[^0]University Microfilms, Inc., Ann Arbor, Michigan

CATEGOAIES OF SETVALUED FUNCTORS

Marta Cavallo Buge

A DISSERTATIOM II

MATHEAATICS

Presented to the Paculty of the Graduate School of Arta and Sciences of the Oniversity of Pennsylvania in Partial Fulfillment of the Requiremente for the Degree of Doctor of Philosophy

1966

Supervisor of Dissertation
$\frac{\text { Os can Qoldua }}{\text { Graduate Grouf Ghairman }}$

ACKNOWLEDGEMENTS

I wish to express my gratitude :
to Prof. Poter Freyd, for having introduced me to the subject of categories as well as for his encouragenent while I studied at the University of Penneylvania ;
to Prof. William Lawvere, for his inspiration in the writing of this paper and for his supervision while I was working on it b at the E.T.H., 2Birich;
to Professors Fwil Grosewald and Joachin Lambek, for their encouragement, and
to Prof. Beno Ecknann , for his hospitality at the Mathematisches Insm titut , S.T.H., Zairich .

I N D E X

Abstractly exclusively unary, 32	Exponentiation, 5
Abstractly unary, 31	Finite roots, 1
Mdjoint, 98	Ground object, 110
Ajjoint cotriple, 100	Idempotent (object), 33
Adjoint triple, 100	Idenpotent (map), 85
Atom, 57	Idewpotent-splitting closure,86
Atomic, 62	Induced map , 43
Autonomous category , 9	Induced pair of maps, 44
Balanced category, 52	Internal coproduct,product,36
Canonical exact diagran, 63	Jointly epi, 56
Category in a category , 116	Kernel pair ,44
Category with multiplication, 110	Monoid in category, 114
Characteristic morphiam, 22	Begular category, 52
Coadjoint cotriple, 100	Regular coinage, image,48
Coadjoint triple, 100	Regular epi, mono, 44
Coinduced map , 43	Regular factorization, 49
Coinduced pair of maps, 44	Relation , 44
Cakernel pair , 44	Relative category, functor,116,119
Congruence, 44	Special Subfunctor, 23
Convenience ariom, 53	Strongly connected, 16
Corelatioy, 44	Triple , 97
Diagramatic category , 1	Tro-valued functor, 49
Eract diagram , 63	Unique regular factorization, 49

TABLEOFONTEMTS

Chapter I . DIAGRMMATIC CATEGORIES IN RHLATICN TO THES CATEGORI OR SETS
$\oint 1$ - Finite Boots 1
§ 2 - The Existence of a Menerating Family 3
§ 3 - Exponentiation 5
§ 4 - butonong. 9
§ 5 - The Eristence of a Cogenerator 12
§ 6 - Hegularity, Projectives and Injectives 17
$\S 7$ - Special Subfunctora 21
$\S 8$ - The Range of Validity in the Class of Diagramatic Categories of the Arioms of Lawrere's Elementary Theory of the Category of Seta 26
§ 9-Completeness 35
Chapter II . THE THEOIX OF REGUAR CATGGORIES AND AN ABSIRACT CHARACTRRIZATIOA OF DIAGRAMMATIC CATEGORIES
§ 10 - Regular Categories 43
§ 11 - Atoms in Regular Categories 55
§ 12 - Atomic Regular Categoriea 62
§ 13 - Gharacterisation of Diagramatic Categories 66

Chapter III - ISOMORPEISMS OF DIAGRAMMATIC CALEGORIES
$\oint 14$ - Ajoint Functors between Diagramatic Categories 73
§ 15 - On the Different Representations of a Gategoryas a Diagramatic Category 82

Chapter IT - ALGRBRATC ASPECTS OF DIAGRAMPAMIC CATEGORTBS
$\oint 16$ - Adjoint and Coadjoint Triples and Cotriples 97
$\oint 17$ - The Equational Closure of \boldsymbol{J}^{2} over TI 102
818 - Monoids in Categories with Multiplication andGround Object • 110
$\oint 19$ - Relative Categories 115
§ 20 - Relative Functor Categories 118

BIBLIOGRAPHY

[1] M. André , Categories of Pmotors and Adjoint Functors ,
Batelle Report, Gendve, 1964 .
[2] H. Rass, The Morita Theorems, Lecture Hotes, Dniversity of
Oxegon .
[3] B. Eckmann : P.J. Hilton , Groupmlike structures in General Categories I , Math, Ann, $145(1961 / 62), 227-255$.
[4] S. Eilenberg \& S. Mac Lane, General Theory of Natural Equivalences, Trans, MaS , 58 (1945) , 231-294。
[5] S. Eilenberg \& J.C. Hoore, Adjoint Functors and Triples,
I21.J.Math. 9 (1965) , $381-398$.
[6] P.J. Freyd , Functor Theory , Dissertation , Princeton Oniversity , 1960 .
[7] , Punctor Categories and their Application to Relative Hinmology, Mimeographed Notes, University of

Penneylvania, 1962 .
[8] , Abelian Categories , Harper \& How, Hew Tork, 1964 .
[9] _ Algebra Valued Punctors in General and Tensor Producte in Particular, Mimeographed Notes, Nnivereity of Pennexlyania , 1964 .
[10] A. Grothendieck, Sar qualques points d'algébre honologique .

- Thhoku Math. J. 9 (1957) , 119-221.
[11] J.R. Ispell, Two Set-Theoretical Theorems in Categories, Fund, Math. 53 (1963) , 43 - 49 .
[12] , Adequate Subcategories , IIl.J.Math_4 (1960), $541-552$.
[13] D. Kan , Adjoint Functors , Trans, Amer. Math Soc. 87 (1958),

$$
294-329 .
$$

[14] F. U. Lawvere, Suctorial Semantics of Algebraic Theories, Dissertation , Columbia University , 1963 .
[15] — Punctorial Semantics of Algebraic Theories , Proc. Nat. Aced. Sci. U.S.A. 50 (1963), 869-872.
[16] CH An Elementary Theory of the Category of Sets, Proc. Mat. Acad. Sci 52 , (1964), $1506=1511$.
[17] _ . The Category of Categories as a Foundation for Mathematics , Proc, of La Nola Conference on Categorical Ale ara 1965 , Springer, (to appear).
[18] F.E. Linton , Autonomous Categories and Duality, J.Algebra 2 (1965), 315-349.
[19] \longrightarrow Some Aspects of Equational Categories , Proc. of In Tola Conference on Categorical Algebra 1965, Springer , (to appear) .
[20] S. Mac Lane, Locally Small Categories and the Foundations of Set Theory , Infinfitistic Methods , Oxford , 1961.
[21] Hc_ologi , Springer , Berlin, 1963 .
[22] —_ Categorical Algebra, Bullalaer.liath.Spce_7 (1965), 40-106.
[23]

- B. Mitchell

1965 .
[25]
[24] K. Morita , Category Isomorphiems and Fndomorphisems of Rings of Modules, Irans, Amer, Math. Soce 103 (1962), 451-469.
Theory of Categories , Academic Preas, How York

Boolean Algebras, Springer, Berlin, 1964 .

The theory of categories was introduced by Eilenberg and Mac Lane in 1945 [4] ; it arose from the field of topolosy. It was soon realized that other mathematical theories as well could profit fron their invention. This was initially the main reason for the increasing interest in catego ries. The applications brought soon attention to problens peculiar to the theory of categoriea, which in a few jears grew enough to become another area of mathematics. Even so, the now widespread interest in category theory seems still to lie in the many virtues of its applications, such as its unifying character, elegent and concise languare, fruitfulness and empasis on results involving structure. This led to the idea that category theory might provide a more suitable foundation for mathenatics than set theory. To carry out this program it was necessary to have also a theory of the (neta) category of categories. Lawrere [17] has recently provided such a theory; this seens to be the proper fremework in which to develop mathematics on a categorical basis.

An important step in the progran of categorizing mathematics has been accomplished by Lawvere himself [16] upon reformulating set theory in terme of categorical concepts alone, nemely, those of mapping, domain, codonain and composition.

In this paper we atudy a class of categories closely related to the oategory of sets and mappings. An essential prerequisite will be an acquaintance vith [16]: To study this clase of categories ve introduce what we call regular categories, which are weakened abelian categories,
eapecially as axiomatized by Freyd [8], so that [8] is also assumed as a prerequisite. A general knowledge of category theory is required at well. Anong the various sources, Freyd [8], Hac Lane [22] and Mitchell [23] seem to be the more introductory ones. Also, an acquaintance with the literature on adjoint functors, starting with Kan [13] and following with aeveral others , e.ge, Freyd [6, 8], Lawvere [14], will be assumad

The formation of functor categories is one of the basic constructions in the (neta)category of categories. Given any two categories \mathcal{C} and \mathcal{F}, the functor category denoted by $\mathcal{Y}^{\mathcal{K}}$ has as objects all functors with dosain X and codomain Y and as mapa, all natural transformations between these. We will be concerned in this paper with a special type of functor categories : those for which the codomain catego If is \int, the category of sets and mappinge.

Anotivation for this choice can be found in the following; any category with small homasta is a full subcategory of a category of this type. Explicitly : if the category 7 has small homsets, there is a bifunco tor HON: $\mathscr{X} \times \underset{\sim}{C} \rightarrow \infty$, which inducea by exponential adjointness a functor $H: X X \rightarrow 8^{X^{*}}$. The latter ia full, faithful and prem serves all left roots eristing in \mathscr{X} : it is called the regular representation of of.

However, if f is not amall, then $o f^{9^{*}}$ will not have anall how--sets, and thus a not very manageable category. Portunately there are many interesting categories which, though not anall adrit a regular ropre sentation into a category with mall homsete. These are categories which have a anall subcategory , let $A \underset{\sim}{d}$ be the inclusion func-
tor, and such that the composite functor

is still full and faithful. The functor is called the subregular representation of \mathcal{X} over A, and A is said to be an adequate subcategory of \mathscr{A}. merefore, if we restrict ourselves - as we will- to the study of categories of set valued functors with amall domain category, the class of categories admitting a representation as full subcategories of these does not reduce to the class of amall categories. The broader class of categories with adequate subcategories are investigated by labell [12] and it includes, e.g., every algebraic catogory in the sense of Lawvere $[14,15]$: in this case, the dual of the corresponding algebraic theory is canonically embedded as an adequate subcategory.

Every category whose objects are all set valued functors with a given emall domain category ia seen to be equivalent to a category of dia grams in with a given diagraw scheme (Grothendieck [10], Hac Lane [21]. Mitchell [23]). This suggesta the name "diagramatic" or " 8 - diagramatic" for these categories. we adopt throughout this paper the name "diagrammatic" for any category of the form $\int^{(C)}$, with (C) any anall category.

In chapter I we study diagrammatic categories in general, simultar neously comparing them with \boldsymbol{O}, which is the basic diagramatic catego 17.

The aim of chapter II is to characterise abstractly the claas of diagramatic categories. We first introduce the theory of regular categoris, the name being suggested by a consequence of the axions according to which
every map factors uniquely into an epi followed by a mono, and which is usually called a regularity condition. It is atrong enough to exclude most algebraic categories, and those which satisfy a regularity condition are called regular. All diagramatic categories are regular, and they are by no means the only regular categories : all abelian categories are regular as well, and none is diagrammatic. Therefore, if we hope to characterize diagramatic categories from regular categories, the strenght ening of the axioms has to be done in a different way than abelianess.

At this point we notice a striking analogy between the regular representation theorem for any category with a small adequate subcategory, and the representation theorem for Boolean algebras which says that every Boolean algebra is isomorphic to a field of sets. Thus, if we let regular categories with anall adequate subcategories correspond to Boolean algebras, then regular categories of set-valued functors with a amall domain category (not necessarily all such functors) must correspond to fields of aets if the analogy between the two theorans is to be mantained. Aleo, fields of all subsets of a set must correspond to diagramatic categories. It is now that the analogy gives some fruits: since the fielde of all subsets of some set are precisely the complete atconic Boolean algebras, we might try an analogous characterisation of diagramatic categories. With the analogy in mind, we first stipulate which objects in a regular category should be called "atons", and with this, when should a regular category be called "atomic". It turne out that complete atcmic regular categories have the atons as an adequate subcategory, so that the existence of a anall adequate subcategory need not be postulated before. And
what is more important, complete atomic regular categories are precisely the diagramatic categories. That is, just as any complete atomic Boolean algebra is iscmorphic to the field of all subsets of the set of its atons, so any complete (right-complete is enough) atomic regular category is isomorphic to the diagrammatic category with domain category the dual of the full subcategory determined by its atoms.

In chapter III we aim at the queation of when are isomorphic any two given diagramatic categories, which is the same question that Morita [24] asked for categories of modules (see also Bass [2]) . For this purpose we first atudy functors between diagrammatic categories which have adjoint or coadjoint. Our resulte can also be found in Andre [1], though the methods of proof are different, as a reault of dispensing with generality fron our side. Hext, we use these results to establish, as Freyd noticed in $[7,8]$, that it is not the saall domain category which determines completely the functor category (in his case these were categories of additive group-valued functors) but its amenalle closure. The main theorem of the chapter is called Morita isomorphien theorem for diagramatic categories" and atates that any two given diagramatic categories are isomorphic iff the thempotent-aplitting clasures of the corresponding emall domain categories are isomorphic. This is used to investigate the question of tihe uniqueness of the representation of a category as a diagrammatic category.

Chapter IV ie a study of the algebraic side of every algebraic catego ry. For this we need the theory of triples and triplable categories as introduced and developped by Haber, Beck, and Bilenberg and Hoore. To
avoid further requirements, we review briefly the ideas employed in the chapter. We next discuss some relations between triples and cotriples which form an adjoint pair as well, and use this information to find out which ar all coadjoint triples in 8 . They are given by all sets, so that Coadj Triples $(\mathbb{S}) \cong \boldsymbol{S}^{*}$, since the correspondence is contravariantly functorial. On the other hand, adjoint triples on \mathcal{X} are given by monoids. Similar questions arise for categories of the for $\int^{\mathbf{I}}$, with I aet, regarded as a discrete category. Adjoint triples on a category $\boldsymbol{\int}^{\mathbf{I}}$, are given by all mall categories whose aet of objects are isomorphic to I - and the diagrammatic categories with these small domain categories come close to being the algebras of the triple. Actually, to see better which are the algebras, we introduced the notions of relative category and relative functor. These ideas have further potentialities which are beyond the scope of this paper.

Some notations and conventions are the following: (1) anal categoHies will be denoted by $\mathcal{A}, B, \mathbb{C}, \cdots, \mathbb{K}, \bar{Y}, \mathbb{Z} ;(2)$ arbitrary categorier will be denoted by $\mathcal{A}, 2,6, \cdots, 9,9,2 ;(3) \mathbb{C}$ will always denote the category of sets ; (4) the anal categories which are preorders will be denoted by (1), 1,2,3,..; (5) small categories which are discrete will be denoted the same way as sets are, by \mathbf{I}, \mathbf{J}, K, etc. (6) E is the category pictured thus $:$ of laps is denoted in the diagramatic order, and evaluation is on the left ; (10) the identity map of the object A is either 1_{A} or A.
DIAGRAMMATIC
CATEGORIESIM
RELATIOH T 0 THE CATEGORT
0 P
SETS

Let C be a fixed but arbitrary enall category. We denote by \mathcal{S} the category of sets and mappings, and by $d^{\mathbf{C}}$ the category whose objects are all covariant functors $\mathbb{C} \longrightarrow \boldsymbol{S}$ and whose maps are all natural transformations between these. For reasons given in the Preface, any such category will be said to be diagramatic. Our aims in this chapter are: (1) to deecribe properties which are comon to all diagrematic categories; (2) to determine the extent to which these properties rely on properties of d (3) to investigate the range of validity in the class of diagramatic categories of the axions of Lawvere's olementary theory of X.
§ 1 - FINITE ROOTS
Δ category \mathcal{C} is said to have finite roots iff for every sall category such that its set of objecte is finite, and letting A be one such, the functor $X \longrightarrow X^{A}$ induced by the functor $A \rightarrow 1$, has both a coadjoint (insoring the existence of loft roots) and an adjoint (right finite roots). It has been shown ([8] , [14]) that it is enough that the category has terminal and coterminal objects ($A \subseteq D$), binary products and coproducts ($A=|2|$) and equalisers and coequalisers ($A \cong F$) for it to have all finite roots. Mong the finite roote are finite products and coproducts, pull-backs and push-outs, images and inverse images, wnions
and intersections. We now show that any diagrammatic category has finite roots.

Proposition 1.1 For any sal category $\mathbb{C}_{4}^{1}, \&^{\mathbb{C}_{\text {has }}}$ finite roots.

Proof:

A terminal object for $\mathcal{C} \int^{\mathbb{C}}$ is given by the functor which is constantly 1 , where 1 is the name for the terminal object in \mathcal{S}. a coterminal object is given dually and denoted 0 .
Given any two functor F and G we define ($F \times G, P_{F}, P_{G}$) as follows: let $C(F \times G)=\operatorname{CF} \times C G ;\left(p_{F}\right)_{C}=P_{C F}$ and $\left(p_{G}\right)_{C}=p_{C G}$, for any $C \in|\mathbb{C}|$. If $C^{x} C^{\prime}$ is a map in \mathbb{C}, let $X(F \times G)=f$ where f is the unique map which renders commutative the following diagram:

By the way $X(F \times G)$ is defined, this says not only that $F \times G$ is a functor, but also that $P_{F}: F \times G \longrightarrow F$ and $P_{G}: F \times G \longrightarrow G$ are natural trageformations. Dually one can define the coproduct $F+G$ together with the canonical injections i_{F} and i_{G}. Given any two natural transformations η and ξ, we want to define their equaliser. For this, we look again in each coordinate, and let ${ }^{0}{ }_{c}=\mathrm{Bq}\left(\eta_{c}, \xi_{c}\right)$ for each $c \in\left|\mathbb{C}_{\mathbf{C}}\right|$. We show next that the family so obtained can be made into a natural transformation which moreover is the equalizer of η and ξ. For this we first define a functor, the

is an equalizer diagram. If $C \xrightarrow{\mathbf{X}} C^{\prime}$ is a nap in \mathbb{C}, let X be defined as the unique map $f: C E \longrightarrow C ' E$ such that $f e_{C \prime}=e_{C}(X F)$. That this map f exists and is unique follows from the universal property of equalizers together with the following identity:
 $=e_{C}\left(\xi_{C}(x G)\right)={ }_{C}\left((x F) \xi_{C^{\prime}}\right)=\left(\Theta_{C}(x F)\right) \xi_{C^{\prime}}$.
With this we have that E is a functor and $e: E \longrightarrow F$ a natural transformation and it is inmediate to see that it is the equalizer of η and ξ. Coequalizers are dually defined. OED .
§ 2 - THE EXISTENCE OP a GENERATING FAMILY

In 0 , the terminal object 1 is a generator. Arbitrary diagrammatic categories need not have a generator, but they always have a generating fawily of objects. We will show that the generating property of a particular generating family in each diagrammatic category is a consequence of the generating property of 1 in \mathscr{S}.

As usual, a functor is said to be representable and denoted by H^{C} if it is $c \in|C|$ which represents it, inf i is naturally equivalent to the functor Hor(C,). The family of representable functor in any diagramtic ontegory has the size of the domain category for the functors. We want to show that it is generating, for which purpose we need to state and prove (for reference) a lem due to Yoneda.

Yean 2.1 (Yoneda) For any mall \mathbb{C}, any F in f^{C}, and any

Proof:

Let $\phi_{:}\left(\mathrm{H}^{\mathrm{C}}, \mathrm{F}\right) \longrightarrow \mathrm{CF}$ be defined for $\eta \in\left(\mathrm{H}^{\mathrm{C}}, \mathrm{P}\right)$ by $\eta \phi=1_{\mathrm{C}} \eta_{\mathrm{C}} \in \mathrm{CF}$ Let $\psi: C F \longrightarrow\left(H^{C}, P\right)$ be defined for $z \in C F$ as the natural transformnation $s \psi: H^{C} \longrightarrow F$ defined for $x \in C^{\prime} H^{C}=H W_{(}\left(C, C^{\prime}\right)$ by $x(\mathrm{~s} \psi)_{C^{\prime}}=\dot{x}\left(x^{F}\right)$ and naturality follows since for any $C^{\prime} \xrightarrow{y} C^{n}$ the following diagram commutes:

That it is so can be seen as follows: let $x \in H O M\left(C, C^{\prime}\right)$, arbitrary. Then we have that $x(x \psi)_{C^{\prime}}(\bar{F})=\left(x(x \psi)_{C^{\prime}}\right)(y P)=(x(X P)(y F))=$ $=z((\bar{y}) F)=(x y)(x \psi)_{C^{n}}=\left(x\left(y H^{C}\right)\right)(x \psi)_{C^{n}}=x\left(\left(y H^{C}\right)(z \psi)_{C^{n}}\right)$. It is now easy to verify that both $\phi \psi$ and $\psi \phi$ are identities. (USD. Theorem 2.2 For any anal \mathbb{C}, the family $\left\{\mathrm{H}^{C}\right\}$ c\& $\left|\mathbb{C}^{\mathrm{C}}\right|^{\text {is }}$ generating for $\boldsymbol{H}^{\boldsymbol{T}}$.

Proof:

Given any two natural transformations $P \stackrel{Y, \xi}{ } G$ ouch that they are different, there must exist at least a $c \in|C|$ for which $\eta_{C} \neq \xi_{C}$. This implies that there exists a map $2 \xrightarrow{s}$ CF in δ, such that
 natural transformation. We want to show that $(x \psi) \eta \neq(s \psi) \xi_{j}$.
 Take $C^{\prime}=C$. For $(s \psi)_{C} \eta_{C}$ to be different from $(s)_{C} \xi_{C}$ it is enough that there exists $x \in H O(C, C)$ for which $x\left(x \eta_{C} \eta_{C}\right.$ be
different from $x(z \psi)_{c} \xi_{c}$. Let $x=I_{c}$, then we have that
 which implies the desired result. QRD .

§ 3 - EXPONENTIATION

A category with product e is said to have exponentiation ifs for any object A the functor $A X()$ has a coadjoint, denoted ()A. The category of sets has exponentiation and for every set A, wo have that ($)^{\Lambda}=\operatorname{Hon}(\Lambda$,$) . However, \mathcal{X}$ is the only category in which exponentiation is given by HOM, precisely because ($)^{1}$ has to be an endofunctor: while the only category for which Hen (Λ,) is an endfunctor for every object A, is \mathcal{P}. All diagrammatic categories have exponentiation. However, the proof that it is so is not straightforward as the proof of the existence of finite roots was, and this is so because exponentiation is not defined coordinatewisely.

Theorem 3.1 For any aral \mathbb{C}, and any object F in $f^{\mathbb{C}}$, the endofunctor FX()$: \mathcal{S}^{\mathbb{C}} \longrightarrow \mathcal{S}^{\mathbb{G}_{\text {has a coadjoint. }} .}$

Proof:

Define a functor ()$^{F}: ~ f \xrightarrow{\mathbb{Q}} \longrightarrow D^{\mathbb{C}}$ as follows:
If G is any object of $\mathcal{S}^{\mathbb{C}}$, let the value at $c \in|\mathbb{C}|$ of G^{F} be given by $C G^{F}=\left(\mathbf{H}^{\mathbf{C}} \times \mathbf{F}, G_{\text {nat }}\right.$ and extend it to the maps $\mathbf{C} \rightarrow \mathbf{C l}^{\prime}$ in the obvious fashion so that it becomes a functor. We can now define a natural transformation

$$
F \times \underset{\sim}{\text { er }} G
$$

called evaluation, as follows given $c \in|C|$ one has to say what is
 If $z \in C F$ and $\eta \in\left(H^{C} \times P, G\right)$, define $(z, \eta){ }^{C} V_{C}=\left(1_{C}, z\right) \eta_{C}$. If $C \xrightarrow{x} C^{\prime}$, there are induced maps $C F \xrightarrow{I F} C^{\prime} F$ and $\left.\left(H^{\mathbf{T}} \times F\right), G\right):\left(H^{C} \times P, G\right) \longrightarrow\left(H^{C^{\prime}} \times P, G\right)$ and these two induce $\mathbf{I P} \times\left(\left(\mathrm{H}^{\mathbf{I}} \times \mathrm{F}\right), G\right): \mathrm{CF} \times\left(\mathrm{H}^{\mathrm{C}} \times \mathrm{F}, \mathrm{G}\right) \longrightarrow \mathrm{C}^{\prime} \mathrm{F} \times\left(\mathrm{B}^{\mathrm{C}^{\prime}} \times \mathrm{F}, \mathrm{G}\right)$, and the following diagram is comitative:

To see that the diagram is commutative we take any $x \in C F$ and any $\eta \in\left(H^{C} \times P, G\right)$, and travel in the two orientations. We have
$(x, \eta) \quad{ }_{c}(x G)=\left(1_{C}, z\right) \eta_{C}(x G) \quad$ and

$=\left(\mathcal{I}_{C^{1}}, \mathrm{~g}\left(\mathrm{x}^{\mathrm{F}}\right)\left(\left(\mathrm{H}^{\mathrm{x}} \times \mathrm{F}\right) \boldsymbol{\eta}_{\mathrm{C}^{1}}=\left(\mathrm{x}, \mathrm{s}\left(\mathrm{x}_{\mathrm{F}}\right)\right) \eta_{\mathrm{C}^{\prime \cdot}}\right.\right.$
We now use the fact that η is a natural transformation, so that the follwing diagram commutes:
and so, for $1_{C} \in \mathrm{CH}^{\mathrm{C}}$ and $\mathrm{E} \in \mathrm{F}$, this says precisely that
 is comitative, and so evaluation is indeed a natural transformation.
Ne still have to show that ()F is coadjoint to $F \times()$, and it is for this purpose that we will use the evaluation map just defined.

Suppose given any functor H and a natural transformation $h \% \mathrm{FXH} \longrightarrow \mathrm{C}$ to show that there exists a unique natural transformation $B: H \rightarrow \mathbf{B}^{F}$ such that (i $\left.\times \frac{\xi}{}\right)_{e v}=h$, ice., such that the following diagram is comm tative:

Let be given for each $c \in\left\{\begin{array}{c}\text { las follows: if } y \in C H\end{array}\right.$
Let $y\left(\xi_{C}\right) \in\left(H^{C} x P, G\right)$ be given by, for $x^{\prime} \in C^{\prime} H^{C}$ and $z^{\prime} \in C^{4} I^{\prime}$ $\operatorname{let}\left(x^{\prime}, x^{\prime}\right)\left(y \xi_{C}\right)_{C^{\prime}}=\left(z^{\prime}\left(x^{\prime} p\right), y\right) h$.
We verify now that $(F \times \xi)$ er $=h$ given $C \in|C|, g \in G F$ and $y \in G H$
 $=(\mathrm{g}, \mathrm{y}) \mathrm{h}$. The definition of 5 was forced to make the diagram comate and it is easy to see that it is the only possible choice. 0FD.

