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PREPFPACE

The theory of categories was introduced by Eilenberg and Mac Lane in
1945 [4] 3 it arose from the field of topology. It was soon realized that
other mathematical theories s,a well could profit from their invention.
This was initially the main reason for the increasing interest in catego-
ries, The applications brought soon attention to problems peculiar to
the theory of categories, which in a few years grew enough to become ano-—
ther area of mathematics. Even so, the now widespread interest in catego-
ry theory seems still to lie in the many virtues of its applications, such
as its unifying character, elegant and concise languaje, fruitfulness and
emphasis on results involving stiructure. This led to the idea that cate~
gory theory might provide a more suitable foundation for mathematics than
set theory. To carry out this program it was necessary to have also a
theory of the (meta)category of categories. Lawvere {17) has recently |
provided such a theory; this seems to be the proper framework in which
to develop mathematics on a categorical basis,

An important step in the program of categorizing nathematica has been
accomplished by Lawvere himself [16] upon reformulating set theory in
terms of categorical concepts alone, namely, those of mapping, domain,
codomain snd composition.

I:; thig papsr we study a class of categories closely related to the
category of sets and mappings. An essential preraquisite wili be an
acquaintance with [16] o To study this class of categories we introduce

what we call regular categories, which are weakened abelian categories ,

ix



especially as axiomatized by Freyd [8) , so that (8] is alsoc assumed as

a prerequisite. A general knowledge of category theory is required as
well, Among the various sources, Freyd [8] , Mac Lane [22] and Mitchell

[ 23] seem to be the more introductory onmes. Also, an acquaintance with
the literature on adjoint fimctors, starting with Kan [13] and following
with eeveral others , e.g., Freyd {6 , 8], Lawvere {34], vill be assumed

The formation of functor categories is one of the basic comstructions
in the (meta)category of categories, Given any two categories JG and

Y , the functor category denoted by J/‘x bas as objects all func-
tors with domain J% and codomain Y and as maps, all natural trans-
formations between these. We will be concermed in this paper with &
special type of functor categories : 1;630 ;or which the codomain catego-
fy is ,d s the category of sets and mappings.

A motivation for this choice can be found in i;he following 3 any cate-
gory with small hom-sets is & full subcategory of a category of this type.
Bxplicitly : if the category X has small hom-sets, there is a bifunc—
tor HOM + X% X —== of , vhich induces by exponential adjoint~
nesa a functor H: x —-""J x: The latter is full, faithful and pre-
serves all J.eft roots existing in x s it is called the regular repre-
sentation of x o

Bowever, if x is not small, then J x*ﬁll aot have amall hom-
-sets, and thus a not very manageable category. Fortunately there are
many interesting categories which, though not amall admit a regular repre-

sentation into a category with emall hom-sete. These are categories

vhich have a mmall subcategory , let _A cipx be the inclusion funo-—



tor, and such that the composite functor )
X M X AL 4

is still full and faithful. The functor is called the subregular repre-

sentation of X over #A , and A is eaid to be an adequate subcate-
gory of x » 'Therefore, if we restrict ourselves = as we will= to the
study of categories of set valued functors with amall domain category,
the class of categories admitting a representation as full subcategories
of these does not reduce to the class of mmall categories, The broader
class of categories with adequate subcategories are investigated by
1sbell 112] and it includes, e.g., every algebraic category in the sen-
se of Lawvere [ 14 , 15): in this case, the dusl of the corresponding
algebraic theory is canonically embedded as an adequate subcategory.

Every category whose objects are all set valued functors with a gi-
ven small domain category is seen to be equivalent to a category of dia=
grams in ;(S with a given diagram scheme (Grothendieck [10], Mac Lane
{21] , Mitchell [23] ). This suggests the name “diagrammatic® or
" J - ﬁMﬁc' for these cgtogorioe. we adopt throughout this
paper the name "diagrammatic® for any category of the fom Jﬁf G, with

C any mall category.

