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[x=3/2, 6>, |[x=1, 15>, [A=k, 20>, {x=0, 15>

|A=-1%, &>, [x=-1,1>

Consider now the multiplet generated by

e X =32 =
e 7 P 7 372

Applying the Bz ta |a=1,1> we obtain the states
A=k, 6>, [A=0, 15> [Xe-%,20>, [h=-1, 15>

[r=-3/2, 6>, [A==-2,1>
Putting everything together we see that for each of the SU(6)
representations displayed in the N=6 row of Table IL.A.VIII we bhave
both the A=J and A=-J helicity state which are necessary to
build up a spin J massless particle.

Massless spin-one particles are the gauge boscns of Yang-Mills
theory, while the massless spin-two particle is the graviton. Corre-
spondingly Table II.4.VI lists the spectra of the N-extended super-
symmetric versions of Yang-Mills theory, while Table IL.4.VIII dis-
plays the field content of the N-extended supergravities. By this

name we mean the supersymmetric versions of Einstein gravitational
theory which can be identified as N=0 supergravity.

How to comstruct supersymmetric field theories whose 1lime-
arization vyields the spectra displayed in Tables IL.4.VI and
I1.4.V1II is the question addressed in the sequel of the book. Prior
to that, however, we still need to see which modifications are intro-
duced in the supersymmetry algebra (II.2.142) representations by a
non vanishing constant 8.

This is the topic of the next chapter.

T

CHAPTER II.5

SUPERMULTIPLETS IN ANTT DE SITTER SPACE

II.5.1 - Free field equations and the concept of mass in anti

de Sitter space

Anti de Sitter space is the bosonic submanifold of the N-extend-
ed anti de Sitter superspace (IT1.3.29). It is the following cosst
manifold (*)

Sp(4,H) /50(1,3) ~ 50(2,3)/80(1,3) (1r.5.1)

and in the normalization which we use the intrinsie components of its

(*) By Sp{4,H} we understand that particular real form of the
Sp {4, €) Lie algebra which is defined by the condition
Heg) A Begy= -hT (see Eqs. (11.2.121b) and (II.2.133b)).
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Riemann tensor are

ab =2.ab _ =2, .8,b a:b
R = - 4€ ch =~ 28 (6e6d ~ Gddc) (11.5.2}

socd
This result is easily deduced from Egqs. (II.3.53).

In order to study the unitary irreducible representations of the
Osp{4/N) superalgebra (I1.2.142) we need first some information on
the representation of Sp(4,B) ~ $0(2,3). Indeed, as a unitery ferae
ducible representations of Poincaré supersymmetry is composed of a
finite number of unitary irreducible representations of the Poincaré
subalgebra (each of them infinite dimensional) in the same way, a
unitary irreducible representation of 0sp(4/K} is made out of a
finite number of unitary representations of 50{2,3), also infinite
dimensional. In perfect analogy with the Poincaré case, a unitary
irreducible representation of 8$0{2,3) is what one calls 3 particle in
anti de Sitter space. The new features are related with the concept
of mass. Indeed the operator PP? is an invariant neither for the
full Osp(4/N} algebra nor for the S0(2,3) subalgebra. Hence in AdS
a particle is not characterized by the eigenvalue of B,P?, rather by
the eigenvalue of the true second order Casimir of S0(2,3) which in

our normalizations has the following expression:

b 1 a
C,=-2M W --5pP
? 2 2 (11.5.3)

This result is easily retrieved by noticing that if we introduce
indices £=0,1,2,3,4 and we set

Mg = My 5 M =Moo N

o~
of |'—'
S

(II.5.4)

then the 10 generators satisfy the S0{2,3) Lie algebra in its stan-
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dard form:
. - - 5.5
Dypotipg] = 5 (pran * DpaMer = Tsaar ~ Martise) (11.5.52)
S O (11.5.5b)
n}\\z (+, ¥ E] ] )

and Cq defined by Eq. (II.5.3) coincides with the standard quadratic

invariant

- z (11.5.6)
C2 = - 2 MAEMA

The problem is how to relate the eigenvalues of €2 to something which

we can call the mass and the spin of a particle. The answer to such a

question is our present goal. It is mainly a matter of comparison. On

one side, as we shall see in the next section, we can construct an
jrreducible unitary representation of 50(%,3) via the Wigner induced
representation method, sterting from an irrep of the maximal compact
subgroup S0(2) ¢ S0(3) & 50(2,3),

The $0{2) quantum number Ey is the eigenvalue of the hamiltonian
opergtor and, as such, is worth +he name of energy (the mi?imal
energy of the representation}; the number J iabelling the 80(3) irrep
is instead what we call the spin. On the other hand an irreducible
unitary representation must also be jdentified with the Hilbert space

spanned by the finite norm solutions of a free field equation suita-

bie to the spin S particle we consider.