A functor which has a coadjoint preserves all right roots that exist, so that the existence of exponentiation for any diagramatic category implant: that products distribute over coproducts and that products preserve coequalligers.

It is known that if (C is any aral category, the regular representation functor $H: C_{4} \rightarrow \underbrace{(4)}$ defined by $C H=H O(, C)$, is full and faithful and preserves all left roots which right exist in (i) In fact, if 3 is not mall, but has a all adequate subcategory (Isabel [12]) A. the aubregular representation functor of \mathcal{A} over A, which is just the composition
 and faithful and it preserves left roots since each of the composite fungo-
tors does.
What is not known is that if exponentiation exists, then the regular representation functor or the subregular representation functor preserve it. We prove two separate theorems to that effect:
mores 3.2 Let C be gall and with exponentiation. Then, the regular representation functor $H: C H \longrightarrow f^{\left(C^{*}\right.}$ preserves exponentiatron.

Proof:
Let A and B be objects in \mathbb{C}, we have to show that

$$
\left.耳_{B}^{A}\right)=\left(B^{A}\right)_{H} \mathbb{N H}^{A H}=H_{B}^{H_{A}}
$$

 $C\left(H_{B} H_{A}\right)=\left(H_{C} \times H_{A}, H_{B}\right) \cong\left(H_{C X A}, H_{B}\right) \cong H O M(C X A, B)$ And since \mathbb{T}_{4} is assured to have exponentiation, we have that

Theorem 3.3 Let T be any category and let A be an adequate subcategory of \mathbb{X}. Then, tit $\mathcal{F}^{(C)}$ has exponentiation, the subregular representation of \mathbb{C} over A, that is, the functor

preserves exponentiation.

Proof:

Let I and I be any two objects in If. We have to show that

 On the other hand we have:
$\cong j^{*}\left(H_{A j j^{*}} X H_{Y} H_{X}\right) \cong j^{*}\left(H_{A j^{*} X Y}, H_{X}\right) \cong H O M\left(A j^{*} X Y, X\right)=$ $\cong \operatorname{HOM}\left(\Delta_{j}{ }^{*}, \mathrm{r}^{X}\right)$. QED .
§ 4- AOTOMCII
an autonomous category (Linton [18]) is a category \mathscr{O} together with a bifunctor

$$
\mathscr{A}(,): \mathbb{A}^{*} \times \mathscr{A} \longrightarrow \mathscr{A}
$$

and a forgetful functor

$$
\mathrm{v}: \mathcal{A} \longrightarrow \mathscr{L}
$$

such that the following triangle is co mutative:

Moreover, there is a law of composition for $d($,$) , which is given by$ a collection of maps, one for each triple (A, B, C) of objects in \mathcal{S}^{\prime}, and which is natural in each of the three variables, it is associative and behaves well with respect to a ground object if there is any. The domain and range of the naps are

$$
\mathrm{L}_{\mathrm{B}, \mathrm{C}}: \mathscr{A}(\mathrm{B}, \mathrm{C}) \longrightarrow \mathscr{C}(\mathbb{A}(\mathrm{A}, \mathrm{~B}), \mathscr{A}(\mathrm{A}, \mathrm{C}))
$$

With the above one can introduce "tensor products" as follows: let $L^{\Lambda}: \mathscr{A} \longrightarrow \mathcal{A}$ be defined by \quad B $L^{\Lambda}=\mathscr{N}(\Lambda, B)$, for any A and B ing f. Given A and B, consider L^{A} and L^{B}. If we assume that the composition $L^{A} L^{B}$ is representable, and denoting the objects which represents it by $4 \$ \mathrm{~B}$, we have that
$\mathscr{A}(A \propto B, C)=C L^{A \otimes B}=C L^{A} L^{B}=\mathscr{A}(A, c) L^{B}=\mathscr{A}(B, \mathscr{A}(\Lambda, c))$ which indicates precisely that for each $A \in \mathscr{A}, \perp \otimes()$ is adjoint to $A(A$,$) .$

But one can also start with tensor products, to mean the categorical products if the category has any, and see wheter the category has exponentiation as well as forgetful functor and then shown to be autonomous with the bifunctor gotten froe exponentiation by letting both the base and the exponent vary. However, if this method is adopted for introducing the concept of autonomous category, one has to show that there is a law of composition as required. This is done as follows: let $\mathcal{F}^{/}$be any category with exponentiatimon (and products), and let us denote by ()$Q()$ and $)^{()}$ the two bifunctors corresponding to the operations of forming products and exponentiating, respectively. Given any three objects A, B, C in g, by exponential adjointness there is a corresponding evaluation map

$$
\theta: C^{B} \otimes B \longrightarrow C
$$

and we let h be the nap given by composition of the following maps:
 Let now k be the unique map such that the following diagram countess $C^{B} \triangle B^{A} \Delta A$ A
by exponential adjointneas, and again use exponential adjointness to define * as the unique map which render commutative the diagram

Since was defined after a triple (A, B, C) was chosen, we can denote it by $\mathbf{v}_{\mathrm{B}, \mathrm{C}}^{\mathrm{A}}$, and it is a member of the family of maps which give the compositron law since
 $\left(\left(C^{A}\right)^{\left(B^{A}\right)}\right)$.
Therefore, we have show that the above is an equally good method for introducing autonomous categories. We use this to show:

Theorem _4.1 For any all $\mathbb{C}, \mathbb{C}^{\boldsymbol{C}}$ is an autonomous category.

Proof:

Ye already know that all diagrammatic categories have exponentiation (Theores 3.1) so that we have to find a forgetful functor and show that they are related as they should for autonomy.
Let $u: \mathscr{C} \xrightarrow{\mathbb{C}} \mathcal{d}$, be given by : if T is any object in $\mathcal{D}^{\mathbb{C}}$, let $\mathrm{TJ} \bar{f}_{f}(1, T)$ nat , and the obvious extension for the maps.
Then we need to show still, that the following triangle is comitative:

To see this, let F and G be any two objects in $f^{\mathbb{N}}$, then
 since the functor 1 has the property that for every I in $\mathcal{C l}^{\mathbb{C}}$,
$1 \times T$ It T, as e in the category of sets. Therefore, the above briangie is comitative and $\int^{C T}$ is autonomous. GRD .
§ 5 - the rinstaice or a Cogenerator

In , $2=1+1$ is a cogenerator. We will show that any diagramnatic category has a cogenerator, not only \mathcal{S}, and that the fact that it is a cogenerator relies on the fact that 2 is a cogenerator in \mathcal{J}. Let $\int^{\mathbb{C}}$ be any diagrammatic category, ie., \mathbb{C} is an arbitrary anal category. By H_{C} for $c \in|\mathbb{C}|$, we mean the contravariant functor whose value at an object c^{\prime} of \mathbb{C}, is $C^{\prime} \mathbf{H}_{c}=$ Hoy $\left(C^{\prime}, c\right)$. It is not an object in $\mathcal{J}^{\mathbb{C}}$ but in $\mathcal{X}^{\mathbb{C}^{*}}$, and it may be called a corepresentable functor, corepresented by c.

On the other hand, consider the functor Hong , 2) : $\mathcal{S}^{\circ} \longrightarrow \longrightarrow \$$, which is denoted by H_{2}.

Let rem $Q^{C}={ }_{d f} H_{C} H_{2}$. To be able to compose then , the codonain category of H_{C} hae to be equal to the domain category of H_{2}. This can be done in two different ways since, in general, a functor $I: A \longrightarrow \longrightarrow 8$ which is contravariant can be viewed wither as a covariant functor with do main $\mathscr{f l}^{*}$ and codcasin \mathscr{B}, or as a covariant functor with domain \mathscr{O} and codomain 8^{*}. Accordingly, there are two ways of composing the co variant versions of H_{C} and H_{2}, and we obviously choose Q^{C} to be

which in any case is covariant, and so, an object in $\mathscr{S}^{\mathbb{C}}$. Explicitly, the value of Q^{C} (for $\left.c \in|\mathbb{C}|\right)$ at an object c or \mathbb{C}, is:

$$
\left.c^{\prime} Q^{c}=\operatorname{Hom}_{\infty} \delta\left(\operatorname{Hag}_{(} C^{\prime}, c\right), 2\right)
$$

and if $\mathbf{c}^{\boldsymbol{I}} \mathbf{C l}^{\prime \prime}$ is a map in \mathbb{C}, it induces a map

 given by, for $z \in \operatorname{HOM}(\mathrm{Cn}, \mathrm{C}), \mathrm{z}\left(\mathrm{f}\left(\mathrm{xQ}^{\mathrm{C}}\right)\right)=(\mathrm{yz}) \mathrm{f}$.
Let us now consider the family indexed by $|C|$, whose members are the fund tors Q^{C}. We want to show that it in eogenarating for which purpose we prove first a leman corresponding to Yoneda lemma and which we may call CoFonda lemma for reference, although it is not precisely dual to Yoneda lemma, but plays a dual role only.

Lemma 5.1 (Co-Yoneda) For any anal C, any G in $S^{\mathbb{C}}$, and any

Proof:

Let $\phi:\left(G, Q^{C}\right) \longrightarrow$ HO H $_{\alpha} \mathcal{D}^{(C G, 2)}$ be defined by, if $\eta \in\left(G, Q^{C}\right)$, let $\eta \phi=\alpha_{\eta} \in$ ROM $_{\boldsymbol{\chi}}(\mathbf{C G}, 2)$ be such that, for $x \in C G, x \alpha_{\eta}=1_{c} \times \eta_{C}$.

 and $r: C \longrightarrow C, \quad r\left(y \eta_{C+1}\right)=(\bar{c}(\mathrm{r})) \alpha$. To see that we have defined a natural transformation, let $\mathrm{s}: \mathrm{CO}_{\mathrm{C}} \longrightarrow \mathrm{C}^{\mathrm{n}}$. It induces
 $s: C l \longrightarrow C$, and this in turn induces

 for $m C^{n} \longrightarrow C$. We verify that the following diagram ia commutative

For this, let $y \in C^{\prime} G$ and $r: C \longrightarrow C$. Travelling clockwise along the diagram we have: $\left(y \eta_{\alpha_{c}}\right) *: H O M_{(C N}\left(c^{n}, c\right) \longrightarrow 2$, given by, for $c^{m} \longrightarrow C$, $\pm\left(y \eta_{C_{C}}\right)^{*}=(m) y \eta_{\mu_{C^{\prime}}}=\left(g\left(\left(\varepsilon_{m}\right) G\right)\right) \alpha$. Travelling counterclockwise we
 $m(y(z G)) \eta_{\alpha_{C}}=((y(x G))(m G)) \alpha=(y((z) G)) \alpha$, since G is a functor. Therefore, the diagram is comitative, or $\eta_{\alpha}: G \rightarrow Q^{C}$ is natural. To see that ψ is indeed inverse to ϕ, we have to verify that (1) $\eta=\eta_{\eta} \quad$ and (2) $\quad \alpha=\alpha_{\eta}$.

Given η, α_{η} is such that $x \alpha_{\eta}=1_{c} \times \eta_{C}$ for $x \in C 6$, and $80, \eta \alpha_{\eta}$ is
 We want to show that

$$
r\left(\bar{y} \eta_{c^{\prime}}\right)=1_{c}\left(y(r G) \eta_{c}\right)
$$

The following diagram is commutative:

so that, by evaluating both $\left(y \eta_{C}\right)^{*}$ and $(\bar{y}(r e)) \eta_{C}$ at a particular olemont of $\mathrm{HOF}_{\mathrm{C}}(\mathrm{C}, \mathrm{C})$ we are sure to get the mane result. Taking ${ }^{1} \mathrm{C}^{2} \mathrm{C} \rightarrow \mathrm{C}$, we therefore have that $1_{C}\left(J \eta_{C}\right)==1_{C}\left(\bar{J}\left(\mathcal{I G}^{\prime}\right)\right) \eta_{C}$. But we also know that $I_{c}\left(y \eta_{c^{\prime}}\right) *=r\left(\bar{y} \eta_{c^{\prime}}\right) \quad$ and that $\quad I_{c}(y(r G)) \eta_{c}=r\left(y \eta_{c^{\prime}}\right)$. So, $\eta=\eta_{\alpha_{\gamma}}$ Given now α, we get η_{α} and then $\alpha_{\alpha} \eta_{\alpha}$ which, by deft-
nition is such that given $x \in C G, \quad x \alpha_{\eta_{\alpha}}=1_{c}\left(x \eta_{\alpha_{c}}\right)=\left(x\left(1_{c} G\right)\right)_{\alpha}=$ $=x \alpha$. Therefore, $\alpha=\alpha_{\eta_{0}}$ aRD.

Theorem 5,2 For any small \mathbb{C}, the family $\left\{Q^{C}\right\} C \in|\mathbb{C}|^{\text {is }}$ cogenerating in f^{C}.

Proof:
Let $P \stackrel{y}{\Longrightarrow} G$ be any two natural trendformations which are different. Then, there exists a $c \in|C|$ for which $\eta_{C} \neq \xi_{c}$ In $\& \quad 2$ is a cogenerator and therefore there exist a map $\alpha: C G \longrightarrow 2$ such that $\eta_{c} \alpha \neq \xi_{c} \alpha$. Bat this in turn, implies (since is a generator in 8) that there exists a map $x: 1 \longrightarrow C F$ such that $x \eta_{c} \propto \neq x \xi_{c} \propto$. By Co-Yoneda leman (5.1), let $\eta \alpha$ correspond to the above α. We show now that $\eta_{c} \eta_{C} \neq \xi_{C} \eta_{\alpha_{c}}$, and so that $\eta_{\alpha} \neq \xi \eta_{\alpha}$, and since $\eta_{\alpha}: G \rightarrow Q^{C}$ we will have show that $\left\{Q^{C}\right\}$ is cogenerating.
For the particular $x \in C F$ above, we have that $x \eta_{c} \alpha \neq x \frac{5}{5} \alpha$.
We now show that also $x\left(\eta_{\alpha^{\prime}}\right)_{C} \neq I\left(\xi \eta_{\alpha}\right)_{C}$ thus completing the proof: since both $x\left(\eta_{\alpha}\right)_{C}$ and $x\left(\xi \eta_{\alpha}\right)_{C}$ are elements of the set $C Q^{C}$, let us find an $r i C \rightarrow C$ for which $\left.r\left(\eta\left(\eta \eta_{\alpha}\right)_{C}\right) \notin r\left(x ; \eta_{\alpha}\right)_{C}\right)$ 。 And since $\quad r\left(x\left(\eta \eta_{\alpha}\right)_{C}\right)=\left(r\left(x \eta_{C}\right)\right) \eta_{\alpha_{C}}=\left(\left(x \eta_{C}\right)(r G)\right) \alpha$, and $r\left(x\left(\xi \eta_{C}\right)_{C}=\left(r\left(x \frac{\xi}{\xi}\right)\right) \eta_{\alpha_{C}}=\left(\left(x \xi_{C}\right)(I G)\right) \alpha\right.$, all we have to do is

Choosing $r=I_{C}$ and recalling that x was chosen so as to satisfy

$$
\begin{aligned}
& x\left(\eta_{c} \alpha\right) \not x\left(\xi_{c}^{\alpha)}\right. \text { we have: } \\
& \left(\left(x \eta_{c}\right)\left(1_{c} G\right) \alpha=\left(x \eta_{c}\right) \alpha=x\left(\eta_{c} \alpha\right) \neq x\left(\xi_{c} \alpha\right)=\left(x \xi_{c}\right) \alpha=\right. \\
& =\left(\left(x \xi_{c}\right)\left(\eta_{c} f^{\prime}\right) \alpha=\right.\text { one }
\end{aligned}
$$

We now assume to have shown already that any diagrammatic category is complete. In fact, to this end we only need to show that arbitrary families of objects indexed by a set have a product and a coproduct, and it is easy to see that it can be show in a way analogous to the proof of 1.1. We have not done it yet because we will show it in the last section of this chapter, in an entirely different way.
If a category is such that for any two objects there is a map between (we will call such categories strongly connected) then it is immediate to see that the coproduct of a generating set of objects (assuming completeness as well) is actually a generator for the category, and that the product of a cogenerating set of objects is a cogenerator. For example, the above is true in all abelian categories because they are strongly connected: given 4 and B arbitrary there is always a zero map $A \rightarrow$, B between. In the case of a diagrammatic category however, we can use Ioneda and coYoneda lemma, since to require that for an arbitrary object $t \in \boldsymbol{S}^{\mathbb{T}}$ and every $C \in|\mathbb{C}|$, there are maps $H^{C} \longrightarrow T$, is equivalent thai to require that there are maps $1 \rightarrow C r$ for every $c \in|C| b$ which is true only if T has no empty values, so that arbitrary diagrammatic categories need not
 is equivalent than the requirement that there be maps $C T \longrightarrow 2$ for every $C \in \mathbb{C} 6$ which is always true in δ, so that $C_{A j} Q^{C}$ is a cogenerator. We state this fact and prove it as follows

Theorem 5.3 For any small (C) the object cad ed is a cogenerator for \qquad

Proof:

Given $F \xrightarrow{2, \xi} G$ such that $\eta \neq \xi$, by 5.2 there exists a $c \in|\mathbb{N}|$
 Let $c^{\prime} \in \mathbb{C} f$ arbitrary but $c^{\prime} \neq c$. Consider $c^{\prime} G \rightarrow 1 \rightarrow 2$ in \mathbb{S}, where $C^{\prime} G \longrightarrow 1$ is the unique map which exists since 1 is terminal and $1 \rightarrow 2$ is one of the injections into the coproduct $1+1$, say i_{1}. By Comroneda, $\operatorname{let}(\mathbb{C})$ correspond to the above $c^{\prime} G \longrightarrow 2$, for each $C^{\prime} \in|C|$, i.e., we have $(C W): G \longrightarrow Q^{C^{\prime}}$ for every $C^{\prime} \neq C$ and $\left(C^{Y}\right): G \longrightarrow Q^{C}$, which together induce a unique nap

$$
\psi: G \longrightarrow \prod_{4 C 1} Q^{c} \text { such that } \psi p_{q^{+}}=(\Psi) \&_{\&}
$$

§ 6- RBGULARITY , PROJECTIVES AND INJECTIVES

The notions of mono, eph, injective and projective are basic in the theol ry of categories, and we do not give their definitions here. However, in the case of diagrammatic categories, and thanks to Yoneda lama, the notions of mono and epic can be replaced by the ones given in the next Proposition:
 η is mono (api) iff for every $c \in / \mathbb{C} / /_{c}$ is mono (api).

Proof:

Let $\mathrm{Tr}^{\eta} T$ be mono. We want to show that $C T \xrightarrow{\eta_{C}}$ CT is mono. Dy Ioneda, $\eta_{C}:\left(Y^{C}, T\right) \longrightarrow\left(H^{C}, T\right)$. Let I, E be such that $1 \eta_{c}=s \eta_{c}$ in $\lambda, i . e .$, for every $x: 1 \longrightarrow+1, x f \eta_{c}=x \eta_{c}$, where 4 is the coming domain of f and t. Since if $\in\left(H^{C}, T^{1}\right)$,

and since η is mono, $I f=x g$ for every $x \in A$. Therefore, $f=g$. Conversely, if for each C elUl, η_{C} is mono, let ψ and Y be such that $\Psi \eta=\xi \eta$. Assume that however, $\Psi \neq \xi$, but this implies that there
 Tc. was mono. Therefore, $\psi=5$ - Qum.
We have omitted fin the proof the dual part, since it follows the same pattern.

In $\boldsymbol{d}^{\mathbf{d}}$, every mono map is the equalizer of a pair of naps. In particu lar, if $A^{\prime} \xrightarrow{a} A$ is mono then $a=E q\left(i_{0} q, i_{1} q\right)$ where $q=\operatorname{Coeq}\left(a i_{0}, a i_{1}\right)$ where i_{0} and i_{1} are the two (different) injections of A into the coproduct (which is the disjoint union in S) $A+A$ - Similarly : Proposition 6.2 For any small \mathbf{C}, in $\boldsymbol{f}^{(\mathbb{C}}$ every mono is an equalizer.
Proof: Given $T^{*} \eta_{\rightarrow} T$ mono, by 6.1 for each $c \in \mathbb{C} /, \eta_{c}$ is mono in \mathscr{S}. Therefore, by the previous remark, $\eta_{C}=E_{q}\left(i_{0} q_{C}, i_{1} q_{C}\right)$ where $q_{C}=\operatorname{Coeq}\left(\eta_{c} i_{o}, \eta_{c_{1}}\right)$. We draw a picture, a coequalizer diagram , as follows:

$$
\mathrm{CP}^{\prime} \xrightarrow{\eta_{c}} \mathrm{CT} \xrightarrow[i_{2}]{i_{1}} \mathrm{CT}+\mathrm{CT} \xrightarrow{q_{c}} \mathrm{~T}_{c}^{m}
$$

and define a functor $T^{\prime \prime}$ by $C T^{\prime \prime}=T_{C}^{(M}$ and if $C \xrightarrow{x} C^{\prime}$, let $x T^{\prime \prime}=f$ where $I: T_{C}^{\prime \prime} \longrightarrow T^{T n} C^{0}$ exists, is unique and is such that $q_{C} f=((X T) \times(X T)) q_{C}$ by the universal property of coequalisers and the

 mation $q: T+T \longrightarrow T{ }^{\prime \prime}$, and it is immediate to see that
 0 OD.

Dually, in δ every api map is the coequalizer of a pair of maps. Precisely, if $\Delta \xrightarrow{q} A^{\prime \prime}$ is eph, then $q=\operatorname{Coeq}\left(a p_{0}\right.$, a p_{1}) where p_{0} and p_{1} are the two projections $A \times A \Longrightarrow A$. With this and the second (dual) half of 6.1 one can show that:
proposition 6.3 For any mall C, every eli in $\delta^{(T)}$ is a coequalivers These two propositions have a consequence which is usually taken for a regularity condition, namely, that any map can be factored uniquely into an epi followed by a mono. that this is so will be shown in general in the next chapter.

To say that all epimorphisas in are coequalisers is equivalent with all epinorphisms being onto, which in turn is equivalent with the statement that 1 is projective in . Since 1 is then, a projective generator in we would like to know whether the generating family of representsbles is composed of projective objects, and this is the content of the next theorem. (Notice, by the way, the if $\mathbb{C} \boldsymbol{1} \boldsymbol{1}$, the fancily of representable functor reduces to a single functor, H_{0}, where 0 is the name for the only identity map (object) which exists in $\mathbb{1}$, and therefore H_{0} is. \because constantly (it can only be evaluated at 0) 1 , a singleton set contaiming the identity map 0 .)

Theory: 6.4 For any $c \in \mathbb{C}, H^{C}$ is projective in $\boldsymbol{d}^{(6)}$.

Proof:

Let $T \xrightarrow{V} T^{m}$ be an epimorphiam and $H^{C} \xrightarrow[\longrightarrow]{ } \boldsymbol{H}^{m}$ any natural transformation. By Yoneda leman, let $x_{\eta}: 1 \rightarrow C T^{m}$ correspond to η. Since
 $I \xrightarrow{y} C N$ such that $y \Psi_{5}=x_{y}$. Using Ioneda again but in the other
direction, let $\xi_{y}: H^{\mathbf{C}} \mathbf{T}$ be the corresponding natural transformation of y. It is immediate that $z_{y} \psi=\eta$ and so, that H^{C} is projective. ODD .

Dually, it is true that 8 has an injective cogenerator, namely 2 , a fact which will be used to show that any diagrammatic category has an injective cogenerator, namely, $\prod_{\text {cedi }} Q^{C}$. We first show that:

Lemma 6.5 2 is infective in $\boldsymbol{0} \boldsymbol{j}$.

Proof:

We use the direct image function defined by Lavers (16) as follows: given $f: A \rightarrow B$ and $\psi: A \longrightarrow 2, f$ induces $f: 2^{A} \rightarrow 2^{B}$ defined at $\boldsymbol{\psi}$ by
 such that $x \boldsymbol{\Psi}=i_{1}$ and $x \boldsymbol{x}^{f}=\mathbf{y}$.
We now claim that if f is mono the following triangle is commutative, for each $\boldsymbol{\psi}$:

This is equivalent with the injectivity of 2 in d. To see that the t triangle above commutes, assume given $x \in A$, and assume first one of the two possibilities, say, that $\mathrm{x} \boldsymbol{\Psi}=\mathrm{i}_{1}$. But then, by definition of f^{*} we have that (If^{\prime}) $\mathrm{Fr}^{*}=\mathrm{i}_{1}$ also. For this we did not need the fact that f was mono, but we will need it for the case that $\boldsymbol{z} \boldsymbol{\psi}=i_{0}$. If so, save that $(x f) \Psi f^{*}=1_{1}$. By the definition of f^{*}, the last equation implies that there exists $x^{\prime} \in \Delta$ for which $x^{\prime} \Psi=i_{1}$ and $x^{\prime} f=x f$. Since f is mono, this implies that $x^{\prime}=X$, but it is not possible to have at the asa time $x \boldsymbol{\Psi}=i_{0}$ and $x \boldsymbol{\Psi}=i_{1}$. This contradiction
implies that ($\mathbf{I f}$) $\Psi \mathrm{f}^{*} \neq \mathrm{i}_{1}$ and so (If) $\boldsymbol{\Psi}^{\prime} \mathrm{f}^{*}=\mathrm{i}_{0}$ - QED.
With this we now prove :
Theorem 6.6 For any mall $\mathbb{C}, \prod_{\mathbb{C}} Q^{C}$ is injective in $0^{\boldsymbol{D}}$. Proof:
 natural transformation. Let $(\underset{C}{ } \boldsymbol{F})=\boldsymbol{\psi} p_{Q} c$, for each $c \in / D i$. By Co-Yoneda, let $\overline{\left(c^{7}\right)}$ correspond to $\left(c^{7}\right)$. since η_{c} is mono in d, and 2 is injective, there exists a $\overline{\left(c^{5}\right)}$ such that $\eta_{c}(\overline{5})=\left(\overline{c^{7}}\right)$. In fact, by the previous leman, we can toke $\left(\overline{c^{5}}\right)$ to be $\overline{\left(c^{W}\right)} f^{\omega}$. Again by comrone da, $\operatorname{let}\left(c^{5}\right): T \rightarrow Q^{C}$ correspond to $(\overline{5})$, and now it is a natter of routtine to verify that $\chi\left(c^{3}\right)=\left(c^{\psi}\right)$. The bunch of natural transformations $\left\{c^{5}\right\}$ so defined induce a unique natural transformation $5: T \longrightarrow$ Ten such that the following triangle is comitative:

This says that $\prod_{C \in} Q^{C}$ is injective, precisely because each Q^{C} is injecLive. ard .
Therefore, every diagramatic category has an injective cogenerator, $]_{\text {a }} a^{c}$ -
 of the above theorem. However, we needed to prove it first since it is used to establish the more general revolt.