In chapter I we study diagrammatic categories in general, simulta-
neocusly comparing them with (S , Which is the basic diagrammatic catego-
Yo

The aim of chapter II is to characterige abstractly the class of dia-
grameatic categories, We first introduce the theory of regular categoris,

the name being suggested by a consequence of the axioms according to which



xii

every map factors uniquely into an epi followed by a mono, and which is
usually called a regularity condition. It is strong enough to exclude
most algebraic categories, and those which satisfy a regularity condition
are called regular. All diagrammatic categories are regular, and they
are by no means the only regular categories : all abelian categories are
regular as well, and none is ﬁmtic. Therefore, if we hope to
characterige diagrammatic categories from regular categories, the strenght
ening of the axioms has $o be done in a different way than abelianess.

At this point we notice a striking analogy between the regular repre-
sentation theorem for any category with a amall adequate subcategory, and
the representation theorem for Boolean algebras which says that every Boo-
lean algebra is isomorphic to a field of sets. Thus, if we let regular
categories with small adeguate subcategories cor;'espond to Boolean alge-
bras, then regular categories of get-valued fumctors with a amall domain
category (not mecessarily all such functors) must correspond to fields of
sets if the analogy between the two theorems is to be mantained. Also,
fields of all subsets of a set must correspond to diagrammatic categories.
It is now that the analogy gives some fruits : since the fields of all
subsets of some set are precisely the complete atomic Boolean algebras,
we might try an analogous characterization of diagrammatic categories,
With the analogy in mind, we first stipulate which objects in a regular
category should be called "atoms® , and with this, when should a regular
category be called "atomic” , It turms out that complete atamic regular
categories have the atoms as an adequate subcategory, so that the existen=-

ce of a amall adequate subcategory need not be postulated before. And
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what is more important, completé atomic regular categories are precisely
the disgrammatic categories, That is, juat as any complete atomic Boolean
algebra is isomorphic to the field of all subsets of the set of its atoms,
so any complete (right-complete is encugh) atomic regular category is iso-
morphic to the diagrammatic category with domain category the dual of the
full subcategory determined by its atoms. 4

In chapter III we aim at the queation of when are isomorphic any two
given diagrammatic categories, vhich is the same question that Morita (24)
asked for categories of modules (see also Bass [2] ) . Por this purpose
we first atudy functors between diagrammatic categories which have adjoint
or coadjoint, Our results can also be found in André [1] , though the
methods of proof are different , as 2 result of dispensing with generality
from our side., Next, we use these results to establish, as Preyd noticed
in [7 , 8} , that it is not the small domain category which determines
completely the functor category (in his case these were categories of addi-
tive group-valusd functors) but its amensble closure, The main theorem
of the chapter is called "Morita isomorphism theorem for diagrammatic
categories® and states that any two given diagrammatic categories are
isomorphic iff the idnpoten’b-eplitting clusures of the corresponding small
domain categories are isomorphic, This is used to investigate the ques-
tion of t:ihe uniqusness of the representation of a category as & diegram—
matic category.

Chapter IV ie a study of the algebraic side of every algebraic catego—
ry. For this we need the theory of triples and triplsble categories as

introduced and developped by Huber, Beck, and Eilenberg and Moore, To



avoid further requirements, we review briefly the ideas employed in the
chapter, We next discuss some relations between triples and cotiriples
which form an adjoint pair as well, and use this information to find out
which ard all coadjoint triples in ,qu « They are given by all sets,

so that Coadj Triples(gd ) = A *, gince the correspondence is contra-
variantly functorial, Om the other hand, adjoint triples on d are given
by monoids. Similar queat:i.ons‘ arise for categories of the form d T ’
with I a eset , regarded as a discrete category. Adjoint triples on a
category d T , are given by all mmall categories whose set of objects
are isomorphic to I . And the diagrammatic categories with these

gmall domain categoriee come close to being the algebras of the triple.
Actually, to see better which are the algsbras, we introduced the notions
of relative category and relative functor, These ideas have further po-
tentialities which are beyond the scope of this paper,

