→ S(π1(m(x1, p1)), π1(m(x1, p1))), (2.49)
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and denote it with W . Intuitively, we collected the arrows between the fibers fibf (a) and fibg(a)
such that equal objects of fibf (a) are sent to objects of fibg(a) which have S-related Y -components.
Remark 2.1.5 implies that the typeW is an h-set and we now prove that the projection

π1 :W → A

is an extensional exponential of x and y with respect to S. Recall that a weak product of π and f is
given by the common value of the common value of the two composites

V :=
∑

w:W,x:X

IdA(f(x), π(w)) X

W A.

π2

π1
f

π

(2.50)

in fact, as we observed in 2.2 the above diagram is a strict pullback. The evaluation arrow e : V → Y
is given by the term

(w, x, p) : V ⊢ π1(π2(w)(x, p)) : Y

and obviously g ◦ e = f ◦π2. The evaluation preserves projections w.r.t. S. Indeed, if ((a,m, t), x, p)
and ((a′,m′, t′), x′, p′) are terms of V such that p1 : IdW ((a,m, t), (a′,m′, t′)) and p2 : IdX(x, x′), then
we can transport along the A-component of pA1 : IdA(a, a

′) the function m : Funfg(a) to obtain a
function of pA∗

1 (m) : Funfg(a
′) which is defined as follows

pA
∗

1 (m)(x′, p′) := m(x′, p′ p−1
1 )

where p′ p−1
1 denotes the concatenation of p′ with the inverse path of p1. Through p1 we obtain a

term of IdFunfg(a′)(p∗1(m),m′). Hence, sincem(x′, p′ p−1
1 ) andm(x, p) have S-related Y -components,

we obtain thatm′(x′, p′) andm(x, p) have S-related Y -components. The evaluation is strict because
we assumed the functional extensionality axiom.

Remark 2.6.10. We observe that a slight modification of the extensional exponential type (2.49) of
two objects x : X → A and y : Y → Awith respect to an eq. relation S on Y . Indeed, as observed in
Observation 2.4.3 substituting IdY to S in (2.49) we obtain a weak exponential of x and y. Similarly,
substituting 1 to S in (2.49) we obtain a very weak exponential of x and y. A very weak exponential
of x and y is given by the arrow

π :
∑
a:A

(∑
x:X

IdA(f(x), a)→
∑
y:Y

IdA(g(y), a)
)
→ A. (2.51)

Applying Theorem 2.3.2 we obtain that Std0 is cartesian closed. For the local cartesian closure
we need to do some observations.

Remark 2.6.11. As we have proved in Proposition 2.2.2, FML0 is not existential, but it has left ad-
joint to the reindexings over monomorphisms. Hence, even if we proved Proposition 2.6.7 and
Proposition 2.6.9, we can not apply Theorem 2.3.7 to FML0 . However, a deeper look at the proof
of Theorem 2.3.7 shows that we only used left adjoints of reindexings of comprehensions and of
product of comprehensions, and the Beck-Chevalley condition on the weak pullback diagrams. For
FML0 , the comprehensions are monomorphisms and the Beck-Chevalley condition of the left ad-
joints for weak pullback diagrams follows from the Beck-Chevalley condition of the right adjoints,
see Lemma A.0.17. Hence, applying Theorem 2.3.7 we obtain the following result.
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Theorem 2.6.12. The category Std0 is locally cartesian closed.

Observation 2.6.13. We now observe that the elementary doctrine FML0 of h-sets is in the class of
the elementary doctrines for which we could give a more direct proof of Theorem 2.3.7.

Indeed, in case of elementary doctrines P : C op → InfSL with strict full comprehensions and
left adjoint to reindexings of monomorphisms it is possible to build the slice doctrines of P. We now
provide the main ideas of the construction without the details. The argument will be treated in
depth in the next chapter.

Given an object A ∈ C we can define the functor

P/A : C /Aop → InfSL (2.52)

which sends an object x : X → A of C /A to the poset P/A := P(A), and an arrow h : x → y from
x to y : Y → A to P/A(h) := Ph. Since C /A has strict products, that can be built through the strict
comprehensions, the functor P/A inherits the elementary structure from P. If x ×A x denotes the
common value of the two composites of the pullback

X ×A X X

X A

π2

π1

x

x
⌟

the fibered equality of x is given by the reindexing δx := P⟨π1,π2⟩δX ∈ P/A(x×A x). In this case, it is
a trivial computation to prove that δx satisfies the axioms of Definition 1.2.5. A P/A-eq. relation on
x corresponds to an element P(X ×AX)which satisfies reflexivity, symmetry and transitivity con-
ditions. The left adjoints to the reindexings over monomorphisms give a correspondence between
P/A-eq.relations and P-eq.-relations. Indeed, it happens that r is a P/A-eq. relation ox x if and only
if ∃⟨π1,π2⟩r is a P-eq. relation on X and

δX ≤ ∃⟨π1,π2⟩r ≤ Px×xδA. (2.53)
This correspondence gives a practical description of the elementary quotient completion of P/A in
terms of the elementary quotient completion of P i.e.:

P/A ∼= P/(A,δA). (2.54)
Hence, it is possible to prove Theorem 2.3.7 just applying Theorem 2.3.2 and Remark 2.3.9 to the
slice doctrines of P and provide explicitly the exponentials of the slices of the form P/(A,α).
Remark 2.6.14. The above discussion was is of the main motivation that led us to the investiga-
tions of the next chapter. Indeed, we remark that the above construction relies on the fact that the
base category C of the elementary doctrines P : C op → InfSL considered have strict pullbacks.
Hence, the slices of C have strict finite product and the slice functors are still in the realm of the
doctrines. However, in lots of cases, such as FML, the slices of the base category have only weak
finite products.

Another important aspect is that in the proof of Theorem 2.3.7, we actually repeated the argu-
ments of Theorem 2.3.2, assuming a different notion of exponential, for the slice categories. Lot of
work has been done just because we could not consider the functor that P induces on the slices as
an elementary doctrine, because they lack of strict finite products.

Moreover, the results obtained for the local cartesian closure and the extensivity of the elemen-
tary quotient completion obtain the results about the exact completion, only in the case of categories
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with strict finite products and weak pullbacks. However, [GV98, Proposition 2.1],[CR00, Theorem
3.3] and [Emm20, Theorem 3.6] are stated for categories in which also finite products are weak.
A similar observation can be done for the exact completion which is a particular instance of the
elementary quotient completion only for categories with strict products and weak pullbacks.

In the next chapter, we will provide a more general framework which takes into account these
considerations.

We conclude this chapter observing that Remark 2.2.4,Theorem 2.6.12 and Corollary 2.6.6 imply
the following result.

Corollary 2.6.15. The categoriesML and ML0 are pretopos relative to FML+ and FML0 respectively.

Hence, we obtained that the homotopy setoids form anon-trivial example of relativeΠ-pretopos.
Another non-trivial example of relative pretopos could be obtained for setoids arising from the
minimal type theory (mTT) introduced by Maietti and Sambin, see [MS05] and [Mai07].

Concluding remarks and further developments. The above result about the homotopy-setoids,
can be also interpreted as follows. Wementioned that in [RS15] the authors considered the category
of h-sets of the homotopy type theory. Assuming the univalence axiom and various higher inductive
types, it is possible to obtain, internally to that type theory, a categorywhich resembles the category
Set of sets and functions, which is a well-knows topos. In [RS15, Theorem 2.2] the authors prove
that the h-sets form aΠW -pretopos and, assuming also the resizing rule, it becomes a topos. Hence,
h-sets provides the corresponding notion of "set" in that type theoretic framework. What we did
actually is to detect the corresponding category of sets in aweaker type theory that does not have the
sophisticated type constructors of the homotopy type theory. But, it will be part of future research
to considerW -types in our context.

The formalization of setoids in proof assistants has been deeply investigated in [BCP03]. One fu-
ture developmentwill be to implement in a proof assistant, based onAgda [CC99] orCoq [HKPM02],
the homotopy setoids through one of the notion of category internal to the type theory, such as the
E-categories and H-categories introduced in [Pal18] or the pre-categories introduced in [AKS15];

Other future developments will be to investigate the connections between the elementary quo-
tient completion and the homotopy exact completion of [BM18], and the possibility to obtain the
homotopy setoids of a variation of the latter completion as discussed in Remark 2.6.3.
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Chapter 3

Biased doctrines

The aim of this chapter is to generalize the notion of elementary doctrine and of elementary quo-
tient completion, for functors where the base category may have just weak finite products. In Re-
mark 2.6.14, we underlined the main reasons which motivates this generalization. In particular,
we obtain a more general framework in which the corresponding elementary quotient completion
recover the exact completion of a category with weak finite products and weak pullbacks.

In the first part, we will introduce the notion of biased elementary doctrine which is a suitable
controvariant functor, from a category with weak finite products into the category of posets. The
elementary doctrines are a particular instance of the new framework and many other examples
which were not in the realm of the elementary doctrines, due to the lack of strict products in the
base categories, will be discussed. In Section 3.2, we will provide the main definitions and we will
discuss the following motivational examples:

• the functor PsubC : C op → InfSL for a weakly left exact category C ,
• the slice doctrine P/A : (C /A)op → InfSL of a biased elementary doctrine P : C op → InfSL and

object A ∈ C .
In Section 3.2 we will discuss the fundamental notion of proof-irrelevant elements and in Section 3.3
we will provide a construction which associates a strict elementary doctrine to a biased elementary
doctrine in a universal way. In Section 3.4 we provide the corresponding quotient completion,
which generalize both the elementary quotient completion and the exact completion of a weakly
left exact category as provided in [CV98].

The second part of the chapter will be focused on the generalizations of the theorems obtained
in Sections 2.3 and 2.6 for the strict elementary doctrines. In Section 3.5, we will define biased
elementary doctrineswhich can deal with implication and existential and universal quantifications.
In Section 3.6 we will provide some results about the exact completion of the slice doctrines of a
biased elementary doctrine, which will be useful in Section 3.7.

Before starting, we fix some notations about weak finite products.
Notation. If C is a category with weak finite products andX1, . . . , Xn are objects of C , then we can
obtain a weak product of those objects in different not isomorphic ways. Indeed, if we have

• a weak product pi :W → Xi, for i = 1, . . .m, of the objects X1, . . . , Xm.
• a weak product pi : V → Xi, for i = m+ 1, . . . , n, of the objects Xm+1, . . . , Xn.

We can obtain a weak product of the objectsX1, . . . , Xn ∈ C through a binary weak productW p1←
U

p2→ V . Moreover, given an assignment j : {1, . . . , k} → {i, . . . , n}with 1 ≤ k, and a weak product

59
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Z of the objectsXj(c), for c = 1, . . . , k, we will abuse the notation and denote with ⟨j(1), . . . , j(k)⟩ :
U → Z the arrow induced by the composition of the projections pj(t) ◦ p1, if j(t) ≤ m, and pj(t) ◦ p2,
ifm+ 1 ≤ j(t).

3.1 Biased elementary doctrines

The underlying categorical structure of this section will be controvariant functors from categories
withweak finite products to the category of posets. Wewill refer to such functors as biased doctrines.
In this section we provide a definition of primarity and elementarity for biased doctrines and discuss
some examples which naturally fit the new context.

Themodular correspondence between the categorical structures and logic is especially beneficial
here: the conditions in Definition 1.2.1 are mutually independent and we can rewrite them when
C has just weak finite products as follows.
Definition 3.1.1. LetC be a categorywithweak finite products. A biased primary doctrine is a functor
P : C op → Pos which takes value in the category InfSL of inf-semilattices, i.e.:
P1 for every object X ∈ C , P(X) has finite meets
P2 for every arrow f : X → Y in C , the map Pf : P(Y )→ P(X) preserves finite meets.
Contrary to the definition of biased primary doctrine, the conditions in Definition 1.2.3, which

characterize the elementary structure, are interdependent and the (strict) products in the base cate-
gory C played a key role in it. Since twoweak products of the same objects need not be isomorphic,
we have to devise a way so that fibered equalities, which shall now become biased fibered equalities,
interact appropriately. As we expect, an elementary doctrine shall satisfy also the following Defi-
nition 3.1.2, but we will discuss in detail the relationship in the section.
Definition 3.1.2. Let C be a category with weak finite products. A biased elementary doctrine is a
biased primary doctrine P : C op → InfSL, such that, for every object X ∈ C and for each choice of
weak product X p1←W

p2→ X there exists an element δWX ∈ P(W ) satisfying:

wI For every arrow Z
d−→W , with p1 ◦ d = p2 ◦ d, it is ⊤Z ≤ Pd(δ

W
X ).

wII P(X) = DesδWX := {α ∈ P(X)| Pp1α ∧ δWX ≤ Pp2α}.

wIII If f : Y → X is an arrow of C , then for every choice of weak product Y p1← V
p2→ Y and for

every arrow g : V →W such that pi ◦ g = f ◦ pi, we have
δVY ≤ Pgδ

W
X .

wIV For every choice of weak productW p1← U
p2→W and arrows U W,

⟨1,3⟩

⟨2,4⟩

δWX ∈ DesP⟨1,3⟩(δ
W
X )∧P⟨2,4⟩(δ

W
X ).

Observation 3.1.3. As expected, every elementary doctrine is actually a biased elementary doctrine.
Indeed, for every object X ∈ C and weak product X p1← W

p2→ X , there exists a unique map
⟨p1, p2⟩ : W → X × X into the strict product X × X . The biased fibered equalities are given by
the reindexings δWX := P⟨p1,p2⟩(δX) ∈ P(W ). The element δWX satisfies the conditions of the above
definition because δX satisfies the conditions in Definition 1.2.5.
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We now consider functors that are not in the realm of elementary doctrines since the base cat-
egories have only weak finite products. However, we can prove that they are examples of biased
elementary doctrines.

Example 3.1.4 (Slice doctrine). Let P : C op → InfSL be an elementary doctrine with weak com-
prehensions and comprehensive diagonals in the sense of Definition 1.2.5. Since weak pullbacks
in C can be obtained through comprehensions, see A.0.7, it follows that the slices C /A have weak
products for every object A ∈ C . The functor

P/A : (C /A)op → InfSL

is defined on an object (f : X → A) ∈ C /A as P/A(f) := P(X) and on an arrow h : f → g of C /A
as P/A(h) := Ph. We will refer to the functor P/A as the slice doctrine over A. We can now prove that
the slice doctrine P/A : (C /A)op → InfSL is a biased elementary doctrine for all object A ∈ C .
Indeed, let x : X → A be an object of C /A and consider a weak product of x p1← w

p2→ x given by
the common value of the composites of the following weak pullback diagram

X ×A X X

X A.

π1

π2

x

x

The elementary structure is obtained setting δwx := P⟨π1,π2⟩δX ∈ P/A(w)(:= P(X×AX)). Conditions
wI and wII of Definition 3.1.2 trivially follow from conditions I and II of Definition 1.2.5. We now
prove that conditionwIII holds. Let y : Y → A be an object of C /A and let v : Y ×A Y → A a weak
product of v and v. Given two arrows as in the following commutative diagrams

Y X

A

f

y x

Y ×A Y X ×A X

A

g

v w

such that πi ◦ g = f ◦ πi, for i = 1, 2, then we obtain condition wIII as follows

(P/A)gδ
w
x := PgP⟨π1,π2⟩δX

= P⟨π1,π2⟩Pf×fδX

≥ P⟨π1,π2⟩δY

:= δvy .

Wenowprove conditionwIV. Let u : U → A be aweak product ofw andw and let h : U → X×X×
X×X be the unique arrow induced on the strict productX×X×X×X . If ⟨1, 3⟩/A, ⟨2, 4⟩/A : u→ w
are arrows induced by the composition π1 ◦π1, π2 ◦π1 and π1 ◦π2, π2 ◦π2, then we obtain condition
wIV as follows

(P/A)π1δ
w
x ∧ (P/A)⟨1,3⟩/Aδ

w
x ∧ (P/A)⟨2,4⟩/Aδ

w
x

:= Ph(P⟨1,2⟩δX ∧ P⟨1,3⟩δX ∧ P⟨2,4⟩δX ) (III)
≤ PhP⟨3,4⟩δX

:= (P/A)π2δ
w
x .
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Example 3.1.5 (Weak subobjects). For a given category C with weak finite limits, the functor of
weak subobjects PsubC of Example 1.2.6 is actually a biased elementary doctrine. Indeed, ifX is an
object of C and X p1←W

p2→ X is a weak product, the element δWX is given by the equivalence class,
in the poset reflection of C /W , of the right dashed arrow of the following weak limit:

D

X W

X X.

δWX

1X 1X p1 p2

Observe that δwx is an equalizer of the arrows W X
p1

p2
.

We now compare Definition 1.2.5 andDefinition 3.1.2. ConditionwI of Definition 3.1.2 is a more
general formulation of condition I of Definition 1.2.5. ConditionwII of Definition 3.1.2 is the same
of II of Definition 1.2.5, i.e., for all elements α ∈ P(X) it follows that

Pp1α ∧ δWX ≤ Pp2α.

Moreover, it is straightforward to prove that conditions wIII and wIV of Definition 3.1.2 are satis-
fied for strict elementary doctrines. We now ask if condition III of Definition 1.2.5 holds for biased
elementary doctrines. Actually, we know that for the strict elementary doctrines we have the equal-
ity of the elements

δX×Y = δX ⊠ δY ,

(see Proposition A.0.3). For the biased elementary doctrines, the above identity does not hold in
general, as we will discuss in Example 3.2.5. However, in the following lemma, we prove that the
inequality δX×Y ≤ δX ⊠ δY holds for biased elementary doctrines.

Lemma 3.1.6. If P : C op → InfSL is a biased elementary doctrine, then the following conditions hold

i) For every pair of objects X,Y ∈ C , if X p1← Z
p2→ Y is a weak product, then for each choice of weak

productsX p1←W
p2→ X , Y p1← V

p2→ Y , and Z p1← U
p2→ Z and arrows U W,

⟨1,3⟩
U V,

⟨2,4⟩

it follows that
δUZ ≤ P⟨1,3⟩δX ∧ P⟨2,4⟩δY .

ii) IfW andW ′ are weak products ofX andX , then for any arrow h :W ′ →W such that p′i = pi◦h, for
i = 1, 2, the fibered equalities δWX ∈ P(W ) and δW ′

X ∈ P(W ′) are related by the following inequality

δW
′

X ≤ Ph(δ
W
X ).

Proof. They follow from condition wIII.

For any object X ∈ C , Definition 3.1.2 requires the verification of certain conditions for every
choice of weak product ofX and itself. We now obtain a description of biased elementary doctrines
which only depends on a choice of weak products. In order to do that, we discuss some fundamen-
tal properties of the fibered equalities δX . Before we define a particular class of elements in the
fibers of the weak products.
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Definition 3.1.7. Let P : C op → InfSL be a biased primary doctrine and let X1, . . . , Xn be objects
of C . LetW be a weak product of X1, . . . , Xn with projections pi : W → Xi, for i = 1, . . . , n, and
β ∈ P(W ), we say that the reindexing Pt(β) of β along an arrow T

t→W is determined by projections
if, for every arrow T

t′→W such that pi ◦ t = pi ◦ t′ for i = 1, . . . , n,
Pt(β) = Pt′(β).

An element β ∈ P(W ) is reindexed by projections if, for every object T and arrow T
t→ W , the

reindexing of β along t is determined by projections.
The importance of the above definition is that, in case of weak products, two arrows t, t′ : T→W

that have the same projections are not necessarily equal. However, the functors Pt and Pt′ have the
same values on the elements of P(W ) that are reindexed by projections. The fibered equalities δWX
of Definition 3.1.2 have enough properties to be reindexed by projections. Actually, less is needed,
as it is shown in the following lemma.
Lemma 3.1.8. Let P : C op → InfSL be a biased primary doctrine and let X be an object of C . Assume that
X

p1←W
p2→ X is a weak product and δWX is an element of P(W ) satisfying conditionwI of Definition 3.1.1

and the condition

wIV’ There exist a weak productW p1← U
p2→W and two arrows U W

⟨1,3⟩

⟨2,4⟩
such that

δWX ∈ DesP⟨1,3⟩(δ
W
X )∧P⟨2,4⟩(δ

W
X ).

Then δWX is reindexed by projections.

Proof. Let T W
t1

t2
be two arrows such that pi ◦ t1 = pi ◦ t2, for i = 1, 2. The weak univer-

sal property of U implies the existence of an arrow ⟨t1, t2⟩ : T → U such that pi⟨t1, t2⟩ = ti,
for i = 1, 2. Hence, Pti(δWX ) = P⟨t1,t2⟩Ppi(δ

W
X ), for i = 1, 2 and, by condition wI, it follows that

P⟨t1,t2⟩P⟨1,3⟩(δ
W
X ) = ⊤T = P⟨t1,t2⟩P⟨2,4⟩(δ

W
X ). We obtain the inequality Pt1δ

W
X ≤ Pt2δ

W
X as follows:

Pt1(δ
W
X ) = P⟨t1,t2⟩Pp1(δ

W
X )

= P⟨t1,t2⟩Pp1(δ
W
X ) ∧ ⊤T

= P⟨t1,t2⟩(Pp1δ
W
X ∧ P⟨1,3⟩δ

W
X ∧ P⟨2,4⟩δ

W
X ) (wI)

≤ P⟨t1,t2⟩Pp2(δ
W
X ) = Pt2(δ

W
X ) (wIV’)

= Pt2(δ
W
X ).

The opposite inequality is obtained similarly considering an arrow ⟨t2, t1⟩.
Corollary 3.1.9. Let P : C op → InfSL be a biased elementary doctrine and let X be an object of C . If W
andW ′ are two weak products ofX and itself and h :W →W ′ is an arrow satisfying p′ih = pi for i = 1, 2,
then Phδ

W ′
X = δWX .

We say that a category C has a choice of weak products if there exists a functor ω : C × C → C Λ,
where Λ is the category with three objects and the non trivial span

• • • ,

such that:
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• the value ω(X,Y ) is a weak product of the objects X,Y ∈ C ,

• the arrow ω(f, g) : ω(X,Y )→ ω(A,B) satisfies p1 ◦ ω(f, g) = f ◦ p1 and p2 ◦ ω(f, g) = g ◦ p2,
for every pair of arrows f : X → A and g : Y → B of C .

We will use the usual notationX p1← X × Y p2→ Y for the choice of weak product ω(X,Y ) and f × g
for the choice of weak product of arrows ω(f, g). In the following Theorem, we prove that a choice
of weak products provides an easier description of the biased elementary doctrines.

Theorem 3.1.10. If P : C op → InfSL is a functor such that C has a choice of weak products and such that
for every object X ∈ C there exists an element δX ∈ P(X ×X) satisfying:

i) for every arrow Z
d−→ X ×X such that p1 ◦ d = p2 ◦ d, then ⊤Z ≤ Pd(δX),

ii) P(X) = DesδX ,

iii) If f : Y → X is an arrow of C , then δY ≤ Pf×fδX ,

iv) δX ∈ DesP⟨1,3⟩(δX)∧P⟨2,4⟩(δX),
1

then the functor P : C op → InfSL is a biased elementary doctrine

Proof. For each choice of weak product X p1← W
p2→ X , the weak universal property of weak prod-

ucts induces an arrow h : W → X × X such that pi ◦ h = pi, for i = 1, 2. Even if h is not unique,
Lemma 3.1.8 implies that we can uniquely reindex δX along such arrow and define δWX := PhδX ,
which trivially satisfies conditions wI and wII of Definition 3.1.2.
We now prove wIII of Definition 3.1.2. LetW be a weak product of X and X , and let V be a weak
product of Y and Y . So there are arrows h :W → X×X and k : V → Y ×Y such that pi◦h = pi and
pi ◦ k = pi , for i = 1, 2. Let f : Y → X and g :W → V be two arrows of C such that pi ◦ g = f ◦ pi,
for i = 1, 2. We obtain that δVY ≤ Pgδ

W
X as follows

δVY := PkδY

≤ PkPf×fδX (iii)
= PgPhδX (Lemma 3.1.8)
:= Pgδ

W
X .

We now prove condition wIV of Definition 3.1.2. Let W p1← U
p2→ W be a weak product and let

U W,
⟨1,3⟩′

⟨2,4⟩′
be two arrows induced by the projections p1 ◦ p1, p1 ◦ p2 and p2 ◦ p1, p2 ◦ p2. The

weak universal property of weak products induces arrows h : W → X × X and k : U → (X ×
X) × (X × X) satisfying pi ◦ h = pi and pi ◦ k = h ◦ pi, for i = 1, 2. We obtain the relation

1The arrow (X×X)× (X×X)
⟨1,3⟩→ X×X denotes the choiche p1×p1. Similarly, the arrow ⟨2, 4⟩ denotes the choice

p2 × p2.
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δWX ∈ DesP⟨1,3⟩′ (δ
W
X )∧P⟨2,4⟩′ (δ

W
X ) as follows:

Pp1δ
W
X ∧ P⟨1,3⟩′δ

W
X ∧ P⟨2,4⟩′δ

W
X (3.1)

:= Pp1PhδX ∧ P⟨1,3⟩′PhδX ∧ P⟨2,4⟩′PhδX

= PkPp1δX ∧ PkP⟨1,3⟩δX ∧ PkP⟨2,4⟩δX (Lemma 3.1.8)
= Pk(Pp1δX ∧ P⟨1,3⟩δX ∧ P⟨2,4⟩δX)

≤ PkPp2δX (iv)
= Pp2PhδX

:= Pp2δ
W
X .

3.2 Proof-irrelevant elements

In this section, wewill detect elements in the fibers of a biased elementary doctrinesP : C op → InfSL
that are suitable in the following sense. IfW is a weak product of the objects X1, . . . , Xn ∈ C and
fi : A → Xi are arrows of C , for i = 1, . . . , n, then the weak universal property of the weak
products induces a not necessarily unique arrow ⟨f1, . . . , fn⟩ : A → W , which makes the obvious
diagram commute. Hence, the reindexings of the elements of P(W ) along such arrows are not
uniquely determined. We shall define the sub-poset of P(W ) of proof-irrelevant elements and we
will prove that they are reindexed by projections. Proof-irrelevant elements take their name from
the slices of the elementary doctrine FML of dependent types, as we will discuss in Example 3.2.5.
Moreover, we will prove that proof-irrelevant elements only depends, up to isomorphism, on the
objects X1, . . . , Xn ∈ C .

Lemma 3.2.1. Let P : C op → InfSL be a biased elementary doctrine and let X1, . . . , Xn be objects of C . If
W is a weak product of X1, . . . , Xn with projections pi :W → Xi, for i = 1, . . . , n, then the sub-poset

Des
(P⟨1,n+1⟩(δ

W1
X1

)∧···∧P⟨n,2n⟩(δ
Wn
Xn

))
⊆ P(W )

does not depend on the choice of weak products Xi
p1← Wi

p2→ Xi, W
p1← U

p2→ W and arrows ⟨i, n + i⟩ :
U →Wi, for i = 1, . . . , n.

Proof. Let Des
(P⟨1,n+1⟩′ (δ

W ′
1

X1
)∧···∧P⟨n,2n⟩′ (δ

W ′
n

Xn
))
⊆ P(W ) be the sub-poset defined through a different

choice of weak binary products Xi
p′1← W ′

i

p′2→ Xi, for i = 1, . . . , n, W p′1← U ′ p′2→ W and arrows
⟨i, n+ i⟩′ : U ′ →W ′

i , for i = 1, . . . , n. We prove the equality

Des
(P⟨1,n+1⟩(δ

W1
X1

)∧···∧P⟨n,2n⟩(δ
Wn
Xn

))
= Des

(P⟨1,n+1⟩′ (δ
W ′

1
X1

)∧···∧P⟨n,2n⟩′ (δ
W ′

n
Xn

))

as follows. The weak universal property of weak products induces arrows

k : U ′ → U,

hi :W
′
i →Wi,
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such that pjk = p′j and pjhi = p′j for i = 1, . . . , n and j = 1, 2. We obtain the inclusion ” ⊆ ” as
follows. If Pp1α ∧ P⟨1,n+1⟩(δ

W1
X1

) ∧ · · · ∧ P⟨n,2n⟩(δ
Wn
Xn

) ≤ Pp2α, then

Pp′1α ∧ P⟨1,n+1⟩′δ
W ′

1
X1
∧ · · · ∧ P⟨n,2n⟩′δ

W ′
n

Xn

= PkPp1α ∧ P⟨1,n+1⟩′Phiδ
W1
X1
∧ · · · ∧ P⟨n,2n⟩Phnδ

Wn
Xn

(Corollary 3.1.9)
= Pk(Pp1α ∧ P⟨1,n+1⟩δ

W1
X1
∧ · · · ∧ P⟨n,2n⟩δ

Wn
Xn

) (Lemma 3.1.8)
≤ PkPp2α

= Pp′2α.