6 7 - sPECIAL SUBHUCTORS

One of the various consequences that the axiom of choice has in d, is that every subset of any set has a characteristic function. These subsets are called gnecial by Lawvere [16] until he shows that all subsets are special.

In $\delta^{\boldsymbol{C}}$, we can also say that $T \xrightarrow{\eta} T$ is a oubfunctor of T iff η is mono, i.e., iff, for each celCl, η_{c} is mono in \mathcal{S}. It is also possible to define apecial subfunctors in such a way as to correapond to the existence of a "characteristic morphien". Although we have not been able to find a counterexgmple, it seems intuitively clear that in general most functors have aubfunctors which are not apecial.
 transforation of functors. Then, each $C B \xrightarrow{C} C A$ is mono in δ, and so , it is a subset of CA and therefore has a characteriatic function $\varphi_{C}: C A \longrightarrow 2, i, e_{.}, \varphi_{C}$ is such that $a_{C}=\mathrm{Eq}_{\mathrm{q}}\left(\mathcal{C}_{C}, 1_{1}\right)$. (In fact, we do not mean i_{1} but rather, the composite function $C A \rightarrow 1 \rightarrow 2$, but will write i_{1} for convenience) Therefore, for each $c \in|\mathbb{C}|$, we have one auch $\mathscr{\varphi}_{C}$, the question being now when is such a family a natural trans formation $A \xrightarrow{\varphi} 2$ as well, for 2 the functor whose constant value is 2. By the way equalizers are defined in $\mathcal{S}^{(4,}$, it is cle r that if $\{\mathbb{4}\}$. happens to be a naturel transformation, fill automatically be the equaliser of φ with $A \rightarrow 1 \xrightarrow{i} 2$ (notice that the functor constantly 2 is the coproduct of the functor constantly 1 with itself, i.e., $1+1$), and so, f will be what we may call the oharacteriatic mornhien of the subfunctor a of 1 .

Let $c \xrightarrow{u} c$ ' be any map in \mathbb{C}. Por $\left\{\varphi_{C}\right\}$ to form a natural transforma tion \mathcal{P}, the lover tringgle in the following diagram has to be commutative where the square is commatative since a is a natural transformation 3

If this is 80 , the characteriatic function of $C B \rightarrow{ }^{4}, C A$ has to be (uA) $\varphi_{C^{\prime}}$. This statement is equivalent with the requirenent that $C B$ be the largeat subobject of CA carried into $C \cdot B$ by means of wh. Or, equivalently (by the definition of inverse inage of a map, see [23]), that the square:in the above diagrem be a pull-back. setually, this condition seems to be quite adequate for defining the notion of apecial subfunctor, and we nert prove a proposition to the effect that it coincides with the requirement that the abbinctor has a characteristic morphism.

Therefore, given a mono natural transformation in $f^{4}, B \rightarrow a$, i.e., a subfunctor of A, we say that the zubfunctor a is epeciel iff cor every map $C \xrightarrow{u} C^{\prime}$ in \mathbb{C}, the following is a pull-back diagram:

On the other hand, we say that $4 \xrightarrow{\varphi} 2$ is the characteristic morphien of $B \xrightarrow{a} 1$ mono in $\mathcal{C l}^{4}$, iff φ is a natural transformation such that $B \longrightarrow A \xrightarrow[A_{1}]{4} 2$ is an equalizer diagram.

Proposition 7.1 a subfunctor is special if it has a characteristic amorphism.

Proof:
Assume first that the subfunctor $B \xrightarrow{a} A$ has the characteristic amorphism $A \xrightarrow{\varphi} 2$. Ye show that it is special . Consider the following commutative diagram:

$$
\begin{aligned}
& \text { with } a_{C}=\operatorname{Eq}\left(\varphi_{C}, i_{1}\right) \\
& \text { and }{ }^{a_{C}}=\operatorname{Bq}\left(\varphi_{C^{\prime}}, i_{1}^{\prime}\right) \\
& \text { where by } i^{\prime}{ }^{\prime} \text { we mean } \\
& c^{\prime} A \rightarrow 1 \xrightarrow{\prime} 2^{\prime}
\end{aligned}
$$

 $= \pm 1_{1}$.
Therefore, since $a_{C}=\operatorname{Bq}\left(\varphi_{C}, i_{1}\right)$ there exists a unique $: X \longrightarrow C B$ such that $s a_{C}=x$. But we still need to show that $s(u B)=y:$ since a_{C} is mono, assume $s(u B) \neq y$, then $s(u B) a_{C} \neq y a_{c}$ and this implies that $\mathrm{s}(\mathrm{uB}) \mathrm{e}_{\mathrm{C}} \neq \mathrm{x}(\mathrm{uA})$. But $\mathrm{x}=\mathrm{a}_{\mathrm{C}}$ therefore $g(n B) a_{C} \notin=a_{C}(u A)$ and therefore $(u B) a_{C \prime} \neq a_{C}(u A)$ which is a contradiction. So, $s(u B)=Y$. This shows that the smaller square is a pullback, and since $C \xrightarrow{u} C^{2}$ was an arbitrary map in \mathbb{C}, this means that the subfunctor a is special.
For the converse, assume that a is a special eubfunctor of 4 . Since each of the a_{c} is mono in $\boldsymbol{\alpha}$. it has a characteristic function O_{C} in 0 We have to show that the collection $\left\{\mathscr{P}_{C}\right\}$ can be made into a natural trans formation and furthermore that it is the characteristic morphs of a .

Let $C \xrightarrow{u} C$, be any map in C. We have to show that the following diagram commutes:

In other words, that the subset of $C A$ which is the equalizer of (va) $4 \mathrm{Cl}^{\circ}$ i_{1} is precisely C_{C}. For this, let $X \xrightarrow{X} C A$ be their equalizer and and show that the two monomorphisms x and a_{C} are equivalent (see [8]) and so they represent the same $\begin{aligned} & \text { abfunctor. }\end{aligned}$
So, $x=\mathrm{Eq}\left((u A) \varphi_{\mathcal{A}} i_{1}\right)$ and also $x(u A) i_{1}^{\prime}=\mathrm{xi}_{1}=x(u A) \varphi_{C^{\prime}}$ but since $a_{c},=E_{q}\left(i_{1}, \varphi_{C}\right) ;$ there exists $y: X \rightarrow C^{\prime} B$ such that $x(u A)=y^{a}{ }_{C}$. That is, the following diagram is commutative:

and since the smaller square is a pull-back, there exists a unique $\mathrm{z}: \mathrm{X} \rightarrow \mathrm{CB}$ such that $g(u B)=y$ and $\varepsilon_{a_{C}}=x$. How, $x=\operatorname{Eq}\left((u A) i_{1},(u A) \varphi_{C^{\prime}}\right)$ and $a_{C}(u A) i_{1}=\langle u B) a_{C}, i_{1}=(u B) a_{C}, \varphi_{C},=a_{c}(u A) \varphi_{C^{\prime}}$. Therefore, there exists a unique $s^{\prime}: C B \longrightarrow X$ such that $s^{\prime}=(u B) y$ and $s^{\prime} x^{\prime} n^{n} a_{c}$ Therefore ${ }^{a_{C}}$ and I are equivalent. This can be seen as follows: since $x(u B)=y ; \quad s a_{C}=x ; s^{\prime} y=u B ; s^{\prime} x=a_{c}$ then $s^{\prime} s a_{C}=s^{\prime} x=$ $=a_{c}$ and a_{c} mono implies that $s^{\prime}=C B B$. On the other hand, $s s^{\prime} x=x_{c}=x$ and x mono therefore $s s^{*}=X$. Therefore, $a_{C}=E_{q}\left((u \Lambda) \varphi_{C}, i_{1}\right)$ which shows that φ such that it is φ_{C} in each C --coordinate, is the characteristic morphs of $B \rightarrow$ a A.

§ 8 - THE RANGE OF VALIDITY IN THE CLASS OP DIAGRMMATIC CATEGORIES OF THE AXIOMS OF LAWVERE'S ELYYENTARY THRORY OF THE CATEGORY OF SETS

Lawvere [16] has characterized the category of eets and mappings by means of eight first-order axions adjoined to the firat-order axions of the theory of categories plus non-elementary arion isuring completness. In this section, we investigate the validity, for diagramatic categories, of these eight first-order axions and leave for the next section the question of completeness.

Ariom 1 - There exist finite roots.
We have proved in 1.1 that this holds for arbitrary diagrammatic categories.

Atian_2-Brponentiation.
Theoren 3.1 says that any diagramatic category has exponentiation.
 such that given an object X together with mappinga $1 \xrightarrow{x_{0}} X \xrightarrow{t} X$, there is a unique mapping $M \xrightarrow{X} X$ such that $x_{0}=I$ and $x t=s x^{x}$ This holda also in any diagramatic category and we ahow it as followa: Let I denote the constant functor whose value at each $C \in|C|$, is the object y of f whose existence is guaranted by axicen 3 , and $s 0, z$ and - become natural transformations, if by 1 me mean the constant functor 1. Let x be any object in $\mathscr{S}^{(\mathbb{C}}$, together with natural transfonations $1 \xrightarrow{x_{0}} X \xrightarrow{t} I$. Then, for each $C A M$, there existe a unique X_{C} such that $\left(x_{0}\right)=E x_{C}$ and $x_{C} *_{C}=x_{C}$. We want to show that the family
$\left\{x_{c}\right\}$ indexed by $|\mathbb{C}|$, is a natural transformation $x: y \longrightarrow X_{\text {. }}$ For this, let C - C^{\prime} be any map in \mathbb{C}, and show that the followwing diagram is commutative:

Since $1 \xrightarrow{x_{0}} X$ is natural, we have that $x_{0_{C}}(u x)=x_{0_{c}}$ and since t is natural, that $t_{C}(u x)=(u x) t_{c}$.
The maps $x_{C}, x_{C}, x_{0_{C}}$ are.provided by arian 3 in \mathscr{S}, By the uniqueness part of the axiom, $x_{C}(u x)=x_{C}$ and $x_{C}=x_{0_{C}}$ as well as

Axiom 41 is a generator
We have mentioned already in $\oint 5$ that not every diagrammatic category has a generator, let alone that it should be the functor constantly 1 . We first give a sufficient condition for a diagrammatic category to have a generator, and then we find out that there is only one diagrammatic category for which 1 is a generator, to wit, 8 .

We have introduced before the name strongly connected for any category for which there is a map between any two objects. We now proves

Proposition Bel If C is canal and strongly connected, then $\sum_{c \in \omega i} H^{\mathrm{C}}$ is a generator for $j^{(\mathbf{N}}$.

Let $F \stackrel{y}{\rightleftharpoons} G$ be any two natural transformations which are different. Since the family of representables is generating for $\mathcal{S} \mathbb{C}$, there exists $c \in\left|C_{1}\right|$ and $H^{C} \xrightarrow{h_{C}} P$ such that $h_{c} \eta_{c} \neq h_{c} S_{c}$. Given $C \neq C$ since (C) is strongly connected there exists some map $C \xrightarrow{\mathrm{Cc}^{\prime}} \mathrm{C}^{(1)}$ which

 $\Psi_{c^{\prime}}=H^{f c^{\prime}} h_{c}$ if $c^{0} \neq C$ and $\Psi_{C}=h_{C}$. (Use the anion of choice to select an element from each nonempty set $\operatorname{HOx}\left(C, C^{\prime}\right)$ for C and C^{e} arbstracy objects in \mathbb{C}). This family induces a unique map

$$
\sum_{\mathrm{c} \mid \mathbb{C} \mathbf{l}^{2}} \mathrm{H}^{\mathrm{c}} \longrightarrow \mathrm{r}
$$

such that for every $C,{ }_{C} \psi=\Psi_{C}$ and so $\Psi 7 \neq \Psi 5$. ain .

Theorem 8,2 2 is a generator for $\boldsymbol{J}^{\mathbb{N}}$ af $\mathbb{C}_{\boldsymbol{4}} 1$.

Proof:

Let 1 , the constant functor whose constant value is 1 , be a generator for 8 .
Since $\left\{H^{C}\right\}$ is a generating family for $\mathcal{C O}^{\mathbb{C}}$, given any T in $X^{0 .}$ there exists a aet and an epimorphism

$$
\sum H^{c} \longrightarrow T
$$

However, 1 is also a generator, therefore, for each H^{C} there is a set J_{C} and an opimorphion

$$
\sum_{J_{c}} 1 \xrightarrow{b_{c}} H^{c}
$$

Each H^{C} is projective , therefore, there is a map I_{C} such that the following diagram computes :

By Yoneda, let $1 \xrightarrow{x_{c}^{\prime}}(c)\left(\sum_{J_{c}} 1\right)=1 \xrightarrow{x_{c}^{0}} \sum_{J_{c}} 1$, which by axiom 7 (to be discussed) has to factor trough one of the injections, but alice there is only one map $1 \rightarrow 1$, the identity, $I_{C}{ }^{8}$ is one of the injections, By Yoneda again, this assays that $H^{6} \rightarrow \sum_{J_{C}} 1$ factors trough one of the injections, is., that there exist a map y_{C} such that the followwing diagram is commutative :

Thus, H^{C} is retract of 2 (for any $C \in|C A|$ and so it has to be isomerphis to 1 . i.e., for any C and $C^{\prime}, \operatorname{HON}\left(C, C^{\prime}\right) \not \approx 1$ which means that C is a preorder but a particular kind of preorder : there is always a map between any two objects, ie., it is also strongly connected, Obvious l_{y}, the only preorder and strongly connected category is $\mathbb{1}$, since, given any two objects C, C^{2}, there are maps $C \xrightarrow{\mathcal{G}} C^{\prime}$ and $C^{\circ} \xrightarrow{\&} C$ and both compositions have to be identity maps. QED .

Arica 5 (Arian of Choice) If the domain of a map I has elements then there exists a map g such that fer $=1$.

This axiom does not hold in general for diagramatic categories if it Is: translated into : for every $T \xrightarrow{H} T^{\prime}$ such that there exists a nato-
ral transformation $1 \xrightarrow{T} T$ there exists a natural transformation $T^{\prime} \xrightarrow{\Psi} \rightarrow$ such that $\eta \Psi \eta=\eta$. Although we know no counterexample , it sems unlikely that a collection of maps in \mathcal{S}, indered by \mathbb{C}, and such that each member Ψ_{c} be such that $\eta_{c} \Psi_{c} \eta_{c}=\eta_{c}$, should prove to be a natural transformation as well. If the donain category is discrete, i.e., any set I, then $d^{\mathbf{I}}$ has the axion of choice in the above form. However, in \mathcal{S}, the non-eziatence of naps from 1 is another characterization of the coterminal object, 0 . With this, the axiom of choice reads : if f is any map with non eupty domain (non-zero) there exists a map g such that $f g f=f$. In any diagrammatic category, there are no natural transformations $1 \rightarrow 0$. However, if T is any functor which has at least an enpty value, there will not be any maps $1 \rightarrow T$ either, and $T \neq 0$. If (1) is atrongly connected, the two properties coincide in $\mathbf{J}^{\mathbf{4}}$, and the functor constantly 0 is precisely the object such that there are no natural tranaformations $\boldsymbol{a} \rightarrow 0$. Since the only strongly connected discrete category is 1 , it seens that the axion of choice as it is usually stated, namely that if the donain of a map is not 0 then there is a g such that $f g f=f$, holds only for of.

Axice 6 - If A is not a coterminal object, then there exist $1 \rightarrow 4$. Ye have commented above on this axiom already. It is not true in general, aince there ia no natural transformation $1 \longrightarrow T$ if T is a functor with at least one copty value. However, if \mathbf{C} is strongly connected, the axion is equivalent with the existence, for every functor different from 0 , of a natural transfornation $\sum_{C C H} H^{C} \rightarrow P$. For arbitrary diagramatic categories we have the following elementary but useful result:

Proposition 8. 3 For any amall \mathbb{C}, and ant T in $\boldsymbol{d C}$, there exists a set J, a family of representable functors indered by J and an epimorphism $\sum_{\mathbf{J}} \mathrm{H}^{\mathbf{C}} \mathrm{P} \rightarrow \mathrm{T}$ 。

Proof:

Let $J=\sum_{M i}\left(H^{C}, T\right)_{\text {nat }}$ and let p be the induced map from the coproductof this family into T. To see that p is epi, let $T \xrightarrow{\boldsymbol{y}, \mathbf{Y}}$ be any two natural transformations such that $p \eta=p \xi$, and just assume that $\eta \neq \xi$. Then, there is a $C \in|\mathbb{C}|$ and a natural transformation
 $\boldsymbol{f}^{\mathbf{C}}$. Let i_{x} be the injection $H^{C} \longrightarrow \sum_{J} H^{C}$ corresponding to x, so that $x=1 x^{p}$. But $x \boldsymbol{y} \neq x y$ inplies that $p \boldsymbol{p} \neq p y$, a contradiction. Therefore $\boldsymbol{\eta}=\boldsymbol{\xi}$. ald.

Atiom 7 - Each element of a sum is a member of one of the injections. Δt this point we introduce the following definition which can be atated in any category with coproducts: an object 1 is said to be abstractly unary iff for any coproduct $B+C$ and a map $A \xrightarrow{X} B+C$ there exists either a map $A \xrightarrow{y} B$ such that $x=y i_{B}$ or there exists a map $A \xrightarrow{z} C$ such that $x={ }^{2}{ }_{C}$. This inplies that any map from A into a finite coproduct factors trough at least one of the injections. If the category has arbitrary coproducts, we replace the above definition by the corresponding one for arbitrary coproducts, and call abstractly mary any object ouch that a map into an arbitrary coproduct factors trough at least one of the injections, definition which is more reatrictive than that of an abstractly finite object, as given by Freyd . But here, completeness is not yet assumed. Axica 7 can now be phrased : 1 is abstractly unary in 0 . Using Yoneda lame
this implies that every representable functor in $f^{(4)}$, is abstractiy unary.

One of the consequences of the axioms so far atated for $\delta \mathcal{A} \begin{aligned} & \text { is axiom } \text { that } \text {, }\end{aligned}$ two injections $1 \Longrightarrow 1+1$ are different (and are the only elements of 2). If by an abstractly exclusively unary object we mean an object such that any map into a coproduct factors trough precisely one of the injections, the above says that 1 is alao abstractiy exclusively unary in 8 . And it implies, again using Yoneda lemma, that any representable functor in any diagramatic category is abstractly excluaively unary as well. We remark that in 0 , 0 is abstractly unary but not abstractly exclusively unary.

Aric! 8 - There is an object with nore that one element. This ariom is trivially satisfied in any diagramatic category, by taking S to be a functor constantly S, for S any aet with more than one element. The purpose of ariom 8 in δ, ia to insure that the object assumed to exist by axion 3, is infinite and plays the role of the set of natural numbers. Arian 8 prevents the category with only one mapping from being a model of the arions.

This ends the list of axioms for δ, and a rather superficial analysks of their validity anong diagramatic categories. The inportance of the knowledge of Φ, for the knowledge of the class of diagramatic categories cannot be overestimated, since $\&$ can alvays be recovered froa any diagramatic category as the full subcategory determined by the constant funotors. We can easily see that the usual operations with sets coincide with those performed for the corresponding constant functors. The case of expo-
nentiation may not be so immediate since exponentiation was not defined coordinatewise. However, we can see that it coincides with exponentiation in \mathcal{C} when we restrict to constant finctors as follows: let T; T be any two constant functor and let $\|T\|$ and $\|P\|$ be the names for their constant values. Then, TI^{T} is again a constant functor and its
 $\geq\left(C T^{4}\right)^{\|T\|}=\left\|T^{4}\right\| T \|$.

Constant functors have the following property in any diagrammatic category: if T is constant, and C, C^{\prime} are any two objects in the angl domain category exch that the conroduct $C+C^{8}$ eriats in \mathbb{C}, then

$$
T^{\left(H^{C}\right)} \equiv T^{\left(H^{C}\right)}
$$

This is so, because, for any sulci,
 $\left.\left.\cong\left(H^{C^{4}}+4, T\right) \cong\left(H^{C^{4}} \times H^{4}, T\right)=4 T^{C}\right)\right]$.

The category denoted 2 is an important subcategory of $\mathcal{D} \mathcal{S}$, when dealing with applications of category theory to logic and the theory of models. The functor $2 \longrightarrow d$ induces a functor $2^{\mathbb{C}} \rightarrow \delta^{(4}$ for any C We want to characterize abstractly those objects of $S^{(T)}$ which are also objects of 2^{4}, ie., those functor which have as values either 0 or 1 . and which we may call (0.1)-valued functor, To this end wo define for categories with products : an object is said to be ide potent ff It is isomorphic to its square, ice., 4 is idempotent ff $\times \times \leq 1$, or else, ff both projections $\Delta \times \perp \Rightarrow A$ are isomorphisms. (Sane as for Boolean rings).

We want to ahow that both 2 and Sa^{4} are examples of "Boolean rings" in the sense that all their objects are idempotents. It is equivalent to show that, in 0 , the only idempotents are 0 and 1 (actually, it is more) and that in a diagramatic category the only idempotents are the (0,1) - or two-valued functors.

Leman 8.4 In \mathcal{X}, the only idempotents are 0 and 1 .
Proof:
Given any two objects \perp and B, their product $A \times B$ as well as the two projections are given by the pull-back of the following diagram:

We first show that 0 and 1 are idempotents in \mathcal{X}, by showing that the following two diagrans are pull-backs:

In fact, they are obviously pull-backe, and we do not verify it in detadl. Let now A be an object in \boldsymbol{d}, such that both projections $\Delta \times \Delta \rightarrow 4$ are isomorphisms, in other worde :

Ve first notice that, if x is any object in d, oither thereds no map $x \rightarrow A$, or, if there is one, there is coly one, since the above is a pull-back.
 ariom 6 , there exists $1 \xrightarrow{I} A$. And aince for every object X in \mathscr{S}, there exists a (unique) map $X \rightarrow 1$, it follows that for every X in d , there exiats a map $X \rightarrow A=X \rightarrow 1 \xrightarrow{X} A$, but by the prem vious remark, there cannot be more than one map $X \rightarrow A$. In other words, for every X there exists a unique map $X \rightarrow \mathcal{A}$, or, A is terminal, and therefore isomorphic (equal, by a Convenience axiom which we will state in the next chapter) to 1 - OBD.

Theorem 8.5 In any diagramatic category $S^{(\mathbb{N}}$, the only idempotents are the two-valued functors.

Proof:

Let T be a two-valued functor. Let $T X T \Longrightarrow T$ be the two projections. For each $C \in|C|, C T \times C T \Longrightarrow C T \quad$ are also the two projections. And eince CT is either 0 or 1 , by the first part of 8.4 , they are both isconorphisas. Since this is so for each C, both $T \times T \Rightarrow T$ are iscmorphisms as well.
Let T be an idempotent object in $\int^{(4,}$. Then, $T \times T \geq T$, and so, for each ce|C|, cT x CT x CT in 8 . But by the second part of leama 8.4 , the only idempotent objects in 8 are 0 and 1 , therefore, CT is either 0 or 1 , and T is a $(0,1)$-valued functor. QED .

89 - COMPLITNTESS

The category of sets and mappings is any complete model for Lavvere's eight elesentary axions adjoined to the ariome for categories. We want
to analyse what does it mean for a model of the elementary theory to be complete. Consider a fixed object 1 of 8 . Let (8 , I) be the category (named by J. Beck) of "objects in \mathcal{S} over $I^{\prime \prime}$. Consider the functor

$$
8 \rightarrow(1) \times I \rightarrow(8, I)
$$

 nean not only the object $\times \times I$ in δ, but the object $X \times I \xrightarrow{n_{2}} I$ in (ℓ, I). An adjoint is given by forgetting the "over $I^{\prime \prime}$ part of any object $A \xrightarrow{p}$ of ($\mathcal{D}, I)$. To give an object A over I by means of a function p is the same as to partition 4 into disjoint sets given by the inverse images of points in (elements of) I under p. But disjoint unions in \mathcal{X} are precisely the categorical coproducts, so that any object over I, say $A \xrightarrow{P} I$, is already a sort of coproduct, only it need not satisfy the universal mapping property of coproducts, for which reason we call it an internal coproduct. A coadjoint gives internal products by the classical method of constructing cartesian products, it does not provide them with the universal mapping propert of categorical products, though. It is defined as follows: for $X \xrightarrow{\boldsymbol{G}} I$ an object in ($\$$, I) , one can partition I into a disjoint union of seta indered by I, by the above remark, i.e., $\quad X=\bigcup_{i \leq 1} X_{i}$ with $X_{i}=p^{-1}(i)$. Let now $X_{i \in I} X_{i}$ be the subset of $\left(\underset{U I}{ } X_{i}\right)^{I}$ whose elements are those functions $f: I \longrightarrow \bigcup_{i n} X_{i}$ for which $f(i) \in X_{i}$ for all $i \in I$. This is exactly the classical definition of carteaian products and it can alsao be expressed by the requirement that the following be a pullback diagram:

We still have to verify that $(X \xrightarrow{g} I)$ molt $X_{i \in I} X_{i}$ gives indeed a coadjoint to () XI . For every $S \in \mathcal{S}$ and $X \xrightarrow{g} I$, we show that the following holds:

$$
\operatorname{HON}_{\delta}\left(S, X_{X} X_{1}\right)=\operatorname{HON}_{(\Omega, I, I)}\left(S \times I \xrightarrow{P_{I}} I, X \xrightarrow{g} I\right)
$$

Given a map $S \rightarrow X_{i \in I} X_{i}$, by composing with the maps in the above pull- back diagram we get

which yields
by exponential adjointness, ie., al element of $\operatorname{HOM}(S X I \rightarrow I, X \rightarrow I)$, since a map fro $A \xrightarrow{P} I$ to $B \xrightarrow{t} I$ in (\mathcal{S}, I) is, by definition, a map $4 \xrightarrow{f} B$ such that the triangle

commutes. And conversely now, given a map in (d, I),

applying exponential adjointness to the maps $S X I \rightarrow I$ and $S X I \rightarrow I$ to get maps $S \longrightarrow I^{I}$ and $S \longrightarrow X^{I}$ respectively, these form a comitative triangle

square is commutative:

and by the definition of ${ }_{i x} X_{i}$, and the universal property of pullbacks there exists a unique $S \longrightarrow X_{i} X_{i}$ such that the following diegram commutes:

Let SXI

Composition of ()XI with its adjoint gives the correspondence X map $I \times I=\bigcup_{I}$, and with its coadjoint, the correspondence x mat $I^{I}=X x$, for any $x \in \mathbb{X}$. clearly, given any $I \in \mathcal{X}$, for any $X \in S$ there exist both I^{I} and XXI, dimply because the category has exponentiation and products, so that completeness need not be required for the existence of arbitrary internal coproducts and products, and these exist in any model for the elementary theory.

