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w®) o goP-1) | gplerld | (B (A.9)

with y®

=harmonic p-form. The proof that a, B, v exist is
difficult, whereas the wniqueness part is easy to settle, using the

semipositivity property of the imner product (see for ex. Ref. [6]).
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CHAPTER 1.2

o
3
M

RIEMANNIAN MANIFOLDS

1.2.1 - Introduction

We glready anticipated (Sect. I. i{é] tﬁ
of a manifeld M, will be developed u51ng the movin
the dual v1e§bexn (co)frame {V'}. :

We are aware of the fact that & rigb
geometry should be based on the theory of-_zher

for what concerns the theory of. connectlons and man
"mev1ng frame' dpprodc

However the essential 1dea of the Cartan

Riemapnian geometry is to reduce, as far as possxhle, problem of

Riemannian geometry to problems of linear algebra in’ vector spaces.
In this way it is possible to give a simple intuitive interpreta-

tion to a number of properties which are usually hidden, in the usual
tensor approach, under a plethora of indices, There are some subtle
points in the derivations of some important formulae which we will
neglect; these defects in rigour ave however greatly compensated in
our opinion by the gain in geocmetrical intuition., ({For rigorous and
complete treatments see the books by E. Cartan and H. Flanders}.

o

5

MY D o e
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AT AT T T

N
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1.2.2 - Geometry of the linear spaces

To illustrate how the method works we begin with the case of a

linear space B and then we extend the procedure to 2 smooth Rieman-

nian manifold Mn.
: 1
Suppose we have curvilinear coordinates (x!} on R ; the

tangent vectors at P to the lines < = const. span the naturai basis.

iy y x
It is convenient to use the symbol P to denote the position vector of

P referred to some origin in ®". Then the vectors of the natural

frame are given by

3
e = — D (1.2.1)
TR
I s
A]R n
-+ >
A
P >
|
Fig. 1.2.1

* .
Each vector at P can be expressed in terms of its local components:
-+

in particular the displacement vector gp is given by

- 2P (1.2.2)

Bx!’x

Instead of the natural basis (1.2.1) any other frame could work equally

well; in particular it is obviously copvenient to introduce a set of
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5
vectors {ei} which are orthonormal with respect to the n-dimensional

Minkowski metric ﬁij = {1,-1,...,-1}:
=M. {1.2.3)

{The choice of the signature (+,-,-,-,-} which, from a rigorous point
of view corresponds to the choice of pseudo Riemannian rather than
Riemanaian geometries, is motivated by our final goal which is the
theory of gravitation. We omit all the time the "pseudo".s and we use
Riemannian for pseudo Riemannian following a by now well established
t s 4 - x * 3 >
radition). .The frame {ei} is called the moving frame: it is related
to the natural frame {I.2.1} by z non singular matrix W (see Eq.
(Z.1.182}) '

N .
e =V e, (1.2.4a)

nogl L gl TR j
v - . RS
v i ; vivuwsi . (I.2.4b)

I S
Vi =V dx (I.2.4¢c)
Eq. (I.2.2) becomes:

. oaded WY 3 22
dP = dx" (v " ¥ i} E;G-P = V ei{P} . (1.2.5)

According to (I.2.4), the set of I-forms {Vi} is the vielbein frame
dual to the moving frame {ei}: indeed

1. S SRV IS I SN
V) = v‘u Vo) = 8 (1.2.6)
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e »
Notice that dP is a vectorial 1-form whose components along the basis
, . R —
Ei e v are 5;; in other words dP 4s that vectorial l-form which

gives the identity map of TP{M} onte itseif:

=+ -
dP(&,) = e. . 1.2.7
(e}) e ( )

The relation between two infinitesimally clese frames {gi} and
3 > . .
{ei4.dei} is piven by
#
&g, = — dx’ (1.2.8)
ax?

and since dgi is a vectorial l-form we find:

O i )
dei = ej W, (1.2.9}

where wlj is an infinitesimal matrix of l-forms:

o, o=, Al . (1.2.10)

Differentiating the orthonormality relation gi' €. =n,, and using

J 1]
(1.2.9) one obtains:
> - N r
d(e1 ej) = dei Ej v ey dej =
+ + k + + Kk
= - (ek -eJ wyte e w j) =
= - {mij + uﬁi} =0 (1.2.11)
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Therefore wlj is an infinitesimal "rotation" matrix of S0(l,n-1); it
is called the spin connection.