The opposite inclusion ⊇ follows similarly considering arrows k′ : U → U ′ and h′i : Wi → W ′
i such

that p′jk′ = pj , p′jh′i = pj for i = 1, . . . , n, j = 1, 2.
The above lemma allows us to give the following definition.

Definition 3.2.2. Let P : C op → InfSL be a biased elementary doctrine and letX1, . . . , Xn be objects
of C . For every weak productW of the objects X1, . . . , Xn , we will refer to the sub-poset

PIrrC (W ) := Des
(P⟨1,n+1⟩(δ

W1
X1

)∧···∧P⟨n,2n⟩(δ
Wn
Xn

))

of P(W ) as the sub-poset of proof-irrelevant elements (or strict predicates) of the weak productW .
Observation 3.2.3. We observe that, if P is a strict elementary doctrine and X1, . . . , Xn are objects
of C , then the proof-irrelevant elements of a strict product X1 × · · · × Xn coincide with the fiber
P(X1 × · · · ×Xn).

We now prove that the proof-irrelevant elements are reindexed by projections.
Proposition 3.2.4. Let P : C op → InfSL be a biased elementary doctrine and let X1, . . . , Xn be objects of
C . For every weak product W of the objects X1, . . . , Xn, the proof-irrelevant elements of W are reindexed
by projections.

Proof. Let T W
t1

t2
be two arrows satisfying pi◦t1 = pi◦t2, for i = 1, . . . , n and let ⟨t1, t2⟩ : T → U

be an arrow induced by the weak universal property of a weak binary productW p1← U
p2→W , such

that pi⟨t1, t2⟩ = ti for i = 1, 2. If Pp1α ∧ P⟨1,n+1⟩δ
W1
X1
∧ · · · ∧ P⟨n,2n⟩δ

Wn
Xn
≤ Pp2α, then we obtain

Pt1α ≤ Pt2α as follows:
Pt1α = P⟨t1,t2⟩Pp1α

= P⟨t1,t2⟩Pp1α ∧ ⊤T
= P⟨t1,t2⟩(Pp1α ∧ P⟨1,n+1⟩δ

W1
X1
∧ · · · ∧ P⟨n,2n⟩δ

Wn
Xn

)

≤ P⟨t1,t2⟩Pp2α

= Pt2α.

Similarly, the opposite inequality Pt2α ≤ Pt1α is obtained considering an arrow ⟨t2, t1⟩.
Proof-irrelevant elements take their name from the following example.

Example 3.2.5. Consider the elementary doctrine FML : MLop → InfSL of Example 1.2.8 and a
closed type A. If ⌊f⌉ : X → A is an object of ML/A, then a choice of weak product of ⌊f⌉ and ⌊f⌉
is given by the equivalence class of the common value of the two composites of the following weak
pullback diagram
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W :=
∑

x1,x2:X

IdA(f(x1), f(x2)) X

X A

π2

π1
f

f

The slice doctrine FML
/A sends the weak product ⌊w⌉ to FML

/A(⌊w⌉) := FML(W ), which is given
by the equivalence classes of the dependent types onW :

w :W ⊢ B(w).

The fibered equality δ⌊f⌉ is given by:
(x1, x2, p) :W ⊢ IdX(x1, x2).

Similarly, if g := f ◦ π1, a weak product of ⌊g⌉ and ⌊g⌉ is given by the common value of the two
composites of the following weak pullback

U :=
∑

w1,w2:W

IdW (g(w1), g(w2)) W

W A.

π2

π1
g

g

The fibered equality δ⌊g⌉ is an element of FML
/A(h) := FML(U) given by:

(w1, w2, p) : U ⊢ IdW (w1, w2),

and we will refer to δ⌊f⌉ as proof-relevant equality onW . On the other hand, if w := (x1, x2, q) : W
and w′ := (x′1, x

′
2, q

′) :W , then the element δ⌊f⌉ ⊠ δ⌊f⌉ corresponds to the dependent type
(w,w′, p) : U ⊢ IdX(x1, x

′
1) ∧ IdX(x2, x

′
2),

which does not depend on the proof terms
q : IdA(f(x1), f(x2)), q′ : IdA(fx2, fx

′
2).

Hence, we will refer to δ⌊f⌉ ⊠ δ⌊f⌉ as the proof-irrelevant equality onW .
Similarly, we can describe proof-irrelevant elements of the objects fi : Xi → A, for i = 1, . . . , n,

ofML/A as follows. If ⌊g⌉ :W → A is a weak product of f1, . . . , fn, then proof-irrelevant elements
over f1, . . . , fn are types w :W ⊢ B(w) such that, if w1, w2 :W and the type

IdX(w11, w21) ∧ · · · ∧ IdX(w1n, w2n)

is inhabited, then B(w1) is inhabited if and only if B(w2) is inhabited.
The following example gives an explicit description of proof-irrelevant elements of the biased

elementary doctrine of weak subobjects PsubC of weakly left exact category C . We omit the proofs,
that will be provided in detail in the next chapter.
Example 3.2.6. Let C be a category with weak finite limits and letX1, . . . , Xn be objects of C . IfW
is a weak product of X1, . . . , Xn, then the proof-irrelevant elements ofW are described as follows.
Let C /(X1, . . . , Xn) be the category of cones overX1, . . . , Xn and let C /(X1, . . . , Xn)po be its poset
reflection. The assignment which takes the equivalence class of a cone R ri→ Xi, for i = 1, . . . , n,
over X1, . . . , Xn, into the equivalence class of the right dashed arrow of the following weak limit



68 CHAPTER 3. BIASED DOCTRINES

R′

R W

X1 Xn.

ρ

r1

rn p1

pn

provides a bijection between C /(X1, . . . , Xn)po and the proof-irrelevant elements ofW . The above
correspondence can be used to interpret (a fragment of) intuitionistic logic in categories with weak
limits. In [Pal04], the author presents how standard interpretation of categorical logic, see [MR77],
relates with the categorical BHK-interpretation in categories with strict products and weak limits.
In the next chapter, wewill extend the latter interpretation towlex categories andprovide the details
of the above bijection.

We end this section proving that different weak products of the same objects yield isomorphic
sub-posets of proof-irrelevant elements.

Proposition 3.2.7. Let P : C op → InfSL be a biased elementary doctrine and let X1, . . . , Xn be objects of
C . The sub-poset of proof-irrelevant elements of W is defined up to isomorphism for every choice of weak
productW of the objects X1, . . . , Xn.

Proof. LetW ′ be a different weak product of the objectsX1, . . . , Xn with projections p′i :W ′ → Xi,
for i = 1, . . . , n, and let

Des
(P⟨1,n+1⟩′ (δ

W ′
1

X1
)∧···∧P⟨n,2n⟩′ (δ

W ′
n

Xn
))
⊆ P(W ′)

be the sub-poset of proof-irrelevant elements over W ′, defined through different weak products
W ′ p1← U ′ p2→ W ′, Xi

p1← W ′
i

p2→ Xi, for i = 1, . . . , n, and arrows ⟨i, n+ i⟩′ : U ′ → W ′
i , for i = 1, . . . , n.

The weak universal property of weak products induces arrows

h :W ′ →W

and
l :W →W ′

such that pih = p′i and p′il = pi, for i = 1, . . . , n. We prove that the functors Ph restricts to an
isomorphism with inverse Pl between the sub-orders

Ph : Des
(P⟨1,n+1⟩(δ

W1
X1

)∧···∧P⟨n,2n⟩(δ
Wn
Xn

))
Des

(P⟨1,n+1⟩′ (δ
W ′

1
X1

)∧···∧P⟨n,2n⟩′ (δ
W ′

n
Xn

))
: Pl.∼=

The weak universal property of weak products induces arrows

k : U ′ → U

and
hi :W

′
i →Wi

such that pjk = hp′j and pjhi = p′j for i = 1, . . . , n, j = 1, 2. We first prove that if

α ∈ Des
(P⟨1,n+1⟩(δ

W1
X1

)∧···∧P⟨n,2n⟩(δ
Wn
Xn

))
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then Phα ∈ Des
(P⟨1,n+1⟩′ (δ

W ′
1

X1
)∧···∧P⟨n,2n⟩′ (δ

W ′
n

Xn
))
as follows:

Pp′1Phα ∧ P⟨1,n+1⟩′δ
W ′

1
X1
∧ · · · ∧ P⟨n,2n⟩′δ

W ′
n

Xn

= PkPp1α ∧ P⟨1,n+1⟩′Ph1δ
W1
X1
∧ · · · ∧ P⟨n,2n⟩′Phnδ

Wn
Xn

(Corollary 3.1.9)
= Pk(Pp1α ∧ P⟨1,n+1⟩δ

W1
X1
∧ · · · ∧ P⟨n,2n⟩δ

Wn
Xn

) ( Lemma 3.1.8)
≤ PkPp2α

= Pp′2Phα.

A similar computation shows that Pl restricts to the sub-posets of proof-irrelevant elements. The
bijection follows from proposition 3.2.4 since pi(h ◦ l) = pi ◦ Id and p′i(l ◦ h) = p′i ◦ Id for i =
1, . . . , n.

From Lemma 3.2.1, Proposition 3.2.4, and Proposition 3.2.7, given n objectsX1, . . . , Xn ∈ C , we
can consider the the limit of the diagram of isomorphisms given by the restrictions of reindexing
among the various presentations of proof irrelevant elements of the weak products of X1, . . . , Xn

and denote it by Ps [X1, . . . , Xn]. We will refer to Ps [X1, . . . , Xn] as proof-irrelevant elements (or strict
predicated) ofX1, . . . , Xn. In the next section, we will prove that the assignment Ps is actually func-
torial and it is a strict elementary doctrine, which we will call the strictification of P.

3.3 Strictification

In this section, we will provide a construction which relates biased elementary doctrines and the
strict ones. Using the properties of proof-irrelevant elements, we will associate to each biased el-
ementary doctrine a functor which turns out to be a strict elementary doctrine. Hence, we will
obtain a characterization of the biased elementary doctrines in terms of the strict elementary doc-
trines. In order to do that, wewill need the universal construction which freely adds strict products
to a category.

Notation. For every n ∈ N, we will denote by [n] the set {1, . . . , n}. If j : [m]→ [n] is an assignment
and the cardinality of the codomain is clear from the context, then we will often denote j by its
values ⟨j(1), . . . , j(m)⟩.

The product completion (Famfin(C
op))op of an arbitrary category C can be found in [BC95]. We

now recall a presentation of the construction which better fits our context.

Definition 3.3.1. Let C be a category. The finite product completion of C is the category Cs defined
as follows:

objects of Cs are finite lists [X1, . . . , Xn] of objects of C .

arrows of Cs are pair (f, f̂) : [X1, . . . , Xn]→ [Y1, . . . , Ym] such that f̂ : [m]→ [n] is an assignment and
f = [f1, . . . , fm] is a list of arrows fi : Xf̂(i) → Yi of C , for i ∈ [m]. The composition of two
arrows (f, f̂) : [X1, . . . , Xn]→ [Y1, . . . , Ym] and (g, ĝ) : [Y1, . . . , Ym]→ [Z1, . . . , Zk] is given by

(g, ĝ) ◦ (f, f̂) = (g ∗ f, ĝ ◦ f̂)

where g ∗ f = [g1 ◦ fĝ(1), . . . , gk ◦ fĝ(k)].
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There is an obvious functor S : C → Cs , which sends an object X ∈ C to the list [X] ∈ Cs and
an arrow f of C to the arrow (f, ⟨1⟩) : [X] → [Y ] of Cs . We will denote with Cat the 2-category
of small categories, and with CART the 2-category of categories with strict finite products and
functors preserving them. It is well known that the above construction gives a left bi-adjoint to the
forgetful functor U : CART→ Cat.

Proposition 3.3.2. For every small category C , the pre-composition with S : C → Cs induces an essential
equivalence of categories

− ◦ S : CART(Cs ,D) ∼= Cat(C ,D)

for every category D with strict products.

Observation 3.3.3. We observe that the above adjunction restricts between the 2-category CART
and the full 2-subcategory WCART of Cat of categories with weak finite products and functors.
We also remark that the the obvious functor S : C → Cs does not preserve the weak finite products
of C , neither it turns weak products into strict ones.

Notation. If C is a category and f : X → Y is an arrow of C , then we will denote by [f ] the arrow
(f, ⟨1⟩) : [X] → [Y ] of Cs . Similarly, if [f ] : [X] → [Y ] and [g] : [X] → [Z] are arrows of Cs , we will
adopt the notation ⟨[f ], [g]⟩ : [X] → [Y,Z] to denote the unique arrow of Cs induced by the arrow
[f ], [g] on the product [Y,Z] of Cs . Finally, if [f ] : [X] → [Y ] and [g] : [Z] → [W ] are arrows of Cs ,
then we will denote by [f ]× [g] : [X,Z]→ [Z,W ] to denote the arrow ([f, g], ⟨1, 2⟩) of Cs .

In the following proposition, we prove that a biased elementary doctrine P : C op → InfSL in-
duces a functor Ps : C op

s → InfSL.

Proposition 3.3.4. If P : C op → InfSL is a biased elementary doctrine, then we can define a functor
Ps : C op

s → InfSL.

Proof. The functor Ps is defined on a list [X1, . . . , Xn] as the isomorphism class of the sub-orders
of proof-irrelevant elements of weak products of X1, . . . , Xn. In particular, P s [X] denotes nothing
but the poset P(X). We now prove that the assignment is functorial.
Let (f, f̂) : [X1, . . . , Xn]→ [Y1, . . . , Ym] be an arrow ofCs and letW be aweak product ofX1, . . . , Xn

and V a weak product of Y1, . . . , Ym. Hence, we obtain an arrow g : W → V such that pi ◦ g =
fi ◦ pf̂(i), for i ∈ [m]. We now prove that if α is a proof-irrelevant element of V , then Pg(α) is a
proof-irrelevant element ofW . Indeed, given some weak productsW p1← U

p2→W and V p1← Z
p2→ V ,

the arrow g induces an arrow h : U → Z such that pi ◦ h = g ◦ pi, for i = 1, 2. Given weak products
Xi

p1← Wi
p2→ Xi and Yi p1← Vi

p2→ Yi, and arrows ⟨i, i + n⟩ : U → Wi and ⟨j, j + m⟩ : Z → Vj , for
i ∈ [n] and j ∈ [m], then assuming Pp1α ∧ P⟨1,n+1⟩δ

V1
Y1
∧ · · · ∧ P⟨n,2n⟩δ

Vn
Yn
≤ Pp2α we obtain

Pp1Pgα ∧ P⟨1,n+1⟩δ
W1
X1
∧ · · · ∧ P⟨n,2n⟩δ

Wn
Xn

Definition 3.1.2-iii)
≤ PhPp1α ∧ P⟨1,m+1⟩Pf̂(1)δ

V1
Y1
∧ · · · ∧ P⟨m,2m⟩Pf̂(m)δ

Vm
Ym

Lemma 3.1.8
= Ph(Pp1α ∧ P⟨1,n+1⟩δ

V1
Y1
∧ · · · ∧ P⟨n,2n⟩δ

Vn
Yn

)

≤ PhPp2α

= Pp2Pgα.

Hence, Ps(f, f̂) sends the isomorphism class of a proof-irrelevant element α of X1, . . . , Xn to the
isomorphism class of the proof-irrelevant element Pg(α) of Y1, . . . , Ym. The assignment is well de-
fined thanks to Proposition 3.2.4.
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We now prove that the functor Ps is actually a strict elementary doctrine.

Theorem 3.3.5. LetC be a category with weak products. IfP : C op → InfSL is a biased elementary doctrine,
then Ps is a strict elementary doctrine. Vice versa, for every strict elementary doctrineR : C op

s → InfSL, the
pre-composition R ◦ S : C op → InfSL is a biased elementary doctrine.

Proof. Assuming that P : C op → InfSL is a biased elementary doctrine, we prove that Ps : C op
s →

InfSL is a strict elementary doctrine as follows. For every object [X1, . . . , Xn] ∈ Cs we define the
fibered equality δ[X1,...,Xn] as the isomorphism class of the proof-irrelevant equality P⟨1,n+1⟩δ

W1
X1
∧

· · · ∧ P⟨n,2n⟩δ
Wn
Xn

, which is in Ps [X1, . . . , Xn, X1, . . . , Xn]. In particular, δ[X] is the isomorphism
class of the fibered equalities δWX . Now we prove that δ[X1,...,Xn] satisfies conditions I,II and III
of Definition 1.2.5. Indeed, the diagonal ∆[X1,...,Xn] is given by the arrow (1X̄ , ⟨1, . . . , n, 1, . . . , n⟩),
where 1X̄ := [1X1 , . . . , 1Xn , 1X1 , . . . , 1Xn ] and Ps

∆[X1,...,Xn]
δ[X1,...,Xn] is equal to the isomorphism

class of P⟨1,...,n,1,...,n⟩(P⟨1,n+1⟩δ
W1
X1
∧ · · · ∧ P⟨n,2n⟩δ

Wn
Xn

). By Lemma 3.1.6 and condition wI we obtain
⊤[X1,...,Xn] ≤ Ps

∆[X1,...,Xn]
δ[X1,...,Xn]. Condition II, follows by definition of Ps . Finally, condition III

is obtained as follows. The element δ[X1,...,Xn] ⊠ δ[Y1,...,Ym] is given by the isomorphism class of the
element

P⟨1,3⟩(P⟨1,n+1⟩δ
W1
X1
∧ · · · ∧ P⟨n,2n⟩δ

Wn
Xn

) ∧ P⟨2,4⟩(P⟨1,n+1⟩δ
V1
Y1
∧ · · · ∧ P⟨n,2n⟩δ

Vn
Yn

).

By Lemma 3.1.8, the above element is equal to

P⟨1,n+m+1⟩δ
W1
X1
∧ P⟨n,2n+m⟩δ

Wn
Xn
∧ P⟨1+n,2n+m+1⟩δ

V1
Y1
∧ P⟨m+n,2n+2m⟩δ

Vn
Yn
.

Hence, we obtain the equalities

δ[X1,...,Xn] ⊠ δ[Y1,...,Ym] = δ[X1,...,Xn,Y1,...,Ym] = δ[X1] ⊠ · · ·⊠ δ[Xn] ⊠ δ[Y1] ⊠ · · ·⊠ δ[Ym].

Now consider a strict elementary doctrine R : C op
s → InfSL and the composition P := R ◦ S. The

fact that P is a biased elementary doctrine follows setting δWX := R⟨[p1],[p2]⟩δ[X].

Definition 3.3.6. If P : C op → InfSL is a biased elementary doctrine, then the strict elementary
doctrine Ps : C op

s → InfSL is called the strictification of P.

Observation 3.3.7. It is not obvious how to collect biased elementary doctrines in a 2-category. If
P : C op → InfSL to P′ : C ′op → InfSL are biased elementary doctrines and (F, f) is a pair where
F : C → C ′ is a functor and, for every object X ∈ C , the functors fX : P(X)→ P′(F (X)) preserve
the structure on the fibers, then we obtain the biased elementary doctrine P′ ◦ F : C op → InfSL. If
W is a weak product of the objects X1, . . . , Xn ∈ C , then the proof-irrelevant elements of P′ ◦ F
overW are not necessarily in relation with the proof-irrelevant elements of P′ over a weak product
V of the objects F (X1), . . . , F (Xn) ∈ C ′. The assumption that F preserves weak products would
fix this issue, but it is too restrictive. For instance the functor S : C → Cs does not preserve weak
products. The definition of a 2-category of biased elementary doctrines is still under investigation.

We end this section observing that the notion of full, weak comprehension for biased elementary
doctrines is the same of Definition 1.2.9. Comprehensive diagonals are defined as follows.

Definition 3.3.8. A biased elementary doctrine P : C op → InfSL has comprehensive diagonals if, for
every pair of arrows f, g : A→ X of C such that ⊤[A] ≤ Ps

⟨[f ],[g]⟩δ[X], then f = g.



72 CHAPTER 3. BIASED DOCTRINES

3.4 Quotient completion

In this section, we will define P-equivalence relations and the relative notion of quotient for biased
elementary doctrines. We will provide the corresponding quotient completion and we will obtain
the exact completion of a weakly left exact category as an instance. Finally, we will discuss the
universal property of this construction which is slightly different from the universal property of
strict elementary doctrines stated in Theorem 1.3.3.

Definitions and construction. In order to define P-equivalence relations of a biased elementary
doctrine P : C op → InfSL we will use proof-irrelevant elements. Indeed, since proof-irrelevant
elements are reindexed by projections, they are suitable to define P -equivalence relations in the
style of Definition 1.3.1. Given an object X ∈ C and a weak product X p1← W

p2→ X , a proof-
irrelevant element ρ ∈ P(W ) ofW is a P-equivalence relation if it satisfies

ref) δWX ≤ ρ,

sym) P⟨2,1⟩(ρ) ≤ ρ,

trans) P⟨1,2⟩(ρ) ∧ P⟨2,3⟩(ρ) ≤ P⟨1,3⟩(ρ),

for some (and thus all) weak product pi : K → X for i = 1, 2, 3, and arrows ⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩ :
K→W , ⟨2, 1⟩ :W→W .

We can synthesize the above conditions working with the strictification Ps of P as follows.

Definition 3.4.1. Let P : C op → InfSL be a biased elementary doctrine. A P-equivalence relation on
an object X ∈ C is an element ρ ∈ Ps [X,X] which is a Ps -equivalence relation on [X] ∈ Cs .

The following example makes explicit the use of the strictification to define P-equivalence rela-
tions for the biased elementary doctrine of weak subobjects.

Example 3.4.2. Let C be a category with weak limits and let X be an object of C . In Example 3.2.6
we discussed that, for every weak product X p1← W

p2→ X , there is a bijection which sends an
equivalence class [r1, r2 : R → X]po of a pair r1, r2 : R → X to the the equivalence class, in the
poset reflection of C /W , of the right dashed arrow of the following weak limit:

R′

R W

X X.

ρ

r1 r2 p1 p2

In the next chapter, we will prove that the element ⌊ρ⌉ is a proof-irrelevant element ofW and that
there is a bijection

(C /(X,X))po ∼= Psubs
C [X,X].

It is straightforward to prove that, if r1, r2 : R→ X is a pseudo-equivalence relation onX , then ⌊ρ⌉
is a PsubC -equivalence relation on X .

The definition of quotient of a P-equivalence relation can be stated as follows.
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Definition 3.4.3. Let P : C op → InfSL be a biased elementary doctrine and let ρ be a P-equivalence
relation on A. A quotient of ρ is an arrow q : A → C in C such that ρ ≤ Ps

[q]×[q](δ[C]) and, for every
arrow g : A → Z such that ρ ≤ Ps

[g]×[g](δ[Z]), there exists a unique arrow h : C → Z such that
g = h ◦ q.
Example 3.4.4. Let C be a category with finite weak limits and let X be an object of C . The bi-
jection of Example 3.4.2 and a straightforward computation show that an arrow q : A → C is the
coequalizer of a pseudo-equivalence relation r1, r2 : R → X if and only if it is the quotient of the
correspondent PsubC -equivalence relation ⌊ρ⌉ ∈ Psubs

C [X,X].
The biased elementary quotient completion is obtained similarly to the strict case.

If P : C op → InfSL is a biased elementary doctrine, we consider the category C whose
objects are pairs (X, ρ)where A is an object of C and ρ is a P -equivalence relation on X ,
arrows ⌊f⌉ : (X, ρ)→ (Y, σ) are equivalence classes of arrows f : X → Y such that ρ ≤ Ps

[f ]×[f ](σ).
Two arrows f, f ′ are equivalent when ρ ≤ Ps

[f ]×[f ′](σ).

The assignment Pwhich sends an object (X, ρ) ∈ C to P(X, ρ) := Desρ and an arrow ⌊f⌉ : (X, ρ)→
(Y, σ) to P⌊f⌉ := Pf is a well defined functor as it is shown in the following lemma.
Lemma 3.4.5. If P : C op → InfSL is a biased elementary doctrine, then:

(i) If (X, ρ) and (Y, σ) are two objects of C and f : X → Y is an arrow of C such that ρ ≤ Ps
[f ]×[f ]σ,

then Pf restricts to a map
Pf : Desσ → Desρ.

(ii) If f, g : X → Y are arrows of C such that ρ ≤ Ps
[f ]×[g]σ and β ∈ Desσ, then

Pf (β) = Pg(β).

Proof. In order to prove (i), let X p1← W
p2→ X and Y

p1← V
p2→ Y be weak products such that

ρ ∈ P(W ), β ∈ P(V ) and let g : W → V be an arrow such that pi ◦ g = f ◦ pi for i = 1, 2, and
ρ ≤ Pgσ. If β ∈ Desσ, then we obtain Pfβ ∈ Desρ as follows:

Pp1Pfβ ∧ ρ ≤ Pp1Pfβ ∧ Pgσ

= Pg(Pp1β ∧ σ)
≤ PgPp2β

= Pp2Pfβ.

To obtain condition (ii), we recall that conditionwI of Definition 3.1.2 implies that ⊤X = P∆X
ρ for

every diagonal∆X : X →W . Now we consider an arrow h :W → V such that p1 ◦ h = f ◦ p1 and
p2 ◦ h = g ◦ p2. Hence, we first obtain that Pfβ ≤ Pgβ, as follows:

Pfβ = P∆X
PhPp1β ∧ ⊤X

= P∆X
(PhPp1β ∧ ρ) (⊤X = P∆X

ρ)
≤ P∆X

Ph(Pp1β ∧ σ)
≤ P∆X

PhPp2β

= Pgβ.

The opposite inequality follows from the symmetry condition of P -equivalence relations.
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Observation 3.4.6. We observe that if P : C op → InfSL is a biased elementary doctrine and C has a
choice of weak products, then we can describe P-equivalence relations, quotients and the quotient
completion without using Ps . The objects of C are pair (X, ρ) where X ∈ C and ρ ∈ P(X × X)
is a proof-irrelevant element satisfying condition of reflexivity, symmetry and transitivity as in
Definition 1.3.1. An arrow ⌊f⌉ : (X, ρ) → (Y, σ) of Cs is the equivalence classes of an arrow f :
X → Y of C such that ρ ≤ Pf×f (σ). Two arrows f, f ′ are equivalent when ρ ≤ Pf×f ′(σ).

As expected, the quotient completion of a biased elementary doctrine yields a strict elementary
doctrine with quotients. The following theorem has been proved in Maietti and Rosolini for the
strict elementary doctrines in [MR13, Lemma 5.3, 5.4 and 5.5].

Theorem 3.4.7. Let P : C op → InfSL be a biased elementary doctrine with weak full comprehensions and
comprehensive diagonals, then P : C

op → InfSL is a strict elementary doctrine in QD.