We know how to write field equations for arbitrary spin fields

i i an choose
on an arbitrary curved space-time .. In particular we c

A = AdS = anti de Sitter space

and we have the result we look for, mamely am equation

B T T e

N N T T e S

e T T e S N

N

SN

P N e NN

o~
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(11.5.7)

_ 2
%) ™ M) Ys)
whete Eg](s) is a second order invariant differential operator {it
commutes with the Lie derivatives along the 50(2,3) Killing vectors)
which acts on the space of spin-s wave-functions and whose eigenvalue
we can call the mass-squared.

Since there is just one quadratic Casimir operator we must have

)
g(s) =alyF B =mg (I1.5.8)

where o and f; are constants. Moreover, since C; is 2 function of Eg
and J, that is the labels of the vacuum state in the induced repre-
sentation procedure, then equation (II.4.8}) provides a relation be-
tween these labels and m.2. Needless to say we must choose J=8 and
(II.4.8) becomes a relation between Ey and msz, relation which is
different for different spins.

The delicate point in this game is the choice of the origin of
the m(s}2 scale or, in other words, the definitien of massless
particles. Indeed we know that n2=0 is a singular valve for Poincaré
representations, corresponding to a reduction of the number of states
(multiplet shortening) and the same must be true of anti de Sitter
representations. The best way to understand this shortening is from a
symzetry point of view. At m52=0 the wave equation (II.4.7) must ac-
quire & larger symmetry than the Poincaré or anti de Sitter symme-
try. This larger symmetry is conformal symmetry for s=0 and s=1/2
while it is a gauge symmetry for s2l; in anycase it is responsible
for a reduction of the dynamical degrees of freedom and the associated
particle is worth the name of massless,

Since we are interested in particles of spin s=0,%,1,3/2 and 2,
we shall explicitly censider the wave equations of those five kinds of
particles.

The s=0 particle

Let Qg be the Lorentz covariant derivative, defined as follows. Giv-
en the covariant differential of a field f£(x), belonging to some rep-

resentation of S0(1,3)

FE(x) = af(x) + wabcabf(x) (11.5.9)

{where t, are the appropriate Lorentz generators) %,f(x) is given
ab a
by:

@af(x) = BELi@f(:&}

{II.5.10)
D, being the tangent vector dual to the vierbein V&:
() = 8, (11.5.11)
»’ " b 2
Having defined the covariant Laplacian by:
O -a%9 (11.5.12)
cov a ‘ .5,
it is well known that the follewing equation
#
+ = = 0.
( [:]cov 3} v (x) (I1.5.13)

in additiom to invariance under whatever isometries the metric

gU = vﬁvb LI may possess, has further invariance under scale
Y v g
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transformations which are instead broken by the equation *)

K4 2
(Dcov T30 =g e(x) (11.5.14)

This means that (II.5.14) is the correct wave-equation for a scalar

particle of mass mg.

If we choose anti de Sitter space 2s a background we find

b 21 ,.ab b -2
ga = = - - - &8 = -
ab % 4e y (Saﬁb %53} 258 {I1.5.15)

and (II.5.14) becomes:

2 2
{Dcc\r - 8D e(x) = 0 (11.5.16)

The s=1/2 particle

In the spin 1/2 case we have

G) = d) - & 2P

@) = dx 2 Y A (11.5.17a)
__1,.mn -

[2,,9,)% = - 3807, 2 (11.5.17b)

and the wave equation

%
(%) For a short derivation of this result see Part One.