That δ is complete means that arbitrary families of objects in have a product and a coproduct. 4 family of objects of δ indexed by a set I (ie., another object I of 8) can be thought of as a functor $I \rightarrow \infty$. There is a diagonal functor

$$
\lambda^{\Delta} \xrightarrow{\Delta x} d^{I}
$$

which assigns to every object X of $\$$, the family $\left\{X_{i}\right\}$ us such that $X_{i}=X$ for each $i \in I$
 to each $A \xrightarrow{p} I$ the family $\left\{\mathbb{A}_{i}\right\}_{i \in I}$ given by $A_{i}=p^{-1}(i)$. The following triangle is commutative:

That 8 is complete is equivalent with the statement that for every set I, Δ_{I} has adjoint and coadjoint, and this implies that the internal coperducts and products which are given by the adjoint and coadjoint to () XI, are indeed the categorical coproducts and products, in other words, this is so of $\boldsymbol{H}_{\boldsymbol{Z}}$ is an equivalence of categories. Therefore. the statement that X is complete can be phrased as follows : the fundtors

$$
\left(\mathbb{S}^{8}, 1\right) \xrightarrow{\Psi_{I}} \mathbb{S}^{I}
$$

are all equivalences of categories, for every set I.
We turn to the case of diagrammatic categories nov e If by I wean now, the functor constantly I, we can form the category (8^{01}, I) for each object I in $\mathbf{C O}$, wade into a constant functor. We can define mimilar functors as in the case of 5 , and show, exactly as above, that the following triangle is connotative:

Also, as for the case of , () xI has adjoint and coadjoint for every aet I and that $f^{(18}$ complete can be replaced by the atatenent that for every aet I, Ψ_{I}^{c} is an equivalence of categories.

The ain of this section is to show in a way different than the usual one, that every diagrammatic category ie complete because 8 is complete. For this, let T_{1} be any model for the eight axioms of Lawvere (and such that \mathcal{M}^{\prime} is a category as well), of with we do not assume completeness. Then, let $\mathbb{M}^{\mathbb{C}}$ be the corresponding functor category, for \mathbb{T} small. Ye first prove a lemma:

Leman 9.1 For any mall \mathbb{C}, and any model 76 of the theory of \mathbb{S}, and any set I, and the functor whose constant value is I, we have that $(\mathbb{M}, I)^{\mathbb{N}} \cong\left(\mathbb{B}^{\mathbb{N}}, 1\right)$.

Proof:

Given a functor $: \mathbb{4} \longrightarrow(\mathbb{W}, I)$, we have, for each $c \in \mathbb{C} \mid$, an object in M_{6} over $I, C F=X_{C} \longrightarrow I$, and if $C \rightarrow C^{\prime}$ is any map in \mathbb{C}, F induces $C F \xrightarrow{x F} C^{4} P$ such that the following triangle commutes:

Let $\mathrm{I} \xrightarrow{\varphi} I$ be an object in $\left(\mathbb{M}^{\mathbb{N}}, I\right)$ where x is an object in $M \mathbb{Q}$, defined by $C X=X_{C}$ for each $C \in(C)$ and $X X=X_{x}$ for each map x in C. And obviously, by the commutativity of triangles lite the above one, this avs that the collection $\left\{\varphi_{C}\right\}$ is a natural transformation $X \xrightarrow{\varphi}$, where now I is interpreted as the functor constantly I . We have defined a map $\left(\mathbb{W}_{6}, I\right)^{(4)}\left(\mathbb{M}^{\boldsymbol{4}}, I\right)$.

Conversely, given any object $T \rightarrow I$ in ($\mathbb{M} \boldsymbol{C}, I$), for each $c \in \mathbb{H}$ there is a map $Y_{C}: C T \rightarrow I$, and if $C \xrightarrow{x} C$ is any map in C^{+} the following triangle is commutative:

 It is now easy to see that both compositions of functors are equivalent to the corresponding identities. QUTD.

Theory 9.2 Let (1) be any anal category, and \mathbb{M} any model for the demeptary theory of the category of sets. Then,
$M^{\boldsymbol{4}}$ is complete ff $7 /$ is. complete.

Proof:

Let M be complete, i.e., M is \mathbb{C}, the category of sets. This means by previous considerations in this section, that for every object I of $\boldsymbol{4}$, the functor $(\boldsymbol{\delta} \boldsymbol{S}, I) \xrightarrow{W_{I}} \mathcal{S}^{I}$ is an equivalence of categories. This functor induces a functor
which is also an equivalence of categories since \prod_{x} ia. By $9.1,(\mathbb{N}, I)^{\mathbb{C}} \times\left(\mathbb{N}^{M}, I\right)$ so that we have that the functor

$$
\left(d^{4}, 1\right) \xrightarrow{\omega_{2}^{C}}\left(d^{(B)}\right.
$$

ie an equivalence of categories, in other words, $f f^{i}$ is complete. conversely, asenne $\mathbb{W}^{\mathbb{N}}$ complete. $4 n$ arbitrary family of objects of \mathbb{W} can be thought of as a family: of constant functor in $\mathbb{M}^{\mathbb{C}}$, and 80 , it has a product and a coproduct, or \mathbb{M} is complete. QPD.

Chapter II

THE
THEORY OF
REGULAR
CATEGORIES
AN D
AN
ABSTRACT
CHARACTERIZATION
0 F
DIAGRAMMATIC
CATEGORIES

In the first chapter we have deacribed many features of the members of the class of diagramatic categories. Some of these properties, such as having a generating family of projectives, can be stated without any reference to the set-valued functor nature of the objects in each diagramatic category. The problem we pose in this chapter is whether there are enough properties, which can be phrased in abstract categorical terma and which could serve to characterize the class of diagramatic categories To this end, we introduce the name requar for categories atiafying a list of axioms which are weakened versions of those given by Freyd for the theory of abelian categories. Indeed, all abelian categories are regular, the converse is not true, one example being the category of sets. Regular categories are not strong enough to yield results as interesting as those of the theory of abelian categories; yet, they are strong enough to exclude many interesting categories since there is a regularity condition to be satisfied and which is not satisfied by the category of Hausdorff apaces or by many algebraic categories, for eranple. We choose regular categories as a starting point in the progran of characterizing abstractly the diagramatic categories, eince they are all obviously regular. On the other hand, aince there are no abelian diagran matic categories, the strenghtening of the adome has to deviate from
abelianess and follow different pathe. We next introduce the definition of atom in a regular category, and say when shall a regular category be called atomic. It turns out that any complete atomic regular category is isonorphic to some diagramatic category and that all diagrammatic categories are complete atomic regular : this is the characterization we wanted. On the other hand, abelian categories, though regular, are far from being atomic : only the zero abelian category is regular atomic.

810 - Regular categories

Before stating the axioms of the theory of regular categories, we want to make precise what the consequences of having finite roots are. In this way, we determine better what do the other axione really add to the assumption of finite roots. Besides, all definitions of the theory of regular categories can be stated for categories with finite roote alone. We start by defining some notions which make sense in any category with finite roots.
 map h which renders commutative the following diagram:

Dually, the colnduced map of a pair of maps $X \xlongequal{\text { f.g }} I$ is the unique map k which rendere comutative the following diagran:

A relation on an object A is any pair of maps $R \xlongequal{\text { for. }}$ such that their induced map be mono. A correlation on an object B is any pair of maps $B \xlongequal{\text { sol. }}$ such that their co-induced map be epis.
A relation $R \xrightarrow{f_{n} f_{a}}$ is a congruence on A ff
(i) $\exists \mathrm{d}\left(\Lambda \xrightarrow{d} R \& d f_{0}=\Lambda=d f_{1}\right)$;
(ii) $\exists \mathrm{t}\left(\mathrm{R} \xrightarrow{t} \mathrm{R} \& \quad \mathrm{tf}=\mathrm{f}_{1} \& \quad \mathrm{t} f_{1}=f_{0}\right)$ and
(iii) $\forall h_{0} \forall h_{1}\left(x \xlongequal{f_{0} k_{1}} \& \& h_{0} f_{1}=h_{1} h_{0}\right.$ then $\exists u\left(u f_{0}=h_{0} f_{0}\right.$ \&
$\pm f_{1}=h_{1} f_{1}$)。
The induced pair of marg of a map f is the pair $A \times \Delta \xrightarrow{n, h_{n}} \mathbb{P} B$. Dually, the co-induced pair of maps of a map f is the pair $\mathrm{A} \xrightarrow{\mathbf{P}} \mathrm{B} \xrightarrow{\boldsymbol{i}_{0}, i_{1}} \mathrm{~B}+\mathrm{B}$. The kernel pair of a map f ia the pull-back of the diagram:

Dually, the cokernel pair of a map f is the push-out of the diagrams

Proposition 10.1. In a category with finite roots, every map has
a kernel pair and a cokernel pair. Explicitly, let f be any map. Then, Kor pair $(f)=\left(K_{P_{0}}, k P_{1}\right)$ with $k=B q\left(p_{0} f, P_{1} f\right)$ and P_{0},

and, cok pair $(f)=\left(i_{0} q, i_{1} q\right)$ where $q=\operatorname{Coeq}\left(f i_{0}, f i_{1}\right)$ with i_{0}, i_{1} as in the diagram :
$\mathbf{A} \xrightarrow{\mathbf{f}} \mathbf{B} \xrightarrow{\text { i. } i_{i}} \mathbf{B}+\mathbf{B} \xrightarrow{\mathbf{q}} \mathbf{K}_{\mathbf{f}}{ }^{*}$ 。 Proof:

The existence of products and equalizers implies the existence of pullbacks and therefore of kernel pairs, and it is inmediate to see that they are given as in the statement of the theorem. Dually, there are cokernel pairs and they can be so defined. QED.

Propogition 10.2 In a category with finite roots, every kernel pair is a congruence relation.

Proof:

Let $\left(f_{0}, f_{1}\right)=$ Ker pair (f), $i_{*} e_{0}$, the following is a pull-back diagram:

Clearly, the following aquare is also commutative:

Therefore, by the universal property of prill-backs, there orists a uniqe $4 \xrightarrow{d} I_{f}$ such that the following diagran is comentative:

so that $d f_{0}=4=d f_{1}$, which is precisely condition(i), or reflexivity.

To prove condition (ii) or symmetry, consider the following commutative square:

Again, by the properties of a pull-back, there exists a unique $X_{f} \xrightarrow{t} X_{f}$ for which the following diagram is commutative:

In equations, this reads: $t f_{0}=f_{1}$ and $t f_{1}=f_{0}$, which is exactly condition (ii) in the definition of a congruence relation. Finally, let us be given h_{0} and h_{1} such that $h_{0} f_{1}=h_{1} f_{0}$. Then, since $h_{0} f_{0} f=h_{0} f_{1} f=h_{1} f_{0} f=h_{1} \mathcal{L}^{f}$, the following square is courutafive:

and therefore there exists a unique $x \xrightarrow{u} I_{f}$ such that the following diagram is commutative:

In other words, ufo $f_{0}=h_{0} P_{0}$ and $u_{1}=M_{1} P_{1}$, so that condition(iii)
or transitivity, holds. QED.
The converse of this proposition is not necessarily true in a category with finite roots, however it is true in most categories of interest, eng., all algebraic categories (Lawvere [15]), all abelian categories, all diagrammatic categories, and it will be an axiom of the theory of regular categories.

4 monomorphism is said to be a regular mono ff it is an equalizers and an epimorphism is said to be a regular end ff it is a coequalizer. Proposition 10.3 In a category with finite roots, equalizers are mono, coequalizers are ep, every magular mono is the equalizer of its cokernel pair and every regular api is the coequalizer of its kernel pair.

Proof:
Lei $u=\operatorname{Bq}\left(f_{0}, f_{1}\right)$, and let g, g^{\prime} be such that $g u=g^{\prime} u_{0}$ Then, also $g u f_{0}=g u f_{1}$ and $g^{\prime} u f_{0}=g^{\prime} u f_{1}$ but since u equalizes f_{0} and f_{1} there exists a unique k such that gu $=k$, and a unique k^{\prime} such that $g^{\prime} u=k^{1} u$. Since $g u=g^{\prime} u$, and uniqueness, we have that $g=g^{\prime}$ -

We show now that u is, in fact, the equalizer of its cokernel pair. Let $\left(q_{0}, q_{1}\right)=$ Col pair (u). By properties of push-outs there exists a unique map h such that the following diagram is comitative:

Let $=\mathrm{Eq}_{\mathrm{q}}\left(\mathrm{q}_{0}, \mathrm{q}_{1}\right)$ and by the universal property of equalizers there exists a unique $A^{\prime} \xrightarrow{V}$ such that the following diagram commutes:

But now, of $=e q_{0} h=e q_{1} h=e f_{1}$ and since $u=E q\left(f_{0}, f_{1}\right)$ there is a unique $E \xrightarrow{v^{\prime}} A^{\prime}$ such that the following diagram commutes:

So, $v_{0}=n$ and $\forall^{\prime} u=$. Therefore $v^{\prime} u=v_{0}=u$ and u mono so that $\nabla^{\prime}=A^{0}$ and $v^{\prime} v e=v^{\prime} n=$ and mono (since it is an equalisers) implies that $V^{\prime} v=E$. Therefore $A^{\prime} \boldsymbol{Y} E$ and so, $u=E q\left(q_{0}, q_{1}\right)$. QED .
We have omitted the proof of the dual assertions of the theorem.
Given any map f, by the regular image of f we mean the map which is the equaliser of its cokernel pair, and by the regular coinage of f we mean the map which is the coequaliser of its kereeti pair. Corollary 10,4 In any category with finite roots we have that z
a map u is regular mono ff $n=\operatorname{Reg} I(u) ;$
a a map p is regular api tiff $p=\operatorname{Reg} \operatorname{Coin}(p)$.
Proof:
It follow in mediately from Prop. 10.3. QED.
Proposition 10.5 In any category with finite roots, given any map I, there exist both $\operatorname{Beg} I_{m}(f)=I_{f} \xrightarrow{V}$ B and the Reg Coin $(f)=$ $\Lambda \xrightarrow{p} I_{f}{ }^{*}$. Moreover, there exists a mique map $I_{f} \xrightarrow{h} I_{f}$ arch that $f=$ phr

Proof:

It is clear that both the regular image and the regilar coinage eriat. Consider the following diagram, where the dotted arrows will be shown to exist and make the diagram commutative:

with $\left.v=\operatorname{Eq}_{\left(i_{0}\right.} q, i_{1} q\right)$ and $q=\operatorname{Coeq}\left(f i_{0}, f i_{1}\right)$ with $p=\operatorname{Coeq}\left(k_{p_{0}}, k_{p_{1}}\right)$ and $\mathbf{k}=\mathrm{Eq}_{\mathrm{q}}\left(\mathrm{P}_{0} \mathbf{f}, \mathrm{P}_{1} \mathrm{f}\right)$. Therefore, $\mathrm{fi}_{0} \mathrm{q}=\mathrm{f} \mathrm{i}_{1} \mathrm{q}$ and since $\mathrm{V}=\mathrm{Bq}\left(\mathrm{i}_{0} \mathrm{q}, \mathrm{i}_{1} q\right)$ there exists a unique $x: \perp \rightarrow I_{f}$ such that $x V=1$. On the other hand, $k p_{0} I V=k p_{0} f=k p_{1} P=k p_{1} x V$ and since v (being an equalizer) is mono, this.implies that ${k p_{0}} x=k_{p_{1}} x$ and since $p=\operatorname{Cooq}\left(k_{p_{0}}, k p_{1}\right)$ there exists a unique $h: I_{f} \longrightarrow I_{f}$ such that $p h=x$. But $f=\mathbf{I}=\mathbf{p} \boldsymbol{T}$ is what we wanted to show. Ord.

4 category with finite roots is said to have pigigue regular factoryrations ff for any map f there are maps p (regains api) and v (regular mono) such that $f=p v$, and moreover such that if p^{\prime}, v^{\prime} are maps which are regular ep and regular mono respectively, and are ouch that $\ldots P^{\prime} \boldsymbol{V}^{i}$, then there arista a unique y arch that the following diagram commutes:

Propogition 10.6 a category with finite rodte has unique regular factorizations iff the unique $h: I_{f} \longrightarrow I_{f}$ is an isomorphism for every map \mathbf{f}.

Proof:

Assume h is an iscmorphism for every map f. Then given any f there is a regular factorization, namely, $f=p v$, where $F=\operatorname{RegT}(f)$ and $p=\log \operatorname{Coi}(f)$. Iniqueness follows from 10.3 .

Conversely, if for any f there are p^{\prime} regular epi and v^{\prime} regular mono such that $f=p^{\prime} \mathbf{v}^{2}$, by 10.3 again, $p^{\prime}=\operatorname{Beg} \operatorname{Coim}(f)$ and $\boldsymbol{v}^{\prime}=\operatorname{Heg} \operatorname{Im}(f)$ - QED.

A word of explanation about the name "regular factorieations" rather than "factorizations". It is custonaty to speak of unique factorisations, to mean, factorizations into opis followed by monos. In abelian categories, both notions coincide and so will they in regular categories but they need not in a category with juat finite roots, and we needed to alake the difference to be able to state the above result.

In the theory of abelian categories, the existence of unique factorisations follows from nomality (every mono is a kernel and every epi is a cokernel) phewever, less can be assumed and in the theory of regular categories it will follon from the assumptions that overy mono is regular and every epi is regular.

Propogition 20.7 In any category with finite roots, (i) \Rightarrow (ii), where (i) Every mono is regular and every opi is regular
(ii) Brery map can be factored uniquely into a regular epi followed by a regular mono.

Proof:

Let f be any rap . Let $f=I V$ be the canonical factorization of f through its image, where by this we mean, let $v=\operatorname{Rog} I^{m}(f)$ and let x be the unique map such that $f=X V$, and which exists since $f i_{0} q=f i_{1} q$ where $q=\operatorname{Coeq}\left(f i_{0}, f i_{1}\right)$, and $v=\operatorname{Kq}\left(i_{0} q, i_{1} q\right)$. Heat we show that I is epis : let g and g^{i} be any two maps such that
 phism. We know e to be mono and also v is mono, therefore of ia mono as well. By (i), eve is regular, and by 10.3 , ova $=\mathrm{Bq}_{\mathrm{g}}\left(\mathrm{i}_{0} \mathrm{q}_{\mathrm{ev}}, i_{1} q_{e v}\right)$ where $q_{o v}=C o e q\left(e v i_{0}\right.$, evil ${ }_{1}$). By construction, v is the equalizer of the cokernel pair of f. Let us show that av also is the equaliser of the cokernel pair of f. Consider the diagram below:

Since $\mathrm{Ig}=\mathrm{Ig}$, and $0=\mathrm{Eq}\left(5, g^{\prime}\right)$, there exists a unique J arch
 $=\mathrm{fi}_{1} q_{o v} \quad$ therefore since $q_{f}=\operatorname{Coeq}\left(f i_{0}, f i_{1}\right)$ there exists a

 $=E q\left(i_{0} q_{\theta V}, i_{1} q_{\theta V}\right)=B q\left(1_{0} q_{p}, i_{1} q_{i}\right)=v$. Bat $v i s$ mono, therefore, $\quad=I_{f}$, the identity map of I_{f} which is an isomorphism. So, $g=g^{\prime} \cdot$ aiD. $^{\prime}$

The converse of the last proposition is tris for categories with finite roots and which are bslanced, i.e., such that a map which is both mono and epi is always an iscnorphism.

Proposition 10.8 In a category which has finite roots and is balanced $(11) \Rightarrow(i)$, where $(1) \&(i i)$ are the statements appearing in 10.7

Proof:

Let $u \rightarrow B$ be mono. By (ii) there are p, v, such that $n=p v$, p regalar epi and v regular mono. Bat u mono implies that p is mono as well as epi, and therefore, iso, since the category is balanced. So, u and v represent the same subobject of B and since v is regn lar mono, so is u. The dual is ginilarly proved. QFD.

We now give the axioms of the theory of regular categories. We will assme furthernore that we are dealing with categories vith anall Hon--sets, i.e., such that the class of maps between any two objects is a set.

A category with sall Hom-sets is said to be reqular iff it astisfiea the following axioms:

A 1 - There exiate a terminal object.
R 1* There existr a coterninal object.

R 2 - Any pair of objects A, B has a product ($A \times B, P_{A}, P_{B}$)。
I $2^{\text {th }}$ Any pair of objects A, B has a coproduct $\left(A+B, 1_{i}, i_{B}\right)$ 。

R 3 - Any pair of napa has an equaliser.
R 3는 An pair of mape has a cooqnaliser.
So far, wo have stated ariona saying that the category has finite roots. merefore, all definitions and theorens which we have proved for categoriea with finite roots, are also definitions and theorens of the theory of regu-
lar categories as well. The remaining axioma are the following:
R 4 - For any objects A and $B, A \xrightarrow{i_{A}} A+B$ is mono.

R 5 - Every congruence relation is a kernel pair.

A 6 - Every mono is an equaliser.

- 6"- Every opi is a coequalizer.

We will also adopt what Lawvere calls a Convenience Aric., to the effect that if 4 is any object whose only automorphien is the identity, and if B is any object isonorphic to A, then (it is convenient to assume that) A is equal to B. This arion affects only torninal and coterminal objects, and says that there is oxactly one terninal object, which we call 1 , and exactly one coterninal object, which we call 0 , as usual.

We show now that any abelian category is regulat as follows: I 1 and 1* are satisfied by the presence of a mero object which is defined as being terminal and coterminal at the same time; $H 2$ and 2 * are axioms in Freyd's formulation of the theory, and B3 and 3* are theorem which follow from atronger assuaptions which asy that every map has a kernel and a cokernel; i 4 is satisfied since, for any A and $B, A \xrightarrow{i_{A}} \mathbb{A} \in B \xrightarrow{(4,0)} A$ is mono, where \rightarrow denotes both the producit and the coproduct which coincide ; A 6 and 6* follow from axione eaying that overy mono is a kernel and every epi a cokernel, and $\bar{n} 5$ holde because it holde in any algebraic category (Lawvere [151) and in particular in any category of modules over some ring, and then because of Mitchell's full embedding theoren (Freyd [8], Kitchell [23])

We also renark that all diagramatic categories are regular : that R 1, 1*, 2, 2*, 3 and 3^{*} hold was shom in 1.1. Also, $R 6$ and 6^{*} were shown in 6.2. To see that R 4 is aatisfied, we first see that it is in d, as follows: let A and B be any objects in δ, and assume first that $A \notin 0$. By axiom 6 for \mathcal{d}, there exists a nap $1 \xrightarrow{x} 1$. Let h be the unique map which makes the following diagram commatative:

Then, aince A is mono and $A=i_{A} h$, also i_{A} is mono. If $a=0$, then $a \underset{\sim}{x} C$ is mono for any C in d, since if g, g are such that $c^{x}=\varepsilon^{\prime} \dot{\prime}$, but $g f^{\prime} g^{\prime}$ then, since 1 is a generatior, there exista $1 \xrightarrow{y} C$ such that $y g \neq \mathrm{yg}^{\prime}$, contradiction since 58 and yg^{\prime} are maps $1 \geqslant 0$ and there exiats only one. SHnce coproducts are defined pointwise in any diagramatic catogory, and natural transformations are mono iff they are mono in each coordinate, it is clear that R 4 holds in any diagramatic category because it holds in 0 . Fimally, I 5 holde for (Lawvere [16]), and therefore holds also in any diagramatic oategory aince it is easy to see that $R \xrightarrow{2, I} T$ is a congruence relation in d^{C}, iff for each

We now derive some consequences of the axions.
Proposition 10.9 Any regular category is balanced.

Proof:

Let $A \xrightarrow{f}$ be mono and epi, therefore an equalizer and a coequali-
zer by arions i 6 and 6*. Moreover, by 30.4, we have that $f=$ $=\operatorname{Rog} \operatorname{In}(f)$ and $f=\operatorname{Beg} \operatorname{Coim}(f)$. Then, by 10.5 , there exista a unique map $h: I_{f} \boldsymbol{m}_{\boldsymbol{f}} \mathrm{I}_{\mathrm{f}}$ such that $\mathbf{f}=\mathrm{phv}$. Buty since $A \xrightarrow{f} B=I_{f} \xrightarrow{\boldsymbol{T}} B$ and $A \xrightarrow{f} B=A \xrightarrow{P} I_{f}$, the above is equivelent with the existence of a map h such that $f=$ fhf . Since f is opi, hf $=B$ and since f is mono, $f(=A$. That is, f has an inverse, or f is an isomorphiea. QRD. Proposition 10. 10 In a regular category, every map can be factored uniquely into an opi followed by a mono.

Proof:

Inmediate from 10.7 and $\mathrm{H} 6,6 *$. QED.
Proposition 10. 11 In a regular category, any congruence relation is the kernel pair of its coequaliser.