Proof. Given two objects (X, ρ), (Y, σ) ∈ C , the strict products are given up to isomorphism by

(W,ρ⊠ σ),

whereW is a weak product of the objects X,Y ∈ C .
Conditions I, II and III of Definition 1.2.5 are proved as in Theorem 3.3.5. AnP-equivalence relation
µ on (X, ρ) is a P-equivalence relation on X such that ρ ≤ µ. Hence, the quotient is given by

⌊1X⌉ : (X, ρ)→ (X,µ),

and it is an effective quotient of effective descent. If α ∈ P(X, ρ), and {|α|} : C → X is a weak
comprehension of α ∈ P(X), then the strict comprehension of α is given by

⌊{|α|}⌉ : (C, ρ′)→ (X, ρ)

where ρ′ := Ps
⌊{|α|}⌉×⌊{|α|}⌉ρ. The diagonals are comprehensive by construction. We now prove that

quotients are stable. In order to do that, we use the description of pullbacks through compre-
hensions of elementary doctrines with weak comprehensions and comprehensive diagonals, see
Lemma A.0.7. Let λ be a P-eq. relation on the object (Y, σ) and consider its quotient ⌊1Y ⌉ : (Y, σ)→
(Y, λ). If ⌊f⌉ : (X, ρ)→ (Y, λ) is an arrow, then the diagram

(C, v) (X, ρ)

(W,σ ⊠ ρ)

(Y, σ) (Y, λ)

⌊π2⌉

⌊π1⌉

⌊1Y ⌉

⌊c⌉

⌊p1⌉

⌊p2⌉
⌊f⌉

where Y p1← W
p2→ X is a weak product, c := {|Ps

⟨p1,p2⟩P
s
[1Y ]×[f ]λ|} and v := Ps

[c]×[c]P
s
⟨p1,p2⟩σ ⊠ ρ is a

pullback diagram. We now prove that the element (X, ρ) is isomorphic to the element (C,w)where
w := Ps

[c]×[c]P
s
⟨p1,p2⟩λ ⊠ ρ. If h denotes an arrow of the form X → W induced by the arrows f and

1X , such that p1h = f and p2h = 1X , then since

⊤X ≤ Ps
⟨[f ],[f ]⟩λ = PhP

s
⟨p1,p2⟩P

s
[1Y ]×[f ]λ
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there exists an arrow g : X → C such that c ◦ g = h. Since

σ ≤ Ps
[h]×[h]P

s
⟨p1,p2⟩λ⊠ ρ = Ps

[g]×[g]P
s
[c]×[c]P

s
⟨p1,p2⟩λ⊠ ρ = Ps

[g]×[g]w

the arrow g induces an arrow
⌊g⌉ : (X, ρ)→ (C,w).

This arrow is the inverse of ⌊π2⌉ : (C,w)→ (X, ρ).
Observation 3.4.8. If P : C op → InfSL is an elementary doctrine, the elementary quotient comple-
tion and the biased one yield isomorphic elementary doctrines.
Observation 3.4.9. Example 3.4.2 and Example 3.4.4 imply that the exact completion of a weak lex
category is a particular case of biased elementary quotient completion, in the sense that there is an
equivalence of the two categories C ∼= Cex/wlex.

Universal property. We now discuss the universal property of the biased elementary quotient
completion which is different from the universal property stated in Theorem 1.3.3. This should not
be surprising since a similar issue occurs in the universal property of the exact completion ofweakly
left exact categories. Indeed, as observed by Carboni and Vitale in [CV98], the exact completion
construction

Γ : C → Cex

of weakly lex categories does not provide the unit of a biadjunction between the 2-category of exact
categories and exact functors, denoted by EX, and any definable 2-category ofweakly lex categories,
denoted byWLEX. However, the authors consider a special class of functors called left coverings and
provide a universal property of the exact completion in the sense of the following Theorem. We
refer to [Vit94] for further details.
Definition 3.4.10. Let F : C → A be a functor from a weakly left exact category C to an exact
category A. The functor F is called left covering if, for all functors L : D → C defined on a finite
category D and for all weak limits

wlimL = (πD : L→ LD)D∈D,

the canonical factorization p : FL→ L̃ is a regular epimorphism, where

limFL = (π̃D : L̃→ F (LD))D∈D.

The next result appears as [CV98, Theorem 29].
Theorem 3.4.11. (Carboni and Vitale). Let C be a weakly left exact category and letA be an exact category.
The exact completion Γ induces an equivalence between the category of left covering functors from C to A,
and the category of exact functors from Cex to A. The same holds for the regular completion, with respect to
any regular category A.

Taking advantages from the above result, we now define in the context of the biased elementary
doctrines the analogous of left covering functors.From conditionwIII of Definition 3.1.2 we obtain
a canonical 1-arrow

(J, j) : P→ P

where the functor J is defined on objects X ∈ C as J(X) := (X, δ[X]) and on an arrow f : X → Y
as J(f) := ⌊f⌉ : (X, δ[X]) → (Y, δ[Y ]). The functors jX are just the identities of P(X). When P has
weak comprehensions we can observe the following facts:
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• ifW is a weak product of the objects X,Y,∈ C , then the uniqe arrow into the strict product

(W, δ[W ]) (W, δ[X] ⊠ δ[Y ])

is a quotient of the P-equivalence relation δ[X] ⊠ δ[Y ] over (W, δ[W ]).
• If {|α|} : X → A is aweak comprehension of an elementα ∈ P(A), then J({|α|}) factors through

the comprehension of j(α) via a P-quotient

(X,Ps
hδ[A]) (A, δ[A])

(X, δ[X])

{|α|}

J({|α|})

where h is the product of {|α|} and {|α|}, i.e. h = ({{|α, α|}}, ⟨1, 2⟩).
The above observations and the relation between weak limits and weak comprehensions, (see

Lemma A.0.7), lead to the following definition of left covering functors for biased elementary doc-
trine as follows.
Definition 3.4.12. Let P : C op → InfSL be a biased elementary doctrine with weak full com-
prehensions and comprehensive diagonals and let R : Dop → InfSL be an object of QD. A pair
(F, f) : P→ R is called left covering when

1. The functor F sends a weak productW of the objectsX,Y ∈ C to the object F (W ) ∈ D such
that the unique arrow

⟨F (p1), F (p2)⟩ : F (W )→ F (X)× F (Y )

is a quotient of an R-equivalence relation.
2. For every object X ∈ C , the functors fX : P(X) → RF (X) preserve all the structure. In

particular, the functor fX preserves finite meets and for a weak product X p1← W
p2→ X we

have
fW (δWX ) = R⟨F (p1),F (p2)⟩(δF (X)).

Moreover, we require that the restriction of the functor fW
fW : PIrr(W )→ RF (W )

takes value in DeskX where kX is the R-kernel of ⟨F (p1), F (p2)⟩, i.e.
R⟨F (p1),F (p2)⟩×⟨F (p1),F (p2)⟩δF (X)×F (X).

3. if {|α|} : X → A is a weak comprehension of the element α ∈ P(A), then the arrow F ({|α|}) :
F (X)→ F (A) factors through {|f(α)|} via a quotient of an R-equivalence relation.

Observation 3.4.13. Since R has stable quotients of effective descent, the arrow ⟨F (p1), F (p2)⟩ of
condition 1 is the quotient of its R-kernel

R⟨F (p1),F (p2)⟩×⟨F (p1),F (p2)⟩δF (X)×F (Y ).

If ρ ∈ Ps [X,X] is aP-eq. relation, then fWρ ∈ DeskX . Hence, thanks to condition 1 and effectiveness
of quotients, we will abuse the notation and write fWρ ∈ R(F (X)× F (X)).
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Observation 3.4.14. From Proposition A.0.9 we know that (weak) equalizers can be built through
(weak) comprehensions. Hence, Proposition 27 of [CV98] implies that the functor F of a left cov-
ering 1-arrow (F, f) is a left covering functor. Moreover, Lemma 21 of loc. cit. implies that F
preserves monomorphic families of arrows. However, the composition of left covering functors is
not necessary left covering, as shown by a counterexample in §3.2 of loc. cit.. For this reason, biased
elementary doctrines and left covering 1-arrows do not form a 2-category.

We will denote by Lco(P, R) the category of left covering 1-arrows from P toR. In the following
theorem we prove the universal property of the biased elementary quotient completion in style of
Theorem 3.4.11.
Theorem 3.4.15. Let P be a biased elementary doctrine with full weak comprehensions and comprehensive
diagonals, and let R be an elementary doctrine in QD. The pre-composition with the 1-arrow (J, j) induces
an equivalence between the following categories

QD(P, R) Lco(P, R).
(−)◦(J,j)

Proof. We first prove that the functor (−) ◦ (J, j) is essentially surjective. Given a 1-arrow (F, f)
of Lco(P, R) we can define a 1-arrow (F̄ , f̄) : P̄ → R as follows. The functor F̄ sends a projective
object (X, δ[X]) to the image of F , i.e. F̄ (X, δ[X]) := F (X). On the objects of the form (X, ρ), the
image F̄ (X, ρ) is defined to be the codomain of the quotient of the R-equivalence relation fWρ, for
a weak productW ofX andX . Similarly, if ⌊g⌉ : (A, δA)→ (B, δB) is an arrow between projectives,
then we define F̄ (⌊g⌉) := F (g). If ⌊g⌉ : (A, ρ)→ (B, σ) then we define F̄ (⌊g⌉) as the unique arrow
induced by the quotients, which makes the following diagram commute

F̄ (A, δA) F̄ (B, δB)

F̄ (A, ρ) F̄ (B, σ).
F (g)

The functors f̄(−) : P(−) → R(F (−)) are defined as the functors f on the projectives (X, δ[X]). On
the elements (X, ρ), it is a trivial verification to prove that the functor fX restricts to a functor

f̄(X,ρ) := fX : Desρ→ DesfWρ.

We now prove that (F̄ , f̄) sends strict comprehensions to strict comprehensions. Indeed, as in the
proof of Theorem 3.4.7, a strict comprehension of α ∈ P̄ (X, ρ) is given by

⌊{|α|}⌉ : (C, ρ′)→ (X, ρ)

where ρ′ := Ps
hρ and h is the product of {|α|} and {|α|}, i.e. h = ({{|α, α|}}, ⟨1, 2⟩). Since R has strict

comprehensions, it follows that a comprehension {|f̄(X,ρ)(α)|} : D → F̄ (X, ρ) of f̄(X,ρ)(α) is monic.
Hence, by Lemma A.0.6, it follows that D and F̄ (C, ρ′) are quotients of the same R-equivalence
relation

RF{|α|}×F{|α|}fWρ = fV ρ
′,

where V is a weak product of C and C. Hence, we have proved that (F̄ , f̄) ∈ QD(P, R). We now
prove that the functor (−)◦(J, j) is fully faithful. Indeed if (F, f) and (G, g) are 1-arrows ofLco(P,R)
and θ : (F, f) ⇒ (G, g) is a 2-arrow, then it can be extended to a 2-arrow θ̄ : (F̄ , f̄) ⇒ (Ḡ, ḡ). The
arrows θ̄(A,δA) on the projectives are defined as θA. On the objects of the form θ̄(A,ρ) the arrow is
defined as the unique arrow induced by quotients, which makes the following diagram commute
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F̄ (A, ρ) Ḡ(A, ρ)

F̄ (A, δA) Ḡ(A, δA).
θA

Remark 3.4.16. We could define the quotient completion of a biased elementary doctrine P : C op →
InfSL in a different way. Indeed, we can add quotients applying first the strictification and then the
elementary quotient completion obtaining the elementary doctrine Ps . However, this construction
does not have the universal property discussed. For instance, completing with quotient we would
obtain more projectives than the objects of C .

3.5 Doctrines with⇒,∃,∀

Wewill now start the second part of the chapter, which is devoted to provide a general formulation
of the theorems of Section 2.3 in the context of biased elementary doctrines. In this section, we will
define doctrines that can express the connective of implication and the existential and universal
quantification. The definitions will be very similar to the strict case but, as usual, we will pay
particular attention to what happens when we restrict to proof-irrelevant elements.

We start with the definition of biased elementary doctrine with implications.

Definition 3.5.1. A biased primary doctrine P : C op → InfSL is called implicational if for every object
X ∈ C and element α ∈ P(X) the functor α∧− : P(X)→ P(X) has a right adjoint α⇒ − : P(X)→
P(X). Moreover, for every arrow f : Y → X of C and elements α, β ∈ P(X), it holds the equality
Pf (α⇒ β) = Pfα⇒ Pfβ.

Observation 3.5.2. If P : C op → InfSL is an implicational biased elementary doctrine, then a trivial
computation shows that the implication of proof-irrelevant element is proof-irrelevant. Hence, P is
implicational if and only if the strictification Ps is implicational.

We now consider biased elementary doctrines that can express existential and universal quan-
tifications. The definition is given, as usual, requiring left and right adjoints to reindexing functors
but, because of weak products, we shall consider a weak version of the Beck-Chevalley and Frobe-
nius conditions.

Definition 3.5.3. A biased elementary doctrine P : C op → InfSL is called existential if for every pair
of objects X1, X2 ∈ C and weak product X1

p1← W
p2→ X2 the functors Ppi : P(X) → P(W ), for

i = 1, 2, have left adjoints ∃pi : P(W )→ P(Xi) which satisfy

• the weak Beck-Chevalley condition: for any commutative diagram of this form

V Y

W X2

X1,

f ′

p1

p2

f

p2

p1
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where X1
p1← V

p2→ Y is a weak product, the canonical arrow ∃p2 ◦ Pf ′α ≤ Pf ◦ ∃p2α is an
isomorphism, for all proof-irrelevant α ∈ P(W ).

• theweak Frobenius reciprocity: for any projection pi :W→Xi, elementα ∈ P(Xi), and β ∈ P(W )
proof-irrelevant, the canonical arrow ∃pi(Ppiα ∧ β) ≤ α ∧ ∃piβ is an isomorphism.

Definition 3.5.4. A biased elementary doctrine P : C op → InfSL is called universal if for every pair
of objects X1, X2 ∈ C and weak product X1

p1← W
p2→ X2 the functors Ppi : P(X) → P(W ), for

i = 1, 2, have right adjoints ∀pi : P(W )→ P(Xi)which satisfy
• the "weak"Beck-Chevalley condition: for any commutative diagram of this form

V Y

W X2

X1,

f ′

p1

p2

f

p2

p1

where X1
p1← V

p2→ Y is a weak product, the canonical arrow Pf ◦ ∀p2α ≤ ∀p2 ◦ P′
fα is an

isomorphism, for all proof-irrelevant α ∈ P(W ).
When P : C op → InfSL is an existential (universal) biased elementary doctrine, the adjoint

functors ∃pi (∀pi) behave particularly well on proof-irrelevant elements. At first, we observe that if
X1, X2 are two objects ofC thenwe can define left (right) adjoint functors ∃pi : Ps [X1, X2]→ Ps [Xi]

to the functors Ps
pi : P

s [Xi] → Ps [X1, X2]. Indeed, let X p1← K
p2→ Y and X p′1← K ′ p′2→ Y be to weak

products and α ∈ Ps [X,Y ]. If h : K ′ → K and h′ : K → K ′ are arrows such that pi ◦ h′ = p′i
and p′i ◦ h = pi, for i = 1, 2, then Proposition 3.2.7 implies that Ph is an isomorphism on proof-
irrelevant elements with inverse Ph′ and then Ph = ∃h′ and Ph′ = ∃h. Hence, if α ∈ P(K) and
α′ := Phα ∈ P(K ′)we obtain

∃p1α = ∃p′1α
′.

Similarly, we can consider three (or more) objects X,Y, Z ∈ C and a weak product given by a
weak product K p1← U

p2→ Z of a weak product X p1← K
p2→ Y and Z. Hence, we have a left (right)

adjoint to the functor Pp2 : P(K) → P(U). In the following lemma we prove that the adjunctions
restrict to proof-irrelevant elements providing a left (right) adjoint to the functor Ps

p2 as in the
following diagram

Ps [Z,X, Y ] Ps [X,Y ]

P(U) P(K).

∃p2

∃p2

Ps
p2

Pp2

⊣
⊣

Lemma 3.5.5. IfP : C op → InfSL is an existential (universal) biased elementary doctrine, andX1, . . . , Xn,
Y1, . . . , Ym are objects of C , then we obtain the following adjunctions on proof-irrelevant elements

Ps
p1 : Ps [X1, . . . , Xn] Ps [X1, . . . , Xn, Y1, . . . , Ym] : ∃p1⊣
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Ps
p1 : Ps [X1, . . . , Xn] Ps [X1, . . . , Xn, Y1, . . . , Ym] : ∀p1

⊣

)
.

Proof. Let W be a weak product of the objects Xl ∈ C , for 1 ≤ l ≤ n, let V be a weak product
of the objects Yj ∈ C for 1 ≤ j ≤ m, and let W p1← K

p2→ V be a weak product of W and V . If
α ∈ P(K) is proof-irrelevant, then we prove that ∃p1α is proof-irrelevant. Indeed, ifXl

p1←Wl
p2→ Xl

and Yj p1← Vj
p2→ Yj are weak products andK p1← Q

p2→ K and

Pp1α ∧
n∧
l=1

P⟨l,n+l⟩δ
Wl
Xl
∧

m∧
j=1

P⟨j,m+j⟩δ
Vj
Xj
≤ Pp2α

in P(Q) for some arrows ⟨l, n+ l⟩ : Q→Wl and ⟨j,m+ j⟩ : Q→ Vj induced by the weak universal
property of the weak products. If W p1← U

p2→ W is a weak product we consider a commutative
diagram of the form

T U

K W

V,

h1

p2

p1

p1

p1

p2

T U

K W

V,

h2

p2

p1

p2

p1

p2

and we obtain that Pp1∃p1α∧
n∧
l=1

P⟨l,n+l⟩δ
Wl
Xl
≤ Pp2∃p1α, for some arrows ⟨l, n+ l⟩ : U →Wl induced

by the weak universal property of the weak products, as follows:

Pp1∃p1α ∧
n∧
l=1

P⟨l,n+l⟩δ
Wl
Xl

= ∃p1Ph1α ∧
n∧
l=1

P⟨l,n+l⟩δ
Wl
Xl

(B-C)

= ∃p1(Ph1α ∧ Pp1

n∧
l=1

P⟨l,n+l⟩δ
Wl
Xl

) (Frob.)

since T is a weak product ofW,W and V , we can consider and arrow ⟨1, 3, 2, 3⟩ : T → Q induced
by the weak universal property of weak products and we obtain

∃p1(Ph1α ∧ Pp1

n∧
l=1

P⟨l,n+l⟩δ
Wl
Xl

)

= ∃p1P⟨1,3,2,3⟩(Pp1α ∧
n∧
l=1

P⟨l,n+l⟩δ
Wl
Xl
∧

m∧
j=1

P⟨j,m+j⟩δ
Vj
Xj

)

≤ ∃p1P⟨1,3,2,3⟩Pp2α = ∃p1Ph2α = Pp2∃p1α. (B-C)

We now consider another ternW ′ p′1← K ′ p′2→ V ′ of weak products and a (not necessarily commuta-
tive) diagram of arrows

K ′ W ′

K W

p′1

h

p1

g
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such that pl ◦ p1 ◦ h = p′l ◦ p′1 and pj ◦ p2 ◦ h = p′j ◦ p′2 and pl ◦ g = p′l for 1 ≤ l ≤ n and 1 ≤ j ≤ m,
then we want to prove that

Pg∃p1α = ∃p′1Phα.

In order to do that, we consider two arrows h′ : K → K ′ and g′ :W →W ′ such that p′l ◦ p′1 ◦ h′ =
pl ◦ p1 and p′j ◦ p′2 ◦ h′ = pj ◦ p2 and p′l ◦ g′ = pl for 1 ≤ l ≤ n and 1 ≤ j ≤ m. By Proposition 3.2.7,
the functors Ph and Ph′ are inverse functors on proof-irrelevant elements and the same holds for
the functors Pg and Pg′ . Hence, the above equality follows from the following relations on proof-
irrelevant elements

Pg∃p1 = ∃g′∃p1 ⊣ Pp1Pg′ = Ph′Pp′1 ⊢ ∃p′1∃h′ = ∃p′1Ph.

Hence, we obtain a left adjoint ∃p1 to the reindexing Ps
p1 . A similar argument proves the statement

for the right adjoint ∀p1 of the reindexing Ps
p1 .

As a corollary of the above lemma, we obtain the following characterization of the existential
(universal) biased elementary doctrines in terms of their strictifications.

Corollary 3.5.6. A biased elementary doctrine P : C op → InfSL is existential (universal) if and only if the
strictification Ps is an existential (universal) elementary doctrine.

The above results allow us to work directly with the strictifications of the existential (universal)
biased elementary doctrines, which makes handier the description of proof-irrelevant elements.

When P : C op → InfSL is a biased elementary doctrine, and g : Y → W is an arrow into a weak
product of the objects X1, . . . , Xn ∈ C , then we will denote with gs the composition in Cs of the
arrows

[Y ] [W ] [X1, . . . , Xn]
[g] ⟨[p1],...,[pn]⟩

where ⟨[p1], . . . , [pn]⟩ is the unique arrow induced by the arrows [pi] : [W ]→ [Xi], for 1 ≤ i ≤ n.

Remark 3.5.7. If P : C op → InfSL is an existential biased elementary doctrine and f : Y → X
is an arrow of C , then the functor Pf : P(X) → P(Y ) has a left adjoint ∃f which coincides with
the functor ∃[f ] : Ps [Y ] → Ps [X]. An easy verification shows that the functor ∃f sends an element
α ∈ P(Y ) to

∃f (α) := ∃p2(Pf ′δWX ∧ Pp1α), (3.2)

where f ′ : K → W is an arrow from weak products Y p1← K
p2→ X and X p1← W

p2→ X , such that
p1 ◦ f ′ = f ◦ p1 and p2 ◦ f ′ = p2.

In particular, if g : Y → W is an arrow into a weak product W of the objects Xi ∈ C , for
1 ≤ i ≤ n, then we can consider the functor ∃gs : P

s [Y ] → Ps [X1, . . . , Xn], which sends an element
α ∈ P(Y ) into the equivalence class of the element

∃g(α) := ∃p2(Pg′(δ
W1
X1

⊠ · · ·⊠ δWn
Xn

) ∧ Pp1α) (3.3)

of P(W ), where Xi
p1← Wi

p2→ Xi, Y p1← K
p2→ W and W

p1← U
p2→ W are weak products and

g′ : K → U is an arrow such that p1 ◦ g′ = g ◦ p1 and p2 ◦ g′ = p2.

A similar remark holds also for the universal quantification.

Remark 3.5.8. If P : C op → InfSL is an implicational and universal biased elementary doctrine
and f : Y → X is an arrow of C , then the functor Pf : P(X) → P(Y ) has a left adjoint ∃f which
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coincides with the functor ∀f : Ps(Y ) → Ps(X). An easy verification shows that the functor ∀f
sends an element α ∈ P(Y ) to

∀f (α) := ∀p2(Pf ′δWX ⇒ Pp1(α)) (3.4)

where f ′ : K → W is an arrow between weak products Y p1← K
p2→ X and X p1← W

p2→ X , such that
p1 ◦ f ′ = f ◦ p1 and p2 ◦ f ′ = p2.

Similarly, if g : Y → W is an arrow into a weak productW of the objects Xi ∈ C , for 1 ≤ i ≤ n,
then we can consider the functor ∀gs : P

s(Y ) → Ps [X1, . . . , Xn], which sends an element α ∈ P(Y )
into the equivalence class of the element

∀g(α) := ∀p2(Pg′(δ
W1
X1

⊠ · · ·⊠ δWn
Xn

) ∧ Pp1α) (3.5)

of P(W ), where Xi
p1← Wi

p2→ Xi, Y p1← K
p2→ W and W

p1← U
p2→ W are weak products and

g′ : K → U is an arrow such that p1 ◦ g′ = g ◦ p1 and p2 ◦ g′ = p2.

3.6 Slice doctrines and quotient completion

In this section, we will provide some results which relate suitable existential (universal) biased
elementary doctrine and their slices. These results will be useful in the next section in order to
prove the local cartesian closure of the quotient completion.

The first lemma we prove is a version of Lemma A.0.7 for biased elementary doctrines.

Lemma 3.6.1. If P : C op → InfSL is a biased elementary doctrine with weak comprehensions and compre-
hensive diagonals, then the category C has weak finite limits.

Proof. We will prove that C has weak equalizers and observe that weak finite products and weak
equalizers imply the existence of weak finite limits, see [CV98, Proposition 1]. Let f, g : X → Y

be two arrows of C and let h : X → V be an arrow into a weak product Y p1← V
p2→ Y , such that

p1 ◦ h = f and p2 ◦ h = g . If ρ := Phδ
V
Y then we have a comprehension {|ρ|} : C → X , which is

trivially a weak equalizer of f and g.

The above lemma implies that if P : C op → InfSL is a biased elementary doctrine with weak
comprehensions and comprehensive diagonals, then the category C has weak pullbacks. Hence,
the slice categories of C have weak finite products that can be described as follows. If f : X1 → Y
and g : X2 → Y are arrows of C and ρ := Ps

[f ]×[g]δ[Y ], then a weak pullback of f and g is obtained
as in the following commutative diagram

C X2

W

X1 Y,

π2

gπ1

f

p2

p1

{|ρ|}

where {|ρ|} is a weak comprehension of the element Ps
⟨[p1],[p2]⟩ρ ∈ P(W ). Hence, a trivial compu-

tation shows that the slice doctrine of Example 3.1.4 can be defined in the same way for biased
elementary doctrines.
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We now prove some technical lemmas for the existential and universal biased elementary doc-
trines, which will be useful to derive properties about the quantifiers of their slices. Our goal is to
prove that if P is a suitable existential (universal) biased elementary, then the slice doctrines P/A
are existential (universal).

Lemma 3.6.2. Let P : C op → InfSL be an existential biased elementary doctrine with full comprehensions.
If X is an object of C and α ∈ P(X), then

∃{|α|}P{|α|}γ = α ∧ γ,

for every γ ∈ P(X) and weak comprehension {|α|} : C → X .

Corollary 3.6.3. LetP : C op → InfSL be an existential biased elementary doctrine with full comprehensions.
For every objectX ∈ C and ρ ∈ Ps [X,X], if {|ρ|} : C →W is a weak comprehension ofPs

⟨[p1],[p2]⟩ρ ∈ P(W ),
then

∃{|ρ|}s
Ps

{|ρ|}s
γ = ρ ∧ γ

for every γ ∈ Ps [X,X].

Proof. Since {|ρ|}s := ⟨p1, p2⟩ ◦ {|ρ|}, the statement follows from Lemma 3.6.2 observing that ∃⟨p1,p2⟩
is left adjoint to the fully-faithful functor Ps

⟨p1,p2⟩ : P
s [X,X]→ P(W ).

Lemma 3.6.4. Let P : C op → InfSL be an existential biased elementary doctrine. For every arrow (f, f̂) :
[X]i∈[n] → [Y ]j∈[m] of Cs , then

(i) Ps
(f,f̂)
∃(f,f̂)β = β, for every β ∈ DesPs

(f,f̂)×(f,f̂)
δ[Y ]j∈[m]

.

Moreover, if P is also universal and implicational

(ii) Ps
(f,f̂)
∀(f,f̂)β = β, for every β ∈ DesPs

(f,f̂)×(f,f̂)
δ[Y ]j∈[m]

.

Proof. Consider the following commutative diagram

[X]i∈[n] × [X]i∈[n] [X]i∈[n]

[X]i∈[n] × [Y ]j∈[m] [Y ]j∈[m]

1[Xi]i∈[n]
×(f,f̂)

p2

(f,f̂)

p2

if g :W → V is an arrow into a weak product Y p1← V
p2→ Y such that pi ◦ g = f ◦ pi, for i = 1, 2, and

h : K → V is an arrow such that p1 ◦ h = f ◦ p1 and p2 ◦ h = 1Y ◦ p2

(i) The left adjoint implies that ∃(f,f̂)Ps
(f,f̂)

β ≤ β. The opposite inequality is obtained as follows:

Ps
(f,f̂)
∃(f,f̂)β = Ps

(f,f̂)
∃p2(Ps

(f,f̂)×1[Xi]i∈[n]

δ[Yj ]j∈[m]
∧ Pp1β) (Remark 3.5.7)

= ∃p2Ps
1[Xi]i∈[n]

×(f,f̂)
(Ps

(f,f̂)×1[Xi]i∈[n]

δ[Yj ]j∈[m]
∧ Pp1β) (B-C)

= ∃p2(Ps
(f,f̂)×(f,f̂)

δ[Yj ]j∈[m]
∧ Pp1β)

≤ ∃p2Ps
p2β ≤ β.
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(ii) The right adjoint implies thatPs
(f,f̂)
∀(f,f̂)β ≤ β. The opposite inequality is obtained as follows:

Ps
(f,f̂)
∀(f,f̂)β = Ps

(f,f̂)
∀p2(Ps

(f,f̂)×1[Xi]i∈[n]

δ[Yj ]j∈[m]
⇒ Pp1β) (Remark 3.5.8)

= ∀p2Ps
1[Xi]i∈[n]

×(f,f̂)
(Ps

(f,f̂)×1[Xi]i∈[n]

δ[Yj ]j∈[m]
⇒ Pp1β) (B-C)

= ∀p2(Ps
(f,f̂)×(f,f̂)

δ[Yj ]j∈[m]
⇒ Ps

1[Xi]i∈[n]
×(f,f̂)

Ps
p1β)

= ∀p2(Ps
(f,f̂)×(f,f̂)

δ[Yj ]j∈[m]
⇒ Ps

p1β)

≥ β

where the last inequality follows because β ≤ ∀p2(Ps
(f,f̂)×(f,f̂)

δ[Yj ]j∈[m]
⇒ Ps

p1β) if and only if Ps
p2β ≤

(Ps
(f,f̂)×(f,f̂)

δ[Yj ]j∈[m]
⇒ Ps

p1β), which holds by the definition of implication and by the assumptions
on β.