Some notations and ;bnventiona are the following : (1) small catego-
ries will be denoted by A, B, C, - ,.K.,Y, Z; (2) arbitrary cate-
gories will be denoted by 2f, B, G, X.Y.Z; 3 gr.f will
alwaye denote the category of sets ; {4) the mmall categories which are
preorders will be demoted by O, i 2. 3,... 3 (5) emall categories
which are disérete will be denoted the same way as sets are , by 1, J,
K, etc, 3 (6) [E uthecategoxypicturedﬁuss -G' 3
(7) the set of objects of a mall category @& , will be dencted |G 1 ;
(8) the duml of any category 54 will be denoted ;ﬂ* 3 (9) composition
of maps is denoted in the diagrammatic order , and evaluation is on the

left 3 (10) the identity map of the object A is either 1, or A



Chapter 1
DIAGRAMMATIC CATEGORIES IN RELATION

TO THE CATEGORY oF SETS

Let (l: be a fixed but arbitrary small category. We denote by .6 the
category of sets and mappings, and by ABC the category whomse cobjects are
all covariant functors C —ué and whose maps are all natural transfor-
mations between theme, For reasons given in the Preface, any such category
will be said to be diagrasmatic., Our aims in this chapter are: (1) to des-
cribe properties which are common to all diagrammstic categories; (2} to
determine the extent to which these properties rely on propertiea of,d ';

" (3) to investigate the range of validity in the class of diagrammatic cate-

gories of the axioms of Lawvere's elementary theory of A .
§ 1 - FINITE ROOTS

A category x is said to have finite roots iff for every small category
such that its set of objects is finite, and letting A\ be one such, the
tunctor ———+ 02 induced by the fumctor A — >4 , has both a
coadjoint (insuring the existence of left roots) snd an adjoint (right fini-
te roots). It has been shown ( (8] , {14] ) that it is enough that the cai-
egory has terminal and cotersinal objects (LA @© ), binary products
and coproducts (A = ‘2') and equalisers and coequaligers (Ac2E)
gor it to have all finite roots. Among the finite roots are finite products

and coproducts, pull-backs and push-outs, images and inverse images, unions

1l



and intersections. We now show that any diagrammatic category has finite
roota.

Proposition 1,1 For any small category c, Achaa finite roots.
Proof:
A terminal object for AG is given by the functor which is constantly 1 ,
where 1 is the name for the temminal object in A . A coterminal object
is given dually and denoted O .
Given any two functors P and G we define (PXG, pps pG) as followss
let C(FX G) = CFXCG ; (pplo= Ppp and (Bg)g = Pgg ¢ for oy ce|C).
1f C-EPC' is a map in C s lot x(P X G) = £ where f is the unique

map which renders commutative the following diagram:

ka CF . SF - C'F
CF x / f — C'PxC'G /K?'
\ \%.

6 cG xG - C'G

By the way x(P x G) is defined, this says not only that PXG is a
functor, but also that Pp ¢ PXG——F and | A PXG—>GC
are natural trapsformations. Dually one can define the coproduct F+4 G
together with the canonical injections i!' and iG .

Giwen any two natutal transformations 7 and ; , we want to define
their equaliser, For this, we look again in each coordinate , and let
oc = BEq (7g, ¥¢) for each C€ |@|. vo show next that the famidyr
so obtained can be made into a natural transformation e which moreover

is the equaliser of 7) and § . Por this we first define a functor , the

e *
domain of e as follows : let CE = Ec where Bc C.'CP%*CG



is an equalizer diagram. If C—=»C' is a map in C y let xE

be defined as the unique map f : CE—C'E such that fe,, = ec(ﬂ').
That this map f exists and is unique follows froe the universal property
of equaligers together with the following identity:

(og(xE)) er= op (B ) = e (7p(x8)) = (o5 7 )(x0) = (ep §p)28 =
o (€0 = op ((7) Bei) = (op () e

With this we have that E is a functor and e s E —F & natural trans-

formation and it is inmediate to see that it is the equalizer of 7) and g .

Coequaligzers are dually defined. QED .
§ 2 - THE EXISTENCE OF A GENERATING FAMILY

In d , the terminal object 1 is a generator. Arbitrary diagrammatic
categories need not have a generator, but they always have a generating fa-
mily of objects. We will show that the generating property of a particular
generating family in each diagresmatic catogorjr is a consequence .ot the ge-
nerating property of 1 in IES .

A8 usual, a functor is said to be representable and denoted by llc if
it is C&lc Iwhich represents it, iff 3t is naturally equivalent to the
functor HOM(C, ). The femily of representable functors in any diagramma-
tic category has the size of the domain category for the functors. e want
to show that it is generating, for which purpose we need to state and prove
(tor reference) a lemma due to Yoneda.