4
1y? g2=0 {II.5.18)

is scale invariant in addition’to being invariant under amy possible

isometry. Hence the correct spin 1/2 equation is

L2 =) (I1.5.19)

o) /2 being the mass. Squaring the Q = ya 93 operator, using

2 1 &b pEn {II.5.20)
7 _Dcc\: ¥ mﬂgab

and inserting the explicit form of the anti de Sitter Riemann-tensor

(see Eq. (I1.5.2)) we get
2 _ 12 = (17.5.21)
(Dcov + m!i 1282 = 0

The spin 1 particle

The wave equation of a spin } particle, which is described by a vec-

tor field Wy, is

& - U = -
(a8, - W) ‘“:fwb (11.5.22)

Indeed when 5912=0 Eq. {II1.5.22) becomes gauge invariant under the

transformation

P (11.5.23)
wa e Wa'+Jaop(x)

e

A~ —

—

P e

s

S

e R N

-
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where ¢{x) is any scalar function. In the massive case from Eq. YaX - (11.5.29a)
{11.5.22) we derive the transversality constraint a
9% =0 (1I.5.29b)
9}3wa =0 (11.5.24) a
d the Dirac equation:
and on the transverse field Eq. (I1.5.22) reduces to an e tirac &
. - - . 78
(] wot2a™y =-nlu i9x, = - gy - BN (11.5.30)
cov a ab 'm Ty M {I1.5.25})

Substituting (II.5.2) into (II.5.25) the spin 1 field equation in

anti de Sitter space becomes:

22
(Dm +m - 180 = 0  (11.5.26)

The spin 3/2 particle

A spin 3/2 particle is described by a spinor-vecter field x,. Its

wave-equation is the Rarita-Schwinger equation given by:

abed .
e Xy T My Xy (31.5.27)

where the anti de Sitter derivative V, is defined as follows:

VoXg =9 Xg ¥ 1BY Xy (11.5.28)

When the mass my/p is non-zero, from {11.5.27) one deduces both the

irreducibility-transversality comstraints

On the other hand since in anti de Sitter space the derivatives V.

are commutative:

1 ,ab -2 -2 -2
.1 - - (232 -2 -
[0,,9) = - 5 qvyy ~ 28 g = (2 - 22074 =0 (11.5.31)

at m3/2=0 the Rarita Schwinger equatien (II.5.27) acquires the fol-

lowing gauge invariance:

X, > Xy A (11.5.32)
Indeed we have:

abed -
e gV Tk = 0 (11.5.33)

Applying i to both sides of Eq. (11.5.30) we find

7 1 .pg T8 _yPdgam, Pk
(cov- s ¥ @qurs)Xa T 313qu {mg 2e) Xy
(11.5.34)

and substituting (II.5.2) in (II.3.34) we arrive at



) 2
{[:]cov " 168+ (my ) - 28)hy, = 0 (I1.5.35)

The spin 2 particle

& spin 2 field is a symmetric tensor hyp=hy,, and its wave-equation
is the linearized Einstein equation :

1 o s 1
2 Dcovhab J{ajmhb}m + 9 7, D

- 287y 12

Ty 11.5.36
as ms 5 ™2)Pab ( )

When m22¢0 (11.5.37) yields the irreducibility-transversality con-
straints:

h =0 ; g"p =g
e a (11.5.37)
and the wave-equation
-2 N 2
([:]cov 8e )hab . m(2)hab (I1.5.38)

On the other hand at m(2)2=0 Eq. (I1.5.38) acquires the folliowing
gauge-invariance

h ms>h + G, ¢
= - oo} (I11.3.39)

and ‘Eqs. (I1.5.37) can be imposed as gauge fixings. The same is true
of the spin 3/2 and spin 1 equation. The irreducibility-transver-

sality constraints, become in the massless case gauge fixing choices.
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Our results can nov be summarized by saying that the second

i i i i Sitter
order wave-equation of a massless spin s particle in anti de

gpace is: i

& = {11.5.40)
- E]cov tarTa Y, = 0

where the numbers «, are’

ay = 3 (11.5.41a)

Ugpp=3 5 @y =2 (11.5.41b)
This result combined with the results of next section allows to

covariant
express the {; Casimir operator (I1.5.6) in terms of the

Laplacian {3cov'

11.5.2 - Unitazy irreducible representations of $0(2,3)

We address now the problem of constructing the unitary irreduci-
ble representations of the anti de Sitter group from a purely ?lge-
braic point of view. Qur starting point is a convenient decomposition
of the S0(2,3) Lie algebra (II.2.142a) + (11.2.142b) with respect to

its maxzimal compact subgroup

11.5.42)
Gy = 502} ® 50(3) < 50(2,3) (

= - i itean we define
Since MZb' = -M,p and By = PaT are antihermitea

T T

B e

Bl

e T U ey

TN e
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[
E:

J. o= -
3 _ZiMu

H is hermitean, compact and generates

J,o= - «?f(imzs +

= - VTf(iuzs -H

Mg

13)

the S0{2} subgroup.