The following corollary relates P-equivalence relations and P/A-equivalence relations through
the existential quantifier.
Corollary 3.6.5. Let P : C op → InfSL be an existential biased elementary doctrine with full weak compre-
hensions and comprehensive diagonals and let X x→ A be an object of C /A and x π1← w

π2→ x be a weak
product of x and x. Considering the element ρ := Ps

[x]×[x]δ[A], we obtain the following conditions:

i) if σ is a P-equivalence relation on X such that σ ≤ ρ, then Ps
⟨[π1],[π2]⟩σ is a P/A-equivalence relation

on x and Desσ = (Des/A)Ps
⟨[π1],[π2]⟩

σ,

ii) if r is aP/A-equivalence relation onx, then∃⟨[π1],[π2]⟩r is aP-equivalence relation onX and (Des/A)r =
Des∃⟨[π1],[π2]⟩r.

Proof. We first provide the statements considering a weak product x π1← w
π2→ x obtained through

a weak comprehension of ρ as shown in the left diagram below. On the right, we observe the
corresponding situation in Cs

C X

W

X A.

π2

xπ1

x

p2

p1

{|ρ|} [C] [X]

[W ] [X,X]

[{|ρ|}]

⟨[p1],[p2]⟩

[π1]

p1 p2

[π2]

{|ρ|}s

i) The first part of the statement is a trivial computation and, just applying the functor Ps
{|ρ|}s

, we
obtain the inclusion Desσ ⊆ (Des/A)Ps

{|ρ|}s
σ. Vice versa, if α ∈ (Des/A)Ps

{|ρ|}s
σ, it holds that

Ps
[π1]

α ∧ Ps
{|ρ|}s

σ ≤ Ps
[π1]

α.

Hence, applying ∃{|ρ|}s
, we obtain

∃{|ρ|}s
Ps

{|ρ|}s
(Ps

p1α ∧ σ) ≤ ∃{|ρ|}s
Ps

{|ρ|}s
Ps
p2α ≤ Ps

p2α.

The statement follows from Corollary 3.6.3, observing that σ ≤ ρ.
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ii) We now prove reflexivity and symmetry of ∃{|ρ|}s
r. Reflexivity follows from reflexivity of r,

i.e. δ[x] ≤ r and observing that δ[x] := Ps
{|ρ|}s

δ[X]. Hence, applying ∃{|ρ|}s
we obtain

∃{|ρ|}s
Ps

{|ρ|}s
δ[X] ≤ ∃{|ρ|}s

r.

The statement follows from Corollary 3.6.3, observing that δ[X] ≤ ρ.
In order to obtain the symmetry of ∃{|ρ|}s

rwe first observe that, by i), then r ∈ DesPs
{|ρ|}s×{|ρ|}s

δ[X,X]
.

Hence, considering the following commutative diagram

[C] [X,X]

[C] [X,X]

{|ρ|}s

⟨2,1⟩

{|ρ|}s

⟨2,1⟩/A

the symmetry of r implies that Ps
[⟨2,1⟩/A]r ≤ r. We can apply Lemma 3.6.4 to obtain

Ps
[⟨2,1⟩/A]P

s
{|ρ|}s
∃{|ρ|}s

r ≤ Ps
{|ρ|}s
∃{|ρ|}s

r

and since Ps
[⟨2,1⟩/A]P

s
{|ρ|}s

= Ps
{|ρ|}s

Ps
⟨2,1⟩ the above inequality holds if and only if

∃{|ρ|}s
Ps

{|ρ|}s
Ps
⟨2,1⟩∃{|ρ|}s

r ≤ ∃{|ρ|}s
r.

The statement follows from Corollary 3.6.3 observing that ∃{|ρ|}s
r ≤ ρ. Transitivity is proved simi-

larly.
We now observe that the statement is true for every other weak limit w′ of x and x, with w′ :

C ′ → A. Indeed, there exist a commutative diagram

[C ′]

[C] [X,X]

[h]

{|ρ|}s

⟨[π′
1],[π′

2]⟩

such that πi ◦ h = π′i, for i = 1, 2. Since the functor Ph is an isomorphism between the proof-
irrelevant elements of w and w′, if r′ := Phr then we obtain

P[h]∃{|ρ|}s
r = ∃⟨[π′

1],[π′
2]⟩r

′.

We can now prove that the slices of suitable existential (universal) biased elementary doctrines
are existential (universal).

Proposition 3.6.6. Let P be an existential biased elementary doctrine with full comprehensions and compre-
hensive diagonals. For every object A ∈ C , the slice doctrine P/A is existential. Moreover, if P is universal
and, for every arrow f : Y → X , the functors Pf have right adjoints ∀f , then P/A is universal.
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Proof. In order to prove the weak Beck-Chevalley condition it is enough to consider weak products
in the slice Cs/A as in the following commutative diagram

D Y

C X2

X1 A.

π2

f

x2

x1

π1

f̃

π2π1 y

If xi : Xi → A, for i = 1, 2 and y : Y → A are objects of Cs/A, it is enough to prove the statement
for weak products w : C → A of x1 and x2 and v : D → A, of x1 and y, which are obtained
through weak comprehensions. Hence, if ρ := Ps

[x1]×[x2]
δ[A] and σ := Ps

[x1]×[y]δ[A], then we are in
the following situation

D V Y

C W X2

X1

{|σ|} p2

f ′

p2

ff̃

{|ρ|}
p1

where {|ρ|} is aweak comprehension ofPs
⟨[p1],[p2]⟩ρ and {|σ|} is aweak comprehension ofPs⟨[p1], [p2]⟩σ.

If α ∈ P/A(w)(:= P(C)) is a proof-irrelevant element, then we can prove that Pf∃π2α ≤ ∃π2Pf̃α as
follows:

Pf∃π2α = Pf∃p2∃{|ρ|}α

= ∃p2Pf ′∃{|ρ|}α (B-C for P)
= ∃p2∃{|σ|}P{|σ|}Pf ′∃{|ρ|}α (Lemma 3.6.2)
= ∃π2Pf̃P{|ρ|}∃{|ρ|}α

= ∃π2Pf̃α. (Lemma 3.6.4)

The statement for the right adjoint is proved similarly.

Example 3.6.7. The main example of existential and universal biased elementary doctrine is given
by the slice doctrines FML

A . As observed in Example 1.2.15 and Example 1.2.17, the elementary
doctrine FML has left and right adjoint to all reindexings. Hence, the Beck-Chevalley conditions
follow from Proposition 3.6.6. However, they could be obtained also through the description of the
descent data of the slices given in Corollary 3.6.5 and from Lemma A.0.16.

For categories with weak finite limits, it is straightforward to prove that the exact completion of
a slice is equivalent to the slice of the exact completion. We end this section providing the corre-
sponding result for suitable biased elementary doctrines.

Proposition 3.6.8. If P : C op → InfSL is a existential biased elementary doctrine with weak full compre-
hensions and comprehensive diagonals, then for every object A ∈ C

P/A ∼= P/(A,δ[A]).
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Proof. Thanks to Lemma 3.6.4, we can define a 1-arrow (M,m) : P/A → P/(A,δ[A]) of QD as follows.
The functorM sends an object (x, r) of C /A, with x : X → A, to the object

⌊x⌉ : (X,∃{|ρ|}s
r)→ (A, δ[A])

of C /(A, δ[A]), where ρ := Ps
[x]×[x]δ[A]. An arrow f : (x, r) → (y, s), where y : Y → A, is sent to

⌊f⌉ : (X,∃{|ρ|}s
r)→ (Y,∃{|σ|}s

s), with σ := Ps
[y]×[y]δ[A]. The natural transformationm is given by the

identity.
Using again Lemma 3.6.4, we can define an inverse (N,n) to (M,m) as follows. The functor N

sends an object ⌊x⌉ : (X,λ)→ (A, δ[A]) of C /(A, δ[A]) to the object

(x,P{|ρ|}s
r)

where ρ := Ps
[x]×[x]δ[A]. An arrow ⌊f⌉ : ⌊x⌉ → ⌊y⌉, with ⌊y⌉ : (Y, σ) → (A, δ[A]) is sent to the

arrow f . The natural transformation n is given by the identity.
Lemma 3.6.2 and Lemma 3.6.4 imply that the 1-arrows (M,m) and (N,n) are inverse.
The above proposition provides a precise formulation of the method mentioned in Observa-

tion 2.6.13.

3.7 Local cartesian closure

In this section, we retrace the steps of Section 2.3, in which we proved the local cartesian closure of
the elementary quotient completion, in themore general context of the biased elementary doctrines.
Thanks to the results obtained in the previous section, we can provide the local cartesian closure
working on the cartesian closure of the slice doctrines. As an instance, we obtain the result of
Carboni-Rosolini [CR00] and Emmenegger [Emm20] about the local cartesian closure of the exact
completion of a weakly left exact category in their general form. This is a slight improvement with
respect to the elementary quotient completion, which could only obtain the exact completion of a
category with strict products and weak pullbacks as an instance.

As already done in Section 2.3 for the strict elementary doctrines, we now reformulate the ideas
developed by Emmenegger in [Emm20] in the language of the biased elementary doctrines.
Definition 3.7.1. Let P : C op → InfSL be a biased elementary doctrine and letX,Y and Z be objects
of C . IfX p1← K

p2→ Y is a weak product, then an arrow f : K → Z preserves projectionswith respect
to a P-equivalence relation σ ∈ Ps [Z,Z] if

δ[X] ⊠ δ[Y ] ≤ Ps
[h]×[h](σ).

We observe that, by Lemma 3.4.5, the above definition can be equivalently reformulated requir-
ing that in Cs the arrow [h] : [K]→ [Z] can be lifted as in the following diagram

[K]

[X,Y ] [Z].

h⟨p1,p2⟩

h

Definition 3.7.2. Let P : C op → InfSL be a biased elementary doctrine. IfX,Y are objects of C and
σ ∈ Ps [Y, Y ] is a P-eq. relation on Y , an extensional exponential of X and Y with respect to σ is an
object E with an arrow e : U → Y , from a weak product E p1← U

p2→ X , such that:
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• the map e preserves projections w.r.t. σ,

• for every objects Z ∈ C and arrow f : U ′ → Y , from a weak product Z p1← U ′ p2→ X , there
exist arrows l,mmaking the following diagram commute:

Z U ′

E U X

Y.

l

p1
p2

m

e′

p1 p2

e

We will say that C has P-extensional exponentials if, for every pair of objects X,Y ∈ C and P-
equivalence relation σ ∈ Ps [Y, Y ], then there exists an extensional exponential of X and σ.

Definition 3.7.3. Let P : C op → InfSL be a biased elementary doctrine. If X and Y are objects of C
and σ ∈ Ps [Y, Y ] is a P -equivalence relation on Y , then two arrows f, g : X → Y are called σ-related
if

δ[X] ≤ Ps
[f ]×[g]σ.

We now prove the corresponding Theorem 2.3.2 for the biased elementary doctrines. In light of
the observations done by Emmenegger [Emm20] and since we are now working with weak finite
products, we require the existence of P-extensional exponentials instead of weak exponentials.

Theorem 3.7.4. Let P : C op → InfSL be a universal biased elementary doctrine with full weak comprehen-
sions. C is cartesian closed if and only if C has P-extensional exponentials.

Proof. For the "only if" part, given two objects X,Y ∈ C and a P-eq. relation σ on Y , then we can
consider the exponential of the objects (X, δ[X]) and (Y, σ). This exponential induces an object and
an arrow which provide almost a P-extensional exponentials, but the universal property holds up
to σ-relation. In order to obtain a P-extensional exponentials of x and y w.r.t. σ we repeat the proof
of Theorem 2.3.7 (ii)⇒ (i).

The proof of the "if" part is the same of the proof of Theorem 2.3.2, considering weak finite
product instead of strict ones and extensional exponentials instead of the weak exponentials. We
only recall the main steps.

Given two objects of the form (X, δ[X]) and (Y, σ), we can consider an extensional exponential
Y X ofX , Y with respect to σ and a weak evaluation arrow e : U → Y from a weak product U ofX
and Y . We now consider the P-equivalence relation on Y X given by

εXσ := ∀⟨1,2⟩Ps
⟨1,3,2,3⟩P

s
[e]×[e]σ (3.6)

Then we obtain that the object (Y X , εXσ ) and the arrow

⌊e⌉ : (Y X , εXσ )× (X, δ[X])→ (Y, σ)

provide a strict exponential of (X, δ[X]) and (Y, σ). For the general case, given two objects (X, δ[X])

and (Y, σ)we consider a weak product ofX p1←W
p2→ X and consider the representant of ρ in P(W ),

i.e. ρW := Ps
⟨p1,p2⟩(ρ), where ⟨p1, p2⟩ is the unique arrow W → [X,X]. Hence, we can consider a

comprehension {|ρW |} : R→W and consider the arrows ri := pi ◦ {|ρW |}, for i = 1, 2. If Y X denotes
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the extensional exponential of X and Y w.r.t. σ and Y Rdenotes the extensional exponential of R
and Y w.r.t. σ, the evaluation arrows eX and eR induces two arrows

Y r1 , Y r2 : Y X → Y R

such that the obvious diagrams commute. If c : C → Y X is a weak comprehension of the element
P⟨[Y r1 ,Y r2 ]⟩ε

R
σ , then the strict exponential is given by the object

(C,Ps
[c]×[c]ε

X
σ )

with the evaluation arrow

⌊ex(c× 1X)⌉ : (C,Ps
[c]×[c]ε

X
σ )× (X, ρ)→ (Y, σ).

In casewe restrict to the biased elementary doctrine PsubC of weak subobjects of awlex category
C , then we obtain [Theorem 2.14,[Emm20]].

We can now use the above theorem and the results obtained in the previous section for the slices
of existential and universal biased elementary doctrines to prove the main theorem about the local
cartesian closure of the quotient completion.

Theorem3.7.5. LetP : C op → InfSL be a universal and existential biased elementary doctrinewith full weak
comprehensions and comprehensive diagonals. If P has right adjoints to all reindexings, then the following
are equivalent:

(i) For every object A ∈ C , the slice C /A has P/A-extensional exponentials,

(ii) C is locally cartesian closed.

Proof. The implication (ii) ⇒ (i) follows as in the proof of Theorem 2.3.7. For the implication
(i) ⇒ (ii) we first observe that the cartesian closure of the slices of the form C /(A, δ[A]) follows
applying first Theorem 3.7.4 to the slice doctrine PA and then applying Proposition 3.6.8 to PA. The
proof of the general case follows the construction provided in Theorem 2.3.7 for constructing an
exponential of two objects in slice categories of the form C /(A,α).

In casewe restrict to the biased elementary doctrine PsubC of weak subobjects of awlex category
C , then we obtain [Emm20, Theorem 3.6].

Concluding remarks and further developments. In this chapter, we have provided a more gen-
eral framework which generalizes both the elementary quotient completion of Maietti and Rosolini
and the exact completion of a wlex category provided by Carboni and Vitale in [CV98]. At the end
we have generalized the theorems about the (local) cartesian closure of the exact completion pro-
vided in [CR00] and [Emm20] also for categories with weak finite products and weak pullbacks.
One future development will be to generalize Theorem 2.5.6 for the biased elementary doctrines
and obtain [GV98, Proposition 2.1] also for categories with weak finite products. Moreover, as
observed by Maietti and Rosolini in [MR13], the doctrines correspond to particular Grothendieck
fibrations, namely the faithful fibrations. Similarly, the primary and the elementary doctrines corre-
sponds to suitable faithful fibrations, see [EPR22]. A future development would be to understand
which notion of fibration corresponds to the biased elementary doctrines.
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Chapter 4

A weaker categorical BHK interpretation

The aim of this chapter is to take a little step forward in categorical semantic of mathematical logic.
The interpretation of a (fragment of) many-sorted first-order logical language L(S), in a category
C with strict products, requires an assignment of categorical entities to logical symbols. A sort S
in interpreted as an objectM(S) ∈ C and a multi-variable term t(x1, . . . , xn) : Z, with xi : Si, for
1 ≤ i ≤ n, is inductively interpreted as an arrowM(t) : M(S1) × · · · × M(Sn) → M(Z) of C .
Relation symbols have a double interpretation.

The standard interpretation, introduced by Makkai and Reyes in [MR77], assigns to each relation
symbolR ⊆ S1×· · ·×Sn the equivalence class of amonomorphismM(R)with codomainM(S1)×
· · · × M(Sn). The interpretation is extended inductively to a each formula φ with FV (φ) ⊆ x̄ =
(x1, . . . , xn) which is interpreted as a monomorphism with codomainM(S1)× · · · ×M(Sn). This
process is also called propositions as subobjects interpretation. In order to interpret regular logic, C
is required to be at least regular.

Alternatively, a relation symbol R ⊆ S1× · · · × Sn can be interpreted as the equivalence class of
an arrowM(R)with codomainM(S1)× · · · ×M(Sn), which is not necessarily a monomorphism,
see [Pal04]. This interpretation is called propositions-as-objects or the categorical Brouwer-Heyting-
Kolmogorov interpretation and expresses categorically the Curry-Howard paradigm "proposition as
types". This interpretation is suitable for a larger class of categories, i.e. categories with strict finite
products and weak pullbacks (qlex). Actually, the standard interpretation exploits the functor
SubC : C op → Pos of subobjects, while the BHK interpretation uses the functor PsubC : C op → Pos
of weak subobjects that we encountered in the previous chapters.

From a categorical perspective a more natural definition is that of a weakly left exact category
(wlex) in which also products are weak. Hence, we ask if it possible to interpret intuitionistic
logic in wlex categories. In this chapter, we will give a positive answer to this question and we
will provide a sound and complete construction for various fragments of first order logic. Our
interpretation is suitable for a larger class of categories such as the slice categories of qlex categories
and, in case the finite products are strict, it coincideswith the BHK interpretation. For these reasons,
sometimes we will refer to this interpretation as the weak BHK interpretation.

Our interpretation relies on the idea of proof-irrelevant elements developed in Chapter 3. In
particular, we will implicitly study the biased elementary doctrine of weak subobjects PSubC of a
wlex category. However, we will intentionally leave the language of biased elementary doctrines
as far as possible, but it will be clear where the results obtained could be restated using the tools
developed in the previous chapters. Most of the results have already been obtained in a more
general form, but we think that a direct proof in the case of the biased elementary doctrine of weak
subobjects PSubC is of big interest. Our main example of weak BHK interpretation is provided in

91
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the slices of the syntactic categoryML of an intensional type theory, which are wlex.

4.1 Syntax

In this section we recall the syntax and the categorical semantic of logical theories. In particular,
we recall the standard interpretation of a fragment of intuitionistic logic in left exact categories and
the BHK interpretation in quasi left exact categories as developed in [MR77; But98; Pal04].

We first recall the syntactic notions of a logical language. A (typed) signature S consists of a set
of sort symbols {S1, S2, . . . }, a set of sorted constants symbols {c1, c2, . . . }, a set of finitary sorted
function symbols {f, g, h, . . . } and a set of relation symbols {R,P, . . . }.We will adopt the usual
notations for these symbols:

c : S, f : S1 × · · · × Sn → S, R ⊆ S1 × · · · × Sn.

In order to consider logical languages with equality predicate, we assume a special binary relation
symbol ≈S for each sort S.

A (fragment of) first order language L(S), over a signature S, consists of a list of countable
variables x, y, . . . for each sort X (denoted by x : X), and a set of terms and formulae defined
inductively. The set of terms is defined through the following clauses:

(T1) each constant of sort S is a term of sort S,

(T2) each variable of sort S is a term of sort S,

(T3) if t1 : S1, . . . , tn : Sn are terms and f : S1×· · ·×Sn → Y is a function symbol, then f(t1, . . . , tn)
is a term of type Y .

Te set of formulae is obtained inductively through a subset of the following clauses depending on
the fragment of the logic under consideration:

(F1) if R ⊆ S1 × · · · × Sn is a relation symbol and t1 : S1, . . . , tn : Sn are terms, then R(t1, . . . , tn)
is a formula,

(F2) if t1 and t2 are terms of the same sort S, then t1 ≈S t2 is a formula,

(F3) the "truth" predicate ⊤ is a formula,

(F4) if φ and ψ are folrmulae then φ ∧ ψ is a formula,

(F5) if φ is a formula and x : S a variable, then ∃xφ is a formula,

(F6) the "false" predicate ⊥ is a formula,

(F7) if φ and ψ are formulae then φ ∨ ψ is a formula,

(F8) if φ and ψ are formulae then φ =⇒ ψ is a formula,

(F9) if φ is a formula and x : S a variable, then ∀xφ is a formula,

(F10) if φ is a formula then ¬φ is a formula.
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The formulae obtained through clauses (F1-F4) are calledHorn formulae. The formulae obtained
through clauses (F1-F5) are called Regular formulae and those obtained through clauses (F1-F7) are
called Coherent formulae. The set of first order formulae is obtained using all the clauses (F1-F10).

Given the formulaeφ1, . . . , φn, the setFV (φ1, . . . , φn)denotes the set of free variables ofφ1, . . . , φn.
Similarly, FV (t1, . . . , tn) denotes the set of free variables of the terms t1, . . . , tn. A theory T in the lan-
guage L(S) is a set of sequents of the form

φ1, . . . , φn ⊢x̄ ψ,

where FV (φ1, . . . , φn, φ) ⊆ x̄ = (x1, . . . , xm). Sequences of formulae are denoted by capital Greek
letters Γ,∆, etc. Special axioms concern the equality predicate:

(E1) If x : S then:
⊢x x ≈S x.

(E2) If x, y : S then:
x ≈S y ⊢x,y y ≈S x.

(E3) If x, y, z : S then:
x ≈S y, y ≈S z ⊢x,y,z x ≈S z.

(E4) If f : S1 × · · · × Sn → Y is a function symbol then:

x1 ≈S1 y1, . . . , xm ≈Sm ym ⊢x̄,ȳ f(x1, . . . , xm) ≈Y f(y1, . . . , ym).

(E5) If R ⊆ S1 × · · · × Sn is a relation symbol then:

x1 ≈S1 y1, . . . , xm ≈Sm ym, R(x1, . . . , xm) ⊢x̄,ȳ R(y1, . . . , ym).

A deduction system is a theory equipped with rules and axioms of inference. The following rules
are called structural and are often assumed for most of deduction systems.

(S1) (Assumption) For 1 ≤ i ≤ n:
φ1, . . . , φn ⊢x̄ φi.

(S2) (Weakening) For any ψ with FV (ψ) ⊆ x̄:

Γ ⊢x̄ φ
Γ, ψ ⊢x̄ φ

(S3) (Cut)

Γ, φ,∆ ⊢x̄ ψ Γ,∆ ⊢x̄ φ
Γ,∆ ⊢x̄ ψ

(S4) (Substitution) If t̄ = (t1, . . . , tm) is a list of terms of the same sorts of x̄ and FV (t̄ ⊆ w̄)

Γ ⊢x̄ φ
Γ(t̄/x̄) ⊢w̄ φ(t̄/x̄)
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The last set of rules is given by the logical rules, which concern the logical connectives and the
existential and universal quantification.

(L1) (Conjunction)
Γ ⊢x̄ φ1 Γ ⊢x̄ φ2(∧-I)

Γ ⊢x̄ φ1 ∧ φ2

Γ ⊢x̄ φ1 ∧ φ2(∧-E) (i = 1, 2)
Γ ⊢x̄ φi

(L2) (Existential quantification)
φ(b/y) ⊢x̄ ψ(∃-I) (y ̸∈ FV (ψ))∃yφ ⊢x̄ ψ

∃yφ ⊢x̄ ψ(∃-E) (y ̸∈ FV (ψ))
φ ⊢x̄,y ψ

(L3) (Disjunction)
Γ ⊢x̄ φ1 Γ ⊢x̄ φ2(∨-I)

Γ ⊢x̄ φ1 ∨ φ2

Γ ⊢x̄ φ1 ∨ φ2 Γ, φ1 ⊢x̄ ψ Γ, φ2 ⊢x̄ ψ(∨-E)
Γ ⊢x̄ ψ

(L4) (Absurdity)
Γ ⊢x̄ ⊥
Γ ⊢x̄ ψ

(L5) (Implication)
Γ, φ ⊢x̄ ψ( =⇒ -I)

Γ ⊢x̄ φ =⇒ ψ

Γ ⊢x̄ φ =⇒ ψ Γ ⊢x̄ φ( =⇒ -E)
Γ ⊢x̄ ψ

(L6) (Universal quantification)
Γ ⊢x̄,y φ(∀-I) (y ̸∈ FV (Γ))
Γ ⊢x̄ ∀yφ

Γ ⊢x̄ ∀yφ(∀-E) (FV (b) ⊆ x̄)
Γ ⊢x̄ φ(b/y)

Regular logic with equality is given by the clauses (T1-T3), (F1-F5), (E1-E5), (S1-S4) and (L1-
L2). Coherent logic is given by (T1-T3), (F1-F7), (E1-E5), (S1-S4) and (L1-L4). First order logic is
given using all the above clauses and rules.

4.2 Standard interpretation

In this section we recall the standard interpretation of categorical logic in regular categories, as
developed in [MR77]. We shall sometimes adopt the notation of the more recent notes [But98]. In
order to interpret a language L(S) in a left exact category C we fix some categorical notation.

Remark 4.2.1. In the rest of these notes, we will always assume that a left exact category comes
equipped with a choice of limits such as products, pullbacks, equalizers and terminal objects. Sim-
ilarly, when C is a category with weak pullbacks and strict products, we will assume a choice of
strict products and of weak pullbacks. Finally, a weakly lex category will be equippedwith a choice
of weak limits.

The idea behind the standard interpretation is similar to the set valued interpretation of first or-
der logic. The paradigm propositions as subsets becomes, in the language of category theory, proposi-
tions as subobjects. If C is a category andX is an object of C , then a subobjects is the equivalence class
of a monomorphism m : M ↣ X up to the following equivalence relation: the monomorphisms
m and m′ : M ′ ↣ X are equivalent if there exist two arrows h : M → M ′ and k : M ′ → M such
thatm′ ◦h = m andm ◦h = m′. The substitution of terms into formulae is interpreted through the
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pullbacks. This interpretation can be fruitfully described using the functor in Example 1.2.7 which
we recall here. If C is a left exact category, then the functor of subobjects

SubC : C op → Pos

sends

- an object X ∈ C to the poset SubC (X) of subobjects over X with the following partial equiv-
alence relation: ⌊m : M ↣ X⌉ ≤ ⌊n : N ↣ X⌉ if there exists an arrow h which makes the
following diagram commute

M N

X

h

nm

- an arrow f : Y → X of C to the functor SubC (f) : SubC (X) → SubC (Y ) which sends a
monomorphismm :M ↣ X to the left vertical arrow of the following pullback:

P M

Y X.

f∗(m) m

f

The functor SubC (f) will be denoted as f∗, and its action on a monomorphism m will be denoted
by f∗(m).