Proof:
Inmediate from $R 5$, and a sinilar arguent to that of 10.3. QBD.
We end here the list of the inmediate consequences of the axions for regular categories. To get any further, we need more definitiona and further assumptions. Having as an ain to characterise abstractly the class of diagramatic categories, we want to stady those regular categories which are atonic , and to be able to define what 'atcolic' zeans, we need to introduce the notion of atom, first. For a justification of the nemes 'atom' and 'atomic', cf. the Preface.
§ 11 - amois in ergular catigeorigs

Let f_{0}, f_{1} be any two maps with common codomain. We say that f_{0} and f_{1} are jointly api ff $\forall g \quad \mathcal{g}^{\prime}\left(f_{0} g=f_{0} g^{\prime}\right.$ a $\left.r_{1} g=f_{2} g^{\prime}\right) \Rightarrow\left(g=g^{\prime}\right)$.
This definition can immediately be generalized to n-tuples of maps with common codomain. In particular, if $n=1$, the statement that f and f are jointly ep, simply says that f is opt.

We recall that an object is said to be abstractly nosy ff any map from the object into a binary coproduct, factors trough one (or the other, or both) of the injections; and abstractly ozclusively unary ff it factors trough exactly one of the injections. We now notice that if instead of epis we take jointly api pairs of maps, the definition of abstractly unary bears some resemblance to the definition of projective object, if a particular type of jointhy pairs of objects is consider, namely, pairs of injections into a coproduct. We first dhow: Ina 11.1 For any pair of objects 1 and B, the maps $A \xrightarrow{i_{A}} A+B$ and $B \xrightarrow[B]{i_{B}} A+B$ are jointly epis.

Proof:
Let g and g^{\prime} be such that $i_{i}=I_{A} g^{\prime}=k_{A}$ and
$i_{B}=i_{B} g^{\prime}=k_{B}$. Then, k_{A} and k_{B} induce a unique k such that $i_{A} k=k_{A}$ and $i_{B} k=k_{B}$. But both g and g^{6} have that property, by uniqueness $g=k=\boldsymbol{c}^{\prime}$ - OED.

It is now clear that the notion of abstractly unary object is similar to a sort of "projective" with respect to jointly api pairs of injections into a coproduct. But we can introduce "projectives"
with respect to arbitrary jointly epi pairs of maps. This is part of the definition of 'atom'. However, we want the atoms to be abstracthy exclusively mary as well, since they are being modelled in the set of representable functors in any diagrammatic category. It turns out that it is enough to asame that they are abstractly exclusively unary with respect to the two injections $1 \Longrightarrow 2$ alone. Therefore, we say that an object A in a regular category is an atom if:
(at 1$) \forall f_{0} \forall f_{1} \forall y \quad\left[\left[\left(\operatorname{Rpi}\left(f_{0}, f_{1}\right) \& \operatorname{Codom}\left(f_{1}\right)=I \&\right.\right.\right.$ $A \xrightarrow{y}+\dot{Y}] \Rightarrow\left(\exists x_{0}\left(x_{0} f_{0}=5\right)\right.$ or $\left.\exists x_{1}\left(x_{1} f_{1}=y\right)\right]$; $(\Delta t 2) \forall_{h}\left[A \xrightarrow{h} 1+1 \Rightarrow\left(A \rightarrow 1 \xrightarrow{\left(i_{0}\right)} 1+1=h \Leftrightarrow\right.\right.$

Proposition 11,2 If A is an atom, then A is projective. Proof:

Let f be epic. Then (f, f) is a jointly opt pair of maps - Given

$4 \xrightarrow{\mathbf{y}} \mathbf{X}$, there exist e $4 \xrightarrow{\mathbf{X}} \mathbf{X}$ such that $\mathbf{y}=\boldsymbol{x f}$. Therefore,
4 is projective. ORD.
Proposition 21.3 If A is an atom, then A is abstractly uaw

Proof:

 is a jointly eph pair of maps. And by $4 t 1$, given any map anarch there exists either an x_{0} such that $x_{0} I_{B}=y$ or there exists an I_{1} such that $\mathcal{I}_{1}=y$, which ale that A is abstractly unary. QEI .

Proposition 11.4 is not an atom.
Proof:
The following diagram is commatave: which means that at 2 is not
 satisfied. OED.

Proposition 11.5 If A is an atom, then there are no mapa with domain A and codomain 0 .

Proof:
Asarme there is a map $A \xrightarrow{X} 0$. Then, the following diagran is comutatives

This contradicts At 2. QSD.
Proposition 21.6 If 1 is an atom, then 1 is abstractly exclusively unary.

Proof:

Let B and C be any two objects and $A \xrightarrow{\mathbf{J}} \boldsymbol{B}+\mathbf{C}$. Since 4 is abotractly unery by 11.3 , there exists, say x_{0} such that $x_{0} i_{B}=y$. Assume that there existe also x_{1} such that $X_{1} i_{c}=y_{\text {: }}$ Let h be the unique mep which makes the following diagran comptative and which exiats aince B+C is a coproducts

Then, also the following diagran is comutative:

which contradicts $\Delta t 2$ in the definition of atom. QKD.
We remaric that at 1 does not exclude the possiblility that a map from an atom into the codomain of a jointly opi pair of naps , should factor trough both maps in the pair.

Proposition 11.7 any retract of an atom is an atom.

Proof:

Let 4 be an atom and $A^{\prime} \xrightarrow{r}$ a retraction, i.e., there exists $A \xrightarrow{\mathbf{P}} A^{\prime}$ such that the following triangle is commutative:

$$
A^{\prime} \underbrace{A^{\prime}}_{\Delta^{\prime}} \xrightarrow{T}
$$

Let $\left(q, q^{\prime}\right)$ be a jointly epi pair of maps and let $A^{\prime} \xrightarrow{J} Y$ where $Y=$ $=$ Codomain $(q)=$ Codomain $\left(q^{\prime}\right)$. Since $p y: 4 \longrightarrow I$ and A is an aton, there oxists, say, $\mathrm{I}: ~ A \rightarrow X$ such that $\mathrm{xq}=\mathrm{P}$. Now, also
 and $(1 x)_{q}=y$. Therefore, A^{\prime} is an atom as far as at 1 goes. At 2 is easy : if $A^{\circ} \xrightarrow{h} 1+1$ factors trough both i_{0} and i_{1}, ∞ does ph - Ged.

The following property that atons have is very important, and it is used in the characterisation of diagramatie categories in section $\mathbf{3 3}$.

Proposition 11,8 In a regular category, if A is an atom, and $\left\{X_{i}\right\}_{i n}$ is a family of objects indexed by a set, and such that its coproduct exists, \quad ном $\left(4, \sum_{i \in I} x_{i}\right) ~ ¥ ~ \sum_{i \in I} \operatorname{Hon}\left(\Lambda, x_{i}\right)$.

Proof:

The empty coproduct is 0 , and $\operatorname{HOH}(4,0) \cong 0$ by 11.5 , where the 0 on the left hand side of the equation is the coterninal object of the reguiner category in question, and the 0 on the rivet hand side is the coterminal object in \mathcal{X}, that is, the empty set.
We now show that the result is true for binary coproducts, i.e., that for any X and I in the category, $\operatorname{HOM}(A, X+Y) \equiv \operatorname{HOM}(A, X)+\operatorname{HOM}(A, Y)$. Let h be the unique map which makes the following diagram commutative:

We want to define a map g, inverse to h. Let $x \in \operatorname{Hom}(A, X+Y)$. By At 1 , there exists a map y such that, say, $\mathrm{y}=\mathrm{y} \mathrm{i}_{\mathrm{X}}$ (by 11.6 A is abstractly exclusively unary, so that if x factors through 1_{I}, it cannot factor trough I_{Y} then). Moreover, the above y is the only one such, since, by R 4, I $^{\text {is a monomorphic, so that if }}$

 and wo define $s: \operatorname{HOn}(A, X+Y) \longrightarrow \operatorname{HOR}(A, X)+\operatorname{HCI}(A, Y)$ by letting $x 8=5 \mathcal{I}_{\operatorname{Lan}(1, x)}$ - By the above, it is well defined.

To see that we have defined an inverse to h, let $x \in \operatorname{HCN}(A, X+Y)$,
 and if $x^{\prime} \in \operatorname{HON}(\Lambda, I)+\operatorname{HOH}(\Lambda, Y)$ then
 the definition of g, since $\mathrm{Ig}=\mathrm{x}^{\prime}$ ff $x^{\prime}=y^{i}(4, x)$ and $y\left(A_{1} i_{X}\right)=x$. (Notice that we have assumed that I^{\prime} factors trough ${ }^{1}(\mu, x)$ and not trough ${ }^{1}(\Lambda, Y)$ but it woke just as well with the other assumption). Let now $\left\{X_{i}\right\}_{i \in I}$ be any family of objects indexed by a set I, whose coproduct is an object in the category. Let $I^{\prime} \subseteq I$ be any subset of I for which $\operatorname{Hon}\left(A, \sum_{i \in I^{\prime}} X_{i}\right) \approx \sum_{i \in I^{i}} \operatorname{Han}\left(A, X_{i}\right)$. We have shown the result to be true if $I^{\prime \prime}$ is empty, so that there is at least one $I^{\prime} \subseteq I$ for which the above holds, for any set I The family of all such subsets of I is such that all chains are bonded by the union of the seta in the chain. By Zorn's lama, there is a maximal I^{\prime} for which $\operatorname{HON}\left(\Lambda, \sum_{i \in I^{\prime}} X_{i}\right) \cong \sum_{i \in I^{\prime}} \operatorname{HOM}\left(\Lambda, X_{i}\right)$, and $I^{\prime} \leq I$. Avenue $I^{\prime \prime} \neq I$ and let $j \in I-I^{\prime}$. Let $I^{\prime \prime}=I^{\prime}+\{j\}$ which is a subset of I strictly larger than I' . Then,

$$
\sum_{i \in I^{n}} x_{i} \cong \sum_{i \in I^{\prime}} x_{i}+x_{\{j\}}
$$

and by what we have already shown to hold for binary coproducts,

 contradicting that I' was the maximal subset of I with that property. Therefore, $I^{\prime \prime}=I$ and we have the desired result. QF.
§ 12 - ATMIC REGULAR CATEGORIES
\triangle regular category is said to be atonic iff the class of atoms in it, is isonorphic to a set and it is generating.

In the next section it will be shown that every right complete atonic regular category is iscmorphic to some diagramatic category. Therefore, it will also be left complete and have exponentiation. However, the fact that the category determined by the atoms in any richt complete atomic eatelar category, is an adequate subcategory, is needed for the representation theorem. This need not be assumed, as can be derived from the assumptions made. We first prove:

Propogition 12.1. In any right complete atonic regular category, given any object X there exists a set J and a family $\left\{A_{j}\right\}_{j \in J}$ of atome, and an epimorphita $\sum_{j \in J} \Lambda_{j} \xrightarrow{p}$. Proof:
Let $J=\sum \operatorname{HOM}(\Lambda, X)$, where the coproduct is taken over the set of atons. By rieht completeneas, $\sum_{j \in J} A_{j}$ eriats, if $\left\{A_{j}\right\}_{j \in J}$ is the fanily of atoms whose meabers are defined as follows : $A_{j}=A$ iff $j \in \operatorname{Har}(\Lambda, X)$. To each $j \in J$ corresponds a map $j: \Lambda_{j} \rightarrow I$, and the collection of euch maps induce a aap

$$
\sum_{j \in J} \boldsymbol{\Lambda}_{j} \xrightarrow{p} \mathbf{X}
$$

such that, if i_{j} is the injection corresponaing to $A_{j}, i_{j} p=1$. To see that p is epi, let f and g be such that $p f=$ pse Then, for every $A_{j} \xrightarrow{j} X, j f=j 6$ which inplies that $f=g$ since the eet of atcos is generating. OD.
 (Linton [19]) af $\left(k_{0}, k_{1}\right)=$ Ger pair (p) and $p=\operatorname{Coeq}\left(k_{0}, k_{1}\right)$. By the canonical exact diagram ending in X, for X an object in a right-complete atonic regular category, we mean, the diagram

$$
K_{p} \xrightarrow{R_{p}} \sum_{J} A_{j} \times \sum_{J} A_{j} \xrightarrow[A_{2}]{R_{j}} \sum_{j} A_{j} \xrightarrow{p}
$$

where P is as in the last proposition. For any X in a right-conplete atonic category, there is a canonical exact diagram ending in X. by 12.1 and 10.1 .

Proposition 12.2 In a Might-complete atomic regular category, the atoms are an adequate subcategory.

Proof:

Let A be the full subcategory of \mathscr{C}, right-complete, atonic regular, generated by the atoms in X. A is mall since there is at most a set of atoms. Let $A \rightarrow \underset{X}{ } \rightarrow$ be the inclusion functor. To see that A is adequate (Isabel [12]), we have to show that the functor ϕ, defined as the composition

is full and faithful.
For x an object in an $_{x}, x \phi=H 0 H(, x)$ and if $x \xrightarrow{x} X^{\prime}$ is any map in $g^{\prime}, ~ x \phi=$ Horned (x).
We show that ϕ is faithful: let x and y induce $x \phi=7 \phi$ -
 maps. This is equivalent with saving that for every atom in in X_{t}. and every map
 the class of aton s is generating, this implies that $x=y$.

Next, we show that ϕ is full : given x and x in \mathcal{X}, and a map $x \phi \xrightarrow{P} X^{\prime} \phi$ in $\boldsymbol{p}^{A^{*}}$, to show that there exists a nap $X \xrightarrow{X} X^{\prime}$ such that $f=\boldsymbol{f} \boldsymbol{f}=$ Hough $_{\boldsymbol{g}}, \boldsymbol{y}$) . Let the following be a canonical exact diagram ending in X :

$$
B \xrightarrow[H]{\sim} \sum_{j} A_{j} \xrightarrow{p} x
$$

Since $I: \operatorname{HON}(, X) \longrightarrow H O M\left(, X^{\prime}\right)$ is a natural transformation,
 $x_{A} \in \operatorname{HOR}\left(4 ; X^{\prime}\right)$ 。
If $A \xrightarrow{x} X$, let us denote by $i_{x}: A \rightarrow \sum_{j} A_{j}$ the corresponding injection, $i_{0 .}$., the injection such that $x=1_{2} p$.
Now, $\mathrm{If}_{\mathbf{A}}: A \rightarrow \mathbf{X}^{\prime}$, and this collection of maps induces a unique map
 That is, the following diagre is comitative for each $x: A \rightarrow X$:

Since $p=\operatorname{Cooq}(\alpha, \beta)$, if we show that $\alpha p^{\prime}=\beta p^{\prime}$, there will be a unique $X \xrightarrow{y} X^{\prime}$ such that $P Y=P^{\prime}$.
To show the above, it is enough if we show that for every map $A \xrightarrow{T}$, and any atom A for which such a map exists, $\mathbf{r} \propto \mathbf{p}^{\prime}=\mathbf{r} \boldsymbol{\sim} \mathbf{P}^{\prime} \cdot$ Because then, by the generating property of the family of atoms, this will imply that $\alpha P^{\prime}=\beta p^{\prime}$. Notice that if we take atoms for which there exists a map $A \rightarrow R$, for those there will exist a map $A \rightarrow I$ an well.

Since $A \xrightarrow{r}$, both $r \propto$ and $r \boldsymbol{P}$ are maps from the atom A into the coproduct $\sum_{j} A_{j}$. Since A is an aton this implies that there exists
 such that if $i_{x^{\prime}}$ and $i_{x^{\prime \prime}}$ are their corresponding injections into the coproduct, there are also maps $A \xrightarrow{a^{i}} A^{\circ}$ and $A \xrightarrow{a^{n}} A^{\prime \prime \prime}$ such that $r \propto=a^{\prime \prime} i_{x^{\prime}}$ and $r \boldsymbol{r}=a^{n} i_{x^{\prime \prime}}$ *
But $r \propto p=r$ p p implies that
$a^{\prime} x^{0}=a^{\prime} i_{x^{\prime}} p=r \propto p=r \beta^{p}=a^{m} i_{x^{n}} p=a^{m} x^{m}$ and since both ($a^{*} x^{*}$) and ($a^{n} x^{N}$) are maps $A \Longrightarrow X$ which are equal, then

Since f is a natural transformation, the following square is combative:

$$
\begin{aligned}
& \operatorname{HCL}\left(A^{\prime}, X\right) \ldots A^{\prime} \quad \operatorname{BOH}\left(A^{\prime}, X^{\prime}\right) \\
& \operatorname{Hom}(a ; x) \mid \operatorname{Hom}\left(a ; \mathbf{X}^{\prime}\right) \\
& \operatorname{HCX}(A, X) \longrightarrow \quad f_{A} \quad H C X\left(A, X^{1}\right)
\end{aligned}
$$

so that, by talking $x^{\prime} \in H O M\left(A^{\prime}, X\right)$ and traveling in both directions along the diagram, we get:

$$
\begin{aligned}
& I^{\prime}\left(f_{A^{\prime}} \operatorname{Hon}\left(a^{\prime}, X^{\prime}\right)\right)=a^{\prime}\left(X^{\prime} f_{A^{\prime}}\right) \quad \text { and } \\
& x^{\prime}\left(\operatorname{Hon}\left(a^{\prime}, I\right) I_{A}\right)=\left(a^{\prime} x^{\prime}\right) f_{A} \text { which must be equal elements of }
\end{aligned}
$$

By the sene argument, since the following square is also combative:

we have, for $x^{*} \in H O M\left(A^{*}, X\right)$ the following identity:
$a^{n}\left(x^{n} f_{\mathbf{A}^{n}}\right)=\left(a^{n \prime \prime}\right) f_{A}$. Finally, we have that:
$r \propto p^{\prime}=a^{\prime} i_{z^{\prime}} p^{\prime}=a^{\prime}\left(x^{\prime} f_{A^{\prime}}\right)=\left(a^{0} x^{\prime}\right) f_{A}=(r \propto p) f_{A}=$
 Since r was arbitrary, $\alpha p^{\prime}=\beta p^{\prime}$. Therefore there exists a unique $X \xrightarrow{\mathbf{Y}} \mathbf{X}^{\prime}$ such that $\mathbf{P}=\mathbf{P}^{\prime}$.
To see that $\mathrm{f}=\mathrm{y} \phi$, take the diagram into $\delta^{\boldsymbol{A}^{*}}$ by means of ϕ, and see that both i and $y \phi$ make it commentative, but $p \phi$ is cpi as well, so that they have to be equal . Actually. $p \phi$ is the canonical epimorphias $\sum_{\left(H_{A}, H_{X}\right)} H_{A} \rightarrow H_{X}$ since, by Yoneda len-

We nov attempt to prove the representation theorem for right-conplete atomic regular categories. The proof is analogous to that of Lawvere [14] of the characterization theorem for algebraic categories.
§ 13 - CHARACTERIZATION OF DIAGRAMmATIC CATEGORIES

Thor 13.1 Let C be any right-complete atomic regular catego ry. Then, there exists a small category A and a functor

$$
\underset{\sim}{\phi} \alpha^{+A^{*}}
$$

which is an isomorphism of categories.
Proof:
Let A be the $\mathrm{I} l \mathrm{ll}$ subcategory of \mathscr{C} generated by the atoms in \mathbb{C}. Let ϕ be defined by $x \phi=E O H\{(x)$ for any object x in X, and $x \phi=E M_{n}(, x)$ for any map $x \xrightarrow{x} x$ in \mathcal{X}. The statement that ϕ is full and faithful is equivalent with the state

Rent that the full subcetgory of \mathcal{C} generated by the atom, $1 . e ., 4$, is adequate in \mathcal{O}. Therefore, by $12.2, \$$ is full and faithful. Next, we show that ϕ has an adjoint ψ, as follows. Given any object T in $y^{A^{*}}$, by 8.3 and 6.3 there is an exact diagram ending in T :

$$
K_{p} \xrightarrow{n_{p}} \sum_{\left(H_{A} T\right)^{\prime}} H_{A} \times \sum_{\left(H_{A^{\prime}} T\right)^{A}} H_{m_{0}}^{m_{0}} \sum_{\left(H_{A} T\right)^{A}} \xrightarrow{p} T
$$

Reinterpreting 11.8 . It says that ψ is coproduct preserving, since for any coproduct $\sum_{i} x_{i}$ in $\underset{\sim}{x}$,
for every atom 4 in $\mathcal{O}^{(}$, ie., for every object A in A^{*}.
$\operatorname{so},\left(\sum_{I} x_{i}\right) \phi \quad \underset{I}{ }\left(x_{i} \phi\right)$, as objects in $d^{A n}$.
To the above exact diagram ending in T, we can add the canonical epinor phis $\sum_{\left(H_{A^{\prime}}, K_{p}\right)} H_{A^{\prime}} \xrightarrow{T} K_{p}$, which exists since K_{P} is an object in
 Then, the diagram

$$
\sum_{A^{\prime} K_{P}} H_{A} \xrightarrow{r} Y_{p} \xrightarrow{M_{T}} \sum_{A T} H_{A} \times \sum_{A T} H_{A} \xrightarrow[p_{t}]{p_{0}} \sum_{A T} H_{A} \xrightarrow{p}
$$

can also be written, since is coproduct preserving, ass

Ne cen now use the fact that ϕ is full to get maps

$$
\sum_{A T} A^{\prime} \xlongequal[Q_{0}]{=} \sum_{A T} i \text { such that } r_{p} k_{0}=a_{0} \phi \text { and }
$$ $m k_{p} p_{1}=a_{1} \phi \quad$ Let $q=\operatorname{cooq}\left(a_{0}, a_{1}\right)$ in ${ }^{2}$, and

 where X is the codoanin of q. Define $y=x$.

The following picture illustrates the situation were the above half is a diagram in S^{3}, and the half below is a diagram in if

$$
\begin{aligned}
& \sum_{N K_{D}} H_{A^{\prime}} \xrightarrow{r} K_{P} \xrightarrow{K_{p}} \sum_{A T} H_{A} \times \sum_{A T} H_{A} \Rightarrow \sum_{A T} H_{A} \xrightarrow{P} T
\end{aligned}
$$

To see that ψ so defined is adjoint to ϕ, we show that \mathcal{X} is a reflective subcategory of $\delta \delta^{A^{*}}$, i.e., for each T in \mathcal{S}^{04}, there exists a natural transformation $T \xrightarrow{\varphi} T \boldsymbol{T} \phi$, such that if X^{\prime} is an object in X and $T \xrightarrow{\varphi^{\prime}} X^{\prime} \phi$ is a map in $\int^{j^{*}}$, then there is a mique $\boldsymbol{T} \boldsymbol{\Psi} \xrightarrow{\mathrm{I}} \mathrm{X}$ such that the following is commutative:

To this end, we first notice that :

$$
\begin{aligned}
& r \mathbf{k}_{p} p_{0}(q \phi)=\left(a_{0} \phi\right)(q \phi)=\left(a_{0} q\right) \phi=\left(a_{1} q\right) \phi=\left(a_{1} \phi\right)(q \phi)= \\
& =r \mathbf{k}_{p} p_{1}(q \phi) \text {. But since } p=\operatorname{cosq}\left(\mathrm{rk}_{p} p_{0}, r \mathrm{k}_{\mathrm{p}} p_{1}\right) \text { there exists } \\
& \text { a unique } T \xrightarrow{\varphi} X \phi \text {, such that } p \varphi=q \phi \text {. That is, the folio- }
\end{aligned}
$$ wing is comitative:

Let I^{\prime} be any object in \mathcal{X}, such that there is a map $T \xrightarrow{\varphi^{\prime}} \mathrm{I}^{\boldsymbol{y}} \boldsymbol{\phi}$. since ϕ is full, there exists a map such that $s \phi=p \varphi^{\prime}$.

On the other hand, $q=\operatorname{Coeq}\left(a_{0}, a_{1}\right)$. Wo want to show that also
$a_{0}=a_{1} s$ and since ϕ is faithful, it is enough to show that $\left(a_{0} s\right) \phi=\left(a_{1} s\right) \phi$. How,

$$
\left(a_{0} s\right) \phi=\left(a_{0} \phi\right)(s \phi)=\left(x x_{p} p_{0}\right) p \varphi^{\prime}=\left(x_{p} p_{1}\right) p \varphi^{\prime}=\left(a_{1} \phi\right)(s \phi)=
$$

$=\left(a_{1}\right) \phi$ - So there exists a unique $X \xrightarrow{x} X^{\prime}$ such that $q x=*$. i.e., such that the following diagram is commutative:

But now, $p(\varphi(x \phi))=(p \varphi)(x \phi)=(q \phi)(x \phi)=t \phi=p \varphi^{\prime}$, and p epi implies that $\varphi(x \phi)=\psi^{\prime}$ - Therefore, \boldsymbol{H} is adjoint to $\boldsymbol{\phi}$. Notice that so far, we have used all axican for regular categories but arica B 5 . We have also used right-completeness and atomicity. But we need $R 5$ to finish the proof and show that ϕ is dense, and therefore an equivalence of categories. It will be also an isomorphism. We show now that $\boldsymbol{\phi}$ is dense for this we have to show that given T in $\boldsymbol{d}^{A^{*}}$, there exists x in \mathcal{X}, such that $x \phi$ M. We show that this happens for $x=T \Psi$, so that moreover the composition $\Psi \boldsymbol{T} \phi$ is the identity of $\boldsymbol{\beta}^{*}$. It is already clear that the composition $\phi \psi$ is
 that ϕ is an iemorphise of categories will be proven once we show that for each T, the map $T \xrightarrow{\varphi} T \% \phi=T \xrightarrow{\varphi} X \phi$, is an isomorphic of objects.
 jectione . 1.e. $\quad\left(\alpha q_{0}, \alpha<q_{1}\right)=$ Ier pair (q).