The Lorentzian group SO(i%h—i} emerges because of our choice of the
s?gnature {+,-y-4+..-,=). In an agbitrary signature {+,...+%,~,...-),
wlj turns out to be an S0(k,2) Lie algebra element and in particular
for the strictly Riemannian case (k=n, £=0) it belongs to SC(n).

We apply the d-operator to both sides of (1.2,5) and {I.2,9}; the
integrability condition d2 0 'gives the following 2-form equations:

avt - mjﬁvi‘ = 0 (I.2.123)

WAl = o . (1.2.12b)

The left-hand sides of these equations, RY and Ri}, are called the
torsion 2-form and the curvature 2-form respectively. In the R" case
they are identically zero. This is so because in Buclidean spaces,
such as R", it is always possible at each point P to imtreduce an

orthogonal matrix B such that each moving frame {Ei} can be aligned

a given fixed frame {3§0J}

y a0y L e e (1.2,13)

Then from (1.2.9) we get
w=-8B .

Eq. (1.2.8) says that the spin connection_gssogigted pp_;he gauge group.
50(1,n-1), acting locally on the aéving frame, is a pure gauge. Accord-
ingly, Bq. (I.2.12b) expresses the fact that the associated field

strength is identically zero.

R T T S

A

.

N

e

o

e,

LT T
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Let us now consider a vector field V defined over a regiom of

Bp; referring it to the moving frame we have

<+
4
¥

(I.2.15)

1k
R

i

Using (1.2.9) we evaluate the change dv due to an infinitesimal

displacement:
j ij i i jir
& = dv? Ej — Ji 35 = (dv - w 5v )ei (1.2.186)
where
. f ,
at - ut Y g (1.2.17)
i

L i
is called the covariant devivative of v

1.2.3 - The geometry of genersl Riemannian manifolds in the vielbein

basis

We want now to extend the formalism developed for the almost
trivial case of B to general manifolds. Suppose we consider an
n-dimensional manifold M~ on which a metric By has been defined;
according to the general definition given in Chapter I (see considera-
tions following Eq. (1.1.132)) M is by definition a Riemannian
manifold.

In the same way as we did for R at each puint P we set up an

orthonormal local reference frame {31} spanning a basis of TP[Mn):

(I.2.18)
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where nij is the Minkowskian metric on the tangent space. We insist
on taking only orthonormal frames simce we are going te introduce spinor
fields on Mn and since they are S0(1,n-1) representations., Therefore

we are forced to restrict the set of affime frames at P, related to
each other by elements of GL(n,R)

-y A3i A £ GL(n,R) {1.2.19)

to the subset of orthonormal frames related to each other by elements
of S0(1,n-1). In particular spinors cannot be described in the natural
frame {gu}. Indeed under a coordinate transformation the vectors
transform as (see Eq. (I.1.123}):

AY
O {1.2.203
't ax'M ax”

where the Jacobian matrix (va/axiu)p is, in general, an element of
GL(n,R}.
The relation between the moving (orthonormal} frame and the

natural one is obviously the same as in the Buclidean case i.e.:

T ooyM
R (1.2.21)
iu=vi3i (1.2.22)
ax

with vi and V! satisfying (1.2.45).

From now on we use only moving frames. The relation with the
usual tensor formulation which utilizes the natural frame will be given

afterwards.



Proceeding now in analogy to the R? case, We express an
e
infinitesimal displacement 4P in terms of the moving frame at TP{M]:
-

-
RS (1.2.23}

where the V' are the vielbein fields dual to the moving frame:

- vli1 o (1.2.24)
They are a basis for the 1-forms on the cotangent plane at P.