Observation 4.2.2. As already mentioned inExample 1.2.7, when C is a left exact category, and X
is an object of C , then the poset SubC (X) has finite meets. Given two subobjects m : A ↣ X and
n : B ↣ X , the meetm∧n is given by the equivalence class of the common value of the composite
of following pullback

P B

A X.

n

m

Every arrow h : Y → X of C induces a meet-preserving functor h∗ : SubC (X)→ SubC (Y ).

In order to interpret connectives and quantifiers, we may require additional structure on the
category in which we would interpret the logical language. In order to interpret regular formulae,
we recall one of the equivalent definition of regular category and refer to [Bar71] or to the first
chapter of [But98].

Definition 4.2.3. A left exact category C is said regular if

• any arrow of C factorizes as a regular epimorphism followed by a monomorphism,

• these factorizations are pullback-stable.

Regular categories form a categoryREGwhose arrows are regular functors, i.e. fuctors preserv-
ing finite limits and coequalizers of kernel pairs. The following result is well-known, and a proof
can be found in [Joh02].
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Lemma 4.2.4. Let C be a regular category. If f : Y → X is an arrow of C , then the functor f∗ has a left
adjoint

SubC (Y ) SubC (X),
f!

f∗
⊥

given by f!(m) = Im(f ◦m).

If C is a regular category, the standard interpretationM in C of the signature of a language
L(S) is defined as follows:

- each sort S is interpreted as an objectM(S) ∈ C ,

- each constant symbol c : S is interpreted as an arrowM(c) : 1→M(S),

- each function symbol f : S1 × · · · × Sn → Y is interpreted as an arrowM(f) :M(S1)× · · · ×
M(Sn)→M(Y ),

- each relation symbol R ⊆ S1 × · · · × Sn is interpreted as an objectM(R) ∈ SubC (M(S1) ×
· · ·×M(Sn)). The equality symbol≈S is interpreted as the diagonalM(S)

∆S→ M(S)×M(S).

For a list of variables x̄ = (x1, . . . , xn), of sorts x1 : S1, . . . , xn : Sn, we will denote byM(S̄) the
productM(S1)× · · · ×M(Sn).

The interpretation extends inductively on terms and formulae taking in account the set of free
variables occurring. A term or a formula can be considered with extra ’dummy’ variables. For
example, a variable xj of sort Sj , is a term with free variables occurring in the set x̄ = (x1, . . . , xn),
where xi : Si for 1 ≤ i ≤ n. The interpretation of a term t of sort S, with FV (t) ⊆ x̄ = (x1, . . . , xn),
where xi : Si for 1 ≤ i ≤ n, is an arrowMx̄(t) :M(S̄)→M(S) defined inductively as follows:

(T1) a constant symbol c : S is interpreted as the mapMx̄(c) :M(S̄) →M(S) factoring through
M(c) : 1→M(S),

(T2) a variable xi : Si is interpreted as the projectionMx̄ := pi :M(S̄)→M(Si),

(T3) ifMx̄(ti) are the interpretations of the terms ti : Si, for 1 ≤ i ≤ n, andM(f) :M(x̄)→M(Y )
is the interpretation of the function symbol f : S1 × · · · × Sn → Y , then the term f(t1, . . . , tn)
is interpreted as the compositionMx̄(f(t1, . . . , tn)) :=M(f) ◦ ⟨M(t1), . . . ,M(tn)⟩.

A formula φ, in which occur the terms t1 : Z1, . . . , tn : Zn, such that FV (t1, . . . , tn) ⊆ FV (φ) ⊆
x̄ = (x1, . . . , xm), where x1 : S1, . . . , xm : Sm, is interpreted inductively as follows:

(F1) IfR ⊆ Z1×· · ·×Zn is a relation symbol and t1 : Z1, . . . , tn : Zn are terms, thenMx̄(R(t1, . . . , tn)) :=
Mx̄(t̄)

∗M(R), whereMx̄(t̄) := ⟨Mx̄(t1), . . . ,Mx̄(tn)⟩,

(F2) if t1, t2 are terms of the same sort Z, then t1 ≈S t2 is interpreted as the equalizer of the arrows

M(S̄) M(Z)
Mx̄(t1)

Mx̄(t2)
,

(F3) Mx̄(⊤) = 1M(S̄),

(F4) if φ and ψ are formulae with FV (φ,ψ) ⊆ x̄, then φ∧ψ is interpreted as the common value of
the composite of following pullback
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P M(φ)

M(ψ) M(S̄),

Mx̄φ

Mx̄ψ

(F5) if φ is a formula with FV (φ) ⊆ (y, x1, . . . , xn) with y : Z, thenMx̄∃yφ := π!(My,x̄ϕ), where
π is the projectionM(Z)×M(Z̄)→M(Z̄).

We now briefly recall that the above interpretation is sound and complete. The following result
appears as [But98, Lemma 4.1].
Theorem 4.2.5 (Soundness of the standard interpretation). Let T be a regular theory andM an inter-
pretation in a regular category C . If x̄ = (x1, . . . , xn) are variable of sort xi : Si, for 1 ≤ i ≤ n, and a
sequent φ ⊢x̄ ψ is derivable, thenMx̄(φ) ≤Mx̄(ψ) in SubC (M(S̄)).

The standard interpretation is also complete. The proof follows from the construction of the
syntactic category C (T) defined as follows. The category C (T) has

objects are equivalence classes of provably equivalent formulae in context, i.e. pairs {x̄ : X̄, φ}, where
x̄ : X̄ is a context x1 : X1, . . . , xn : Xn and φ is a formula x̄ ⊆ FV (φ).

arrows from (x̄ : X̄, φ) to (ȳ : Ȳ , ψ) are equivalence classes of formulae γ in the context : x̄ : X̄, ȳ : Ȳ
which are functional in the following sense:

– γ(x̄, ȳ) ⊢x̄,ȳ φ(x̄) ∧ ψ(ȳ),
– γ(x̄) ⊢x̄,ȳ ∃ȳγ(x̄, ȳ),
– γ(x̄, ȳ1), γ(x̄, ȳ2) ⊢x̄,ȳ1,ȳ2 ȳ1 ≈Ȳ ȳ2.

Given two arrows {γ} : {x̄ : X̄, φ} → {ȳ : Ȳ , ψ} and {χ} : {ȳ : Ȳ , φ} → {z̄ : Z̄, ρ}, the
composition is given by the equivalence class of the formula

∃ȳ(γ(x̄, ȳ) ∧ χ(ȳ, z̄)).

If T is a regular theory, then it can be proved that C(T) is a regular category. Moreover, one can
define a canonical interpretation U into C(T) as follows
− U(X) := {x : X,x = x}, for a sort X
− U(c) := {x : X,x = c}, for a constant symbol c : X
− U(f) := {x̄, y : X̄, Y, f(x̄) = y}, for a function symbol f : X̄ → Y

− U(R) := {x̄ : X̄, R(x̄)}, seen as a subobject of U(X̄), for a relation symbol R ⊆ X1 × · · · ×Xn.
Since provability and satisfiability coincide in the canonical interpretation, the standard interpreta-
tion is also complete. We refer to §6 of [But98] or to §8 of [MR77] for further details. In particular,
it follows that the models of T in a regular category C are equivalent to regular functors from C(T)
to C

Mod(T,C ) ∼= REG(C(T),C ).

A proof of the following result appears in [But98, Proposition 6.4].
Proposition 4.2.6 (Completeness of the standard interpretation). The canonical interpretationU in the
regular category C(T) is a complete model of T. In particular, the syntactic calculus given above is complete
with respect to interpretations in (small) regular categories.
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4.3 BHK interpretation

In this sectionwe recall the categorical Brouwer-Heyting-Kolmogorov interpretation following [Pal04].
This interpretation is suitable for a larger class of categories, as it is shown below. Before starting,
we fix some notations.

We now recall the notations of the functor introduced in Example 1.2.6.
Notation. If C is a category and X is an object of C , we will denote by (C /X)po the poset reflec-
tion of the slice category C /X , whose objects are equivalence classes of arrows with respect to the
following equivalence relation: two arrows f : A → X and g : B → X of C are equivalent when
there exist two arrows h, k making the following diagrams commute

A B

X

h

f g

A B

X.
f g

k

The equivalence class of an arrow f will be denoted by ⌊f⌉. We will write ⌊f⌉ ≤ ⌊g⌉ if and only if
there exists an arrow h such that f = g ◦ h.

If C is a category with strict products and weak pullbacks (qlex) the subobjects can be collected
in a controvariant functor

PsubC : C op → Pos

which sends
- an object X ∈ C to the poset PsubC (X) := (C /X)po,
- an arrow f : Y → X of C to the functor PsubC (f) : PsubC (X) → PsubC (Y ) which sends an
equivalence class ⌊g : B → X⌉ to the equivalence class of the left vertical arrow of a weak
pullback:

P B

Y X.

g

f

The functor PsubC (f)will be denoted as f∗, and its action on ⌊g⌉will be denoted by f∗⌊g⌉. In order
to interpret regular formulae, recall that the definition of weak pullback along f : Y → X ensures
that the functor f∗ has a left adjoint

PsubC (Y ) PsubC (X),
f!

f∗
⊥

given by f!⌊−⌉ = ⌊f ◦ −⌉.
Observation 4.3.1. As already observed, the functor PsubC : C op → Pos takes value in infimum
semilattices. Indeed, given ⌊f⌉, ⌊g⌉ ∈ PsubC (X), the meet ⌊f⌉ ∧ ⌊g⌉ is given by the equivalence
class of the common value of the composite of the following weak pullback

P B

A X.

g

f
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Every arrow h : Y → X of C induces a meet-preserving functor h∗ : PsubC (X)→ PsubC (Y ).

The interpretation of a language L(S) in a qlex category C works as the interpretation in lex
categories, but replacing the functor SubC by PsubC . In particular, terms are interpreted as in the
previous section and a relation symbol R ⊆ S1 × · · · × Sn is interpreted as an object

M(R) ∈ PsubC (M(S1)× · · · ×M(Sn)).

Formulae are interpreted as the equivalence classes of the arrows involved in the standard inter-
pretation of (F1-F5).
The categorical BHK interpretation is sound as it is shown in [Pal04, Theorem 3.3].

Theorem 4.3.2 (Soundness of the BHK interpretation). Let T be a regular theory andM an interpre-
tation in a quasi left exact category C . If x̄ = (x1, . . . , xn) are variables of sort xi : Si, for 1 ≤ i ≤ n, and a
sequent φ ⊢x̄ ψ is derivable in T, thenMx̄(φ) ≤Mx̄(ψ) in PsubC (M(S̄)).

We end this section mentioning the connection between the two interpretations. Actually, the
standard interpretation of regular logic in a regular category is obtained applying the image functor
to the BHK interpretation. Recall that for a regular category C the regular-epi/mono factorization
induces a left adjoint to the inclusion functor UX : SubC (X)→ PsubC (X)

SubC (X) PsubC (X),
UX

Im

⊤

for every object X ∈ C . The following result appears as [Pal04, Theorem 4.3].

Theorem 4.3.3. Let C be a regular category. Suppose thatM is an interpretation where all relation symbols
are interpreted as subobjects. Denote by M̃ the BHK interpretation function and let M̄ be the standard
interpretation function. Then for regular formulae φ with FV (φ) ⊆ x̄:

M̄x̄(φ) = Im(M̃x̄(φ)).

The above theorem implies that the BHK interpretation is actually complete. Indeed, there is a
canonical BHK interpretation U ′ in the syntactic category C(T), which coincides with the canonical
interpretation U in C(T), on function and sort symbols and is defined as the compositions UX ◦ U
on the relation symbols. Hence, by the completeness theorem of the standard interpretation we
obtain the following result.

Proposition 4.3.4 (Completeness of the BHK interpretation). The canonical BHK interpretation U ′

in the regular category C(T) is a complete model of T. In particular, the syntactic calculus given above is
complete with respect to the BHK interpretations in (small) quasi left exact categories.

Proof. It is enough to observe that if U ′
x̄(φ) ≤ U ′

x̄(ψ) in PsubC(T)(U ′(S̄)), then Im ◦ U ′
x̄(φ) ≤ Im ◦

U ′
x̄(ψ) in SubC(T)(U(S̄)) and apply Theorem 4.3.3.

4.4 Interpretation in wlex categories

In this section, we provide an interpretation of a languageL(S) in aweakly left exact categoryC . As
usual, the interpretation of a sort symbol S is given by an objectM(S) ∈ C , but the interpretation of
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terms and formulae requiresmore accuracy. This is due toweak products and to theweak universal
property of weak products. As we have seen in the previous section, strict products seem necessary
to treat multi-variable terms and formulae. But now, for a function symbol

f : S1 × · · · × Sn → S

the weak productsM(S1) × · · · × M(Sn) are not unique up to isomorphism and the domain of
a possible interpretationM(f) would depend on a choice of the weak product. Similarly, a naive
interpretation of a predicate symbol

R ⊆ S1 × · · · × Sn,

given by an equivalence classM(R) of some arrows over a weak productM(S1) × · · · ×M(Sn),
would depend on the choice of the weak product and not only on the interpretationsM(Si) of
the sorts Si, for 1 ≤ i ≤ n. The same happens for substitution of terms. Assuming that we have
interpreted the terms t1 : S1, . . . , tn : Sn as arrowsMx̄(ti)with codomainM(Si), for 1 ≤ i ≤ n, and
a predicate symbol R ⊆ S1 × · · · × Sn as an arrow with codomain a weak productM(S1) × · · · ×
M(Sn), then there exists a not-unique arrow ⟨Mx̄(t1), . . . ,Mx̄(tn)⟩ induced by the weak universal
property of the weak products suitable to interpret R(t1, . . . , tn) as

⟨Mx̄(t1), . . . ,Mx̄(tn)⟩∗M(R).

A naive interpretation could be to assume a choice of weak finite products and arrows induced
by their weak universal property and proceed as for the BHK interpretation. Unfortunately, this
process leads to problems interpreting the axioms of equality and substitution. In order to give an
interpretation which is somehow well-behaved with respect to the possible choices of weak prod-
ucts and their universal property and validates all the axioms of regular logic, we will introduce in
the next sections particular classes of arrows and subobjects.

Before starting we recall that a category is weakly left exact category if and only if it has weak
finite products and weak equalizers or weak pullbacks. Obviously, lex and qlex categories are wlex
and the slices of qlex categories are wlex, as it happens for the slices of the syntactic category ML
arising from intensional type theory.

Notation. For the rest of the section, C will denote a wlex category. IfX1, . . . , Xn are objects of C ,
wewill adopt the usual notationX1×· · ·×Xn to denote a choice of weak products of the objects and
we will denote with pi : X1 × · · · ×Xn → Xi the projections for 1 ≤ i ≤ n. Similarly, if f : X → Y1
and g : X → Y2 are two arrows of C , then we will denote with ⟨f, g⟩ : X → Y1 × Y2 a choice of an
arrow induced by the weak universal property of the weak products, such that p1 ◦ ⟨f, g⟩ = f and
p2 ◦ ⟨f, g⟩ = g.

Terms. As usual, the interpretation of terms of a language L(S) will be given by arrows of C . In
order to treat multi-variable terms, we would interpret a term t(x1, . . . , xn) : S with free variables
x1 : S1, . . . , xn : Sn, as an arrow

M(t) :M(S1)× · · · ×M(Sn)→M(S),

from a weak productM(S1) × · · · × M(Sn) of the objectsM(Si) ∈ C , for 1 ≤ i ≤ n, which is
well-behaved with respect to the choice of a weak product in the following sense: if

(M(S1)× · · · ×M(Sn))
′
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is a different weak product with projections p′i : (M(S1)× · · · ×M(Sn))
′ →M(Si), for 1 ≤ i ≤ n,

then the interpretationM(t)must induce a unique arrowM(t)′ : (M(S1)×· · ·×M(Sn))
′ →M(S)

such that for every arrow h : (M(S1)× · · · ×M(Sn))
′ →M(S1)× · · · ×M(Sn)with p′i ◦ h = pi, for

1 ≤ i ≤ n the following diagram commutes

(M(S1)× · · · ×M(Sn))
′

M(S1)× · · · ×M(Sn) M(S).

M(t)′
h

M(t)

In order to do that, we now introduce a special class of arrows, which have been previously defined
in [Emm20].
Definition 4.4.1. Let X1 . . . Xn, Y be objects of C . An arrow f : X1 × · · · × Xn → Y is called
determined by projections (dbp) if, for every x, x′ : T → X1 × · · · ×Xn, such that pi ◦ x = pi ◦ x′, for
1 ≤ i ≤ n, then f ◦ x = f ◦ x′.
Example 4.4.2. If C is a weak lex category the following are examples of arrows determined by
projections:

- if g : X1 × · · · ×Xn → Y is dbp, then the post composition f ◦ g with any arrow f : Y → Z is
dbp,

- every projection pi : X1 × · · · ×Xn → Xi is dbp.
At present, we don’t know conditions on the wlex category C which ensure the existence of arrows
determined by projections.
Remark 4.4.3. When n = 1, a natural choice of (weak) 1-product of an objectX ∈ C is given byX
and the identity 1X . In this case, every arrow out of X is determined by projections. If n = 0, the
0-product is a weak terminal object 1 with no projections, and an arrow f : 1 → A is determined
by projections if and only if, for every pair of arrows g, h : X → 1, f ◦ g = f ◦ h.

We now provide a useful property of arrows determined by projections in order to obtain an
interpretation of constant and function symbols.
Lemma 4.4.4. Let X1, . . . , Xn, Y be objects of C and let f : X1 × · · · ×Xn → Y be an arrow determined
by projections. If (X1 × · · · × Xn)

′ is a different weak product, then the arrow f induces a unique arrow
f ′ : (X1 × · · · ×Xn)

′ → Y which is determined by projections.

Proof. By the weak universal property of the weak products, there exists a not necessarily unique
arrow

h : (X1 × · · · ×Xn)
′ → X1 × · · · ×Xn

such that pi ◦ h = p′i, for 1 ≤ i ≤ n. If h′ : (X1 × · · · × Xn)
′ → X1 × · · · × Xn is a different arrow

such that pi ◦ h′ = p′i, for 1 ≤ i ≤ n, since f is determined by projection, we obtain

f ◦ h = f ◦ h′.

Hence, we can define a unique arrow f ′ := f ◦ h from the weak product (X1 × · · · ×Xn)
′. A trivial

verification shows that also f ′ is determined by projections.
We will now define an interpretation in which constant and function symbols are interpreted

through arrows determined by projections.
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- A constant symbol c : S is interpreted as an arrowM(c) : 1 →M(S) determined by projec-
tions, where 1 is a weak terminal object.

- A function symbol f : S1 × · · · × Sn → S is interpreted as an arrowM(f) :M(S1) × · · · ×
M(Sn)→M(Y ) determined by projection.

Remark 4.4.5. The interpretation of constant and function symbols as arrows determined by pro-
jections is well-behaved with respect to the choice of weak product in the following sense. Once
we have fixed the interpretations through a choice of weak products, then it spreads for different
weak products, as shown below.

- If a constant symbol c : S is interpreted through an arrowM(c) : 1 →M(S) determined by
projections, from a weak terminal object 1, then we can consider a different weak terminal
object 1′ and, through Remark 4.4.3 and Lemma 4.4.4, obtain a unique arrowM(c)′ : 1′ →
M(S).

- If a function symbol f : S1×· · ·×Sn → S is interpreted through an arrowM(f) :M(S1)×· · ·×
M(Sn) → M(Y ) determined by projection, then we can consider a different weak product
(M(S1)× · · · ×M(Sn))

′ and, applying Lemma 4.4.4, obtain a unique arrow
M(f)′ : (M(S1)× · · · ×M(Sn))

′ →M(Y ).

We can now interpret terms in a context x̄ = (x1, . . . , xn), with xi : Si for 1 ≤ i ≤ n, as follows.
As in the previous section, we will denote a weak productM(S1)× · · · ×M(Sn) byM(S̄).

(T1) The interpretationMx̄(c) : M(S̄) → M(S) is given by the compositionM(c) ◦ u, where
u : M(S̄) → 1 is an arrow into the weak terminal object 1 induced by the weak universal
property of 1.

(T2) A variable xi : Si is interpreted as the projectionMx̄(xi) := pi : M(S̄) → M(Si), which is
determined by projections.

(T3) IfMx̄(ti) are the interpretations of the terms ti : Zi, for i = 1, . . . ,m, andM(f) :M(Z̄) →
M(S) is the interpretation of the function symbol f : Z1 × · · · × Zm → S, then the term
f(t1, . . . , tm) is interpreted as the composition

Mx̄(f(t1, . . . , tm)) :=M(f) ◦ ⟨M(t1), . . . ,M(tm)⟩,

where ⟨M(t1), . . . ,M(tm)⟩ is an arrow induced by the weak universal property of the weak
productM(S̄). The composition is well defined because another arrow ⟨M(t1), . . . ,M(tm)⟩′
induced by the weak universal property of the weak product verifies

pi ◦ ⟨M(t1), . . . ,M(tm)⟩′ = pi ◦ ⟨M(t1), . . . ,M(tm)⟩

for every projection pi :M(S̄)→M(Zi), for i = 1, . . . ,m.

Remark 4.4.6. We underline the fact that the interpretations of (T1) and (T3) is well behaved with
respect to all the possible arrows induced by theweak universal property ofweak products. Indeed:

- ifM(c) : 1 → M(S) is the interpretation of a constant symbol c : S and u, u′ : M(S) → 1
are two arrows induced by the weak universal property of the weak terminal objects, then
Remark 4.4.3 and the fact thatM(c) is determined by projections imply that

M(c) ◦ u =M(c) ◦ u′.
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- IfMx̄(ti) are the interpretations of the terms ti : Zi, for 1 ≤ i ≤ m, and ⟨M(t1), . . . ,M(tm)⟩′
is a different arrow induced by the weak universal property of the weak product then

pi ◦ ⟨M(t1), . . . ,M(tm)⟩′ = pi ◦ ⟨M(t1), . . . ,M(tm)⟩

for every projection pi : M(S̄) → M(Zi), for 1 ≤ i ≤ m. Since the interpretationM(f) :
M(Z̄) →M(S) of the function symbol f : Z1 × · · · × Zm → S is determined by projections,
it holds that

M(f) ◦ ⟨M(t1), . . . ,M(tm)⟩ =M(f) ◦ ⟨M(t1), . . . ,M(tm)⟩′.

Relations. As for the BHK interpretation, we will interpret a relation symbol R ⊆ S1 × · · · × Sn
as an equivalence class of arrows with codomain a weak productM(S1)× · · · ×M(Sn), i.e. as an
element

M(R) ∈ PsubC (M(S1)× · · · ×M(Sn)).

In this section we will provide the explicit construction, which is motivated by the analogies with
the interpretations in categories with strict products. In the next section, we will justify the con-
struction introducing the notion of proof-irrelevant elements.

We first recall some categorical notations that we have mentioned in Example 3.2.6.
Notation. Given a category C and objects X1, . . . , Xn ∈ C , we will denote by C /(X1, . . . , Xn) the
category of cones over X1, . . . , Xn whose

objects are lists (f1, . . . , fn) of arrows fi : A→ Xi of C , for 1 ≤ i ≤ n, with a common domain A,
arrows h : (f1, . . . , fn)→ (g1, . . . , gn) between two coneswith domainsA andB are arrowsh : A→ B

of C such that gi ◦ h = fi, for 1 ≤ i ≤ n.
The poset (C /(X1, . . . , Xn))po is the category whose objects are equivalence classes of cones

given by the following equivalence relation: (f1, . . . , fn) and (g1, . . . , gn) are equivalent when there
exist two arrows h : A → B and k : B → A making commutative the following diagrams compo-
nentwise

A B

X1 Xn

h

f1 fn g1 gn

···

A B

X1 Xn

k

f1 fn g1 gn

···

We will denote the equivalence class of a cone (f1, . . . , fn) as ⌊(f1, . . . , fn)⌉, and we will write
⌊(f1, . . . , fn)⌉ ≤ ⌊(g1, . . . , gn)⌉ if and only if there exists an arrow h : A → B such that gi ◦ h = fi,
for 1 ≤ i ≤ n. Moreover, we will denote with (C /(X1, . . . , Xn))j.m. the poset whose objects are
equivalence classes of jointly monic cones over X1, . . . , Xn, up to isomorphism.
Observation 4.4.7. Nowwewant to highlight the advantages of workingwith categories with strict
products. If C is a category with strict products andX1, . . . , Xn are objects of C , the strict universal
property of strict products induces a functor which sends a cone to a unique arrow over the strict
product X1 × · · · ×Xn. The inverse functor is given by the post-composition with the projections
pi : X1 × · · · ×Xn → Xi, for 1 ≤ i ≤ n. Hence, we obtain the following isomorphisms:

C /(X1, . . . , Xn) ∼= C /(X1 × · · · ×Xn),

(C /(X1, . . . , Xn))j.m. ∼= SubC (X1 × · · · ×Xn),

(C /(X1, . . . , Xn))po ∼= PsubC (X1 × · · · ×Xn).
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These bijections explicit the fact that the standard and the BHK interpretation of a relation symbol
R ⊆ S1× · · · × Sn is completely determined respectively by a cone or an equivalence class of cones
overM(Si), for 1 ≤ i ≤ n. However, when C is a category with weak products andweak pullbacks
and X1 × · · · × Xn is a weak product of the objects X1, . . . , Xn ∈ C , then the above bijections do
not necessarily hold. In particular, the weak universal property of the weak products does not
provide an obvious functor which sends a cone over X1, . . . , Xn to an arrow over a weak product
X1 × · · · × Xn. In the next section, in Theorem 4.5.3, we will extend the above bijections for wlex
categories restricting to suitable sub-poset of PsubC (X1 × · · · ×Xn).

From the above observation, we suggest to consider the slogan propositions as cones. Taking this
insight of relations, we define an interpretation of the relation symbols in wlex categories following
three steps.

We first consider a relation symbol R ⊆ S1 × · · · × Sn and the interpretations M(Si) ∈ C
of the sorts, for 1 ≤ i ≤ n. Secondly, we choose a cone (r1, . . . , rn) with ri : R → M(Si), for
1 ≤ i ≤ n. Finally, we choose a weak productM(S1) × · · · ×M(Sn) and we associate an element
of PSubC (M(S1)× · · · ×M(Sn)).

Equality symbols. Given a sort S, the interpretation of the the equality relation symbol ≈S is
given first considering the cone

M(S)

M(S) M(S).

1M(S) 1M(S)

Nowwe consider the following weak limit and defineM(≈S) as the equivalence class, in the poset
reflection of C /(M(S)×M(S)), of the right dashed arrow

D

M(S) M(S)×M(S)

M(S) M(S).

δS

1M(S)

1M(S) p1

p2

(4.1)

Observe that δS is an equalizer of the arrows

M(S)×M(S) M(S),
p1

p2

and, whenM(S)×M(S) is a strict product, we obtain the unique diagonal∆S .
The weak universal property of weak limits implies that the above interpretation of the equality

relation symbol satisfies the following property for different choices of weak products.

Lemma 4.4.8. Given a sort symbol S and a different weak productM(S)
p′1← (M(S)×M(S))′

p′2→M(S),
if ⌊δ′S⌉ is the interpretation of the equality relation symbol ≈S over (M(S)×M(S))′ obtained as in (4.1),
then for every arrow h : (M(S)×M(S))′ →M(S)×M(S) such that pi ◦ h = p′i, for i = 1, 2 it follows
that

h∗⌊δS⌉ = ⌊δ′S⌉.
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Observation 4.4.9. Since we have interpreted the equality relation symbols ≈S as the equivalence
classes of certain weak equalizers, it is not difficult to show that axioms (E1)-(E4) are satisfied.