Then, $\alpha \phi=\operatorname{Bq}_{\mathrm{q}}\left(\mathrm{p}_{\mathrm{o}}(q \phi), \mathrm{p}_{1}(q \phi)\right)$. And since $K_{p} p_{0}(q \phi)=K_{p} p_{1}(q \phi)$ there eicista a unique $K_{p} \xrightarrow{z} \underline{E}_{q} \phi$ such that $E(\alpha \phi)=k_{p}$ as indicated in the diagram below:

Now, both diagrams below are exact :
therefore, to show that $\mathbf{I} \mathbf{I} \boldsymbol{\Phi}$, it is enough th show that
$\mathrm{I}_{\mathrm{p}} \xrightarrow{\xi} \mathrm{K}_{q} \phi$, is an isomorphism.
Since $a_{0} q=q^{q}$ and $\left(\alpha q_{0}, \propto q_{1}\right)=$ Kor pair (q), there exists a unique r^{\prime} such that $r^{\prime} \propto q_{0}=a_{0}$ and $r^{\prime} \propto q_{1}=q_{1}$ and, if a is such that $a_{0}=a q_{0}$ and $q_{1}=a q_{1}$ then $r k_{p}=\boldsymbol{p}$ so that $r(\alpha \phi)=r k_{p}=a \phi=\left(r^{2} \alpha\right) \phi=\left(r^{\prime} \phi\right)(\alpha \phi)$ which implies, since $\alpha \phi$ is mono that $r^{*} \phi=r 5$. (notice that we have used the fact that ϕ, having an adjoint, is loft exact, and since both in X and in $\mathcal{S A}^{4}$ all mons are equalisers, is also mono preserving, or a mono functor.)
Since r is opt, it is a cooqualiser and lot $r=\operatorname{cooq}\left(\beta_{0}, \beta_{1}\right)$.

Actually, no matter what the domain of β_{0} and β_{1} is, by 8.3 , there will be a family of representable and an epimorphien from the coproduct of this family into this domain, so that if x coequalises β_{c} and β_{1} it also coequalises the composition of the ep with each of β_{0} and β_{1}. Therefore we can assume without loss of generality, that

$$
\sum_{J} H_{A^{n}} \xrightarrow[\beta_{1}]{\beta_{0}} \sum_{A^{\prime} K_{p}} H_{A^{\prime}} \xrightarrow{r} I_{p}
$$

is a coequalizer diagram,
where J is the corresponding indexing set.
Since ϕ is full and preserves coproducts, there are β_{0}^{\prime}, β^{\prime} such that $\beta_{0}^{\prime} \phi=\beta_{0}$ and $\beta_{0}^{\prime} \phi=\beta_{4}$. Lot $r^{\prime \prime}=\operatorname{coeq}\left(\beta_{0}^{\prime}, \beta_{1}^{\prime}\right)$. In the diagram below, the dotted arrows stand for maps which will be shown to exist and fit so as to make everything compute. As before, we draw a double diagram , the upper part being in $\mathscr{S}^{4 \pi}$, the lower in \mathcal{X} :

How wo have : $\beta_{0}^{\prime} r^{2} \alpha=\beta_{1}^{\prime} r^{2} \alpha$ since $\left(\beta_{0}^{\prime} r^{2} \alpha\right) \phi=$ $=\beta_{0} x_{p}=\beta_{1} r k_{p}=\left(\beta_{1}^{\prime} r^{2} \alpha\right) \phi$ and ϕ is faithful . Mow, α mono implies that $\beta_{0}^{\prime} r^{\prime}=\beta_{1}{ }^{\prime} r^{\prime}$. Therefore there estate a unique $Q \rightarrow \mathbf{K}_{q}$ such that $r^{+}=r^{n} \eta$, and $\beta_{0}\left(r^{m} \phi\right)=\beta_{1}\left(r^{m} \phi\right)$,
because $\beta_{0}\left(\mathbf{r}^{n} \phi\right)=\left(\beta_{0}^{\prime} \phi\right)\left(\mathbf{r}^{n} \phi\right)=\left(\beta_{0}^{\prime} r^{n}\right) \phi=\left(\beta_{0}^{\prime} \mathbf{r}^{n}\right) \phi=$ $=\left(\beta_{1}^{\prime} \phi\right)\left(r^{n} \phi\right)=\beta_{1}\left(r^{\prime \prime} \phi\right)$.
Therefore there exists a unique $K_{p} \rho \rightarrow Q \phi$ such that $r \rho=r^{\prime \prime} \phi$.
How, since $\left.\quad \rho^{\prime} \eta \phi\right)=\left(r^{n} \phi\right)(\eta \phi)=\left(r^{\prime \prime} \eta\right) \phi=m^{2} \phi=r \xi$ and x api then $\rho(\eta \phi)=-$
Since is mono, then also ρ is mono and $r^{\prime \prime} \phi$ api implies that ρ is ep, therefore ρ is iso. (To see that $r^{m} \phi$ is epis we show that $r^{m} \phi=\operatorname{Coeq}\left(\beta_{0}, \beta_{1}\right)$ which is so because $\quad\left(\beta_{0}^{\prime}, \beta_{1}\right)=\operatorname{Ker} \operatorname{Pair}\left(r^{m}\right)$ and so $\left(\beta_{0}, \beta_{4}\right)=\left(\beta_{0}^{\prime} \phi \cdot \beta_{1}^{\prime} \phi\right)=\operatorname{Ker} \operatorname{pair}\left(r^{m} \phi\right)$ since ϕ preserves left roots.)
 Now, $r^{\prime}=r^{n} \eta$ api trophies η api, and therefore since $q=\operatorname{Coeq}\left(\alpha q_{0}, \alpha q_{1}\right)$ then $q=\operatorname{Con}\left(\nsim \propto q_{0}, \eta \propto q_{1}\right)$ as well. Low, since $\left(\alpha p_{0}, \alpha p_{1}\right)$ is a kennel pair, it is a congruence relation, and since $\alpha p_{0}=\xi(\alpha \phi)_{p_{0}}=(\eta \phi)(\alpha \phi)_{p_{0}}=(i \phi)(\alpha \phi)\left(q_{0} \phi\right)=$ $=\left(\eta \propto q_{0}\right) \phi$ and similarly, $\alpha p_{1}=\left(\eta \alpha q_{1}\right) \phi$, this means that $\left(\left(\eta \alpha q_{0}\right) \phi,\left(\eta \propto q_{1}\right) \phi\right)$ is a congruence relation, but ϕ mall and faithfully implies that $\left(\eta \propto q_{0} ; \eta \alpha q_{1}\right)$ is a congruga ce relation, therefore, by arian 5 and 10.11 , it is the kernel pair of its coequaliser, which is q by the above considerations. Therefore, since both $\left(\mathcal{Y} \propto q_{0}, \mathcal{Y} \mathbf{q}_{1}\right)$ and $\left(\alpha q_{0}, \alpha q_{1}\right)$ are kernel pairs of $q, i t$ means that i is an isomorphism. and since $(x \phi)=\xi$,
 It has already been show that inthis case, it is an iscnorphien of categomien ${ }^{+10}$

ISOMORPHISMS OP DIAGRAMMATIC CATEGORIES

We have just show, in chapter II , that every right-ccoplete atomic regolar category is iscmorphic to a diagramatic category . That is, one can view aight-complete atomic regular category as a category whose objects are all set-valued functors froa a given mall category . Howover, the representation given in Theorea 13.1 need not be the only possible one auch. Actually, as we whall see, this representation is a marimal" one, in a aense we will explain. This leads us to the question : when are two given diagramatic categories, $\boldsymbol{J}^{\boldsymbol{4}}$ and $\boldsymbol{\delta}^{B}$, isomorm phic? To anawer this question, we must begin by investigating the nature of functors between diagramatic categoriea, wich have either adjoint or coadjoint. Next, we may aak about functora between diagrammatic categories, which are isomorphisas. The main theoren of the chapter is called "Morita isomorphien theoren for diagramatic categories" because it resembles a theoren of Morita for categories of modules. It gives neceesary and eufficient conditions for two diagrammatic categories to be isomor phic, in terna of the amall domain categories in each one of them. This theoren is useful to find out, when is mique the representation of a category as a diagramatic category.

814 - ADJOINT FBACTORS BETVESN DIAGRMNATIC CATECORIES

Given any complete category \mathbb{Z}, and a functor $\mathbb{M} \rightarrow \infty$, this
functor has an adjoint if and only if it is representable: If the fund-
 preserves all left roots, and since there are coproducts in \mathcal{M}^{\prime}, H^{A} has an adjoint, namely the one whose rule is S uh \sum_{S} i for any object s in \mathbf{S}, ie., for any set S if the functor has an adjoint, evalusting the adjoint at the object 1 of \boldsymbol{d}, we get a representor for it. By Cadi($\left.\rho_{1}^{\prime}, 3\right)$ wean the category whose objects are functor $A \rightarrow \infty$ and which have adjoint, i.e., they are coadjoints to acme functor $S \rightarrow d$. The above establishes informally, a well known equivalence, namely that $\operatorname{Cosaj}(\mathbb{M}, \mathcal{\delta}) \geq \mathcal{M}^{*}$.

It is clear that for any two categories O and $B, \operatorname{coadj}(\alpha, 3) \cong$ $\equiv(\operatorname{adj}(\mathscr{B}, 0)) *$, so that, by the above, we have also that $\operatorname{sdj}(\infty, \mathbb{M}) \cong \mathbb{M}$ 。

Suposee we now replace γ by an arbitrary diagrammatic category. The question is whether we can also get good results for those. Andre (1) has investigated the question, and he gets very general results concernring adjoint pairs of functor between cetecionies of finctors . However, we find that for our present needs, the machinery he develops is much too complicated, since we only need rents where diagrematic categoTies are involved, and we may dispense with generality. Thus, wo find simpler proofs of some of his results and we go further into the applicatins. Thus, we want to find "formulas" for $\operatorname{sdj}\left(d^{3}, \mathbb{M}\right)$ and dually, for coadj $\left(\mathbb{M}, d^{B}\right)$ where \mathbb{M} is any complete category. The functor $\boldsymbol{\phi}$ defined in the theorem of characterisation of diagrammetic categories, proves useful in these considerations. In the proof of
13.1, the adjoint $\boldsymbol{\Psi}$ to $\boldsymbol{\psi}$ was constructed, however it was not given by a formula. We do this here.

We first recall how was ϕ defined, as the subregular representation of the right-complete atomic regular category \mathcal{X} over the category of atoms, that ia, let \mathbb{C}^{+}be the full subcategory determined by the atoms (or, let
(A be the dual of the category of atoms), and let \mathbb{C}_{4}^{*} be the inclusion functor, then $\boldsymbol{\phi}$ is defined as the composition

Sext, we remark that every object T in f^{C} is a direct limit over
 where the category (H, T) has as objects natural transformations $H_{\Lambda} \xrightarrow{\varphi} T$, for ane $A \in|\mathbb{C}|$, and the naps are commutative triangles $H_{A}{\underset{X}{H}}_{H_{A}}^{H^{\prime}}$, and where the functor $(H, T) \longrightarrow \mathbb{C}^{*}$ has the rule: $H_{4} \xrightarrow{\varphi} T$ Nr A

To see this, let us take the following exact diagram ending in $T:$

$$
K_{p} \xrightarrow{B_{p}} \sum_{A T} H_{A} \times \sum_{A T} H_{A} \stackrel{P_{0}}{P_{1}} \sum_{A T} H_{A} \xrightarrow{P} T
$$

where P is the opimorphien which exists by 8.3 , and where ($k_{p} p_{0}, k_{p} p_{1}$) is the kernel pair of p. We will write

$$
\pm \quad \approx \sum_{A T} H_{A} / I_{p}
$$

to mean that the above diagram ia exact, although what is factored out from the coproduct $\sum_{A T} E_{A}$ to get T is not I_{p} itself but the congruentce relation $\left(\mathbf{k}_{\mathbf{p}} p_{0}, \mathbf{k}_{1} p_{1}\right)$.

But also $\xrightarrow{\text { lin }}\left((H, T) \rightarrow \mathrm{Ci}_{4}^{H} \boldsymbol{H} \mathrm{CO}^{(\mathrm{C}}\right)$ is gotten by first taking the coproduct $\sum_{A T} H_{A}$ and then factoring out relations which are given by the small category $\left(H_{A}, T\right)$, and which are precisely those we have indiacoated by K_{p} -
By the way ψ was constructed, it is clear that its value at I in $\mathcal{f} \mathbb{C}$
 we recall that if $T \cong \sum_{A T} H_{i} / K_{p} \quad$ then $T \Psi \sum_{A T}^{A} / K_{i}$ and moreover that X_{p} and \mathbf{E}_{q} were isomorphic and therefore, the relations to be factored out are the same. This adjoint happened to be an isomorphic because of axiom $B 5$, however, we can use thebconstructron for a more general case where the categories involved need not be regular, though they have to be complete, or, at least, right-complete.

Let now M be any complete category . Wo imitate the above situstion, although M need not le regular or have an adequate subcategory which ia gall either. We keep in mind the following commutative tyrianglen:

Notice that the commutativity of the triangle to the right says that

Theorem 14.1 For any M complete, and B small, $\operatorname{Adj}\left(\alpha^{B} \cdot M\right) \geq M^{B^{*}}$

Proof:
Let $I: X^{B} \rightarrow M$, and define $\epsilon_{2}: B^{*} \rightarrow M$ as the compo section of the regular representation functor of \boldsymbol{B}^{*} with T - This
can always be done whether or not T has coadjoint, and vo say that we are "restricting along Yoneda".
Let $G: B^{*} \rightarrow M$, and define $T_{G}: \delta^{B} \rightarrow M_{L}$ by letting its value at an object P of \mathcal{S}^{B}, be

$$
F T_{G}=\underline{\operatorname{li}}\left((H, F) \rightarrow B^{*} G M\right)
$$

Then, the following triangles are commutative:

The one on the left is commutative by the definition of G_{T} and the one
 We now have to show that $T_{G}: S^{3} \rightarrow \mathcal{M}$, is also an object in $\operatorname{sdj}\left(\delta^{B}, \mathbb{T}_{l}\right)$, iso., that it has a coadjoint T_{*}^{*}. Define T^{*} as follows : for x in \mathbb{T}, let $x x^{*}: B \rightarrow \alpha$, be given by $B(X T *)=H 0 M / M_{L}(B G, X)$ for any $B \in|B|$. It is clear that it is a functor when extended to the maps and that it is $\mathrm{n}^{\text {conjoint to }} T$.

To show the isomorphic of the theorem we have to prove that for every
 $G: B^{*} \rightarrow \mathcal{M}$, that $G_{G_{G}} \approx c$. Given any $B \in|B|, \quad$ (B) $G_{T_{G}}=$ (B) $E_{G}=H_{B} T_{G}=$

 = FP Q SD .
donollest 14.2 For $a_{y} M$ complete, and B mall, $\operatorname{coadj}\left(M, d^{B}\right)$ 를 $M^{n^{3}}$

Proof:
 We would like to say, as in the ease of $\mathcal{\&}$, that $\operatorname{coadj}\left(\mathbb{M}, \mathcal{f}^{B}\right)$ is given by the "representable" functors.
To say that a functor $\mathcal{K}^{\boldsymbol{T}} \boldsymbol{\mathcal { S }}$ is representable means that there exists
 In the category of categories (Lawvere [17]), the category $\mathbb{1}$ is a generator and the functors $\mathbb{1} \rightarrow \mathbb{M}$ are in one-to-one correspondence with the objects of \mathbb{T}. This allows us to say, equivalently, that T is representable ff I is naturally equivalent with the functor:

$$
1 \times M \xrightarrow{A \times M} M^{*} \times M \xrightarrow{\text { NOM }} d
$$

where $\mathbb{1} \xrightarrow{A} \mathbb{N}$ is the functor whose value at the only object of $\mathbb{1}$ is the object A in \mathbb{M}, so that T is represented by A. This definition has the advantage that it can easily be generalized: wo say now that a functor $T: \mathcal{X} \rightarrow \mathcal{S}^{B}$ is "representable" eff there exists $B^{*} \xrightarrow{A} \mathbb{M}$ such that

$$
B \times m \xrightarrow{A *} \times m^{*} \times M \xrightarrow{\text { NOM }} d
$$

is naturally equivalent with $T \cdot: B \times M \rightarrow \infty$, where T' corresponds to T by exponential adjointrose, iso., such that $\mathbf{T}=(\boldsymbol{B} \times \mathbf{T})$ or . Now we have automatically :

Theorem 14. 3 For any M complete, B small, the functor $I: M \rightarrow \boldsymbol{X}^{B}$ has an adjoint tiff it is "representable".

Proof:

By the definition of "representable" aND.
Theorem 14.1 has several useful consequences, Pret of all, it gives back the previous results stated for d, This is so, since taking
B 쓸 1 , we have, by 14.1 , that
 If T_{1} is taken to be also a diagrematic category, then a useful corollary to 14.1 is the following:

Condlasy 14.4 (a) If B and (E are any two anil categomes,

(b) if A is any small category then,

(c) if I is any discrete category, i, e_{0}, just

(d) Adj $(x)=d$ and $\operatorname{Coadj}(x d)=d^{2}$.

 0.10
 obvious interpretation : there is a one-tome correspondence between ondomorphisen of a vector space and matrices * This is 80 if we "ace" sunctore $I \rightarrow$, as vectors with coordinates in the set I such
that the i-th coordinate of X is the value at i of X which we may denote by X_{i} rather that $i x$ to suggest the given interpretation. 4 functor $I \times I \rightarrow \infty$, can be seen as a matrix whose (i, j) hath coordinato be $(i, j) \Delta$ and denoted $\Lambda_{i j}$. Then, the correspondence is given as in 14.1 , i.e., given $E: S^{I} \longrightarrow \mathcal{S}^{I}$, the matrix A corresponding to the endomorphic E is given by the connutiativity of the triangle:

and therefore, $i_{i j}=(j)\left(i A_{j}\right)=j\left(H_{i} B\right)$. If B is the identity functor, then the corresponding matrix is diagonal, with $A_{i j}=1$ iff $i=j$ and $u_{i j}=0$ iff $i \neq j$. Conversely, given a matrix $4: I \times I \rightarrow \delta$, the corresponding endarorphis of f^{I} is given by for I in \boldsymbol{U}^{I}, the value of 4 at X is denoted I 为 A and it is an object of d^{I} defined, for $i \in I$ by

$$
(x \neq 4)_{i}=i(x \times 4)=\frac{\sum_{2}}{x_{k}} 4_{2}=\sum_{1} x_{k} \times 4_{k i}
$$

This suggests a matrix mitiplication as well, given by the usual composition of runctors, when defined, and the correspondence between andomorphisen of χ^{I} and $I \times I$ matrices. That is, let

$$
d^{I \times K} d^{K \times J} \cdots \underbrace{I \times J}
$$

be the matrix multiplication given by the corresponce and the neral composition of adjoint functors to yield adjoint functors, so that the cosdjoint of the composition of two functore which have coadjoints is the composition of the coadjoints in inverse order:

$$
\operatorname{Adj}\left(f^{I}, \delta^{K}\right) \times \operatorname{Adj}\left(\delta^{K}, \delta^{J}\right) \longrightarrow \operatorname{Adj}\left(f^{I}, \delta^{\top}\right)
$$

after the above discussion, it is clear how the matrix multiplication is the usual one, ie., for A in $f^{f^{\prime K K}}$ and $B \quad$ ing $f^{k \times J}$, A. B is an object in $\chi^{\text {Ix }}$ defined for $(i, j) \in I \times I$ by,

$$
\left(A \times{ }_{k} \mathrm{~B}\right)_{i j}=\sum_{E}\left(A_{i k} \times \mathrm{A}_{\mathrm{zj}}\right)
$$

This can be done also in the non-discate case: if F is an object in
 such that its value at any object A of A is :
(A) F M $\left.G=\left[\sum_{B} B F x(B, A) G\right] /\left(x^{2}, g(b, A) G\right)\right) \equiv\left(x^{2}(b p), g\right)$ where $x^{*} \in B^{i} F ; B^{*} \xrightarrow{b} B ; \quad x^{*}(b F) \in B F$ and $B^{\prime} F \xrightarrow{b F} B F \quad ;$ $g \in(B, A) G$ so that $g((b, A) G) \in\left(B^{0}, A\right) G$.

This can be seen as follows:

$\cong \lim _{\rightarrow}\left((H, P) \rightarrow B^{*} \xrightarrow{G(X)}\right.$ \& $)$ Where or is "evaluation at $A^{\prime \prime}$.
 the following is an exact diagram:

$$
\mathrm{K}_{\mathrm{p}} \xrightarrow{H_{p}} \sum_{B F}(A, B) G \times \sum_{B F}(A, B) G \Rightarrow \sum_{B F}(A, B) G \xrightarrow{P}(A) F \neq c
$$

The relations by with the coproduct factors out are forced by the conditions : $\mathrm{B}^{\mathrm{t}} \xrightarrow{\mathrm{b}} \mathrm{B}$ induces $\mathrm{H}_{\mathrm{B}} \rightarrow \mathrm{B}_{\mathrm{F}}$, con mutative .

We can now express "matrix multiplication:

$$
f^{a^{+} \times \underset{x}{B}} f^{B^{*} x C} \xrightarrow{*} f^{A^{+} \times C}
$$

by the following:

$$
(A, C) N=\left[\sum_{|B|}(A, B) M \times(B, C) N\right] /(h, \quad g(b, C) N)=(h(A, b) M, g)
$$

where $b: B^{\prime} \rightarrow B, h \in\left(A, B^{r}\right) M$ so that $h(A, b) M \in(A, B) M$ and $g \in(B, C)$ so that $g(b, c) \in\left(B^{\prime}, c\right)$.

The above is so because:

 functor corresponds to the HOM -"matrix", i.e., to the bifunctor HON: $A^{2} \times \mathrm{A} \rightarrow \mathcal{S}$, so that
$M: A^{*} B \rightarrow d$ defines an equivalence between 4^{A} and d^{B}, ifs
 N养县
 DIAGRMMATIC CATEGORY

If no category could be represented in more than one way as a diagramvatic category, that would mean that a diagramatic category is completeIf determined by the domain category for the set-valued functors. In other words : it would be true that given any two diagramatic categories which were isomorphic, $f^{A} \approx y^{B}$, then also the domain categories A. and B would be iscorphic categories. However, this is not so, as we shall see. On the other hand, and as in the case of complete atomic

Boolean algebras, complete atonic regular categories are completely determined by the toes in then . This is intuitively sex, and can be shown as follows :

Proposition 15,1 Let X, X^{\prime} be complete atonic regular categories and $\phi=x^{\prime} \rightarrow \mathcal{X}^{\prime}$ an isomorphism of categories. Then, ϕ proserves the atoms and the corresponding full subcategories of \mathcal{X} and \mathcal{T} determined by the atoms in each one, are isomorphic categories under the restriction of ϕ.

Proof:
Let A be an aton in $\mathcal{X}^{\mathcal{L}}$. Let use show that $A \phi$ is an aton in \mathcal{X}^{\prime}. Let $\left(f^{\prime}, g^{\prime}\right)$ be jointly api pair of maps in $\mathcal{X}^{\prime \prime} w$ th $^{\prime}$ codomain $Z^{\prime \prime}$. men, since ϕ is full and dense, there is a Z in \mathcal{X}, and \mathcal{T}, g with codonain z such that $z \phi \equiv z^{\prime}, f \phi=\mathrm{I}^{\prime}, \mathrm{g} \phi=\mathrm{g}^{\prime} \cdot$ Mores very, (f, g) is jointly ep in $\mathcal{X}:$ given r, s, such that $i r=f s$ and $\varepsilon P=\mathrm{ct}^{\mathrm{c}}$, then also, $(\mathrm{f} \phi)(\mathrm{r} \phi)=(\mathrm{f} \phi)(\mathrm{a} \mathrm{\phi})$ and $(\mathrm{e} \phi)(\mathrm{r} \phi)=$ $=(\varepsilon \phi)(a \phi)$, so that if $(r \phi)$ is called r^{i} and $(s \phi), s^{\circ}$, we have $f^{\prime} r^{\prime}=f^{\prime} g^{\prime}$ and $g^{\prime} r^{\prime}=g^{\prime} s^{\prime}$. But them $r^{\prime}=g^{\prime}$ which implies since is faithful, that $r=s$. So, given $\Delta \phi \xrightarrow[\longrightarrow]{\mathrm{F}^{\circ}}$ since ϕ is dense, there exists z such that $z \phi \hat{=} z^{2}$ and since is full, there orients $A \xrightarrow{s} Z$ such that $s \phi=s^{\prime}$. Since A is an atom in \boldsymbol{f}, there orients I ouch that $\mathrm{xf}=\mathrm{m}$, for example (it
 $=(\mathrm{If}) \boldsymbol{\phi}=\mathrm{s} \boldsymbol{\phi}=\mathrm{s}^{\prime}$. The second property of being an atca is similarly proven to be true of $\Delta \phi$. Since ϕ is one-tomone on objects, there is a one-to-one correspondence between the two classes (sets) of
atoms, and since $\boldsymbol{\phi}$ ia dense, full and faithful, the two snall categories determined by the atoms in each category, are isomorphic categoriea under $\boldsymbol{\phi}$. QED .

Any diagramatic category is complete atomic regular, since the atoms contain as a subclass the representable functors, which generate the cate gory. The question that comes up naturally, is whether the representable functors are all the atoms, in an arbitrary diagrematic category . We already mow that any retract of an ato is again an atom, in any regular category whatsoever. Are all retracts of representables again representebles? Another question is: are there any other atoms which are not retracts of any representable? We answer the last question firstz

Theore 15,2 In any diagramatic category $y^{(\mathbb{E}}$, the atons are precisely the retracts of the representables.

Proof:

Let T be an atom in $\mathcal{P C}$. Since the family of ropresentables is generating, there exists a set J and a fanily of represeatablen indelsed by J and an epimorphian p from the coproduct of this fanily into T, $\sum_{J} H^{A} \xrightarrow{p}$. Since I is an aton, it is projective, therefore
 being an ato is also abstractiy unery, thorefore there existe ficmen and $T \xrightarrow[L]{ } H^{A}$ such that, if d is the injection corresponding to H^{A} trough wich A factore, $h=k j$, Hinaliy, the following conrutative diagrem mays that I is a retract of H^{A} :

QED.

We now plan to answer the question whether all retracta of representables are or not always representables. If the ansver were to be affinative, then we would have $;$ after 15.2 , that the representables would be all the atons in any diagramatic category. However, it is not so in general, and we want to give a sufficient condition for this to happen.

Ye first need a definition taken from Freyd ([8]): an idegotent (map) is a map e such that oe $=$ In a category $\boldsymbol{X}^{\boldsymbol{X}}$, it is said that idempotents split iff for every idempotent $A \xrightarrow{e} A$, there exists an object B and maps $A \xrightarrow{a} B, B \rightarrow$ euch that $A \xrightarrow{a} B \xrightarrow{b} A=A \xrightarrow{C} A$ and $B \xrightarrow{b} B+B \xrightarrow{B}$. Freyd defines amenable categories as categories which are additive, have finite coproducts and where all idempotente eplit. Then a necessary and zufficient condition for a category of additive functors with domain category d and codomain category \mathcal{G} (the category of abolian groups), to have the property that every abstractly finite projective object be representable is that the category of be amable.