{II.5.43a)

{II.5.43b)

(I%.5.43¢)

(11.5.43d)

It can be

identified with the hamiltonian of the system and its sigenvalues are

worth the name of energy B:

By > = gy >

" =B

(II1.5.44)

J4s J., J3 commute with H and generate the spin subgroup

50{3} ~ su(2).

[H,J+] =[] =

-+
[N
I

[33,9,] =

#

[T403_]

[1,35] = 0

(11.5.45a)

(I.5.45b)

(I1.5.45¢)

(I7.5.45¢)

The remaining 6 generators spanning the coset 50(2,3)/50(2) & S0(3)

can be arranged intc the combinations

i Q 3

_ ‘ i=1,2,3
Ky == By~ By (I1.5.46a)
- +.1
Ky = - &) (T1.5.46b)

which have the following commutation relations with H (as can be
checked from Egs. {IT.2.142}:

% *

[o.x] =¥ (11.5.47)
£

Hence the Kj , act as raising and lowering operators for the energy

eigenvalves E.
Furthermore Wwe can rearrange the Kii, which under SU(2) trans-

form as vectors, in the following way

+ .
Koginy © qu-{Kl + 3K, (11.5.48a)
o1t et
R (& - 1K) | (T1.5.48b)
K = K (IL.5.48¢)

The commutation relations with Jg aze

+ +
[ g0l = 2 Ky (11.5.492)



+
[13,%,] = 0 (I1.5.49b)

This shows that K§+i2 raises both the energy and the third component

cf the spin, while quiz raises E and lowers J3: Finally K3+ raises
E but leaves J3 unchanged.

In this basis the Casimir invariant {I1.5.3) takes the form

2 B R
C,=H +J"+ 5 {Ki’xi} (11.5.30)

Let # be the Hilbert space carrying the typieal unitary irreducible

representation we are looking for. It is convenient to label the

states |¥> € # by the eigenvalues of H, J2, and Jq:

B (.. )Ejm > = E[(...)Bjn > (I1.5.51a)

42 .

I DB > = 5G] B > {1I1.5.51b)

33{(...)Ejm >=n/(...)Bjn > (I1.5.51c)
where (..

.} denotes an as yet unspecified representation label,
The representations we are interested in must have an energy
spectrum bounded from below. Hence we introduce a multiplet of vacuum

states |(Ey,s) Ey s m> which form an 8U(2) irreducible representa-
tion of spin s

integer

Pester) | se”

half integer (I1.5.52a)
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fms (11.5.52B)
~sfmss
and are eigenstates of H with-%igenvalue Eg>0
(I1.5.53)

Hl(EO,s}Eosm>‘m=E0§(E0,S)Eosm>

Furthermore, by definition, the vacuum is annihilated by ail the en-

ergy lowering operators:

.5.54)
K| (By,8)Egsm > = 0 or
170770

By and s label the irreducible represeatatioi generated by. applzizz
to i(EG.s) Eg s m> the raising cperators . K3 as many times a -
like, and regarding the Hilbert space spanned by such ket vect?rs -
the carrier space, For this reason Ep and s have been inserted in the
slot we had prepared for the representation Jabals.

Y
Evaluating Cy on the vacuum |(Eg,s) Ep s m> we ge

(II.5.55)
- - + + 1
C2 = EO(EO k3] s{s }

the com-
This result follows from Eqs. (I1.5.53), (I1.5.54) and from

mutation relation:

- 5 (11.5.56)

L2.142).
whose validity can be chacked by use of Egs. (1 e by
The explicit structure of the Hilbert space J is given

T

—

A~
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Fs H & (11.5.57)
n=0
where 4 is the span of all vectors of the form

n n n
+
e @ L FE Y@z >
i‘l1+n2+n3=n 17273

(c & C)
nn,0, (II.5.58)

an is the Hilbert subspace of states_whose energy E is Egtn. In-

deed for any [§> € #, ve get

Bly, > = Egraly, > (1I.5.59)