Relation symbols. A relation symbol R ⊆ S1 × · · · × Sn is first interpreted as a cone (r1, . . . , rn)
over the objectsM(S1), . . . ,M(Sn):

R

M(S1) M(Sn).

r1 rn

···

The interpretationM(R) is given by the equivalence class of the right dashed arrow of the fol-
lowing weak limit:

R′

R M(S1)× · · · ×M(Sn)

M(S1) M(Sn).

r
ρ

r1

rn
p1

pn

···

(4.2)

We observe that whenM(S1)×· · ·×M(Sn) is a strict product, then the arrow ρ is equivalent to the
unique arrow induced by r1, . . . , rn onM(S1)×· · ·×M(Sn). The weak universal property of weak
limits trivially implies that the above interpretation of a predicate symbol satisfies the following
property for different choices of weak products.
Lemma 4.4.10. Using the above notation, if (M(S1) × · · · ×M(Sn))

′ is another weak product with pro-
jections p′i : (M(S1) × · · · × M(Sn))

′ → M(Si), for 1 ≤ i ≤ n, andM(R)′ is the interpretation of
R over (M(S1) × · · · × M(Sn))

′ built as in 4.2, then for every arrow h : (M(S1) × · · · × M(Sn))
′ →

M(S1)× · · · ×M(Sn), such that p′i ◦ h = pi, it follows that

h∗M(R) =M(R)′.

4.5 Proof-irrelevant elements

In this sectionwewill give a correspondence between cones and arrows in style of Observation 4.4.7
for weakly lex categories. Given aweak productX1×· · ·×Xn of the objectsX1, . . . , Xn ∈ C , we can
send a cone over X1, . . . , Xn to the equivalence class of the weak limit in (4.2). This construction
provides a functor

M : C /(X1, . . . , Xn)po → PsubC (X1 × · · · ×Xn).

An easy verification shows that the post-composition with the projections pi : X1 × · · · × Xn →
Xi, for 1 ≤ i ≤ n, does not necessarily provide an inverse to the above functor but only a left
inverse. We will define the sub-poset of proof-irrelevant elements of PsubC (X1 × · · · × Xn) such
that the corestriction of the above functor is an isomorphism. This correspondence implies that the
interpretation of relation symbols as proof-irrelevant elements validates axiom (E5) of the equality
predicate.

Before starting we fix some notations.
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Notation. If C is a category with weak products, then we can obtain a weak product of the objects
X1, . . . , Xn ∈ C as

X1 × · · · ×Xm
p1← (X1 × · · · ×Xm)× (Xm+1 × · · · ×Xn)

p2→ Xm+1 × · · · ×Xn.

If i ≤ m andm < j ≤ n, then, abusing the notation, we will denote by

⟨i, j⟩ : (X1 × · · · ×Xm)× (Xm+1 × · · · ×Xn)→ Xi ×Xj

a choice of an arrow induced by the composition of the projections pi◦p1 and pj ◦p2, where pi : X1×
· · · ×Xm → Xi and pj : Xm+1 × · · · ×Xn → Xj .

When C is wlex and X1, . . . , Xn are objects of C , we can consider the equivalence classes ⌊δXi⌉
of the arrows obtained as in (4.1), considering weak products Xi × Xi, for 1 ≤ i ≤ n. If X̄ :=
X1 × · · · ×Xn, then we will refer to the element

⟨1, n+ 1⟩∗⌊δX1⌉ ∧ · · · ∧ ⟨n, 2n⟩∗⌊δXn⌉ ∈ PsubC (X̄ × X̄). (4.3)

as the proof-irrelevant equality or the componentwise equality ofX1×· · ·×Xn. Instead, the equivalence
class ⌊δX̄⌉ ∈ PsubC (X̄ × X̄) obtained as in (4.1), for a weak product X̄ × X̄ , will be called proof-
relevant equality of X1 × · · · ×Xn. This terminology has already been motivated in Example 3.2.5,
but it will be discussed again in Section 4.6.

We recall the definition of descent data given in Definition 1.2.4. IfX ∈ C and β ∈ PsubC (X×X),
the sub-order of the descent data of β is given by

Desβ := {α ∈ PsubC (X) | p∗1(α) ∧ β ≤ p2∗(α)}. (4.4)

By definition, it follows that the sub-orders of descent data are closed by finite meets and if β′ ≤ β
then

Desβ ⊆ Desβ′ .

Wenow recall that the proof-irrelevant elements of aweak productX1×· · ·×Xn are the sub-order
of PSub(X1 × · · · ×Xn) given by the descent data of the proof-irrelevant equality ofX1× · · · ×Xn.
The sub-poset of proof-irrelevant elements of X1 × · · · ×Xn is denoted as

PIrrC (X1 × · · · ×Xn).

Remark 4.5.1. Observe that the assignment PIrrC is not functorial. Indeed, given three objects
X,Y, Z ∈ C , if W := X × Y is a weak product of X and Y , then a weak product W × Z of W
and Z is also a weak product of X , Y and Z. In this situation, by definition the proof-irrelevant
elements of the binary product (W × Z) are also proof-irrelevant elements of (W × Z) seen as
a ternary product of X,Y and Z, but the converse does not necessarily holds. As we have seen
in Chapter 3, in order to set proof-irrelevant elements functorially we need the framework of the
biased elementary doctrines.

In the following proposition we show that the functorM takes value in the sub-poset of proof-
irrelevant elements.
Proposition 4.5.2. For every weak product X̄ := X1×· · ·×Xn of the objectsX1, . . . , Xn ∈ C , the functor

M : (C /X1, . . . , Xn)po → PsubC (X1 × · · · ×Xn),

takes value in PIrrC (X1 × · · · ×Xn).
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Proof. Consider the following weak pullback diagrams for 1 ≤ i ≤ n:

Pi,n+i X̄ × X̄

Di Xi ×Xi

<i,n+i>∗δXi

<i,n+i>di

δXi

and then consider the weak limit of the following diagram

H

P⟨1,n+1⟩ P⟨n,2n⟩

X̄ × X̄.

···

h1 hn

⟨1,n+1⟩∗δX1
⟨n,2n⟩∗δXn

We denote by h the common value of the composite of the weak limit above which corresponds to
the proof-irrelevant equality

n∧
i=1
⟨i, n + i⟩∗δXi . If ⌊ρ⌉ :=M⌊(r1, . . . , rn)⌉ for a cone (r1, . . . , rn) and

the reindexings p∗i ρ, for i = 1, 2, are given by the following weak pullbacks

Ri X̄ × X̄

R′ X̄

p∗i ρ

pi

ρ

p′i

then the conjunction c := p∗1ρ∧h is obtained as the common value of the composite of the following
weak pullback

C H

R1 X̄ × X̄.

h

p∗1ρ

h′

t

The statement is equivalent to prove that ⌊c⌉ ≤ ⌊p∗2ρ⌉ in PsubC (X̄ × X̄). But, since

pi ◦ c ◦ p2 = ri ◦ r ◦ p′1 ◦ h′

for 1 ≤ i ≤ n, then there exists an arrow k : C → R′ such that ρ ◦ k = p2 ◦ c. Hence, there exists an
arrow s : C → R2 such that p∗2ρ ◦ s = c and s ◦ p′2 = k.

In the following theorem we extend Observation 4.4.7 proving that, when C is a wlex category,
cones are in bijections with proof-irrelevant elements.

Theorem 4.5.3. For every weak product X̄ := X1 × · · · ×Xn of the objects X1, . . . , Xn ∈ C , the functor
M and the post-composition with the projections provide a bijection

(C /X1, . . . , Xn)po ∼= PIrr(X̄).
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Proof. If (r1, . . . , rn) is a cone over X1, . . . , Xn with domain an object R ∈ C , thenM(r1, . . . , rn) :
R′ → X̄ is a proof-irrelevant element. Using the notation of the diagram in (4.2), wehaveM(r1, . . . , rn) :=
⌊ρ⌉ and an arrow r′ : R→ R′ such that r ◦ r′ = 1R and ρ ◦ r′ = ⟨r1, . . . , rn⟩ for an arrow ⟨r1, . . . , rn⟩
induced by the weak universal property of the weak products. Hence, the arrows r, r′ show that
(r1, . . . , rn) ∼ (p1 ◦ ρ, . . . , pn ◦ ρ).
Vice versa, if σ : S → X1×· · ·×Xn is a proof-irrelevant element thenwe obtain the cone (σ1, . . . , σn),
where σi := pi ◦ σ, for 1 ≤ i ≤ n. If ⌊σ̄⌉ :=M⌊(σ1, . . . , σn)⌉ then obviously (σ1, . . . , σn) ≤ σ̄.

In order to obtain σ̄ ≤ σ, we observe that σi ◦ s = pi ◦ σ̄i, for 1 ≤ i ≤ n, implies the existence
of arrows ci : S̄ → Di such that ⟨σ ◦ s, σ̄⟩ ◦ ⟨i, n + i⟩ = δi ◦ ci, for some arrows ⟨σ ◦ s, σ̄⟩, ⟨i, n + i⟩
induced by the weak universal property of the weak products. Hence, from the weak pullbacks

Pi,n+i X̄ × X̄

Di Xi ×Xi

<i,n+i>∗δXi

<i,n+i>di

δXi

we obtain arrows ui : S̄ → Pi,n+i such that di◦ui = ci and ⟨i, n+i⟩∗δXi ◦ui = ⟨σ◦s, σ̄⟩, for 1 ≤ i ≤ n.
Hence, using the notation of proof of Proposition 4.5.2, we obtain an arrow l : S̄ → H , such that
hi ◦ l = ui, for 1 ≤ i ≤ n. Now from the week pullbacks

Si X̄ × X̄

S X̄

p∗i σ

pi

σ

p′i

for i = 1, 2, we obtain an arrow n : S̄ → S1 such that p′1 ◦ n = s and p∗1σ ◦ n = ⟨σ ◦ s, σ̄⟩. This arrow
implies the existence on an arrow j such that h′ ◦ j = n and t ◦ j = l. Hence, we are in the situation
of the following diagram

S̄ C H

S1 X̄ × X̄ S2

X̄ S

p2

σ

p∗2σ

p′2

h

p∗1σ

h′

tj

n

since σ is proof-irrelevant, there exists an arrow v : C → S2 such that p∗2σ ◦ v = h ◦ t. Hence, using
the arrow v ◦ j we obtain that σ̄ ≤ σ.

The proof of the above theorem and the proof Proposition 4.5.2 do not depend on the choice of
the weak products X̄ × X̄ and Xi × Xi and arrows ⟨i, n + i⟩ : X̄ × X̄ → Xi × Xi, for 1 ≤ i ≤ n.
This justifies the notation PIrr(X̄) adopted for proof-irrelevant elements, which makes explicit only
the weak product X̄ considered. Moreover, the correspondence with cones implies that proof-
irrelevant elements of different weak products of the same objects are actually isomorphic. We
collect this observations in the following corollary.
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Corollary 4.5.4. Using the notation of ??, if X̄
p′1← (X̄ × X̄)′

p′2→ X̄ is another weak product and ⟨i, i+n⟩′ :
(X̄ × X̄)′ → (Xi × Xi)

′ are arrows induced by the weak universal property of different weak products
(Xi ×Xi)

′, for 1 ≤ i ≤ n, then

(i) The following sub-orders of PsubC (X̄) are equal

Des ⟨1,n+1⟩∗⌊δX1
⌉∧···∧⟨n,2n⟩∗⌊δXn⌉ = Des ⟨1,n+1⟩′∗⌊δ′X1

⌉∧···∧⟨n,2n⟩′∗⌊δ′Xn
⌉.

(ii) If (X1 × · · · ×Xn)
′ is a different weak product of the objects X1, . . . , Xn ∈ C , then

PIrr(X̄) ∼= PIrr(X1 × · · · ×Xn)
′.

We observe that the notion of proof-irrelevant elements is trivial for strict products. Indeed, if
X̄ := X1 × · · · ×Xn is a strict product then we have the following relation between proof-relevant
and irrelevant equalities

⌊δX̄⌉ = ⟨1, n+ 1⟩∗⌊δX1⌉ ∧ · · · ∧ ⟨n, 2n⟩∗⌊δXn⌉ = ⌊∆X̄⌉ (4.5)

where ∆X̄ : X̄ → X̄ × X̄ is the unique diagonal arrow of X̄ . The above relation implies that

PIrr(X̄) = PsubC (X̄).

On the contrary, in case of weak products, we only have Des⌊δX̄⌉ = PsubC (X̄) and

⌊δX̄⌉ ≤ ⟨1, n+ 1⟩∗⌊δX1⌉ ∧ · · · ∧ ⟨n, 2n⟩∗⌊δXn⌉. (4.6)

The intuition behind the above relation is that, in case of weak products, the equality of two
objects of a weak product implies but is not the same of the equality of the components of the
objects. In Section 4.6 we will provide an explicit example of this difference.

Remark 4.5.5. Hence, we have interpreted relation symbols as proof-irrelevant elements. This con-
struction validate axiom (E5) of equality predicate. Indeed, if α ∈ PIrrC (M(S1)× · · · ×M(Sn)) is
the interpretation of a relation symbol R ⊆ S1 × · · · × Sn then the inequality

p∗1(α) ∧ ⟨1, n+ 1⟩∗⌊δS1⌉ ∧ · · · ∧ ⟨n, 2n⟩∗⌊δSn⌉ ≤ p2∗(α)

is just the interpretation of the axiom (E5) for the relation R

x1 ≈S1 y1, . . . , xn ≈Sn yn, R(x1, . . . , xn) ⊢x̄ R(y1, . . . , yn).

Folmulae Before interpreting formulae, we provide a useful description of arrows determined by
projections using the internal logic of the functor of weak subobjects.

Proposition 4.5.6. If X̄ := X1×· · ·×Xn is a weak product of the objectsX1, . . . , Xn ∈ C , then an arrow
f : X̄ → Y is determined by projections if and only if

⟨1, n+ 1⟩∗δX1 ∧ · · · ∧ ⟨n, 2n⟩∗δXn ≤ (f × f)∗δY (4.7)

in PsubC (X̄ × X̄), for every weak product X̄ × X̄ .
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Proof. Using the notation of the proof of Proposition 4.5.2, we observe that the arrows p1 ◦h, p2 ◦h :
H → X̄ are such that pi ◦ p1 ◦ h = pi ◦ p2 ◦ h, for 1 ≤ i ≤ n. Hence, if f is dbp, then we obtain
f◦p1◦h = f◦p2◦h and the arrow (f×f)◦h induces an arrow s : H → DY such that δY ◦s = (f×f)◦h.
The inequality in 4.7 follows from the weak pullback diagram

H P DY

X̄ × X̄ Y × Y.

u

δY

f×f

(f×f)∗δY
h

s

Vice versa, let g, k : Z → X̄ be two arrows such that pi ◦ g = pi ◦ k, for i = 1, . . . , n and assume
that there exists an arrow s′ : H → P making h ≤ (f × f)∗δY . By a trivial computation, we obtain
an arrow z : Z → H such that ⟨g, k⟩ = h ◦ z. Hence, g ◦ f = k ◦ f follows from (f × f) ◦ ⟨h, k⟩ =
δY ◦ u ◦ s ◦ z.

We now provide some important properties of proof-irrelevant elements, which will be useful
to interpret formulae.
Proposition 4.5.7. If X̄ := X1 × · · · × Xn is a weak product of the objects X1, . . . , Xn ∈ C and α ∈
PIrr(X1 × · · · ×Xn), then

(i) If Y1×· · ·×Ym is a weak product of the objects Y1, . . . , Ym ∈ C and h : Y1×· · ·×Ym → X1×· · ·×Xn

is determined by projections, then

h∗α ∈ PIrr(Y1 × · · · × Ym).

(ii) If Y1 × · · · × Ym is a weak product of the objects Y1, . . . , Ym ∈ C and fi : Y1 × · · · × Ym → Xi, for
1 ≤ i ≤ n, are arrows determined by projections, then for every arrow ⟨f1, . . . , fn⟩ : Y1×· · ·×Ym →
X1 × · · · ×Xn

⟨f1, . . . , fn⟩∗α ∈ PIrr(Y1 × · · · × Ym).

(iii) If f1, f2 : Z → X1 × · · · ×Xn are arrows such that pi ◦ f1 = pi ◦ f2, for 1 ≤ i ≤ n, then

f∗1α = f∗2α.

(iv) If X̄×Y is a weak product of X̄ with an object Y ∈ C , then the functor p2! resctricts to proof-irrelevant
elements

p2! : PIrr(X̄ × Y )→ PIrr(X̄).

Moreover, p2! satisfies the following Beck-Chevalley condition: for any weak productX ×Z and com-
mutative diagram of the form

X × Y Y

X × Z Z

f̂

p2

f

p2

where p1f̂ = p1,then for all α ∈ PIrr(X × Z) the canonical inequality

p2!f̂
∗α ≤ f∗p2!α

is an equality. The same holds for p1!.
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Proof. (i) If α is such that p∗1α∧ ⟨1, n+1⟩∗δX1 ∧ · · · ∧ ⟨n, 2n⟩∗δXn ≤ p∗2α then, applying (h×h)∗ and
Equation (4.6) and Proposition 4.5.6, we obtain p∗1h∗α∧⟨1,m+1⟩∗δY1 ∧ · · ·∧ ⟨m, 2m⟩∗δYm ≤ p∗2h∗α.
(ii) follows from a similar computation.
(iii) Let ⟨f1, f2⟩ : Z → X̄ × X̄ be an arrow induced by the weak universal property of the weak
products. An easy computation implies that ⟨f1, f2⟩(

n∧
i=1
⟨i, n + i⟩∗δXi) = ⊤Z and, hence, we have

the equality f∗1α = ⟨f1, f2⟩p∗1α ∧ ⟨f1, f2⟩(
n∧
i=1
⟨i, n + i⟩∗δXi). Since α is proof-irrelevant, we obtain

f∗1α ≤ f∗2α. The opposite inequality is obtained similarly considering an arrow ⟨f2, f1⟩.
(iv) The first part of the statement is obtained as follows. Let α ∈ PIrr(X̄ × Y ), Theorem 4.5.3
implies that α = α∗ where α∗ is the equivalence class of the right dashed arrow of the following
weak limit

A⋆

A X̄ × Y

X1 Y.···

α∗

α1 pn+1

αn+1
p1

(4.8)

We now consider p1!α : A → X̄ and prove the statement showing that p1!α = β, where β is the
equivalence class of the right dashed arrow of the following weak limit

A′

A X̄

X1 Xn.···

h α∗

α1 pn

αn p1

The inequality p1!α ≤ β is trivial. In order to show the converse, we consider the arrows βn+1 :
αn+1 ◦h and ⟨β, βn+1⟩ : A′ → X̄×Y . The arrows h, ⟨β, βn+1 and the universal property of the weak
limit in 4.8 implies that ⟨β, βn+1 ≤ α. Hence, we obtain β = p1 ◦ ⟨β, βn+1 ≤ α∗ = α. We now prove
the second part of the statement.
The element f∗p2!α can be obtained through the composition of two weak pullbacks as follows

Ã P Y

X × Y

A X × Z Z.

p′2

f ′

p2

f

α

s

x

f∗p2!α

⟨f ′p1,p′2⟩ p2

f̂

⌟ ⌟

Instead, the element ᾱ := f̂∗α is given by the weak pullback

Ā X × Y

A X × Z.

ᾱ

⟨1,f⟩

α
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By Theorem 4.5.3, α is the same equivalence class of the arrow α∗ obtained through the following
weak limit

A⋆

A X × Z

X Z.

α∗

p1◦α p2

p2◦α
p1

Hence, we can obtain an arrow h : Ã → A∗ such that α∗ ◦ h = f̂⟨f ′p1, p′2⟩ ◦ x. The arrow h can
be used to obtain an arrow k : Ã → Ā such that ᾱ ◦ k = ⟨p1f ′, p′2⟩ ◦ x. Similarly, ᾱ is the same
equivalence class of the arrow ᾱ∗ obtained through the following weak limit

Ā⋆

Ā X × Y

X Y.

ᾱ∗

p1◦ᾱ p2

p2◦ᾱ
p1

Hence, we obtain the inequality ⟨p1f ′, p′2⟩ ◦ x ≤ ᾱ. The post-composition with the projection p2
implies the statement f∗p2!α ≤ p2!f̂∗α.

We now provide the interpretation of conditions (F1)-(F5). We will denote a weak product
M(S1) × · · · ×M(Sn) byM(S̄). Given a context x̄ = (x1, . . . , xm), with xi : Si for i = 1, . . . ,m, a
formula φ, in which occur the terms t1 : Z1, . . . , tn : Zn, such that FV (t1, . . . , tn) ⊆ FV (φ) ⊆ x̄ =
(x1, . . . , xm), is interpreted inductively as follows:

(F1) If R ⊆ Z1 × · · · × Zn is a relation symbol, then the formula R(t1, . . . , tn) is interpreted as

Mx̄(R(t1, . . . , tn)) :=Mx̄(t̄)
∗M(R),

whereMx̄(t̄) := ⟨Mx̄(t1), . . . ,Mx̄(tn)⟩ is an arrow induced by the weak universal property
of weak products.

(F2) If t1, t2 are terms of the same sort Z, then t1 ≈S t2 is interpreted as the equivalence class of a
weak equalizer of the arrows

M(S̄) M(Z).
Mx̄(t1)

Mx̄(t2)

(F3) Mx̄(⊤) = ⌊1M(S̄)⌉.

(F4) If φ and ψ are formulae with FV (φ,ψ) ⊆ x̄, then φ∧ψ is interpreted as the equivalence class
of the common value of the composite of the following weak pullback

P M(φ)

M(ψ) M(S̄).

Mx̄φ

Mx̄ψ
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(F5) If φ is a formula with FV (φ) ⊆ (y, x1, . . . , xn) with y : S, thenMx̄∃yφ := π!(My,x̄ϕ), where
π is the projectionM(S)×M(S̄)→M(S̄).

We can now collect all the above results in the following theorem.

Theorem 4.5.8 (Soundness of the weak BHK interpretation). Let T be a regular theory andM an
interpretation in a weakly left exact categoryC . If x̄ = (x1, . . . , xn) are variable of sort xi : Si, for 1 ≤ i ≤ n,
and a sequent φ ⊢x̄ ψ is derivable, thenMx̄(φ) ≤Mx̄(ψ) in PIrr(M(S̄)) for every weak productM(S̄) of
the objectsM(Si), for 1 ≤ i ≤ n.

Proof. The proof is the same of Theorem 4.2.5 and Theorem 4.3.2. We just mention that, in order
to soundly interpret the substitution law (S4) for existential formulae, we have proved a Beck-
Chevalley condition in item (iv) of Proposition 4.5.7. Similarly, from items (i-iii) of Proposition 4.5.7
it follows that proof-irrelevant elements remain proof-irrelevant after suitable reindexings. Hence,
the interpretation validates axiom (E5) of equality predicates.

We end this section observing that the weak BHK interpretation is also complete. Indeed, the
syntactic category C(T) is wlex and the weak BHK interpretation coincides with the BHK inter-
pretation in qlex categories. This happens because, in case of strict finite products, every arrow
f : X1 × · · · × Xn → Y is determined by projections. Moreover, as observed in eq. (4.5), proof-
relevant and proof-irrelevant equalities coincide and the elements of PsubC (X1 × · · · ×Xn) are all
proof-irrelevant. Hence, we obtain the following completeness result.

Proposition 4.5.9 (Completeness of the BHK interpretation). There is a canonical weak BHK inter-
pretation in the regular category C(T) which coincides with the canonical BHK interpretation U ′. This is a
complete model of T. In particular, the syntactic calculus given above is complete with respect to interpreta-
tions in (small) weakly left exact categories.

4.6 An example from type theory

In this section we give an explicit example of the weak BHK-interpretation in a weakly lex category.
In order to do that, we first consider the main example of BHK-interpretation in categories with
strict products and weak pullbacks. Our main example of weak BHK interpretation is derived
from it.

Consider the syntactic category ML arising from intensional Martin-Löf intuitionistic type the-
ory, introduced in Chapter 1. The objects of ML are closed types and the arrows are equivalence
classes ⌊t⌉ : A → B of terms x : A ⊢ t(x) : B up to functional extensionality. In Lemma 1.1.2 we
proved thatML is quasi left exact and a weak pullback of two arrows ⌊t⌉ : X → A and ⌊u⌉ : Y → A
is given by the following commutative diagram∑

x:X,y:Y

IdA(t(x), u(y)) Y

X A.

π2

π1
u

t

The BHK interpretation in the categoryML recovers the Curry-Howard correspondence: propo-
sition as types. Indeed, assuming the notation of Example 1.2.8, if A is a closed type then define
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FML(A) as the poset of equivalence classes of types depending on A respect to equiprovability:
x : A ⊢ B(x) and x : A ⊢ B′(x) are in the same equivalence class if there exists a term of∏

x:A

(B(x)→ B′(x)) ∧ (B′(x)→ B(x)), (4.9)

and ⌊B⌉ ≤ ⌊B′⌉ if there exists a term x : A, p : B ⊢ q : B′. The Σ-type provides the following
correspondence between weak subobjects and dependent types.

Lemma 4.6.1. If A is a closed type then PsubML(A) ∼= FML(A).

Proof. The correspondence sends a weak subobject ⌊f : X → A⌉ to the equivalence class of the
dependent type a : A ⊢

∑
x:X

IdA(f(x), a). Vice versa, every dependent type a : A ⊢ B(a) is sent to
the equivalence class of the projection π :

∑
a:A

B(a) → A. A trivial computation shows that these
correspondences are inverse.

The above correspondence was already observed in Example 1.3.8 where we recalled the equiv-
alence the elementary doctrine FML and PsubML. Hence, a relation symbol R ⊆ S1 × · · · × Sn, and
more in general a formula φ such that FV (φ) ⊆ x̄ = (x1, . . . , xm), is interpreted as the equivalence
class of a dependent type expression

x1 :M(S1), . . . , xn :M(Sn) ⊢ M(R)

and the logical connectives and quantifiers are interpreted as in theCurry-Howard correspondence,
which is summarized at the end of Appendix B.

Ourmotivational example to interpret intuitionistic logic in wlex categories is given by the slices
ML/A of the category ML over a type A ∈ ML. As we mentioned, since ML is quasi left exact, it
follows that the slices ML/A are weakly left exact and the weak products are given by the weak
pullbacks ofML. If f : X → A is an object ofML/A, then

PsubML/A(f) = PsubML(X), (4.10)

which is in turn equal to FML(X). Hence, in ML/A a sort S is interpreted as an arrow s : X → A
and the terms and the formulae are interpreted as follows.

Equality symbols. If s : X → A is the interpretation of a sort S, we consider a weak pullback of
swith itself. A canonical choice is given by the following diagram

D :=
∑

x1,x2:X

IdA(sx1, sx2) X

X A.

π2

s

s

π1
(4.11)

Since the equalizers in the slices of a category are computed as the equalizers in that category, the
equality relation symbol ≈S is interpreted as the equivalence class ⌊π⌉ of the weak equalizer

∑
d:D

IdX(π1d, π2d) D X.π π1

π2
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Then Lemma 4.6.1 implies that the equality relation symbol≈S corresponds to the dependent type

(x1, x2, p) : D ⊢ IdX(x1, x2). (4.12)

Similarly, if si : Xi → A are the interpretations of the sorts Si, for 1 ≤ i ≤ n, a canonical choice of
weak product is the arrow s̄ := si ◦ πi :W → A, for 1 ≤ i ≤ n, whose domain is given by

W :=
∑

x1:X1,...,xn:Xn

IdA(s1(x1), s2(x2))× · · · × IdA(sn−1(xn−1), sn(xn)). (4.13)

As above, a canonical choice of weak product of s̄with itself is given by the following diagram

D :=
∑

x,y:W

IdA(s̄x, s̄y) W

W A.