The notation E? for the infinitesimal displacement is due to
the fact that (I1.2.3) is not in general an exact differential since P,
contrary to what happens in the Buclidean case, is mot a function of
the coordinates. The same remark applies to the evaluation of the

¥ F >
change of the moving frame under an infinitesimal tramslation PP «dP:

> > 3
g3, - -ejuﬁi , (1.2.25)

where as in the Buclidean case
W, =, d . (1.2.26)

Since 53 and dgi are not exact differentials we do not expect the
torsion 2-form R* and the curvature 2-fom Rt defined by Egs.
(I.2.12) to be zero. Therefore on any manifold Mn we introduce the
concept of torsion and the curvature 2-forms by means of the following

definitions:
3 def ; i .
ROE -y v (1.2.27a)
..odef L. .
Rzl Y (1.2.27b)
where u}j En}k nkg. In general R® and R have non vanishing values.
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The metric tensor on Mn is given in terms of the vielbeins by
Eqs. (1.1.187-188), or equivalgptly it is defined by taking the square
of (1.2.23): 7

2202 iz gt i Ve Lz
(#P)° 2 ds” =V e e v ej = 1.!'1_i dx” e VU dx & ej =
2 nijv; vi it e dx’ . (1.2.28)
Therefore:
i A
gy = Vs vf} s (1.2.29)

We notice that the structure equations (1.2.27) could also be retrieved

in the following heuristic manner. Let us take the exterior derivative
of both sides of Eqs. (I.1.23) and (I.1.25}. We get:

a(dp) = dvié*i ot &, - @t - wij . vj)"e*i (1.2.308)

> + j + i
d(y) = - &, W, - s v -

1

) é'j(dmji . mjk . wki) X (1.2.30b)

where the 2-form components along the {gi} frame define again the
torsion and (minus) the curvature,

The reason we call this derivation heuristic is that in the
differentiation we have substituted the d-operator by ¢ when acting
on the moving frame. Using the same rule for the differentiation of

—e}.g‘: t:
i j—nij we get:

I +
dleg vyl = dey v ey + ey ey

1l

.
13
*
(1]
+
©
.

5
(1]
H]

WL {1.2.31)

P e R T o N

ot

o~ - R T N N B
i :

e

o

N S T S
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that is:

mij = - uﬁi . {£.2.32)
Therefore our heuristic arguments tell us that the conmection mi.
belongs te the Lie algebra of $0(1,n~1) as in the " case. In %he
sequel we assume the validity of (I.2.32). In this case u}j is called
a spin comnection. Differentiating both sides of Egs. (1.2.27), and
using d2 =0, we get the following Integrability conditions:

1

dt s - du’, o Vj b A de =
ki ]

= - (Rij * mik ~ wkj) AV mxj ~ (RJ + mjk ~ Vk) {1.2.33a)
coid, v ' a Y (1.2.33b)
i, k i ki i 2 k
dr i doy g~ i e di i* r Wy A j) ~ W 3°
i X k [
- WA {R 3 A, AW j) =
T T S (1.2.33¢)

Equations (I.1.33) are referred to as the Bianchi identities obeyed by

the curvatures Ri and Rij.

Let us observe explicitly that all the equations introduced so
far arve exterior equations and as such they are scalars under diffeo-
morphisms, according to Eq. tI.I.160). Latin indices are inert under
diffedmorphisms being indices of the local gauge group S0(i,n-1).

1

The same is true if we expand wlj, R™ and le in a local

cotangent basis v}

i1k

stV 1.2.34a
575k ¢ )
R =R, Vv ¢ (1.2.34b)
L R S A (1.2.34¢)
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Indeed the component fields mijlk’ Rika’ Rij§k2 have indices of the
Latin type and hence inert under diffeomorphises.

Let us collect our results: we started with a Riemannian manifold
Mn endowed with a local (orthunormal).moving frame and its dual {Vi}
in the cotangent plane. The frame (v} is acted on by the local gauge
group SO(1,n-i}. We also introduced a local connection 1-form mij.

The local geometry is described by:

i} Structure equations

ép = vt ¢ (1.2.352)
-;_u'a-j

g = - 3, (1.2.35h)
RE e avt oot oW (I.2.35¢)

PO wlk oo (1,2.35d)

ii) Bianchi identities: i.e. the integrability conditions of the

structure equations:
gt + wlj AR le ~W =0 (1.2.36a)

;- T L (1.2.36b)

mij ® - uﬁi . (1.2.37)

=0 . (1.2.38)

then Mn is z {Riemannian) manifold with a Riemarmian connection.
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In this case one can express the spin commection in terms of the
vielbein field. Indeed et us expand the l-forms w'. and the 2-form
v along the v!-basis:

a = cl}. v (1.2.39a)

: L Y . L2,
5 ilx {1.2.35)

Inserting in {1.2.38} we get:

1
cijk = E'{wik]j - uﬁjfk) {1.2.40)

where we have lowered the upper index with the metric nij'
Adding and subtracting the two equations analogous to Egq. (1.2.40),
but with ijk indices circularly permuted one obtains:

mij}k = cijk + cjki - ckij (1.2.41)

where we have used Eq. (I.2.37).