We want to prove an analogous theorm to that of Preyd, for diagrammatic categories. The existence of coproducts in the domain category is not needed aince the atons are more than abatractiy finite: they are abstractiy unary as well. There it is used that $\langle\alpha, G\rangle$ is abelian, in the fact that there are mique factorisations into opis followed by monos. Bat this is true of any diagramatic category, without being abelian. Therefore, the proof is quite aimilar, only lese is needed here:

Propogition 15.3 If in \mathbb{C}, all idempotenta aplit, then, in
$\mathcal{S C}^{\mathbb{C}}$, every atom is representable.
Proof:
Let T be an atom in $\int^{(\mathbb{C}}$. By 15.2 , T is a retract of sone $\mathbf{A}^{\mathbf{A}}$, i.e., there exists a map $T \xrightarrow{T} H^{A}$ and a map $H^{A} P$ such that $r s=T$. But then, sr is an idempotent since $(\mathrm{sr})(\mathrm{sr})=\mathrm{s}(\mathrm{ra}) \mathrm{r}=$ $=$ Er . Also, since the regular representation of \mathbb{C}^{*} is full and $H^{A} \xrightarrow{s r} H^{A}$, there exists $X: A \longrightarrow A$ such that $s=H^{\mathbf{X}}$.
 $x=x$, or x is an idempotent in (C) Therefore, it splits by means of maps $A^{a} A^{\prime}, A^{\prime} \xrightarrow{b} A$ such that $A \xrightarrow{a} A^{\prime} \xrightarrow{b} A=X$ and $A^{\prime} \xrightarrow[b^{b}]{b} A \xrightarrow{a}=A^{\prime}$ so, $A^{A} B^{B} T \xrightarrow{r} H^{A}=H^{Y}=$ $=H^{A^{\prime}} \xrightarrow{H^{b}} H^{\prime} \xrightarrow{H^{a}} H^{A}$. How, $\quad=T$ implies that T is mono and is epis, therefore H^{I} is factored into an ep followed by a mono, by means of t and r. Bat $H^{\prime \prime}$ is also a retract of H so that H^{b} is ep and H^{a}, mono . Since such factorisations are unique in any diagrammatic category, $\mathbf{T} \underset{O^{\prime}}{H^{\prime}}$ - QED .

It is an exercise in Freyr [8], that any anal category can be embeddod into another in which idempotents split, and moreover, it can te done in a minimal universal way. We shall define here also the closure under the splitting of the idenpotents of any mall category, and although our definition looks different from that of Freyd's, it turns out that they are equivalent. We prefer our definition because it is easier to draw explanatory diagrams, however disadvantageous is the fact that it resentblew a subcategory of a functor category though it is not.

Given any anal category. (V), we define its idempotents-splitting
closure \mathbb{C} as follows: let the objects of $\overline{\mathbb{C}}$ be the idempotent of \mathbb{C}, i.e., $4 \xrightarrow{\theta} 4$ is an object in $\overrightarrow{\mathbb{C}}$ tiff θ is an idenpo tent in \mathbb{C}. Given any two objects $A^{e} A$, and $A^{\prime} \xrightarrow{e^{\prime}} A^{\prime} \quad$ in (T), a map from the first to the second is a commutative diagram:

i.e., a commutative square with a builtrin diagonal, which reduces to the following equations : of $=f=f e^{\prime}$. We will denote this map by ($0, f, e^{\prime}$) . The condition for $1: A \rightarrow A^{\prime \prime}$ in Frey's definition , reads as follows : of $=1$. We show that both are equivalent . If of e' $=f$ then of $=$ offer' $=$ of' $=f$ and

Composition of nape $\left(e, f, e^{\prime}\right)\left(e^{\prime}, g, e^{n}\right)=\left(e, f g, e^{n}\right)$ because, if f is such that of $=f=f e^{\prime}$ and f^{\prime} such that $e^{\prime} g=g=$ $=60^{\prime \prime}$ then, $\quad e(f g)=(e f)_{g}=\left(f 0^{*}\right)_{g}=f\left(e^{\prime} g\right)=f\left(g e^{n}\right)=$ $=\left(f_{g}\right) e^{n}$, so that $e(f g)=(e f)_{g}=f g=f\left(g e^{n}\right)=(f g) e^{*}$.
 On the other hand, if we had defined a subcategory of a functor category, the identity map of $A \rightarrow 1$ would have to be $A \rightarrow A$, however the condition imposed by the presence of the diagonal prevents this from being so, since of $\neq A$ and se $\neq 4$. We now define the canonical functor $\mathbb{C} \xrightarrow{\mathbf{C}} \mathbb{C}$, as follows: given $A \in|C|$, let $A=(A, A, A)$, the identity map of $A \xrightarrow{A}$,
where $A \xrightarrow{A} A$ is certainly an idempotent in C_{C}. Let $A \xrightarrow{f} A^{\prime}$ be any map in \mathbb{C}, the $P 1=\left(A, f, A^{\prime}\right)$. This defines obviously a functor We now show that idempotent in (C) which are now objects in $\overline{\mathbb{C}}$, when mapped by i into $\overline{\mathbb{C}}$, they become maps and only the idempotent which are bury -j-
That they split in $\overline{\mathbb{C}}$, can be seen as follows: let $A \rightarrow \mathbf{A}$ be an idempotent in $(\mathbb{C}$. Its image mater i is the map (A, θ, A), ie., the commutative diagram

The splitting is given as follows : take the object $A \rightarrow+1$ in (C), and the maps given by the commutative diagrams:
\bullet

and then we verify that $(\Lambda, e, \theta)(e, e, \Lambda)=(\Lambda, \infty, \Lambda)=(\Lambda, \theta, \Lambda)$ and $(e, e, A)(A, e, e)=(e, e e, e)=(e, \theta, \theta)$, therefore we have the required splitting.

The canonical functor $T+\overline{C^{4}}$ induces a functor $\rho^{\bar{C}}{S^{i}}^{i C}$ and we want to show that the latter is an iscmorphisa of categories. That the above construction gives the minimal category in which is embedded and it is such that idempotent of \mathbb{C} split in $\overline{\mathbb{C}}$, is clear, since the objects of the new category are idempotent of the first, and the naps cone from the category C as well.

Theorem 15.4 For any small $\mathbf{C}_{\text {, and }}$ its idempotent-splitting closure $\overline{\mathbb{C}}$, the canonical functor $\mathbb{C}_{\boldsymbol{4}}^{\boldsymbol{i}} \overline{\boldsymbol{C}}$ induces an isomorphism $\otimes^{i}: j^{\bar{C}} \simeq \underbrace{(\mathbb{C}}$.

Proof:
It is known (Lawvere [14]) that any functor between diagrammatic categoriea which is induce by a functor between the domain categories, has both an adjoint and a coadjoint. We uss the formulas of $\oint 14$ to calculate the adjoint of j^{i}, and then we show that it is actually an inverse. Given F in $\mu d^{(\mathbb{C}}$, the value of d^{i} at F is defined to be $P \mathcal{J}^{i}=$ iF (composition) . Let $\hat{\mathrm{B}}^{i}$ be the adjoint to dj^{i}, and I any object of $\mathcal{S}^{\mathbb{C}}$. Then $T \hat{j}^{i}$ is an object in $f^{\vec{C}}$, whose value at an object $A \rightarrow A$ of \bar{C}, or equivalently an identity map ($0, e, e$) of $\overrightarrow{\mathrm{C}}$, is given by
$(\theta, \theta, \theta) \quad \mathrm{T} \hat{\mathrm{S}}^{i}=\underline{\underline{i}}((i,(e, \theta, \theta)) \rightarrow \mathbb{C} \xrightarrow{\boldsymbol{T}} \boldsymbol{i})$ 솔

where $a: A^{n} \rightarrow A^{\prime}, x^{\prime \prime} \in A^{m P} \quad$ so that $x^{\prime \prime}\left(a^{\prime \prime}\right) \in A^{\prime} T$ and $b^{\prime}:\left(A^{\prime}, A^{\prime}, \Delta^{\prime}\right) \longrightarrow(e, e, e)$ so that $b^{\prime}\left(a^{i}\right):\left(A^{n}, \Delta^{n}, \Delta^{n}\right) \longrightarrow(0, e, e)_{0}$ However, we cen simplify these relations considerably if we notice that the only $\left(A^{\prime}, A^{\prime}, A^{\prime}\right)$ for which there is a map $b^{\prime}:\left(A^{\prime}, A^{\prime}, A^{\prime}\right) \rightarrow(e, e, e)$ is (A, A, A) since the following is a commutative diagram :

and if f is also such that $\Delta^{\prime} f=f=f e=f i$ then $f=A$ since
identity maps are unique. Also, the only $4 \rightarrow-4$ for which
$(A, a, A)(A, e, \theta)=(A, e, \theta)$ is $A \rightarrow A$, so that we finally have :
$(e, \theta, \theta) \mathrm{I} \hat{\mathrm{X}}^{i}=\{(\Lambda, \theta, e)\} \times \mathrm{AT}$

$$
\begin{aligned}
& x^{n}=x^{n \prime}(e T) \text { for every } x^{n} \in \Delta T, \\
& \text { i.e., } e T=\Delta T .
\end{aligned}
$$

We now compute both compositions $\boldsymbol{f}^{i} \hat{y}^{i}, \delta_{i}^{i} 8^{i}$, to see that they are the corresponding identities.
For any identity map (e, e, e) in \mathbb{C}, by the above, if p is in $f^{\overline{4}}$,
 $\approx[(\Delta i) F] /(01) F=4$

$$
\cong(A, A, A) P /(A, e, e) P=A \quad \text { and since } \quad(A, e, e):(A, A, A) \rightarrow(e, e, e)
$$

this says that $(A, A, A)=(e, e, \theta) F$. Frailly, we have

$$
\begin{aligned}
& (e, e, e)\left(F \mathcal{d}^{i} \hat{f}^{i}\right)=(\Lambda, A, A) F /(\Lambda, A, A) F=(e, e, e) F \quad, i, e ., \\
& (e, \theta, \theta)\left(F d^{i} \hat{\rho}^{i}\right)=(e, e, \theta) r .
\end{aligned}
$$

On the other hand, for any T in $\int^{\mathbb{C}}$, and $\Delta \in|\mathbb{C}|$.
$\Delta\left(T \hat{f}^{i} \phi_{\phi}^{i}\right)=(\Delta i)\left(T \hat{X}^{i}\right)=(A, A, A)\left(T \hat{S}^{i}\right)=\Delta T \cdot \operatorname{OBD}$.
With this theorem it is now clear that there may be diagrammatic categories which are isomorphic, and such that they have non isomorphic domain categories. It is enough to give an example of a small category which is not isomorphic to its own idempotent-aplitting closure. Take, for example, a category with exactly tine maps, one identity map A, and another non-identity map $A \ldots 4$ which is idempotent.

In any diagrammatic category, the atoms are precisely the retracts of the representablea, by 15.2 . Therefore, the full subcategory generated by the atoms in any diagrammatic category is precisely the full subcategory generated by the representable and their retracts. Moreover, we have the following:

Theorem 15.5 In any diagramatic category, the full subcategory generated by all the representables and their retracts is isomorphic to the idempotent-splitting closure of the full subcategory generated by the representables-

Proof:

The atoms in $\mathbf{x}^{(4)}$ are all the retracts of the representable functors. These retracts give rise to idempotents in the full subcategory of generated by the representables, which split in the corresponding cleosure. By unique factorisations of maps into epis followed by monos, it is easily seen that the splitting of idempotent arising from retracts are given by the retraction themselves. So, every atom in $\mathcal{S}^{\mathbb{C}}$ is an object in the closure under the splitting of idempotent of the full subcategory of \int^{14} generated by the representables. Conversely, for any idempotent $H^{A} H^{A}$ in the closure of the subcategory of repro-
 such that $F s=0$ and $T \xrightarrow{\left(H^{\prime} T\right.} T=T$ so that T is a retract of $\mathrm{H}^{\mathbf{A}}$ and therefore, an atom. Quo.
motrin_ 25.6 (Morita isomorphism theorem for diagrammatic catego mien) For any two anal categories A and B, $8^{4} \div 8^{B}$ imf $\not \subset \approx B$

Proof:
Assume there is an isomorphism of categories $\phi: \phi^{4} \sim \delta^{3}$ Then, by 15.1 , the restriction of ϕ to the full subcategory of \boldsymbol{N}^{4} generated by the atoms gives an isomorphism onto the full subcategory generated by the atoms in 4^{8}. By 15.5, this implies that idempotentflitting closures of the full subcategories generated by ropresentables in each category, are isomorphic categories. But, since in each diagram matic category, the small domain category for the functors and the full subcategory generated by the representable functors are isomorphic, also their idempotente-splitting closures are isomorphic. Therefore,
$\bar{A} \cong \bar{B}$.
 $\alpha^{A} \simeq j^{X} \equiv \underbrace{B} \geq d^{B}$. Q BD.

We now investigate the question of the uniqueness of the representstion of a given category (complete atomic regular) as a diagrammatic category. The representation given in 13.1 is, in a sense, the maximal one: there are at least as many others as generating subsets of the set of atoms in the category. This is so, since the category of atoms, besides being its ow closure under splitting of idempotents, is the cleosure, as well, of any full subcategory generated by a proper subset of the set of atoms which is also generating for the category. This can be shown as follows:

Proposition 15.7 Let \mathcal{T} complete regular atonic. Let I be the set of its atcans, C the full subcategory generated by the objects in I. Let $I^{\prime} \subseteq I$ be any subset which is also generating (it need not
be a proper subset) for \mathcal{X}. Let \mathbb{C}^{\prime} be the fall subcategory of \mathbb{X} generated by the objects in I^{\prime}. Then, $\overline{\mathbb{C}^{\prime \prime}} \cong \mathbb{C}^{\prime}$.

Proof:

Since there is an inclusion of sets I' CHI, it induces an inclusion functor $\mathbb{C}^{\prime} \rightarrow \mathbb{C}$ which in turn induce e $\overrightarrow{\mathbb{C}}^{\prime} \rightarrow \overline{\mathbb{C}} \equiv \overrightarrow{\mathbb{C}}^{\prime} \rightarrow \mathbb{C}$ since $\overline{\mathrm{C}} \underset{\mathrm{C}}{\boldsymbol{C}}$. We now define aifunotor in the opposite diraction. If a family of objects is generating in a category, then every atom is a retract of at least one object in the family. This is so because, if A is an atom and the family $\left\{\boldsymbol{\Lambda}_{\mathbf{i}}\right\}$ whose members are atoms , is generating, there exists a set J and an epimorphisa $\sum_{j} A_{i} \xrightarrow{p} 4$. However, A being projective implies that there exists a map $A \rightarrow \sum_{\mathbf{J}} \mathbf{A}_{i}$ such that $r p=A$. But A being an aten is also abstractly unary, and therefore there exists a map s and an atom such that if i_{j} is the injection corresponding to A_{j}, $r=i_{j}$. Therefore, there exists an atom A_{j} and maps $A \xrightarrow{a} \boldsymbol{A}_{j}$ and $A_{j} \xrightarrow{i_{j}} \sum_{j} \Lambda_{i} \xrightarrow{P} A \quad$ such that $A \xrightarrow{B} \sum_{j} \Lambda_{j} \xrightarrow{i_{j} P} A=A_{0}$ So, 4 is a retract of i_{j}. Therefore, since $\left(i_{j} p\right)$ e is an idempo tent in (1) whose splitting is given by 4 , then A must be an object in the closure of $\overline{\mathrm{C}}$, that is, in $\overline{\mathrm{T}}$. This is a functor, and both compositions give the identity. QBD .

The above proposition anggeste that if the all category is already closed under splitting idempotenta, and no subfamily of its aet of objects is also generating, then, the corresponding diagramatic category can be represented in no other way as a diagramatic category. An oremplo which is almost trivial of such categories is provided by the anal
diacrete categories. Indeed, for them:
Proposition 15.8 Let \mathcal{X} be complete regular atomic and assume that the full subcategory generated by the atoms is diacrete, i.e., a set I. Then, $X \underset{X}{ } \underset{X}{ }=$ is the only representation of \mathcal{X} as a diagrammar tic category.

Proof:

If the full subcategory of \mathcal{X} generated by the atoms in \mathcal{X}, is diacrete, no proper subset of I could be a generating family for \mathscr{X}_{8} ussume on the contrary, that there exiats $I^{\prime} \leq I$ and $I^{\prime} \neq I$ auch that the objects in I^{\prime} are a generating set of objecta for \mathcal{X}. Then , by the proof of 15.7 , if 4 is an atom and an element of I which is not an element of I^{\prime}, A is a retract of an object B of I^{\prime}, since I' is generating. That means that there are maps $\mathbf{A} \rightarrow \mathrm{B}$ and $\mathrm{B} \rightarrow \mathrm{A}$ where both 4 and B are objects of I . However, I was discrete, therefore there are no mape in I . Contradiction. This means that no proper aubset of I is generating and so, I is not the closure of any proper eubset. Assume there ia a suall category \mathbb{C}, for which $8^{\text {I }} \approx 8^{\text {C }}$. This inplies, by Morita iscoorphien theorem, that $\overline{\mathbb{C}} \approx \bar{I} \cong I$, and therefore, discrete \cong Therefore, also
 Diecrote anall categories are trivial orsmples of anll categories which deternine miquely their correaponding diagramatic categories. There are lese trivial exmplea. Actually, for any \mathbb{C} anh that no proper arbact of $|C|$ ganorates the category, this is trie as well. and for thic, it is too moch to ask that there be no maps in \mathbb{C}.

It ia more than enough that there be no idempotent. In fact, this condition happens to be necessary as well. We now proves

Theorem 15.9 Let \mathcal{X} be any complete atomic regular category. Then, there is only one representation of x^{T} as a diagrammatic category (up to isomorphism) iff the full subcategory of \mathcal{X} generated by the atoms, contains no idempotents, except the identity maps.

Proof:

Assume that $A \xrightarrow{e} A$ is an idempotent which is not an identity map, in (1) the full subcategory of generated by the atone. Since \mathbb{C}_{4} is its own idempotent-splitting closure, there is an object B and naps $A \xrightarrow{s} B, B \xrightarrow{r} A$ in C, such that $A \xrightarrow{B} B \xrightarrow{r} A$ and $B \xrightarrow{T} A^{s} B=B$. Then , the family of all the atom e in X without the aton B is also generating. To see this, let P and g be any pair of maps in \mathcal{X} with common domain and codonain, and arch that $f \neq E$. Then, if there exists a map $B \xrightarrow{X} X$ such that

 epis. Let \mathbb{C}^{\prime} be the full subcategory of \mathcal{F} generated by all the atoms with the exception of $\mathrm{B}, \mathrm{By} 15.7, \overrightarrow{C_{1}} \boldsymbol{C}$, and by 25.4 ,
 different representations of as a diagrammatic category, since $X \equiv \mathcal{P}^{\mathbb{C}}=\mathcal{J C N}^{4}$ so, if the representation of \mathcal{X} as $\mathcal{X}^{\mathbb{C}}$ is unique (up to isomorphism), there are no idempotente in \boldsymbol{C}_{1}.

The converse of the theorem is immediate s if C is the full subcategory of the atom and contains no idempotents, then, it is minimal
generating (no proper subset of its set of objects is generating) and its onn closure. Assume that there existe A, such that $\delta^{(\mathbb{C}} \approx \delta^{A}$.
 subcategory of C whose closure is C. Moreover, A is isomorphic to a fanily of representable functors and all maps between, which is a generating family for ${ }^{\text {A }}$. This contradicts the above. Therefore, the representation is unique up to isomorphisn. GFD .

As examples of emall categories which contain no idempotents other than identity maps and which play important roles in the theory of diagrammatic categories and in the category of categories, are $\mathbb{1}, \mathbb{Z}$, 3 and 4 .

We remark that in 1 is a generator and an atom, therefore the only atom, because any other aton would have to be a retract of 1 (aince $\{1\}$ is generating) and therefore, iscmorphic (equal, by convenience axiom) to 1 - Therefore, another characterisation of is : 8 is the only (up to isonorphism) right-complete atonic regular category in which 1 is an aton and a generator (or else, infhich 1 is the only atom).

With this, we end the nain part of our paper. In the next and last chapter, we deal with applications to the class of diagramatic categories, of the theory of triples and of triplable categories. Chapter IV is somewhat independent of the first three chapters.

Chapter IV
ALGEBRAIC
ASPECTS OF DIAGRAMMATIC

CATEGORIES
§ 16 - ADJOINT AND COADJONTT TRIPLES AND COTRTPLES

In this section we review briefly the notions of triple and cotriple in categories, along with same well known facts about them. Further inform nation can be found in Eilenberg \& Moore [5].

4 triple (T, η, μ) in a category \mathscr{X} is an ondofunctor I of \mathcal{X}, together with two natural transformations

such that the following diagrams are comitative:

If called the mitt of the triple and μ its multiplication. The three equations expressed by the comutativity of the diagrams above seas just that η is a tro-sided unit for the multiplication and that the latter is associative.

Dually, a cotriple $(0, \psi, \nu)$ in a category \mathscr{X} is an endorunctor of X, together with two natural transformations

such that the following diagrams are comutative :

Ψ is called the counit of the cotriple and ν its coultiplication, and the three equations expressed by the comutativity of the diagrams say that \mathcal{F} is a two-aided counit for the cotriple and that the latter is associative.

The following is a more appropiate definition of adjointness for the above contert : given $\boldsymbol{X} \underset{\sim}{F} \boldsymbol{F} \boldsymbol{F}$, is said to be adioint to J (and U coadioint to F) iff there are natural transformations

anch that the following equations hold:

$$
\begin{aligned}
& F \xrightarrow{\eta F} \text { HP } \xrightarrow{F Y} F=I_{F} \text { and } \\
& \nabla \xrightarrow{U \eta} \text { UN } \xrightarrow{\Psi U} D=I_{U} .
\end{aligned}
$$

Adjoint pairs of functors give rise to triples in a canonical way, i.e., if F is adjoint to U with η, \mathcal{F}, as above, then ($\mathbb{N}, \eta, \mathcal{F} \mathbb{V}$) is a triple atructure on \mathcal{X}^{x}.
But conversely, triples give rite to adjoint paire of functors in a minimal and a marimal was (the canonical functor from adj(\mathcal{F}) to Trip(\mathcal{F}) has adjoint and coadjoint). Only maximal resolutions will interest us hore . We remaric that if $X \geq d$, then the marimal resolutions are
eiven by the equational categories (linton [19]), which generalise Lawvere's algebraic categories (Lawvere [14], [15]) by allowing infinitary operations as well.

A marimal resolution of a given triple T on X is given by a category x^{\top} said to be the category of I malgebras, and by a pair of adjoint functors $\boldsymbol{T}_{\mathbf{T}}$ and $\boldsymbol{U}_{\mathbf{T}}$ whose composition is T, i.e., such that the following diagran is comatative, with F_{T} adjoint to $\boldsymbol{U}_{T}:$

Moreover, it is a marimal resolution of T in the sense that if Y is any other category for which there are functors $\mathcal{X} \rightarrow \mathcal{F}$ and $Y \rightarrow X$ such that $N=T$ and F is adjoint to T, then there exists a mique fmetor $H: Y \rightarrow \mathcal{X}^{\top}$, such that the diagran below is comatative:

The objects of \mathcal{X}^{\top} can be described as follows $:$ they are pairs (x, φ) where x is in \mathcal{X}, and $x T \xrightarrow{P} x$ is a map in \mathcal{X}, satiafying the equations expressed by the comulativity of the diagrans below:

A nap of T malgebras $(x, \varphi) \longrightarrow\left(x^{\dagger}, \varphi^{\prime}\right)$ is given by any map $X \xrightarrow{f} X^{\prime}$ such that the following diagram comates:

They generalise the usual categorical notion of algobra, as e.go, in Hac Lane [21] \& [22].

The adjoint pair which gives the maxieal resolution is defined by * $X F_{T}=\left(X P, E T^{2} \mu_{x}-X I\right)$, for x an object in X and obvions definition for the maps $x \rightarrow x$ of X

$$
(X, \varphi) U_{T}=I \text { and it is clear that } F_{T} \text { is adjoint }
$$ to U_{T}.

The dual constructions for coadjoint pairs of functore and cotriplea can now eassily be done, a maximal resolution is given by a category whose objects are called co-algebras, C-coalgebras, if G is the given cotriple in \mathcal{X}.

Ye say that a triple is a coadioint triple in $\chi \mathcal{X}$ if, as an ondofunctor has an adjoint. Dually we define adioint triples on a category . One can also define coadioint cotriples and adioint cotriplen, and all these notions are related. Ir T is a triple in X. and it has a coadjoint G, then G has canonically a cotriple atructure . Moreover, the maxinal resolutions for both T and G are iscmorphic categories. This can be seen roughly as follows:
Since i has a triple structure, there are η, μ, satisfying the required equations. And since T is adjoint to G, there are also

conditions for T to be adjoint to G. A cotriple structure for G can be given as follow a : let $1, \psi, G \xrightarrow{\Delta} G^{2}$ be defined by means of the two commutative diagrams below :

The category of G-coalgebras, $G \mathcal{Z}$, has as objects, pairs (Y, ϕ) with Y an object in \mathcal{X} and $Y \mathscr{\Phi} I G$ a map in \mathcal{X}, satisfying the three equations expressed by peans of the following commutative diangrams:

With the usual definition of adjoint functor (involving HON-sets) one can
 $H O M(X P, X) \cong H O M(X, X G)$, and the commutativity of the diagrams follow from the way the cotriple structure for G was defined.