π2

s̄

s̄

π1

We can now show the main difference between the proof-relevant and the proof-irrelevant (or
component-wise) equalities. The former is given by the equalizer of the projections π1 and π2.
Hence, it corresponds to the dependent type

(x, y, p) : D ⊢ IdW (x, y). (4.14)

Instead, the component-wise equality is given by the conjunction

(x, y, p) : D ⊢ IdX1(x1, y1)× · · · × IdXn(xn, yn), (4.15)

where we denoted for short xi := πix : Xi and yi := πiy : Xi, for 1 ≤ i ≤ n. We called the above
dependent type the proof-irrelevant or component-wise equality ofW since two elements x, y :W
are equal if their components xi, yi : Xi, for 1 ≤ i ≤ n are equal; independently on the proof terms

xn+1 : IdA(s1(x1), s2(x2))× · · · × IdA(sn−1(xn−1), sn(xn))

yn+1 : IdA(s1(y1), s2(y2))× · · · × IdA(sn−1(yn−1), sn(yn)).
(4.16)

Obviously, if the type in (4.14) is inhabited, then also the type in (4.15) is inhabited. The converse
does not necessarily hold.

Formulae. The interpretation of a relation symbol R ⊆ S1 × · · · × Sn, and more in general of a
formula φ such that FV (φ) ⊆ x̄ = (x1, . . . , xn) with xi : Si, is provided by elements which we
called proof-irrelevant for the current example.

Indeed, if si : Xi → A are the interpretations of the sorts Si, for 1 ≤ i ≤ n, andW is the domain
of the canonical choice of the weak product of s1, . . . , sn as in (4.13), then the interpretation of R is
given by a dependent type expression

x :W ⊢ M(R)(x),

which is proof-irrelevant in the following sense. By definition,M(R) is proof-irrelevant if

p∗1(α) ∧ ⟨1, n+ 1⟩∗⌊δS1⌉ ∧ · · · ∧ ⟨n, 2n⟩∗⌊δSn⌉ ≤ p2∗(α)
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and since the proof-irrelevant equality of two elements x, y : W is interpreted as the conjunc-
tion IdX1(x1, y1) × · · · × IdXn(xn, yn) as in (4.15), we obtain thatM(R) is proof-irrelevant if when
M(R)(x) is inhabited it follows thatM(R)(y) is inhabited for every element y : W with the same
components (i.e. such that the types IdXi(xi, yi), for 1 ≤ i ≤ n, are inhabited) independently on the
proof terms xn+1, yn+1 of (4.16).

In case of relation symbol R ⊆ S×S it is worthwhile to see how it works the correspondence in
(4.2). Given an interpretation s : X → A of S and a weak product of s with itself as in (4.11), we
first interpret R as cone r1, r2 : R→ X and then we take the following weak limit∑

d:D

∑
z:R

IdX(r1z, π1d)× IdX(r2z, π2d)

R D

X X.

π

r1

r2 π1

π2

From the correspondence of Lemma 4.6.1, it follows that the predicate R is interpreted as the de-
pendent type

(x, y, p) : D ⊢
∑
z:R

IdX(r1z, x)× IdX(r2z, y)

which clearly does not depend on the proof-term p.

Terms. We conclude this section describing the interpretation of a term t : S1 × · · ·Sn → Sn+1 as
an arrow determined by projections. As above, let si : Xi → A be the interpretations of the sorts Si,
for 1 ≤ i ≤ n+1, and letW be the domain of the canonical choice of theweak product of s1, . . . , sn as
in (4.13). The term t is interpreted as an arrowM(t) : W → Xn+1 such that si ◦ πi =M(t) ◦ sn+1,
for 1 ≤ i ≤ n + 1, which is determined by projections in the following sense. Proposition 4.5.6
impliesM(t) is dbp if and only if

⟨1, n+ 1⟩∗δS1 ∧ · · · ∧ ⟨n, 2n⟩∗δSn ≤ (M(t)×M(t))∗δSn+1

hence, by (4.12) and (4.15), the above inequality means that if two elements x, y :W have the same
components IdXi(xi, yi), for 1 ≤ i ≤ n, then they have the same image throughM(t), i.e. the type

(x, y, p) : D ⊢ IdXn+1(M(t)(x),M(t)(y))

is inhabited. Hence,M(t) is determined by projections in the sense that the valueM(t)(x), of an
element x : W , is determined only by the projections xi = πi(x), for 1 ≤ i ≤ n, independently on
the proof term xn+1 : IdA(s1(x1), s2(x2))× · · · × IdA(sn−1(xn−1), sn(xn)).

As observed by Palmgren in [Pal04], the category ML is suitable to BHK interpret not only
regular logic but also coherent and first order logic. This is due to the fact that in ML we can
interpret the disjunction with the sum types, and the universal quantification with the Π-type. As
we will see in the next section, any slice ML/A is suitable for a weak BHK interpretation of first
order logic.

4.7 Richer logics

In this section we recall the BHK intepretation of coherent logic in general qlex categories as devel-
oped in [Pal04] and extend it to wlex categories.
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Coherent logic. For a qlex category C , in order to interpret the disjunction of formulae, it is re-
quired C to have finite coproducts, i.e. binary coproducts and an initial object 0. The unique arrow
from 0 to an object X ∈ C will be denoted by 0x. If ⌊f : X → Z⌉ and ⌊g : Y → Z⌉ are elements of
PSubC (Z) then we define

⌊f⌉ ∨ ⌊g⌉ := ⌊[f, g]⌉,

where [f, g] is the unique map induced by the universal property ofX + Y . Moreover, coproducts
must satisfy the weak stability condition: if h : V → Z is an arrow of C and ⌊f⌉, ⌊g⌉ ∈ PSubC (Z),
then
(i) h∗(⌊f⌉ ∨ ⌊g⌉) = h∗⌊f⌉ ∨ h∗(⌊g⌉),
(ii) h∗⌊0z⌉ = ⌊0V ⌉.

From (i) it easily follows that disjunction and conjunction are distributive over each other.
Coherent formulae are interpreted as in Section 4.3 and through the assignments: given the

variables x̄ := (x1, . . . , xn) of sort xi : Si, for 1 ≤ i ≤ n
(F6) The false predicate ⊥ in the context x̄ is interpreted as

Mx̄(⊥) := 0M(S̄),

(F7) ifφ andψ are formulae such thatFV (φ,ψ) ⊆ x̄, are interpreted asMx̄(φ),Mx̄(ψ) ∈ PsubC (M(S̄)),
then the formula φ ∨ ψ is interpreted as

Mx̄(φ ∨ ψ) :=Mx̄(φ) ∨Mx̄(ψ).

The above conditions i, ii makes the interpretation satisfy rules (L3) and (L4). Hence, Theo-
rem 4.3.2, about soundness of the BHK interpretation, can be restated for coherent logic in qlex
categories with weakly stables coproducts. Since the syntactic category C(T) of a coherent theory
T is a coherent category (see [Joh02, §D]) and Theorem 4.3.3 holds also for coherent formulae (see
[Pal04, Lemma 5.3]), it follows that Proposition 4.3.4 about completeness extends to coherent logic.

First order logic. In order to interpret first order logic in a qlex category C , we must add to the
above assumptions the following condition:

- For every object X ∈ C and element α ∈ PSubC (X) there exists a functor α ⇒ (−) :
PSubC (X)→ PSubC (X) which is right adjoint to the functor α ∧ (−), i.e.

α ∧ β ≤ γ ←→ β ≤ (α⇒ γ) (4.17)

- for every pair of objects X,Y ∈ C there exists an order preserving functor p1∗ : PSubC (X ×
Y )→ PSubC (X)which is right adjoint to the reindexing p1∗, i.e.

p1
∗(α) ≤ β ←→ α ≤ p1∗(β) (4.18)

for all α ∈ PsubC (X) and β ∈ PsubC (X × Y ). The same is assumed for the projection p2 :
X × Y → Y .

A category C which satisfies the above conditions is said to have implications and universals.
The interpretation of the first order logic formulae is the same of Section 4.3 plus the following

assignments: given the variables x̄ := (x1, . . . , xn) of sort xi : Si, for 1 ≤ i ≤ n
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(F8) ifφ andψ are formulae such thatFV (φ,ψ) ⊆ x̄, are interpreted asMx̄(φ),Mx̄(ψ) ∈ PsubC (M(S̄)),
then the formula φ =⇒ ψ is interpreted as

Mx̄(φ)⇒Mx̄(ψ) ∈ PsubC (M(S̄)),

(F9) if y : S and φ is a formula such that FV (φ) ⊆ x̄, y which is interpreted as an element
Mx̄,y(φ) ∈ PSubC (M(S̄)×M(S)), then ∀yφ is interpreted as

p∗Mx̄,y(φ) ∈ PSubC (M(S̄)),

where p : (M(S̄)×M(S))→M(S̄) is the obvious projection,

(F10) if φ is a formula, the negation ¬φ is interpreted through the identification ¬φ ≡ (φ =⇒ ⊥).

The existence of left adjoints f! ⊣ f∗ which satisfy the Beck-Chevalley condition easily implies
that the above adjunctions satisfy the following properties.

Proposition 4.7.1. If C is a quasi left exact category with implications and universal, then:

(i) For every arrow f : Y → X and elements α, β ∈ PSubC (X)

f∗(α⇒ β) = f∗(α)⇒ f∗(β) (4.19)

(ii) the right adjoints ∀p2 satisfy the Beck-Chevalley condition: given a weak pullback diagram of the form

X × Y Y

X × Z Z

f̂

p2

f

p2

such that p1f = p1, then for every α ∈ PSubC (X), the canonical inequality

f∗p2∗(α) ≤ p2∗f̂∗(α) (4.20)

is an equality. The same holds for ∀p1 .

The above properties are crucial to satisfy the substitution rule in case of formulae with ∀ and
=⇒ . The logical rules (L5) and (L6) follow from conditions (4.17) and(4.18). Hence, the sound-
ness result Theorem 4.3.2 can be restated for first order logic in qlex categories with weakly stable
coproducts and right adjoint to all reindexings f∗.

In case of wlex categories, the above constructions can be trivially restated. Indeed, the def-
initions of weakly stable coproducts do not depend on the weakness of products as well as the
assumption of having right adjoint to all the reindexings and conjunctions. Proposition 4.7.1 holds
also for wlex categories and the only properties that must be verified are the preservation of proof-
irrelevant elements through the disjunction, implication and universal quantification.

Proposition 4.7.2. Let C be a weakly left exact category, if X̄ := X1 × · · · ×Xn is a weak product of the
objects X1, . . . , Xn ∈ C then:

(i) If α, β ∈ PIrrC (X̄), then α ∨ β ∈ PIrrC (X̄)
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(ii) if α, β ∈ PIrrC (X̄), then α⇒ β ∈ PIrrC (X̄)

(iii) If X̄×Y is a weak product of X̄ with an object Y ∈ C and α ∈ PIrrC (X̄×Y ), then p1∗α ∈ PIrrC (X̄),
where p1 : X̄ × Y → X is the obvious projection.

Proof. (i) follows from the weak stability of coproducts and from the distributivity of disjunction
over conjunction. (ii) follows from Proposition 4.7.1-i, (4.17) and from the symmetry of δXi , for
1 ≤ i ≤ n. (iii) follows from Proposition 4.7.1-ii and (4.18).

The above proposition implies that theweakBHK interpretation can be extended to the formulae
with ∨,⇒ and ∀. Proposition 4.7.1 for wlex categories implies that the interpretation satisfies the
logical rules (L5) and (L6). Hence, we can collect all the above results and obtain the following
generalization of Theorem 4.5.8.

Theorem 4.7.3 (Soundness of the weak BHK interpretation for FOL). Let T be a first order theory
andM an interpretation in a weakly left exact category C with weakly stable coproducts and implications
and universal. If x̄ = (x1, . . . , xn) are variable of sort xi : Si, for 1 ≤ i ≤ n, and a sequent φ ⊢x̄ ψ is
derivable, thenMx̄(φ) ≤ Mx̄(ψ) in PIrr(M(S̄)) for every weak productM(S̄) of the objectsM(Si), for
1 ≤ i ≤ n.

Unfortunately, we cannot generalize easily Proposition 4.5.9. Indeed, it is well known that the
syntactic category C(T), of a first order theory T, is a Heyting category, but this does not implies the
existence of the adjunctions in (4.17) and (4.18). A formulation of a completeness result in style of
Proposition 4.5.9 is still under investigation both for the BHK interpretation and for the weak BHK
interpretation.

Example 4.7.4. As already observed in [Pal04], the category ML is suitable for a BHK interpreta-
tion of first order logic. We actually have proved it in different parts of this thesis. In Section 2.6
we have seen that ML has weakly stable coproducts given by the sum types and in Example 1.2.20
we have seen that ML has all right adjoints to reindexings. Hence, in MLwe can interpret disjunc-
tions, implications and universal quantifications. Similarly, it follows that any slice categoryML/A
is suitable for a weak BHK interpretation of first order logic. Indeed, ML/A has weakly stable co-
products because ML has them, and, as follows from Example 3.6.7, ML/A is suitable to interpret
implication and universal quantifications.

Concluding remarks and further developments. We presented a generalization of the BHK in-
terpretation in categorieswithweak pullbacks andweak products. In order to interpret disjunction,
we assumedweakly stable coproducts, which are strict. It is still open the question if it is possible to
consider weak coproducts with a notion of weak stability and it will be part of future investigations.
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Appendix A

Categorical results

We begin this chapter recalling some definitions from [CV98].

Definition A.0.1. A category C is called

- Left exact (lex), if it has (strict) finite products and pullbacks. Equivalently, if it has al finite
limits.

- Quasi left exact (qlex), if it has (strict) finite products and weak pullbacks.

- Weakly left exact (wlex), if it has weak finite products and weak pullbacks. Equivalently, if it
has weak finite limits, see [CV98, Proposition 1].

Definition A.0.2. Let C be a category, a pseudo-equivalence relation on an object Y ∈ C is a pair of
parallel arrows r1, r2 : X → Y that is

- reflexive, if there exists an arrow rX : Y → X such that

r1rX = 1Y = r2rX ,

- symmetric, if there exists an arrow sX : X → X such that

r1sx = r2 r2sx = r1,

- transitive, if there exists a weak pullback

P X

X Yr1

r2l2

l1

and an arrow tX : P → X such that

r1l1 = r1tX r2l2 = r2tX .

121
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Elementary doctrines. We now recall various results about the elementary doctrines. Some of
them are reported with the corresponding reference, others are proved. We start with a proof of
the equivalence of the definitions of elementary doctrine mentioned in [MR12, Remark 2.3] that
we have discussed in Section 1.2 .

Proposition A.0.3. Definition 1.2.3 and Definition 1.2.5 are equivalent.

Before providing a proof, we recall that in Definition 1.2.3, a functor P : C op → InfSL is an
elementary doctrine if for every object X ∈ C , there exists an element δX ∈ P(X ×X) such that:

E1 For every element α ∈ P(X), the assignment

∃∆X
(α) := Pp1(α) ∧X×X δX

is left adjoint of the functor P∆X
: P(X ×X)→ P(X).

E2 For every object Y ∈ C and arrow e := ⟨1, 2, 2⟩ : X × Y → X × Y × Y , the assignment

∃e(α) := P⟨1,2⟩(α) ∧X×Y×Y P⟨2,3⟩(δY )

for α in P(X × Y ) is left adjoint to Pe : P(X × Y × Y )→ P(X × Y ).

In Definition 1.2.5, a functor P : C op → InfSL is an elementary doctrine if for every object X ∈ C ,
there exists an element δX ∈ P(X ×X) such that:

I ⊤X ≤ P∆X
(δX).

II P(X) = DesδX .

III δX ⊠ δY ≤ δX×Y , where δX ⊠ δY := P⟨1,3⟩δX ∧ P⟨2,4⟩δY .

Proof. We first prove that Definition 1.2.3 implies Definition 1.2.5.
Conditions I and II are obvious. Applying the isomorphism P⟨1,3,2,4⟩, we obtain that III is equiv-

alent to
P⟨1,2⟩δX ∧ P⟨3,4⟩δY ≤ P⟨1,3,2,4⟩δX×Y

in P(X ×X × Y × Y ). This inequality is equal to

P⟨1,2,3⟩P⟨1,2⟩δX ∧ P⟨3,4⟩δY ≤ P⟨1,3,2,4⟩δX×Y .

The left term is equal to ∃⟨1,2,3,3⟩P⟨1,2⟩δX and, by E2, the statement is equivalent to

P⟨1,2⟩δX ≤ P⟨1,2,3,3⟩P⟨1,3,2,4⟩δX×Y = P⟨1,3,2,3⟩δX×Y

in P(X ×X × Y ). Applying the isomorphism P3,2,1, the statement is equivalent to

P⟨2,3⟩δX ≤ P⟨2,1,3,1⟩δX×Y .

The left term is equal to ∃⟨1,2,2⟩⊤Y×X and, by E2, the statement is equivalent to

⊤Y×X ≤ P⟨2,1,2,1⟩δX×Y

which is true by condition I.
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We now prove that Definition 1.2.5 implies Definition 1.2.3. We first obtain condition E1 as
follows. The part of the adjunction

∃∆X
α ≤ β =⇒ α ≤ P∆X

β

for every α ∈ P(X) and β ∈ P(X × X), trivially follows applying P∆X
to the left inequality. The

inverse implication follows observing that by IIwe have
P⟨1,2⟩β ∧ δX×X ≤ P⟨3,4⟩β

in P(X ×X ×X ×X). Applying P⟨1,2,1,3⟩ to the above inequality and III and I we obtain
P⟨1,2⟩β ∧ P⟨2,3⟩δX ≤ P⟨1,3⟩β

in P(X ×X ×X). Applying P⟨1,1,2⟩ we obtain that
P⟨1,1⟩β ∧ δX ≤ β

in P(X ×X). Hence, the statement follows since α ≤ P∆X
β.

We now prove condition E2 in a similar way. The part of the adjunction
∃⟨1,2,2⟩α ≤ β =⇒ α ≤ P⟨1,2,2⟩β

for every α ∈ P(X × Y ) and β ∈ P(X × Y × Y ), trivially follows applying P⟨1,2,2⟩. The inverse
implication follows observing that by IIwe have

P⟨1,2,3⟩β ∧ δX×Y×Y ≤ P4,5,6β

in P(X × Y × Y ×X × Y × Y ). Applying P⟨1,2,3,1,2,4⟩ and and III and I we obtain
P⟨1,2,3⟩β ∧ P⟨3,4⟩δY ≤ P⟨1,2,4⟩β

in P(X × Y × Y × Y ) and applying P⟨1,2,2,3⟩ we obtain
P⟨1,2,2⟩β ∧ P⟨2,3⟩δY ≤ β

in P(X × Y × Y ). Hence, the statement follows since α ≤ P1,2,2β.
Lemma A.0.4. Let P : C op → InfSL be an elementary doctrine with full weak comprehension. Assuming
that for everyX ∈ C and α ∈ P(X), the reindexings P{|α|} over the comprehensions {|α|} : C → X have left
adjoints, then for every β ∈ P(X)

∃{|α|}P{|α|}β = β ∧ α. (A.1)
Proof. (≤) The adjuction property implies that ∃{|α|}P{|α|}β ≤ β and that ∃{|α|}P{|α|}β ≤ α is equivalent
to P{|α|}β ≤ P{|α|}α, which is obvious since P{|α|}α = ⊤C .

(≥) Let {|α ∧ β|} : D → X be the comprehension of α ∧ β. Since α ∧ β ≤ α we have that there
exists an arrow h : D → C such that {|α|} ◦ h = {|α ∧ β|}. By fullness of comprehensions, we can
equivalently prove that

⊤D ≤ P{|α∧β|}∃{|α|}P{|α|}β

which follows from the following computation:
P{|α∧β|}∃{|α|}P{|α|}β = PhP{|α|}∃{|α|}P{|α|}β (∃{|α|} ⊣ P{|α|})

≥ PhP{|α|}β

= P{|α∧β|}β

= ⊤D.
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The following appear as [MR16, Lemma 2.9] and relates different notion of comprehensive di-
agonals.

Lemma A.0.5. Let P : C op → InfSL be an elementary doctrine, the following are equivalent:

• every diagonal arrow∆X : X → X ×X is a comprehension.

• For every A in C , ∆A is a comprehension of δA.

• For every pair of arrows f, g : X → A in C , then f = g if and only if

⊤X ≤ P⟨f,g⟩(δA).

The following appear as [MR13, Lemma 4.8]

Lemma A.0.6. (4.8 of [MR13]). Let P : C op → InfSL be an elementary doctrine with full comprehensions
and comprehensive diagonals. An arrow f : A→ B of C is a monomorphism if and only if

δA = Pf×fδB.

We now prove that the base category of suitable elementary doctrines have pullbacks.

Lemma A.0.7. If P : C op → InfSL is an elementary doctrine with weak (strict) comprehensions and
comprehensive diagonals then C has weak (strict) pullbacks.

Proof. Given two arrows f : X → A and g : Y → A, we can consider a comprehension of the
element γ := Pf×gδA and the following diagram

C Y

X × Y

X A

{|γ|}2

{|γ|}1

f

g

{|γ|}

p1

p2

where {|γ|}i := pi ◦ {|γ|} for i = 1, 2. The diagram commutes thanks to comprehensive diagonals.
Indeed,

P⟨(f{|γ|}1),(g{|γ|}2)⟩δA

= P{|γ|}Pf×gδA

= P{|γ|}γ

= ⊤C

and hence f{|γ|}1 = g{|γ|}2. If u1 : U → X and u2 : U → Y are two arrow such that fu1 = gu2
then ⊤U ≤ P⟨u1,u2⟩γ and there exists an arrow h : U → C such that {|γ|}h = ⟨u1, u2⟩. If the
comprehensions are strict there exists a unique hwith such property.
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Hence, the slices C /A have weak finite products and it is always possible to assume that the
domain of a weak product is the domain of a comprehension. In particular, if P has strict compre-
hensions, then C /A has strict finite products for all A ∈ C .

Lemma A.0.8. Let P be an elementary doctrine with full weak (strict) comprehensions and comprehensive
diagonals. Then for every weak pullback diagram

P Y

X A

π2

gπ1

f

(A.2)

the arrow ⟨p1, p2⟩ : P → X × Y is a full weak (strict) comprehension of γ := Pf×gδA.

The following appear as [MR13, Proposition 4.6]

Proposition A.0.9. Let P : C op → InfSL be an elementary doctrine with weak (strict) comprehensions and
comprehensive diagonals. For every pair f, g : X → A of arrows of C , the weak (strict) comprehension of
P⟨f,g⟩δA is a weak (strict) equalizer of f and g.

Proof. The argument is the same of Lemma A.0.7 for the comprehension of P⟨f,g⟩δA.

Corollary A.0.10. If P : C op → InfSL is an elementary doctrine with full weak comprehensions and
comprehensive diagonals, then for every weak pullback diagram as in (A.2) it follows that

∃⟨π1,π2⟩P⟨π1,π2⟩β = β ∧ Pf×gδA

for every β ∈ P(X × Y ).

Proof. It follows from Lemma A.0.8 and Lemma A.0.4.

Corollary A.0.11. Let P be an elementary doctrine with full weak comprehensions and comprehensive diag-
onals. If P has right adjoints to all reindexings, then for every weak pullback diagram as in (A.2) it follows
that the functor Pf×gδA × (−) : P(X × Y )→ P(X × Y ) has a right adjoint given by

Pf×gδA =⇒ (−) := ∀⟨π1,π2⟩P⟨π1,π2⟩(−).

Proof. It follows from Remark 1.2.19 and Lemma A.0.8.

Lemma A.0.12. Let P : C op → InfSL be an existential elementary doctrine with full weak comprehensions
and comprehensive diagonals. Then for every weak pullback diagram

P Y

X A

π2

gπ1

f

the left adjoints satisfy the Beck-Chevalley condition.
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Proof. If α ∈ P(X), then the statement is obtained as follows:
Pg∃fα = Pg∃p2(Pp1α ∧ Pf×1AδA) (Remark 1.2.14)

= ∃p2P1A×g(Pp1α ∧ Pf×1AδA) (B-C)
= ∃p2(Pp1α ∧ Pf×gδA)

= ∃p2∃⟨π1,π2⟩P⟨π1,π2⟩Pp1α (Corollary A.0.10)
= ∃π2Pπ1α.

Lemma A.0.13. Let P : C op → InfSL be an universal and implicational elementary doctrine with full weak
comprehensions and comprehensive diagonals. Then for every weak pullback diagram

P Y

X A

π2

gπ1

f

the right adjoints satisfy the Beck-Chevalley condition.

Proof. If α ∈ P(X), then the statement is obtained as follows:
Pg∀fα = Pg∀p2(Pf×1AδA =⇒ Pp1α) (Remark 1.2.19)

= ∀p2P1A×g(Pf×1AδA =⇒ Pp1α) (B-C)
= ∀p2(Pf×gδA =⇒ Pp1α)

= ∀p2∀⟨π1,π2⟩P⟨π1,π2⟩Pp1α (Corollary A.0.11)
= ∀π2Pπ1α.

We now want prove that the Beck-Chevalley condition holds on diagrams which are not weak
pullbacks restricting on suitable elements. Before that, we recall the description of comprehensions
and pullbacks of the elementary quotient completion of a suitable elementary doctrine.
Lemma A.0.14. (5.3 of [MR13]) If P : C op → InfSL is an elementary doctrine with (full) weak com-
prehensions, then the elementary quotient completion P has (full) strict comprehensions and comprehensive
diagonals. In particular, if ρ is a P-eq. relation on the objectX ∈ C and c : C → X is a weak comprehension
of α ∈ Desρ, then

⌊c⌉ : (C,Pc×cρ)→ (X, ρ)

is a strict comprehension of α ∈ P(X, ρ).
Corollary A.0.15. Let P : C op → InfSL be an elementary doctrine with (full) weak comprehensions, and
let P be the its elementary quotient completion. If ⌊f⌉ : (X, ρ)→ (Y, σ) and ⌊g⌉ : (Z, ζ)→ (Y, σ) are two
arrows of C , then the following diagram

(C,Pc×cρ⊠ µ) (Z, µ)

(X × Z, ρ⊠ µ)

(X, ρ) (Y, σ)

⌊π2⌉

⌊π1⌉

⌊f⌉

⌊c⌉

⌊p1⌉

⌊p2⌉
⌊g⌉
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where c := {|Pf×gσ|}, is a strict pullback.

Proof. It follows from Lemma A.0.7 and Lemma A.0.14.
Lemma A.0.16. Let P : C op → InfSL be an elementary doctrine with full weak comprehensions and com-
prehensive diagonals. Assume that P is existential and that in the following commutative diagram the right
and the outer diagrams are weak pullbacks

Z ′ Z Y

X ′ X A

h2
π′
1

h1

π1

f

π2

g

f ′

π′
2

then, for every α ∈ P(X ′)
Pπ1∃h1α = ∃h2Pπ′

1
α

and for every β ∈ DesP⟨π1,π2⟩×⟨π1,π2⟩δX×Y

Ph1∃π1β = ∃h2Pπ′
1
β.

Similarly, if P is universal and implicational, then for every α ∈ P(X ′)

Pπ1∀h1α = ∀h2Pπ′
1
α

and for every β ∈ DesP⟨π1,π2⟩×⟨π1,π2⟩δX×Y

Ph1∀π1β = ∀h2Pπ′
1
β.

Proof. Since P has comprehensive diagonals, in C the right and the outer diagrams below are pull-
backs.

(Z ′,P⟨π′
1,π

′
2⟩×⟨π′

1,π
′
2⟩δX′×Y ) (Z,P⟨π1,π2⟩×⟨π1,π2⟩δX×Y ) (Y, δY )

(X ′, δX′) (X, δX) (A, δA)

⌊h2⌉

⌊π′
1⌉

⌊h1⌉
⌊π1⌉

⌊f⌉

⌊π2⌉

⌊g⌉

⌊f ′⌉

⌊π′
2⌉

Since C is regular (Proposition 1.3.6) the pasting law of pullbacks implies that also the left diagram
is a pullback. Hence, the statements follow from Lemmas A.0.12 and A.0.13.
Lemma A.0.17. Let P : C op → InfSL be primary doctrine. Assume that P has left and right adjoints to all
reindexings. For every commutative diagram of the form

Z Y

X A

f ′

gg′

f

the left adjoints satisfies the Beck-Chevalley condition if and only if the right adjoints do.
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Proof. Suppose that the Beck-Chevalley condition holds for the left adjoints. We want to prove that
for every α ∈ P(X)

Pg∀fα = ∀f ′Pg′α.
The inequality ≤ holds for every commutative diagram thanks to the adjunction P(−) ⊣ ∀(−). In
order to prove the opposite inequality, we observe the following equivalences which follow from
the adjoint conditions

∀f ′Pg′α ≤ Pg∀fα
∃g∀f ′Pg′α ≤ ∀fα
Pf∃g∀f ′Pg′α ≤ α.