If one wants to express the spin comnection in terms of the space-
time derivatives of Vi, it is better to expand Eq. (I.2.38) in the
coordinate basis {dx"}:

i _ 1.3 i L j
B[UVV] 3 {us jguv\) W jlvvﬁ) . (1.2.42)

Converting the tangent index into a world index by multiplication with

Y R
nikvp = Vip’ we obtain:

i

ki L1 i ik
Vi vt = Lt iR N 2.
LS A I S CR T vV]; R TAA/SLI (1.2.43)

This equation can be solved as £q. (I.2.40) by permuting the wvp
indices. We get

11

87
AyY 1.2.44
“au © Gt * Fopn = Bup? Ve ( )
;
where
e o 1.2.45

Let us now explore the local gauge invariamce under the lecal Loyentz
group S50{1,n-1}.
Suppose we perform an S0(1,n-1) gauge transformation on the local

frames

g - ‘éjﬁji heso(ln-l) . (1.2.46)
From

g =3yt =gyt (1.2.47)
we obtain:

via {fx'}"}ijvj . (1.2.48)
Then from

de' = - &' (1.2.49)

(where we use 2 matrix notation) using (I.2.25) and {f.2.46}, we have:

- Bwh + Fdh = - Sl (1.2.50)

and therefore we can write

~

AT TN e

e

—

P NS e N N

P

P T

— T e

.
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I 1)1k kg ALl (dA}kj : (1.2.51)

The Tesult is that the spin connection w undergoes an 50{1,n-1) gauge
transfornation.

One easily finds that the torsien 2-form Ri and the curvature
2-form Rij transform in the vector and in the adjoint representation

of S0(1,n-1} respectively:

gt (A“‘)"‘}. rJ (1.2.52a)

R =(A“1}lk i (1.2.52b)
Next we compute the change of a vector

{1.2.53)

wnder an infinitesimal displacement. Differentiating both sides of
(£.2.53) and using (I.2.25}, we find:

& = 'éi(dvi ; wijvj) (1.2.54)

Hence we define the SO(I,n-1) covariant exterior derivative of v by:

(=5
-
La

oy dvi-ufjvj ) (1.2.55)

(In the following it will be referred to as the Lorent:z covariant
derivative].
Indeed taklng into account Eq. (I.2.48,51) @v transforms in the
Same way as W,
We can ext§n§ the notion of covariant derivative to any tensor-
1.i,...

valyed p-form ¢ 12 . s as follows:
JIJZ"‘

v, =@ T X T
Jgdgees Jqdgee k Jgdgees

-, ¢ s e (1.2.56)

and verify that this is indeed a 50{1,n-1) covariant derivative,

As we have already pointed out ore can also introduce p-form
fields which are in spinor representations of the tangent group
80(1,n-1}. Let ¢ be one such field in the lowest spinor representa-
tion and let

21
{"ij -3 [I‘i,l"j] (I.2.57)

be the loventz generators im the spinor representation, with I Dirac
y-matrices for 80{I,n-1). Then

1 ij
Gg = do - =w, . 770 1.2.58
et { )

is the covariant derivative of the spimorial p-form 0.

This can be easily checked using (I.2.51) and
(1.2.59)

where L and A are elements of 50(1,a-1} in the spinor and vector
representation respectively. Quite generally for a p-form A with
indices in Egz‘representation D of 80(1,n-1) the covariant deriva-

tive is defined by:
P S I D(T, )4 (1.2.60)

where D{T, ) is the representation of the generators T'j of
80(1,n-1). We shall come back to this general formula in Chapter I.5.
Using the lorentz covariant derivative the torsion 2-form is

rvewritten as follows:

gt = oV (1.2.61)
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and the Bianchi identities (I.2.36) become:

R, = 0 (1.2.62a)

aR* + R‘J. ~V =0 (1.2.62b)

g ) e i
iet us make the symmetries of the intrinsic curvature temsor R il

jik%
explicit; from Eq. (I.2.34c) one immediately gets
i _ i
lekﬁ—ﬂ Rjiﬁ( {I1.2.63)}
and from the metric postulate (I1.2.37):
Rijlki s - Rjilkz . (1.2.64)

Furthermore, when &', is a Riemannian connection, that is when Eq,
{1.2.38) holds, from (I.2.62b}, we get:

Rij = (1.2.65)
_ Expanding along the vielbein basis we find

ik b
R~V avi=0 (1.2.66)

which gives the cyclic identity:
i i i _
R jli(p: + R kfﬂj + R lljk =0 (1.2.87)

By repeated use of Egqs. (I1.2.63), (I.2.64) and (1.2.67) one also
derives:

N
Rislre ~ Balis = Paglke * Balie Mgl ©
= Ryjlxe & Rikigg = Rjkjes © " Muafje " Byk]ea ®
= Ryspgn * Ryglax * Byapee) -
* Reg sk * Regpra? * Nijw ®
== Rordig * Ryile T
“ - Riih * Rl (3.2.68)
Therefore:
Rij ke = Beg (1.2.68)
From Rij]kz one may construct the Ricci tensor
Rijlik ot Ry {1.2.70)
which turns out to be symmetric im j,k, and the curvature scalar
i ayg Tro. (1.2.7)

Because of the aforementioned symmetry properties any other contraction
possibility gives at most a change of sign with respect to definitions
{1.2.70) and (I.2.71).

1.2.4 - Relation with the standard world-tensor formalism

Up to now all the fields defined on M have been expressed in

terms of their components along the vielbein basis so that all the

N o~

—~

o~

A,

~—~ L
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indices tramsform linearly with respect to S0{1,n-1}. Of course it is
also possible to use the natural frame {gu} in the tangent plane and
its dual {dx"}. In that case we get the description of the classical
tensor calculus where all the indices transform covariantly with respect
to a change of local charts.

We give briefly the expression of all the geometrical temsors in
the natural frame and their relation to the same objects in the intrinmsic
frame. In the natural frame {3? Egu} the relation between two infinite-

simally close frames is given by

oz M
dé’v =&, {1.2.72)
where*
r“\) = ?u\)ip dxP (1.2.73)

is called the affine connection since it makes the transition between
two frames {8 } and {3'} related by an element of GL{n,R}.
Proceedxng as before we can define the torsion 2-form R and the

curvature 2-form Ruv by the replacement

vl gt (1.2.74)

i,
wy e T (1.2.75)

Accordingly in the natural frame the torsion is:

Moo aed) + z‘”v PR T O AR T (1.2.76)

vlp

* Notice the change of sign in (I.2.72) with respect to (I.2.25) in
order to adhere to the usual conventions in the world tenmsor
formglism (see e.g. Ref. 17},

o3

The antisymmetry condition (I.2.37) becomes:

R R S>>
dguv 2 d{e;‘t ev) = deu e, t eﬁ -de“ =
R I S S e+
+ ep T gev * e!.i epP v {(1.2.77
that is:
4] I -
dguv - T ugpv - T Ugup =0 (1.2,78)

which is the metric postulate in the coordinate basis,

On the other hand the condition R"=0 defining the Riemannian
connection, upon use of Eq. (1.2.76), yields the symmetry properties of
the Christoffel symbol

H
oo
Top = Tov { v } (1.2.79)
where
U
-1 one
{vp} "2t ¢ acgvp * apgcv ¥ avgap} : {1.2.80)

Eg. (I.2.80) is obtained from (I.2.78) in the same way as we cbtained
(1.2.4%) from (I,2.39).