It is alse clear that #, is a finite dimensional vector space

dim.ﬁ; < e (II.5.60)

The crueial point is that, in order for # to be a true Hilbert

space its states must have 2 positive norm.

lo>= 8 o > (11.5.61a)
2_ x 2
1ol = @ olf>0 fiw,I = < vlv, > (11.5.616)

This is guaranteed if the scalar products in all the #, subspaces

are positive definite

vy e < ¢n|¢n >>0 (31.5.62)

In thig case the Hilbert space # is composed of those series

{I1.5.61a) whose norm is convergent

°° 2
S gl <= (31.5.63)
a=0
We may also tolerate the presence of zero-norm states. If these exist
we define an Hilbert space 7, hys composed of the equivalence clas-

p
gses of all states module the zerc norm states

Honys = 1@ o A (pren, [yl =0 (I1.5.64)
Such a situation is typical of all massless theories and in particu~
lar of gauge theovies. The zero-norm states which are removed by the
standard procedure (II.5.64) are gauge degrees of freedom and their

subtraction leads to a shortening of the representation.

What we can never accept is the presence of negative norm states
(ghosts).

Hence before declaring that we have found the unitary irreduci-
ble representations of $S0(2,3} we must ascertain under which condi~
tions the space 4 does not contain negative norm states and is
therefore a Hilbert space. These conditions ave simply expressed as
lower bounds on the energy label Ej, relative to the spin s.

Let us first state these bounds and then give a sketcﬁ of their

derivation

a) For s» 1 there are no ghosts if and only if

Egzet 1 (17.5.65)
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Wherr En> s+l there are no zero-norm states and no representation
f) p

shortening ceccurs. The representation is magsive. For Ep= s+l we

have zero-norm states which can be decoupled, The corresponding

representation is massless and it is described by the appropriate
massless wave-equation.

b) For s=1/2 there are no ghosts if and only if

Bzl (11.5.66)

Decoupling of zero-norm states takes place for Ep=3/2 and Eg=l.
The first value corresponds to 2 massless representation described by
the massless wave equation (X1.5.18), while the limiting value Eg=1
is the so called Dirac singleton for which no field-theoretic inter-

pretation has been found and which has no counterpart in  Poincaré
theory.

c} For s=0 there are no ghosts if and only if

%o a-i— (11.5.67)

The zero-norm states are found for the special values Ey=2, Ep=1 and
Eg=i/2, Beth values Ep=l and Eg=2 yield the standard massless
representation described by the conformal invariant wave equation
€I11.5.13), while the lowest value By=1/2 is again a Dirac singleton

tepresentation with no counterpart in the Poincaré case and noe field
theory interpretation.

Indeed the best way to convince yourself that (Eg= 3/2; s=1/2)
and (Eaaz,l,; $=0}) are massless representations is to check that on
the corresponding Hilbert spaces one can not only implement the 50(2,3)
group but also the full conformal group 50(2,4).

Such a check was done by Fronsdal [14] and we refer the reader
to its work.
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Finally before sketching the derivation of these results given
in [14] and reviewed by Nicolai ip [26] we would 1iké to answer a
question we are sure the reader is "presently concerned w1th.. .

If Eg=l,l correspond to the massless s=D case and yield /z
samg value -2 for €, what do the other permissible va?ues 2Ep>1
correspond to? The answer is: to pegative but permissible squared-

2y d to be nega-
pass values. Indead in anti de Sitter space m is allowe

i i i e golng to
tive provided it is not too negative. This bound which we are golng

1 < . s ¥ t 4 f M ] : x

gra\ilti - It says that in anti de Sitter SPECE a Saddle P01nt 0£ a

P! cal l v ed Op 15
Otentlal T Stll be stable Pro id the Sl 2 Df t]le descent

not too extreme. .
i es
The reader will appreciate the value of this fact when he realiz

i ial i om below and
that in extended supergravities no potential is bounded fr

i i borin
no extrems are found except saddle g01nts. Coming back to the boring

¢} we just illustrate the procedure
Let 521 and

task of proving the bounds a), b},
with an example which is also rhe easiest: case a}.

i y um | {(E..8) B, 8 m>.
and consider the action of K1+i2 on the vacu | o 0

We can write

+ -
K iz} BgeSIEs®

i

>
R, <sml,ifs+l, mei> | (Eg,8)Eqtd, s+, mel

+

>
Ry <sal,lls, mel >|(50,s)20+i, 5, m+l

. 1>
+ R_<sml,1[s-1, med> | (Ey,8)Eq+l, s-1, m+ (II.5.68)