By assumptions, the last inequality is equal to ∃g′Pf ′∀f ′Pg′α. The statement follows from the ad-
junction conditions. The inverse statement is proved similarly.
Lemma A.0.18. Let P : C op → InfSL be an elementary doctrine with full weak comprehensions and com-
prehensive diagonals and let f : X → Y be an arrow of C . If P is existential then

Pf∃fα = α, (A.3)
for every α ∈ DesPf×f δY . If P is existential and universal then

Pf∀fα = α (A.4)
for every α ∈ DesPf×f δY .

Proof. A proof of this fact can be obtained applying the elementary quotient completion to P and
observing that the diagram

(X,Pf×fδY ) (X,Pf×fδY )

(X,Pf×fδY ) (Y, δY )⌊f⌉

⌊f⌉
⌟

is a pullback diagram in C since ⌊f⌉ is a monomorphism. Hence the statement follows applying
Lemma A.0.12. We now give a direct proof of the statements.

By adjunction, α ≤ Pf∃fα. The opposite inequality is obtained as follows:
Pf∃f (α) = Pf∃p2(Pp1α ∧ Pf×1Y δY ) (Remark 1.2.14)

= ∃p2P1X×f (Pp1α ∧ Pf×1Y δY ) (B-C)
= ∃p2(Pp1α ∧ Pf×fδY )

≤ ∃p2Pp2α (α ∈ DesPf×f δY )
≤ α.

We now prove the second part of the statement. By adjunction, Pf∀fα ≤ α. The oppoite inequality
is obtained as follows:

Pf∀fα = Pf∀p2(Pf×1X δY =⇒ Pp1α) (Remark 1.2.19)
= ∀p2P1Y ×f (Pf×1X δY =⇒ Pp1α) (B-C)
= ∀p2(Pf×fδY =⇒ Pp1α)

≥ ∀p2Pp2α (α ∈ DesPf×f δY )
≥ α.
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We now prove the equivalence of the elements in (2.30).

Lemma A.0.19. Let P : C op → InfSL be an existential, universal and implicational elementary doctrine
with full weak comprehensions and comprehensive diagonals. Let x : X → A and y : Y → A two arrows
such that σ ≤ Py×yδA and let yx : E → A be an extensional exponential of x and y w.r.t. σ. We consider
the following weak pullbacks

W X V Y G E

X A Y A E A

{|χ|}2

x

x

{|χ|}1 {|ι|}1

y

{|ι|}2

y {|γ|}1

yx

{|γ|}2

yx

with comprehensions {|χ|} : W → X ×X , {|ι|} : V → Y × Y and {|λ|} : G→ E × E of χ := Px×xδA,
ι := Py×yδA and γ := Pyx×yxδA. We will denote by w : W → A, v : V → A and g : G→ A respectively
the common value of the two composites in the left, central and right above diagram. Moreover, we consider
the weak pullback

U X K U

E A U A

{|µ|}2

x{|µ|}1

yx

{|κ|}1

u

{|κ|}2

u

obtained through the comprehensions {|µ|} : U → E × X and {|κ|} : K → U × U of µ := Pyx×xδA
and κ := Pu×uδA, where u : U → A is the common value of the two composites of the left diagram and
k : K → A is that of the right diagram. Now, given a weak product of yx, yx and x

T

E E X

A

{|τ |}1 {|τ |}2
{|τ |}3

yx
yx

x

obtained through the weak comprehension {|τ |} : T → E × E ×X of τ := Pyx×yx×x(P⟨1,2⟩δA ∧ P⟨2,3⟩δA),
we will denote by t : T → A the common value of the three composites of the above diagram. If u←z→u is a
weak product, then we will denote by

⟨1, 3, 2, 3⟩A : t→ k ⟨1, 2⟩A : t→ g

the two arrows induced by the obvious projections and by

e×A e : k → v

the arrow induced by the weak evaluation e : u→ y. The following elements are equal:

εxσ := ∃{|γ|}∀⟨1,2⟩AP⟨1,3,2,3⟩APe×AeP{|ι|}σ

= ∀⟨1,3⟩((P⟨2,4⟩δX ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ ∀{|µ|}2Pe×eσ) ∧ γ
= ∀⟨1,3⟩∀{|µ|}2(P{|µ|}2(P⟨2,4⟩δX ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ Pe×eσ) ∧ γ.

(A.5)
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Proof. Since e is a weak evaluation, it preserves projection w.r.t. σ. This implies that

Pe×eσ ∈ DesP({|µ|}2×{|µ|}2)δE×X×E×X
.

Hence, Lemma A.0.18 implies that

εxσ = ∃{|γ|}∀⟨1,2⟩AP⟨1,3,2,3⟩AP{|k|}P{|µ|}2∀{|µ|}2Pe×eσ

= ∃{|γ|}∀⟨1,2⟩AP{|τ |}P⟨1,3,2,3⟩∀{|µ|}2Pe×eσ

= ∃{|γ|}P{|γ|}∀{|γ|}∀⟨1,2⟩AP{|τ |}P⟨1,3,2,3⟩∀{|µ|}2Pe×eσ (Lemma A.0.18)
= ∀{|γ|}∀⟨1,2⟩AP{|τ |}P⟨1,3,2,3⟩∀{|µ|}2Pe×eσ ∧ γ (Lemma A.0.4)
= ∀⟨1,3⟩∀⟨1,3,2,3⟩∀{|τ |}P{|τ |}P⟨1,3,2,3⟩∀{|µ|}2Pe×eσ ∧ γ
= ∀⟨1,3⟩∀⟨1,3,2,3⟩(τ ⇒ P⟨1,3,2,3⟩∀{|µ|}2Pe×eσ) ∧ γ (Remark 1.2.19)
= ∀⟨1,3⟩∀⟨1,3,2,3⟩P⟨1,3,2,3⟩(P⟨1,3,4⟩τ ⇒ ∀{|µ|}2Pe×eσ) ∧ γ (⟨1, 3, 2, 3⟩⟨1, 3, 4⟩ = 1E×E×X)
= ∀⟨1,3⟩(P⟨2,4⟩δX ⇒ (P⟨1,3,4⟩τ ⇒ ∀{|µ|}2Pe×eσ)) ∧ γ (Remark 1.2.19)
= ∀⟨1,3⟩((P⟨2,4⟩δX ∧ P⟨1,3,4⟩τ)⇒ ∀{|µ|}2Pe×eσ) ∧ γ.

The last formula is trivially equal to

∀⟨1,3⟩((P⟨2,4⟩δX ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ ∀{|µ|}2Pe×eσ) ∧ γ =

∀⟨1,3⟩∀{|µ|}2(P{|µ|}2(P⟨2,4⟩δX ∧ P⟨1,2⟩µ ∧ P⟨3,4⟩µ)⇒ Pe×eσ) ∧ γ.
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Type theory

In this chapter, we recall the basic constructs of the Martin-Löf intuitionistic type theory. We fix the
notation used in the previous chapters and define precisely the type theory assumed in this work.

PerMartin-Löf introduced the intuitionistic type theory (also known as dependent type theory)
as a logical framework to do constructive mathematics. Mathematical objects are always of a spec-
ified nature, which is expressed in type theory with the notion of element of certain type. We have
four type of judgment which are

x : X | X type | x = y : X | X = Y type.

The first expression is read as "x is a term of typeX" and resembles the usual inclusion relation
∈ of set theory. The declaration of a type is given by the notation X type. However, we will often
omit the word type. The above equality symbols are often referred to as the judgmental equality. This
notion can be considered as "external" to the type theory, in opposition with the "internal" notion
of equality given by the identity types discussed below.

The main feature of intuitionistic type theory is the possibility to have type depending on other
types as in the expression

x : X ⊢ B(x) type

which means that B is a type depending on the elements of the typeX . Dependent types allow us
the possibility to work with usual mathematical objects which are somehow indexed on elements
of another type. For instance, inN is the set of the natural numbers, we can consider for every n ∈ N
the set of the divisors of n

n : N ⊢ Div(n).

Dependent types make a clear distinction between the Martin-Löf intuitionistic type theory and
the simple type theory introduced in [WR97] and later in [Chu40] where dependencies where not
allowed. For every type, we assume to have a suitable list of variables of that type. A general context
is an expression of the form

Γ := x1 : X1, x2 : X2(x1) . . . , xn : Xn(x1, . . . , xn−1)

where xi are variables of type Xi and every type Xj depends on the types X1, . . . , Xj−1. Every
judgment can appear in a suitable context which plays the role of the assumptions made in order
to have that judgment; in this case we write

Γ ⊢ T .

If the context in empty we would omit the symbol ⊢.
We now introduce the rules of the type theory which consist of expressions of the form

131
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H1 . . . Hn

C

whereH1, . . . ,Hn are judgments called hypothesis andC is a judgment called conclusion. A deriva-
tion is a tree of rules. The rules can be of two kind. We now list those ruleswhich are called structural
rules and concern the calculus and not the logic of the system.

Rules for the judgmental equality. These rules ensure that judgmental equality of terms or types
is an equivalence relation.

Γ ⊢ x : X
Γ ⊢ x = x : X

Γ ⊢ x = x′ : X
Γ ⊢ x′ = x : X

Γ ⊢ x = x′ : X Γ ⊢ x′ = x′′ : X
Γ ⊢ x = x′′ : X

Γ ⊢ X type

Γ ⊢ X = X type

Γ ⊢ X = X ′ type

Γ ⊢ X ′ = X type

Γ ⊢ X = X ′ type Γ ⊢ X ′ = X ′′ type

Γ ⊢ X = X ′′ type

Rules for substitution. These rules govern the substitution of terms into other terms that may
appear also in a dependent type. Given a context

Γ, x : X,∆ := x1 : X1, . . . , xn : Xn, x : X,xn+1 : Xn+1, . . . , xn+m : Xn+m

and a judgment Γ, x : X,∆ ⊢ G, then if we have a term Γ ⊢ t : X we can substitute t in place of the
occurrences of x and obtain a judgment G[t/x] in context Γ,∆[t/x]

Γ ⊢ t : X Γ, x : X,∆ ⊢ G .
Γ,∆[t/x] ⊢ G[t/x]

For instance, in case of the judgment which declares a type

Γ, x : X,∆ ⊢ B(x1, . . . , xn, x, xn+1, . . . , xn+m) type

we obtain the rule

Γ ⊢ t : X Γ, x : X,∆ ⊢ B type

Γ,∆[t/x] ⊢ B[t/x] type

where

∆[t/x] :=xn+1 : Xn+1(x1, . . . , xn, xn, t(x1, . . . , xn)), . . .

. . . , xn+m : Xn+m(x1, . . . , xn, , t(x1, . . . , xn), xn+1, . . . , xn+m−1)

and
B[t/x] := B(x1, . . . , xn, t(x1, . . . , xn), xn+1, . . . , xn+m).

Moreover, we require that the substitution of judgmentally equal terms in terms or types gives
judgmentally equal terms or types

Γ ⊢ t = t′ : X Γ, x : X,∆ ⊢ b : B
Γ,∆[t/x] ⊢ b(t) = b(t′) : B[t/x]

Γ ⊢ t = t′ : X Γ, x : X,∆ ⊢ B type .
Γ,∆[t/x] ⊢ B[t/x] = B[t′/x] type
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Weakening rule. This rule implies that we can expand the context of a judgment G with new
variables

Γ ⊢ x : X Γ,∆ ⊢ G .
Γ, x : X,∆ ⊢ G

For instance, if A is a closed type, then A is also a type in any context Γ ⊢ A.

Variable rule. This rule asserts that for any type X in the context Γ, the variable term x : X is a
term in the context Γ, x : X

Γ ⊢ X type .
Γ, x : X ⊢ x : X

As a consequence, this rule implies that in the syntactic categories considered in Chapters 1
and 3, there is an identity arrow for each closed type.

These four rules are the structural rules of the type theory. We now proceed with the logical
rules which concern the formation of particular types. For every type, we specify

• the formation rule: which tells how to form the type,
• the introduction rule: which tells how to introduce new terms of the type,
• the elimination rule: which tells how to use terms of the type,
• the computation rules: which tells how the introduction and elimination rules interact.

Π-type. Given a type X and a dependent type x : X ⊢ B(x) we can build the type of functions∏
x:X

B(x), from X to B. Intuitively, the elements of this new type are choice functions f which for
an element x : X pick an element f(x) : B(x). In set theory this type corresponds to the indexed
set families.

Γ ⊢ X type Γ, x : X ⊢ B(x) type(Π-formation)
Γ ⊢

∏
x:X

B(x) type

Γ, x : X ⊢ b(x) : B(x)(Π-introduction)
Γ ⊢ λx.b(x) :

∏
x:X

B(x)

Γ ⊢ f :
∏
x:X

B(x) Γ ⊢ a : X

(Π-elimination)
Γ ⊢ f(a) : B[a/x]

Γ, x : X ⊢ b(x) : B Γ ⊢ a : X(Π-computation) (β-rule)
Γ ⊢ (λx.b(x))(a) = b(a) : B[a/x]

Γ ⊢ f :
∏
x:X

B(x)

(Π-computation) (η-rule)
Γ ⊢ λx.f(x) = f :

∏
x:X

B(x)
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Moreover, the above rules must preserve the judgmental equality in the following way:

Γ ⊢ X = X ′ type Γ, x : X ⊢ B(x) = B′(x) type

Γ ⊢
∏
x:X

B(x) =
∏
x:X′

B′(x) type

and when x′ : X is a fresh variable:

Γ, x : X ⊢ B(x) type

Γ ⊢
∏
x:X

B(x) =
∏
x′:X

B(x′) type

Γ, x : X ⊢ b(x) = b′(x) : B(x)

Γ ⊢ λx.b(x) = λx.b′(x) :
∏
x:X

B(x)

Γ ⊢ f = f ′ :
∏
x:X

B(x) Γ ⊢ a : X

.
Γ ⊢ f(a) = f ′(a) : B[a/x]

→-type. When x : X ⊢ B is a type which does not depend on X , i.e. there are no occurrences of
x in B, the Π-type ∏

x:X

B(x) is denoted with

X → B.

Intuitively, this is the type of the functions between X and a fixed codomain B.
We now recall that some types can be described in an equivalent formulation as inductive types.

This means that we specify

• the constructors of the type, that may be more than one or anyone,

• the induction principle: which explicates how to build a dependent type over the inductive
type,

• the computation rules.

In order to do that, we use the Π-type. The two formulations are equivalent, and for the following
type formers, we will recall both the formulations.

Σ-type. Given a type X and a dependent type x : X ⊢ B(x) we can form the type of the pairs
(x, b(x))where b(x) : B(x) in the following way.

Γ ⊢ X type Γ, x : X ⊢ B(x) type(∑-formation)
Γ ⊢

∑
x:X

B(x) type

Γ, x : X ⊢ b(x) : B(x) Γ,⊢ a : X(∑-introduction)
Γ ⊢ (a, b(a)) :

∑
x:X

B
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Γ ⊢ t :
∑
x:X

B(x)

(∑-elimination)
Γ ⊢ π2(t) : B[π1(t)/x]

Γ ⊢ t :
∑
x:X

B(x)

Γ ⊢ π2(t) : B[π1(t)/x]

Γ, x : X ⊢ b(x) : B(x) Γ ⊢ a : X(∑-computation) β-rule
Γ ⊢ π1(a, b(a)) = a : X

Γ, x : X ⊢ b(x) : B(x) Γ ⊢ a : X(∑-computation) β-rule
Γ ⊢ π2(a, b(a)) = b(a) : B[a/x]

Sometimes, we shall denote the first projection simply with π. The above rules must preserve
the judgmental equality as in the Π-type. Equivalently, we can introduce the ∑-type through the
constructor

(−,−) :
∏
x:X

(B(x)→
∑
x′:X

B(x′)).

The induction principle asserts for every dependent type p : ∑
x:X

B(x) ⊢ C(p) the existence of a term

IndΣ :
∏
x:X

∏
y:B(x)

C(x, y)→
∏

p:
∑
x:X

B(x)

C(p)

which satisfies the computation rule

IndΣ(f, (x, y)) = f(x, y).

×-type. When x : X ⊢ B is a type which does not depend onX , i.e. there are no occurrences of x
in B, the Σ-type ∑

x:X

B(x) is denoted with

X ×B.

Intuitively, this is the type of the pairs of elements ofX andB. In set theory, this corresponds to the
product of two sets. Using the induction principle of the ×-type we obtain the Currying operator

cur : (X → (Y → Z))→ ((X × Y )→ Z).

Th λ abstraction provides also an inverse operator. Intuitively, this is a typical construction in type
theory which expresses multi-variable functions as functions of functions and vice versa.

+-type. Given two types X and Y in a common context, we can build the sum type X + Y . Intu-
itively, this type is the disjoint union of the types X and Y .

Γ ⊢ X type Γ ⊢ Y type(+-formation)
Γ ⊢ X + Y type

Γ ⊢ x : X Γ ⊢ X + Y type(+-introduction)
Γ ⊢ inl(x) : X + Y

Γ ⊢ y : Y Γ ⊢ X + Y type(+-introduction)
Γ ⊢ inr(y) : X + Y
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Γ, z : X + Y ⊢ C(z) type Γ, x : X ⊢ d(x) : C(inl(x)) Γ, y : Y ⊢ e(y) : C(inr(y))(+-el.)
Γ, z : X + Y ⊢ Ind+(z, d, e) : C(z)

Γ, z : X + Y ⊢ C(z) type Γ, x : X ⊢ d(x) : C(inl(x)) Γ, y : Y ⊢ e(y) : C(inr(y))(+-comp.)
Γ, x : X ⊢ Ind+(inl(x), d, e) = d(x) : C(inl(x))

Γ, z : X + Y ⊢ C(z) type Γ, x : X ⊢ d(x) : C(inl(x)) Γ, y : Y ⊢ e(y) : C(inr(y))(+-comp.)
Γ, y : Y ⊢ Ind+(inr(y), d, e) = e(y) : C(inr(y))

The above rules must preserve the judgmental equality. Equivalently, we can introduce the +-
type X + Y of two types X and Y through the constructors

inl : X → X + Y

inr : Y → X + Y.

The induction principle asserts for every dependent type z : X + Y ⊢ C(x) the existence of a
term

Ind+ :
∏
x:X

C(inl(x))→
∏
y:Y

C(inr(y))→
∏

z:X+Y

C(z)

which satisfies the computation rules

Ind+(d, e, inl(x)) = d(x)

Ind+(d, e, inr(y)) = e(y).

Empty type. This is the type without elements, which plays the role of the false predicate in the
type system. This type corresponds to the empty set in set theory and will be denoted with 0.

(0-formation) 0 type

Γ ⊢ a : 0 Γ, x : X ⊢ C(x) type(0-elimination) .
Γ, x : X ⊢ r0(a) : C(x)

The empty type has no introduction or computation rule. The elimination rule implies that
from a term of the type 0we can obtain a term of any type. This rule resembles the ex falso quodlibet
priciple. Equivalently, we can formulate the following induction principle for every dependent type
x : 0 ⊢ C(x)

Ind0 :
∏
x:0
C(x).

Unit type. This type plays the role of the true predicate and it has just a canonical inhabitant. In
set theory, it corresponds to the one element set.

(1-formation) 1 type

(1-introduction) ∗ : 1
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Γ ⊢ a : 1 Γ, x : 1 ⊢ C(x) type Γ ⊢ b : C(∗)(1-elimination)
Γ ⊢ r1(a, b) : C(a)

Γ, x : 1 ⊢ C(x) type Γ ⊢ b : C(∗)(1-computation)
Γ ⊢ r1(∗, b) = b : C(∗)

Equivalently, we can introduce the type 1 through the constructor
∗ : 1.

The induction principle asserts that for every dependent type x : 1 ⊢ C(x) there exists a term of the
type

Ind1 : C(∗)→
∏
x:1
C(x)

which satisfies the computation rule
Ind1(p, x) = p.

Two elements type. This is the type with two canonical elements, also called the Booleans type. It
plays the role of the type of the two truth values true and false. In set theory, it corresponds to the
set with two elements.

(2-formation) 2 type

(2-introduction)
02 : 2 12 : 2

Γ ⊢ a : 2 Γ, x : 2 ⊢ C(x) type Γ ⊢ b0 : C(02) Γ ⊢ b1 : C(12)(2-el.)
Γ ⊢ r2(a, b0, b1) : C(a)

Γ, x : 2 ⊢ C(x) type Γ ⊢ b0 : C(02) Γ ⊢ b1 : C(12)(2-comp.)
Γ ⊢ r2(02, b0, b1) = b0 : C(02)

Γ, x : 2 ⊢ C(x) type Γ ⊢ b0 : C(02) Γ ⊢ b1 : C(12)(2-comp.)
Γ ⊢ r2(12, b0, b1) = b1 : C(12)

Equivalently, we can introduce the type 2 through the constructors
02 : 2 12 : 2.

The induction principle asserts that for every dependent type x : 2 ⊢ C(x) there exists a term of the
type

Ind2 : C(02)→ (C(12)→
∏
x:2
C(x))

which satisfies the computation rules

Ind2(p0, p1, 02) = p0

Ind2(p0, p1, 12) = p1.

Similarly, it is possible to define the type with arbitrary n elements. However, we stop at the case
two and proceed with the type of the natural numbers.
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Natural numbers type.

(N-formation) N type

(N-introduction)
0N : N

x : N
succ(x) : N

a : N x : N ⊢ C(x) type b : C(0N ) x : N, y : C(x) ⊢ e(x, y) : C(succ(x))(N-el.)
x : N, y : C(x) ⊢ rN (a, b, e(x, y)) : C(a)

x : N ⊢ C(x) type b : C(0N ) x : N, y : C(x) ⊢ e(x, y) : C(succ(x))(N-comp.)
x : N, y : C(x) ⊢ rN (0N , b, e(x, y)) = b : C(0N )

a : N x : N ⊢ C(x) type b : C(0N ) x : N, y : C(x) ⊢ e(x, y) : C(succ(x))(N-comp.)
x : N, y : C(x) ⊢ rN (succ(a), b, e(x, y)) = e(a, rN (a, b, e(x, y))) : C(succ(a))

Equivalently, we can introduce the type N through the constructors

0N : N succ : N→ N.

The induction principle asserts that for every dependent type x : N ⊢ C(x) there exists a term
of the type

IndN : C(0N )→ ((
∏
x:N
C(x)→ C(succ(n)))→

∏
x:N
C(x))

which satisfies the computation rules

IndN (p0, ps, 0N ) = 0N

IndN (p0, ps, succ(x)) = ps(x, IndN (p0, ps, x)).

Identity type. This is the type of the system which internalizes the equality predicate.

Γ ⊢ X type Γ ⊢ a : X Γ ⊢ b : X(Id-form.)
Γ ⊢ IdX(a, b) type

Γ ⊢ X type Γ ⊢ a : X(Id-intro.)
Γ ⊢ refla : IdX(a, a)

(Id-elimination)

Γ, x : X, y : X, p : IdX(x, y) ⊢ C(x, y, p) type Γ, x : X ⊢ d(x) : C(x, x, refl(x))
Γ, x : X, y : X, p : IdX(x, y) ⊢ J(d(x), p) : C(x, y, p)

(Id-computation)

Γ, x : X, y : X, p : IdX(x, y) ⊢ C(x, y, p) type Γ, x : X ⊢ d(x) : C(x, x, refl(x))
Γ, x : X ⊢ J(d(x), refl(x)) = d(x) : C(x, x, refl(x))
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Equivalently, we can present the identity type of a type X through the constructor

reflx : IdX(x, x)

for every term x : X . The induction principle also called path-induction asserts that for any term
a : X and dependent type x : X, p : IdX(a, x) ⊢ C(x, p) there is a term of the type

pathinda : C(a, refla)→
∏
x:X

∏
p:IdX(a,x)

C(x, p)

which satisfies the computation rule

pathinda(p, a, refla) = p.

The identity typewe presented is called intensional and it is the one we considered for the results
obtained in this thesis. The identity type is called extensional if the following rule is assumed

x, y : X ⊢ p : IdX(x, y)(Reflection rule) x = y

Universe. An element of this type is itself a type. The need of assuming a universe are several
and as shown by Smith in [Smi88], a universe is necessary in order to have a type theory in which
the Peano’s fourth axiom holds. There are two principal formulations, one à la Tarski and one à la
Russell. We start from the first one which assumes the existence of a dependent type T over the
universe.

(U-formation) U type

x : U(U-introduction)
T (x) type

The types of the universe U are called small types and if T (x) is a type, a dependent small type
on it is a term of

T (x)→ U .

We now require that the small types are closed under the type constructors introduced so far.
• (Closure for Π-type) There exists a function

Π̃ :
∏
x:U

(T (x)→ U)→ U

such that
T (Π̃(x, b)) =

∏
y:T (x)

T (b(y)).

• (Closure for Σ-type) There exists a function

Σ̃ :
∏
x:U

(T (x)→ U)→ U

such that
T (Σ̃(x, b)) =

∑
y:T (x)

T (b(y)).
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• (Closure for +-type) There exists a function
+̃ : U → (U → U)

such that
T (+̃(x, y)) = T (x) + T (y).

• (Closure for 0,1,2 and N) There exist terms 0u, 1u, 2u and Nu of U such that
T (0u) = 0 T (1u) = 1 T (2u) = 2 T (Nu) = N.

• (Closure for identity type) There exists a function

Ĩ :
∏
x:U
T (x)→ (T (x)→ U)

such that for every x1, x2 : T (x) it holds
T (Ĩ(x, x1, x2)) = IdT (x)(x1, x2).

The description à la Russell of the universe type is more informal and we simply write
X : U(U-introduction)
X type

without assuming the dependent type T and the superscript∼ in the type constructor preservation.
This notation could be unclear but it is more practical. When it does not create confusion we shall
adopt this notation for the small types.
Remark B.0.1. The type theoryML introduced in Chapter 1 is given by the rules we have listed
up to here.

Functional extensionality. This axiom assumes that, for every type X and dependent type x :
X ⊢ B(x) and for any pair of elements f, g :

∏
x:X

B(x), there exists a function

funext :
∏
x:X

IdB(x)(f(x), g(x))→ Id ∏
x:X

B(x)(f, g).

Intuitively, the axiom expresses the property that to functionswhich have the same values are equal.
The opposite is always true thanks to an application of path induction.

Transport. This operation is a useful tool to connect elements of a dependent type. Given a type
x : X ⊢ B(x) and an element b(x) : B(X), we can transport this element into the fibers B(y) of the
element y such that there is a path p : IdX(x, y). This is obtained through the path induction which
defines a term of

trB :
∏
x,y:X

IdX(x, y)→ (B(x)→ B(y)).

We will usually denote trB(p, b(x))with p∗(b) : B(y).
One may wonder if, for f :

∏
x:X

B(x) and p : IdX(x, y), the two values f(x) and f(y) are provably
equal. Indeed they are. In order to do that, one first transports f(x) : B(x) along p, then compares
that term with f(y) in B(y) as path induction induces a term of

adpf (p) : IdB(y)(p
∗f(x), f(y)).
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Curry-Howard correspondence. We end this chapter summarizing the correspondence between
the logical objects and the type and set theoretic objects. The first two columns summarize the
Curry-Howard correspondence between logic and type theory.

Logic Type theory Set theory
X formula X type X set

B formula in context x̄ Γ ⊢ B type {Bγ}γ∈Γ family of sets
a proof of X t : X x ∈ X

⊥ 0 ∅
⊤ 1 {∗}

X ∧ Y X × Y type X × Y
X ∨ Y X + Y type X∪̇Y

X =⇒ Y X → Y type Y X

(∃x : X)B(x)
∑
x:A

B(x) (
⋃̇
Ba)a∈A

(∀x : X)B(x)
∏
x:A

B(x) (
∏
a∈A

Ba)
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