Lesma 2.1 (Yoneda) Por any small , , any ¥ n;dc , and any

c¢|C], (@, Pnat = cr @ Mg (1, CF)



Proof:

Lot @ +(iC, ?) ——>CP be defined for 0 € (8%, B) by NP = 1,7 €cF
s ') ' "’ ch

Let V)'z cr ——)-(Hc, P) be defined for %€ CPF as the natural transfor-

mation s'l.f: Hc—y!' defined for x € C'Hc = HCH(C,C') by

syl = s(xF) and naturality follows since for any ¢ e

the following diagram commutes:

(2Y) 0
c'u® Ve o C'F
yﬂc l l.ﬂ'
(=
cwa® Vler 5 C'F

That it is so can be seen as follows: let x € HOM(C,C'), arbitrary.
Then we have that x(z )., (3F) = (x(syg,) 58} = ((xB)GF)) =
- (P = P = EENEP = HEE P -
It is now easy to verlfy that both Y and W are identities., QED .
Theorem 2,2 For any mall {{ , the family {nci ce|C] **
generating for dc .
Proofs
Given any two natural transformations F 2:¥ o guch that they are
different, there must exist at least a C¢|@} | for wnich 7 £ €o -
This inpliss that there exists a mep 1 —>, CF in % , such that
2T # 5§ - By Yomeds, let s :i°—» P be the corresponding
patural transformation. Ve want to show that (syn7) # (sy§ .
This will be so irf 3 C'¢|@ | such that (sY) ) #é Wer Eor-
Take C' = C. Por (sY),?), to be different from (s W) §o

it is emough that there exists x € HOM(C,C) for which x(sP), 7o be



different from x(z'yr)c Sc* Let x = lc , then we have that

(1 (P)PTPe= BN T= 3¢ # 25c = (U =0 P Ee

which implies the desired result. QED .

§ 3 - EXPONENTIATION

A category with products is said to have exponentiation iff for any
object A the functor A X{ ) bas a coadjoint, denoted ( )Jl .
The category of sets has exponentiation and for every set A , we have
that { )‘l = HM(A, ). However, gd is the only category in which
exponentiation is given by HM , precisely becauce ( )* has to be
an endofunctor:while the only category for which HM (4, ) is an endo=
functor for every object A , is d » All diagremmatic categories have
exponentiation. However, the proof that it is so is not straightforward
as the proof of the existence of finite roots was, and this is so because
exponentiation is not defined coordinatewisely.

Theorem 3,1 Por any mmall { , and any object F mgda" the

endofunctor P X ( ):é ___,.,JG has a cosdjoint,

Proof: -

Define a fumctor ( ) ;dc'_,dc.a follows:

if G is any object of 5‘5‘:, let the value at C €|‘E| of GF be given
P C

by ce = (BXP G .,

and extend it to the maps C —»C!' in the obvious fashion so that it be-

comes a functor. We can now define a natural transformation

!XG'__E.'._v,—G



called evaluation , as followsr given C € |@|cne has to say what is

ev, ¢ CF X c(c’)_».cc, that is, ev, : CP x(ncx P, G) —CG
. ¢

If 2€CP and 1) € (H' x P,G), define (z,f,)evc = (10, z) e+

If CL)- C!', there are induced maps CF-E—p-C'F and

(@ P, ¢): @ xP, 6 (8" x P, 6) and these two induce

PR (Ex )0 Px (@ xPe) — cFx (E X P06,

and the following diagram is commutative:

av

cP x (B x P 6 ¢ > CC
xF x ("% ¥), G)l lxc (%)
1 oV 1
cpx (8% P, Q) ¢ - C'G

To see that the diagram is commutative we take any 5&CF and sny
Ne (&° x P,G), and travel in the two orientations. We have
(5,9) ovp () = (1g.8) Na(z0)  ana
(29 (2 X((E" X B),@evy, = (s(zF) , (" x M)Ylov;, =
. (g » SEE X DY), = (5 5(2)) N
¥o now use the fact that 7) is & naturel transformation , 6o that the follo-
ving diagrsm commtes:
i x cr Tc . GG
X 1P l l 6
I AR [
and 0, for 1,6 CH° and 5€ iF, this says precisely that
1o DN () = (g @RI Y= (x, (xP)) g w0 that (%) above

is commutative, and 80 eveluatiom is indeed a natural transformation.