Finally the curvature 2-form becomes

Hoo_ oapd M p :

R v = dr vt T 0" T v e (1.2.81)

Expanding along the natural basis we retrieve the definition of the

Riemann curvature tenser

PSSR W LTI ot A . vt B (1.2.82)

u =u?--
R vipe 3 { pove ~ fgtup T Thpve T TaoTvp
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Let us now perform a change of local chart; in local coordinates

X° = xlixi,...,xn) . (1.2.83)

Recalling our discussion of vector fields and forms, the natural frames
and coframes transform as follows (Eqs. (1.1.123) and {I.1.161}):

b «1v
= @70, (1.2.84a)
dtsF = J“v dx” (1.2.84b)
where
1
I
U 9x
S =~5~;{,~£GL(n,R) . (1.2.85)

Eq, (1.2,84) are analogous to Egs. (I.2.46) and (I.2.48). Therefore a
coordinate transformation iaduces a local gauge transformation of
GL(n,R) on the basis frames. With the same procedure used in deriving
Bq. {I.2.51) from Eq. {I.2.49) one finds the transformation of Puv
under a change of local chart:

()%, =+ 3@s« 137t (1.2.86)
Correspondingly we have:

L ]
RH= J“v R’ {1.2.87a)

N e Y+
R v-JpRU(J )v {1.2.87b)

Proceeding in the same way as from Egqs. {1.2.53) to (I.2.55) one finds

for the 6L{n,R} covariant derivative of a vector field:

s LR L i A e e

85
LR VRS LN (1.2.88)
The extension to a general (k,ﬁ)-tensor field is:
Wy by Hyeo oty By Py
VA N v = A v v ? T A N vt
1" 12 P 17
Peon il
P pt kv St . (1289
v PV5ee Yy

We stress that we cannot introduce spinor fields in the GL{(n,R)-
covariant basis {ap}.

Let us now observe that the formula (I.2.24) giving the change of
frame from the natural to the intrinsic basis can be thought of as
induced by a coordinate transformation from a general basis ' to
an orthonormal basis Vi, V; being an element of gL(n,R). Conse-
quently the relation between the spin connection wlj and the affine

connection Puv is given by the law (I.2.51}:
R R T S L a 1.2.90a
I o= viwjvv+vi,dvv ( )

N L L AT (1,2.90b)
W vlurvvj v, avy

Muitiplying (I.2.90a) By VklJ we find:

S R AR T L (£.2.91)
av MR jV v v uP v 0
Taking into account Eqs. (¥.2.55) and (1.2.88), Eq. (I.2.91) can be
interpreted as the vanishing of the combined Lorentz and GL{n,R}
covariant derivative on Vlu.

&n analogous equation follows from (I.2.80b) for the inverse

vielbein.
Finally we observe that the relation between objects evaluated in

the coordinate basis and in the intrinsic basis is given by the inter-

T

SN T

P

R s

— e

I T e

P

.
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twining vielbein matrix Vlu: every coordinate index can be transformed

into an intrinsic one by Vlﬁz

i.

FLIERIRT: SRUIED (1.2.92)
e TR
and vice versa
e alee (1.2.93)
In particular
i, = i, . IO R TRV AU
R ”ij"lu" FYARE W (1.2.94)

where we have used Eq. (1.2.29).
Therefore coordinate scalars are also Lorentz scalars and vice

versa.
Other useful relations are the following omes:

gl - viu 7 (1.2.952)

A = v“iml (1.2.95b)

where @ and V are the covariant derivatives in the tangent or
natural frames respectively.

Eqs. {1.2.95) can be proved by direct computation using Eqs.
(1.2.80}. Notice that the affine connection entering (I.2.95) is
symmetric in its lower indices which implies that the tersion R is

€10,
Therefore (I.2.95) is mot true in presence of a nonvanishing

torsion.

CHAPTER 1.3

GROUP MANIFOLDS AND MAURER-CARTAN EQUATIONS

I1.3.1 - Introduction

In this chapter we discuss Lie groups from a differential geometric
peint of view. As in previous chapters we just give those main defini-
tions and properties which are relevant for the subsequent developments;
previous knowledge of group theory is required,

The chapter is divided in two parts; in the first (Section 1 to 6)
we concentrate on the study of those properties which are peculiar to
group manifolds, like the existence of left- and right-invariant vector
fields or 1-forms. This leads to the discussion of the Lie algebra
associated to Lie groups and to the dual comcept of Maurer-Cartan egqua-
tions. Within the same framework we shertly discuss the adjoint and co-
adjoint representations of groups and zlgebras and the Killing metric;
finally a short account is given of the Riemannian geometry of semi-
simple group manifolds.

The second part of this chapter is devoted to the study of mani-
folds which are locally diffeomorphic to group manifolds. They are