- efficients relating
where <s m 1,1| s', m+l> are the Clebsch Gordan co

i i te to a spin
the product of a spin (s,m) state with a spin (1,1) state p

» . s a ™
state In our norma izations Whl{',‘h are NlCOlai 5 NoTm liza
(sl o 1) 1

tions [26] we have

.'P\

NS



<sml,l|s+1, mel> ={£§iﬂ1¥l&§iﬂi§l.%

(2s+1) (Z5+2) (I1.5.69a)
« . ({5me1) (s-m). %
<aal s, mei> - - € Zsisel) (£1.5.69b)

<5mlslis“i, m+l> = (m}éﬁ
28 (2s+1) {I1.5.69)

Ry, BRp and R. are the reduced matriz elements and equation (II.5.68)
is a straightforward applicatien of the Wigner-Eckart theorem of
quantum mechanics.

[Re}Z, |Rp]? and [R.|? are easily calculated choosing in se-

quence m=s, m=s-1, m=5-2 and utilizing the commutator

- 4
(K152 K agp] = = 208+ 33) {I1.5.70a)

- - - +
Klgp == o) (T1.5.70b)

in the evaluation of {[Ky4 o](Eg,s) By s m>]jz.

The result is

2

1% = 2(8, + &) (£I.5.71a)
2

[Rol™ = 2(8, - 1 (I1.5.71b)
2

IRI%=2(Bg -5 -1 (II.5.71c)
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So we see that (I1,5.65) is a necessary condition for the absence of
ghosts. To prove that it is also sufficient is a much harder story
and we vefer the reader ta the literature [26], From (IL.5.71c)
however the appearance of pull-norm states, characteristic of
massless representations is immediately evident in the case

EO =g+l

The other bounds are proved with similar technigues.
Let us now call D(Eﬂ,s) the unitary irreducible representations of
§0(2,3) with the proper bounds on Ej impiemented and let us finally
come to the relation between this energy label and the mass-squared
mé, Taking into account Eq. (II.5.55), the second order field equa-

tion of a spin s field must be of the following form:

{cz(zjcov) - E4(E, - 3) - s(s + 1)}ws =9 (11.5.72)

where Cz({}CDV) is the expression of the 02 Cagsimir {11.5.3) in

terms of second order differential operators on the coset manifold

A4S = S0{2,3}/50{1,3) {I1.5.73)

Since []cov is a second order differential operator which is invar-~

jant and since thers is no more than one quadratic Casimir, we must

have

cz([]CG y=all o+ (11.5.74}

v cov s

where a and b, are constants. Now since P, can be identified with the

tangent vector I, dual to the vierbein the normalization coefficient

a is fixed by inspection of (II.5.3):
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€)= = =5 O, +b (11,5.75)

The constant by can now be fixed by comparison of (11.5,72) with the
field equation (II.5.40).

We take the appropriate massiess value Eg= s+l and we obtain

L 1 12
iy -2+ (s-1) +b = - e + szl
462 cov s 4§2 D cov 452 g
(11.5.76)
Hence we deduce
by = 2’ - 1) + g (11.5.77)
2 5
50 that
S 2 B
o ) =~ 2 O oy #2671 + 0, = By(B-3) + s(s+1)
(11.5.78)

We can now derive the Eg/m relation for each spin, Comparing succes-
sively (II.5.78) with (II.5.26), (1I.5.35) and (I1.5.38) by use of
(I1.5.41) we find:

2
%9
— = {E,-2)(E,~ 1)
@2 0 ¢

(11.5.79a)

(I1.5.79b)

{I1.5.79¢)
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¢ 26)2 3.7
3/27 _ 8 3
7 = BglBg=3) + 7 = g3y (11.5.794)
4e p
2,22 - (11.5.79%)
mzlhe = ED(EO 3
These relations are summarized for the reader's benefit in Table

Ir.5.1.
As we are going to see each 0sp(4/N) representation decomposes

into a certain number of S0(2,3) representations with energy labels
related by integral or half-integral shifts: these relaticns insert-

ed into Table T1.5.I reflect inte mass relations among the fields

belonging to the same multiplet.
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