¥e still have to show that ( )' is coadjoint to P X ( ), snd it is

for this purpose that we will use the evaluation map Just defined,



Suppose given any functor H and a natural tranéformation h:PXH —_—G
to show that there exists a unique natural trensformation ¥ 3 H-'-’rGP

such that (F X¥lev =h , i.e., guch that the following diagram is comau-

tative:
F X 1§
SR
r X G bl

Let  be given for each C €l@las follows: if ye€Cd,

1t y(5.) € (& X P, G) be glven by , for x' € o’ and z'€C'P
1et (x*, 2') (7 Ec)c. = (g'(x'P), y)h.

Ve verify now that (PXE)ev = b: given ce|Cl), secr and ye CE
then ((g, Y)(? XE)ov, = (= ¥Eclev, = Uy B8 = (s(1F), y)b =
= (3, y)b. The definition of & was forced to make the diagram commute and
it is easy to see that it is the only possible choice. QED .

A functor which has a coadjoint preserves all right roots that exist,
so that the existence of exponentiation for any diagrsmmatic category implée.
that products distribute over coproducts and that products preserve coequa-
lizers.

It is known that it  is any emall category, the regular represemtatim
sunctor 8: @ ———-)-gfsc'deﬁnedby cE = HM( , C), is full and
faithful and preserves all left roots which might exist in @ . 1In fact,
i¢ ) 1 not small, but has a mall adequate subcategory (Isbell (12)1). A,

the subregular representation functor of 3( over .A , vhich is just the

: *
composition Ao H ,dx 3 is by definition, full

and faithful and it preserves 1eft roots since each of the composite funo—-



tors does.

Vhet is not known is that if exponentiation exists , then the regular
representation functor or the subregular representation functor preserve it.
Ve prove two separate theorems to that effect:

Theorem 3.2 Let C be emall and with exponentiation. Then, the

regular representation functor H: G _ ;dc'* preserves exponentia-

tion. ’
Proof:
Let A and B be objects inc , we have to show that

B(BA)=(.B‘)H ¢ mt = H.BHA

By definition, given C€\Q]l ¢ Rgh) = Hon (C, ') end
¢ (BFA) = (BgX B, Hy) ¥ (8, .8 ) ¥ EM(CX4,B)
And since G is assumed to have exponentiation , we have that
HM (C XA, B) ¥ BM (C, 3" ) which finishes the proof. QED .

Theorem 3.3 Let x be any category and let A be an adequate sub-

category of r . Then, ﬂevr bas exponentiation, the subregular

representation of r over .A , that is, the functor
¥ H 4 e 4 ;JA*

preserves exponentiation.

Proof:

Let X and Y boanytuoobjectsinx We have to show that

~ e ¢ cud’ ))“‘3‘“ ) et ag LAl , srvitrary.
Outhe one hand, A (Y(H .d‘w)) = 1(3&9&3 - 4 3* ByX) = HOM (ag*, T ).
On the other hand we have:

AlrE .di')* "

(B, X J*Hy , 3= B) ¥ (3 B, . x 3* By , J* ) ¥



o 3*(H‘3.an.H ) o g% (B, oy By ) % HOM (%Y, X) =
gnm(u ). Q.

§ 4 ~ AUTONOMY

An autonomougp category (Linton [181 ) ie a category d together with

')‘J;J‘— r‘J

and a forgetful functor

v .

guch that the following tringle is commutative:

o*e A0 o

Moreover, there is a law of compositinn for J ( , ), which is given by

a bifunctor

a collection of maps , one for each triple (A,B,C) of objects in d , and
which is natural in each of the three variables, it is associative and be—
haves well with respect to a ground objeet if there is any. The domain and
range of the maps are

: d(n, c) . —.-9/( af(a. B).QV(A, c))

With the above one can introduce "tensor products® as follows: let

L‘:gf__,.d be deofined by BId = gffa, B . for any A and B ingff .

Given A and B , consider l.Jl and I-B . If we aseume that the com-

position I.Jl LB is representable, and denoting the objects which represents

it by 4 ® B, we have that
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