Similarly, given a cotriple G which has an adjoint T, \mathbf{T} can be given canonically a triple structure. The compositions of both procedures give the identities. On the other hand, if I is a triple on X which has an adjoint F, then F has a cotriple structure and a cotriple with coadjoint induces a triple structure on the coadjoint. we cen resume the above considerations as follows:
adj triples $(\mathscr{X})=(\text { Coadj Cotriples }(\mathscr{X}))^{*}$ and
adj cotriples $(\boldsymbol{X})=(\text { coadjoint Triples }(\mathscr{X}))^{*}$.
$\oint 17$ - THE EQUATIONAL CLOSURE OF \propto OVER TI

The category of sets and mappings has the property that any endofunctor which has an adjoint is representable. Conversely, any representable endofunctor H^{I}, for $I \in \mid \boldsymbol{f}$, has an adjoint, namely the functor "crossing with I ", ($\quad \times I$. This is so because in \mathscr{X}. "Honing" and "Exponentiating" coincide so that $\operatorname{HOR}(I$,$) is coadjoint to () \times I_{\text {. }}$ If we make the collection of coadjoint endofunctors of \mathcal{X} into a category, with the usual composition of functors (composition of functor with adjoint is again a functor with adjoint) and define a functor from the category Coadj(\mathcal{C}) to \mathcal{S}, using the remarks mede above we have:

$$
\operatorname{coadj}(d) \cong \int^{*}
$$

since exponentiation (in this sase HOM(,)) is contravariant on the exponent (on the first variable)).

The question is now to find out which coadjoint endofunctors of \propto are also triples on 8 . By 816 , the answer to this problem will be equivalent to the answer to the question: which adjoint ondofunotors of $\&$ have also a cotriple structure?

411 adjoint endofunctors of \mathcal{D}^{\prime} are of the fore $\mathrm{I}=(\mathrm{l}) \times 1$. for some $I \in|X|$. The following is a cotriple structure any such T and we will show that it is the only one it can have :

x of \boldsymbol{X}, by $(x, i) \psi_{x}=x$ and $(x, i) \mathcal{L}_{x}=(x, i, i)$ for $(x, i) \in I \times I$. In other words, $\boldsymbol{y}_{\boldsymbol{I}}$ is the projection onto X , and $\mathcal{L}^{1 s}$ the map induced by the diagonal map $I \rightarrow I \times I$. That this is the only cotriple structure for () XI can be seen by the fact that if $\Psi^{\prime}, \nu^{\prime}$ gave another, then Ψ^{\prime} and ν^{\prime} would have to satisfy a comitative diagram so :

which means that : if
 Therefore, $i=k$. Also, $((y, j), i) \Psi_{2}^{\prime}=(x, i) \quad$ and $(y, j) \boldsymbol{W}_{\mathrm{X}}^{\prime}=x$ so that $(y, j)=(x, y)$ sud therefore $y=x$ and $J=1$, so that $(x, i) \nu_{X}^{\prime}=(x, i, i)$ and $(x, i) \Psi_{I}^{\prime}=x$. The existence and uniqueness of the cotriple structure given by $\boldsymbol{\psi}, \mathcal{D}$ for () XI , implies, by §16, that $G=()^{I}$ has always a triple structure, and that moreover, it is unique. This is so for any set I . To calculate the triple structure on ()I we have first to calculeto the natural transformations $\quad \underset{\sim}{g} \xrightarrow{h} T C, G T \xrightarrow{e} 18$ which rake $T=() X I$ adjoint to $G=()^{I}$. It is clear that for asch I in $\mathcal{X}, \quad b_{x}: x \longrightarrow(X \times I)^{I}$ is defined, for $x \in X$ and $i \in I$ by $i\left(x n_{X}\right)=(x, i)$ and that
$\mathbf{X}^{\prime} \quad \mathbf{I}^{I} \times I \longrightarrow \mathbf{I}$ is just the evaluation map ,ie., for $f \in X^{I}$ and $i \in I, \quad(f, i) e_{I}=(i) f$.

To define the induced triple structure on G, we have to use a procedure dual to the one given in $\oint 16$, since there it was a triple structure inducing a cotriple structure on the coadjoint of the triple. So, define

at each x of f, by means of the commutativity of the two diagrams below:

so that : for any $x \in X$ and $i \in I$,

$$
\begin{aligned}
& i\left(x \eta_{\Sigma}\right)=i\left(x h_{X} \Psi_{X}\right)=(x, i) \psi_{I}=x \quad \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& =(f, i, i){ }_{\underline{I}}{ }^{e_{X}}=((i) f, i) e_{X}=(i)((i) f) \text {. }
\end{aligned}
$$

Therefore, we have shown that

$$
\rho^{* *}=\text { Coadjoint Triples }(X)=(\text { Adjoint Cotriples }(x))^{*}
$$

and that the correspondences are given as follows: given I in x_{0}. ($)^{I}$ is a cosdjoint endorunctor of X, which
has a (unique) triple structure given by η and μ defined as follows for $x \in I$ and $i \in I$ and $I: I \longrightarrow X^{I}:$ $i\left(x \eta_{x}\right)=x$ and $\left.(i)\left(I \mu_{X}\right)=(i)(i) P\right)$ and () XI is an adjoint endofunctor of $\mathscr{\int}$, with a unique cotriple structure induced by that of ()I as follows, Ψ, D, are delined, for $x \in X$ and $i \in I$ by, $(x, i) \mathcal{H}_{X}=x$ and $(x, i) \mathcal{L}_{C}=(x, i, i)$. Conversely, any coadjoint endofunctor of \mathcal{O} is representable by some I , ie., is of the form ()$^{I}=\operatorname{Hom}(I$,$) , and has a unique triple.$ structure as given above, and an adjoint endofunctor of \mathcal{S}, of the form () XI has therefore an induced cotriple structure. The uniqueness of these structures imply that the correspondence established is an iscmorphis.

Therefore, \boldsymbol{d}^{*} gives all coadjoint triples in $\boldsymbol{\varnothing}$, and we can now fix a set I and investigate the nature of the T-algebras, with T being the triple given by ()I. We recall that a ()I-algebra is a pair (X, φ) where X is an object in , ie., a set, and $X^{I} \xrightarrow{\varphi} X$ is a map in $贝$, ie., an I-ary operation on the set X which, by the equations it has to satisfy, has a two-sided identits and it is associative. And there is a universal resolution given by the category of ()I-algebras and a pair of adjoint functor relating it with \mathcal{S}

We not claim that there 18 a pair of adjoin $\ddagger n t$ functor a relating the category $\mathrm{S}^{\text {I }}$, of all set-valued functors with domain the discrete category
I, with \mathcal{d}, whose composition is the endofunctor ()I. Let Δ be a functor with domain $\mathscr{X} \delta$ and codomain \varnothing^{I}, defined, for x and $i \in I$ by $(i)(x \Delta)=x ;$ define $T: \boldsymbol{S}^{I} \rightarrow \infty$ as usual, ie., if F is an object in \mathcal{S}^{I}, let $F T=\prod_{i \in I}(i) P$. Then, it is easy to see that the following diagram is co mutative :

This is so because, given x in $\frac{\pi}{7}, x(\Delta \pi)=(x \Delta) \pi=$ $=\prod_{i \in I}(i)(X A)=\prod_{i \in I} x=\mathbf{I}^{I}=x\left(()^{T}\right) . \vdots$.

 Since the resolution given by the category of ($)^{\text {I }}$ - algebras, is the maximal universal one, there exists a unique

$$
\phi: \boldsymbol{S}^{I} \longrightarrow \delta^{T}
$$

such that the following diagram is commutative:

This says that X^{T} is the equational closure (since $\int^{T T}$ is an equation neal category) of $\delta^{\text {I }}$ over D. And the closure is given by the functor $\boldsymbol{\phi}$. The definition of $\boldsymbol{\phi}$ will tell us how to interpret functors with domain category, the discrete category I, and values in f, as algebras
with an I-ary operation (plus all derived operations from this one). We start by the simplest case where $I \approx 2 \leq|\mathcal{Z}|, 1 . e .$, $\delta^{I}=\boldsymbol{j} \times \mathcal{S}$, and examine closely how ϕ is defined in this case. The algebras are pairs ($\mathbf{X}, 0$) with X a aet and 0 a binary ope ration on X satisfying the equations :

$$
\begin{gathered}
x \circ x=x \quad \text { for any } x \in X \\
\left(x_{1} \bullet x_{2}\right) \bullet\left(x_{3} \bullet x_{4}\right)=x_{1} \bullet x_{4} \quad \text { for any }
\end{gathered}
$$

four elements x_{1}, x_{2}, x_{3} and x_{4} in x.
This is so, since if we denote the operation o as before, by $\boldsymbol{\varphi}$, the three equations to be satisfied are given by the requirement that the two diagrams below compute :

The first two equations read the same since $x y_{X}=(x, x)$. As for the third one, we notice that an element of $X^{4}=X \times I \times I \times I$, can be viewed as a function $2 \longrightarrow X^{2}$ as well, se that then, if $t: 2 \ldots x^{2},(i)\left(f \mu_{I}\right)=(1)((i) f)$ and the four coondinated $x_{1}, x_{2}, x_{3}, x_{4}$ stand respectively for $(0)((0) f)$.
(i) $(\mathbf{(0)} \mathrm{f})$.
$(0)((1) f)$ and
(1)(1) f) How we have that:
$(0)\left(1 \mu_{x}\right)=(0)((0) x)=x_{1} \quad$ and $(1)\left(1 \mu_{2}\right)=(1)((1) x)=x_{4}$ therefore, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mu_{x}=\left(x_{1}, x_{4}\right)$.
On the other hand, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right)\right) \in x^{2} \times x^{2}$,
and $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)(\varphi \times \varphi)=\left(\left(x_{1} \bullet x_{2}\right),\left(x_{3} ; x_{4}\right)\right)$, so that applying φ to both we finally have (by the commutativity of the square involved) that
$\left(\left(x_{1} \circ x_{2}\right) \circ\left(x_{3} \circ x_{4}\right)\right)=\left(\left(x_{1} \bullet x_{2}\right),\left(x_{3} \circ x_{4}\right)\right) \varphi=$ $=\left(x_{1}, x_{4}\right) \varphi=x_{1} \bullet x_{4}$.
Ye now define ϕ as follows : for $(\Lambda, B) \in \& \in \mathbb{K}$, lot $(\Lambda, B) \boldsymbol{\phi}=(\Lambda \times B, \bullet)$ whore - is a binary operation defined as follows

$$
(\Lambda \times B) \times(A \times B) \xrightarrow{\bullet} A \times B
$$

such that
$\left(a_{0}, b_{0}\right) \cdot\left(a_{1}, b_{1}\right)=\left(a_{0}, b_{1}\right)$. To see that this defines an algebra, we verify :
$\left(a_{0}, b_{0}\right) \bullet\left(a_{0}, b_{0}\right)=\left(a_{0}, b_{0}\right)$ and
$\left(\left(a_{0}, b_{0}\right) \bullet\left(a_{1}, b_{1}\right)\right) \bullet\left(\left(a_{2}, b_{2}\right) \bullet\left(a_{3}, b_{3}\right)\right)=\left(a_{0}, b_{1}\right) \bullet\left(a_{2}, b_{3}\right)=$ $=\left(a_{0}, b_{3}\right)=\left(a_{0}, b_{0}\right) \cdot\left(a_{3}, b_{3}\right)$.
since $\Lambda \times B$ is the underlying set of the algebra, it is clear that fits well into the diagram that has to commute, by uniqueness $\boldsymbol{\phi}$ is the required functor. Moreover, \varnothing is full and has an adjoint in this case, as we will show -
To see that ϕ is full, let $(A \times B, \bullet) \xrightarrow{f}\left(A^{\prime} B^{\prime}, \bullet^{\prime}\right)$ be a homonorphite of algebras as described above. Then, for any a, in in
\triangle and any b_{0}, b_{1} in B, the following holds:

$$
\left(a_{0}, b_{0}\right) f \bullet^{\prime}\left(a_{1}, b_{1}\right) f=\left(\left(a_{0}, b_{0}\right) \bullet\left(a_{1}, b_{1}\right)\right) r=\left(a_{0}, b_{1}\right) f, \text { i.e., }
$$ $f=\mathbb{P} \mathbf{P}_{\mathbf{A}^{\prime}} \times \mathrm{P}_{\mathbf{P}^{\prime}}$. which moans that it canes from a map of pairs $(A, B) \rightarrow\left(A^{\prime}, B^{0}\right)$. Therefore, ϕ is full.

We now define an adjoint to $\%$. Given ($X, 0$) there are sets \mathbb{L} and B_{X} and a map $X \rightarrow \mathbf{A}_{\mathbf{Z}} X \mathbf{B}_{\mathbf{Z}}$ which is an epimorphism . To see this, consider the following two relations on $X:$ Both are equivalence relations. We show it is so for X, for example: since $x 0 \leq m, Z$ is reflexive. Let $x \circ y=y$. Then, $y \circ x=\left(\begin{array}{lll}x & 0 & y\end{array}\right) \quad x=\left(\begin{array}{lll}x & 0 & y\end{array}\right) 0(x 0 x)=$ $\pm \mathbf{x}=\mathrm{x}=\mathrm{x}$, and so it is symmetric.

Assume $x 0 y=y$ and $y=z=s$ then, since by symmetry, we have also $y \quad x=x$, then
x $0 y=x 0 \quad \mathbf{y} 0$
s) $=(\mathbf{y} 0$
x) 0 (0
z) = $\quad \mathrm{y}=\mathrm{z}$
and X is transitive.
Therefore we can partition X into equivalence classes according to both equivalence relations, and there is a canonical $X \rightarrow A_{2} \times \mathrm{B}_{\mathbf{I}}$ which is an epimorphism : given $(x, y) \quad A_{X} \quad{ }^{B_{X}}$ we have that $x 0 y=x$ and $x 0 y=y$ because $(\mathbf{x} 0 \mathrm{y}) 0 \mathrm{x}=(\mathrm{x} 0 \mathrm{y}) 0(\mathrm{x} 0 \mathrm{x})=\mathrm{x} 0 \mathrm{x}=\mathrm{x}$ and $\left(\begin{array}{lll}x & 0 & y\end{array}\right) \circ y=\left(\begin{array}{lll}x & 0 & y\end{array}\right) \circ\left(\begin{array}{lll}y & 0 & y\end{array}\right)=\mathbf{x} \quad \mathrm{y} \cdot$
So, let $x \quad y=m$ Then, $z_{4}=\left(\begin{array}{lll}x & 0 & y_{4}\end{array}=x \quad\right.$ and $E_{B}=\left(\begin{array}{lll}\mathbf{x} & 0 & \mathbf{y}\end{array} \mathbf{B}=\mathbf{y} \dot{y}\right.$
If neither 4 nor B are amity, this s is unique, and the canonical map an isomorphism. That means that ϕ would be faithful if in \mathcal{S}^{2} there were no functor with empty values other that 0 . This is no so, however. The only discrete I for which this would happen, would be $I \mathbb{Y} 1$, but this is the trivial case.

Let us take now any set I, then $\phi: j^{I} \quad \delta^{\top}$ is clearly defined as follows : if F is any object in $\mathcal{X}^{\mathbf{I}}$, then $F \phi=\left(\prod_{i \in I}(i) r, \varphi\right)$ where φ is an I-ary operation destined by $(f \varphi)_{k}=((k) f)_{k} \quad$ for $f \in\left(\prod_{i \in I}(i) P\right)^{I}$. As before, it can be show that ϕ is full and that it has an adjoint. However, it is not faithful since any functor with empty values is sent to the trivial algebra. However, for practical purposes, we can think of functors $I \rightarrow 0$. as algebras with underlying set the product set of its values and an I-ary operation defined on this product set by $(f \varphi)_{k}=\left(f_{k}\right)_{k}$.
§ 18 - mOMOIDS IN CATEGORIRS WITH MULTIPLICATION AND GROUND OBJECT

Following lac Lane [22], we say that $S \mathcal{A}$ is a category with multiplecation ff it is a category together with a covariant (in both variables) bifunctor $\underset{\sim}{*}: g \times d \times d$. For any two objects A, B
 at the pair (A, B). $\Delta \mathrm{so}$, if $A \xrightarrow{f} A^{\prime}$ and $B \xrightarrow{g} B^{\prime}$ are any two

 and $g^{\prime} g$ are defined. It is also assumed that there are given natural

 vity and commutativity for the multiplication , respectively.

behaves as an identity for the multiplication 2 , that is, for any object A there are natural ibonorphises

Any category with finite roots and a terminal object is a category with multiplication and a ground object, namely the categorical product Is the multiplication and the terminal object is the ground object.

However, we will be interested sometimes to have some other fixed object in the category as the ground object for some multiplication in some category which should approximate the original one as much as possable. To this end, we prove the following :

Exposition 18.1 Let \mathcal{X} be any category with finite roots and let I be any object in $\boldsymbol{\sim}$. Then, there exists a category $\overrightarrow{\boldsymbol{X}}$ with multiplication for which I is a ground object. There is also a functor $\phi: \bar{X} \rightarrow \overline{\mathcal{X}}$, such that for any two objects 4 and B in $\mathcal{T}^{T},(A \times B) \phi=\Delta \phi$ 源 $B \phi$. where ix is the multiplication in $\overline{\mathcal{T}}$. If I is an idempotent in \mathscr{X}. then $I \phi Y I$. If I is the ground object for the multiplication in $\mathcal{\mathcal { H }}$ (i.e., I is the terminal object) then ϕ is an equivalence of categories.

Proof:

Let $\bar{x}=(\bar{x}, I X I), i, e .$, the category whose objects are maps in \mathcal{X} of the form $A \longrightarrow I X I$, where A is any object in \mathcal{X}. It has been named by Beck as the category of objects in of er \mathcal{O}^{C} of. One can also think of the objects in $\overline{J_{\mathrm{T}}}$ as pairs of maps $A \Longrightarrow 1$ in \mathcal{N}^{2}. As for the maps, they are, as usn, given by maps $A \rightarrow A^{\prime}$
in \boldsymbol{X}, such that they can be thought of as a map in $\overline{\boldsymbol{X}}$ from the map $\Delta \rightarrow I X I$ to the map $A^{\prime} \rightarrow I X I$ iff the following triangle is comsatative :
Δ

Ye ahow first that \bar{X} has multiplication, as follows: given any two objects
 as the object and the two maps into I wich are the oxterior arrows in the following diagraw, where the aquare is a prall-back:

Then, $I \underset{\mathrm{I}}{\mathrm{I}} I$ is a ground object for this multiplicition (which is easily scen to be associative) aince the pull-back of the relevant subdiagran in :

is given by the object A and the two dotted arrows, i.e., we have that

4 次I $=I$ is given by $A \frac{A_{0}}{a_{i} I} I=4 \frac{a_{0}}{a_{i}} I$, and so,
 Define now $\phi: \mathcal{X} \longrightarrow(\underset{X}{\boldsymbol{X}}, \mathrm{IXI})$ as follows: given any object x in X, let $x \phi=X X I \Longrightarrow$ (ie., the two maps are equal to the projection onto I). That ϕ preserves multiplication can be seen as follows: the following is a pullback diagram (plus two other maps)

 imply that I is a ground object in \mathcal{X} for X, since $I \phi$ ie not I but $I \times I \rightarrow I \times I$. Also, oven in the case where I is idempo
 a $\times I$ ́ㅗ Δ since ϕ need not be faithful. obviously, if I is a ground object for \boldsymbol{J}^{\prime} together with X, then ()$\times I$ is an iscmorphi m. But in all cases it had a coadjoint, namely the one given by the

Felcamn and Hilton [3] gave the definition of a group in a category. It can also be found in Pray [8] or Hitcholl [23]. However, in all these, the assumption that the category has a ser object is rather isportent, besides the existence of finite roots. We define here, alone
those lines, the notion of monoid in a category. The conditions for a category to admit monoids in it, are the existence of a multiplication and of a ground object for it.

By a conoid in the category \mathscr{A}, where \mathscr{A} is a category with miltiplication \mathscr{K} and ground object I for \mathcal{K}, we mean, an object A of \mathcal{A}, together with maps in \mathcal{A} :

and
$I \xrightarrow{7} 4$
satisfying three equations expressed by means off the commutativity of the following diagrams :

 morphia: we mean the obvious thing, i.e., any map $A \xrightarrow{i}$ ir in \mathcal{A} arch that it preserves the multiplication and the unit, a and η, of the conoid 4 (not to be confused with the multiplication and ground object of the category \mathcal{A}), ie., such that the following two diagrams are commutative:

We now give two elementary examples :
(1) $\&$ with x and 1 is a category with multiplication X and ground object 1 . A monoid in \mathscr{P}, by the above definition, is any set together with maps $M \times M \xrightarrow{m} M \quad$ and $\quad 1 \xrightarrow{I} M$. That is, a set M with a binary multiplication and a chosen element I of M, such that m is associative and x is a two -sided unit for I - This coincides with the usual notion of monoid . Therefore, monoide in ($\alpha, x, 1$) are jus rdinary monoids.
(2) $C^{\text {with }} 8$ and z is a category with multiplication 0 and ground object $Z, 4$ conoid in (Q, O, z) is therefore, an abeian group A together with group homomorphisms $\boldsymbol{R} \in \mathrm{R} \longrightarrow \mathrm{B}$ and $Z \xlongequal{u} \mathbf{Z}$, satisfying the usual equations. The multiplication in R makes it into a ring and the existence of u implies that the ring has an identity: Therefore, monoids in ($P, 0, z$) are rings with identity. Monoid homonorphiane become ring homomorphisms.

Other ermaples will be provided by the relative categories, which we introduce in the next section.
§ 19 - ERGATIVE CATEGORIES

As there are monoids, groups, or any given structured objects in categom rios, there can be categories in categories, as well. For this, we need categories with finite roots, or, at least, with products. Then, we can define categories in a category with finite roots, where the objects in the relative category form not a set or a clam tecesanaly, but will be
collected into an object in the base category. That is, if \mathcal{X} is any category with finite roots, and I any given object in \mathcal{X}, we say that any monoid in $(\mathcal{X}, I \times I)$ is a category in $\mathcal{X}^{\mathcal{Z}}$ with 1 objects. Ye analyse the definition further. Since \mathcal{X} has finite roots, and I is an object in $\mathcal{F}^{(1)}$, then by 18.1 , we can define a multiplication $\%$ in ($\underset{\mathcal{X}}{(1 \times I)}$ for which $I \underset{I}{I} I$ becomes a ground object. To justify the name "category" for a monoid in ($\boldsymbol{T}^{(1)} \mathrm{IXI}$), we interpret adequately the maps which are assumed to exist $A \xrightarrow{d} I \times I$, just because it is an object in ($\mathcal{X}, ~ I X I)$
 conoid, so that the following diagrams are combative 8

and also there are commutative diagram expressing the associativity of n and the fact that is a unit for a The mend "category" becone clear if we take \mathcal{T} to be \mathcal{X}, so that I is a set now. We show that a category in α with I objects ia an ordinary catego ry which is small and such that its class of objects is iscmorynic to the set I. The object A in \mathcal{X}, is interpreted as the set of nape in the mall category. The pair of maps $A \frac{d_{0}}{d_{i}} I$ are interpretted as the functions which assign the domain and the codomain to each map in the category. The met I is the set of objects in the category. Than, will be interpreted as composition of maple, and u as the
assignment of identity maps, for each object in the category.
actually, to understand this better, it is useful to make an analogy with fibre bundles. Consider the category of objects in \mathcal{O} over $I \times I$ as a category of fibre bundles. Then, A is the bundle space, IX I is the base space, d Ia the projection . Then, there are fibres over points of the base space, i.e., for each $(i, j) \in I \times I$, the fibre over (i, j) is $i_{i j}=d^{-1}((i, j))$, and therefore, A, which is the set of all raps, is the disjoint thin of the collection $\left\{A_{i j}\right\}$ indexed by $I \times I$. Obviously, in this analogy, $u_{i j}=d^{-1}((i, j))$ is correctly interpreted as the ait of all maps with domain i and codomain j : $A_{i j}$ is the inverse image of (i, j) under it where a can be replaced by the pair of maps $\left(d_{0}, d_{1}\right)$. It is also correct to mas that A, the set of maps, is the disjoint mon of all possible Hem-sets $A_{i j}$ ($=$ $=\operatorname{HOM}(i, j))$, because, for any map in the category there is an object i which is its domain and an object j which is its codomain. As for the
 and we have that 1 次 4 is a bundle, whose fibre over $(1, j)$ is
 can be interpreted as composition of maps . we see that is just

$$
\sum_{i, j}\left(\sum_{k} A_{i k} \times A_{k j}\right) \longrightarrow A_{i j}
$$

so that is defined only for maps such that the codomatn of the first is the domain of the second. As for the map $n: I \rightarrow 1$, which asadens to each object in the category (i.e., to each elena of I), a map (an element of A), has to satiety conditions aging that the domain
and codomain of the map have to be both the given object (since there is a condition expressed by the commutativity of a triangle saying an) and furthermore, since u acts as a two -sided unit with respect to compositimon of maps (ice., with respect to n) then it is clear that ii) is the identity map of the object $i \in I$.

This interpretation of categories in X with I objects as sal absolute categories with a set of objects isomorphic to I is, in fact, an isomorphien : to each relative category in \mathscr{C} with I objects, we make correspond a sal category \mathbb{C}, by letting $|\mathbb{C}| \boldsymbol{I} I$,
$\left|C^{2}\right| \geqslant 4$ so that $d_{0}, d_{1}, m_{p} u$ have the usual meanings of domann, codomain, composition and identities. Conversely, given any anal category (C), we can define a category in $\&$ with $|C|$ objects, where the usual maps domain, codomain, composition and assignment of adentitis can now be viewed as maps in d.

This correspondence has no meaning outside of f^{8}. That is, if \mathcal{X} is any category and A is a category in X with I objecta, where x is an object of \mathcal{X}, then A need not be a category, mall or large.

820 - RELATIVE FUNCTOR CATEGORIES

Let \mathcal{F} be a category with finite roots, and I an object in \mathcal{X}. Let 4 be any category in \mathcal{X} with I objects. By this we man, after §19, that 1 is an object in ($\mathcal{X}, I X I$), actually it is a map $A \xrightarrow{d}$ IXI that is an object in ($\mathcal{X}, I \times I)$ with 4 and d in
\mathcal{X}. Consider now the category (X, I). Then, if $\mathbb{X} \rightarrow I \times I$ is an object in ($\mathcal{X}, ~ I \times I)$, the functor () 冷 4 is an endofunctor of (x, I) as well as of $(x, 1 \times I)$, where it is obvious how the definition should be. Actually, since A has a monoid structure over $I \times I$, ($)$ is has a triple structure on (\mathcal{X}, I). The algebras are given by pairs formed by an object
 over I , ie., such that the following triangle commutes

satisfying the equations expressed by the commaktivity of the diagrams:
and

These algebras will be called relative functor, and the category whose objects are all the $[()$ 次 $A]$-algebras, for A a category in \boldsymbol{X} with I objects, will be called a mplative functor category and denoted $(\mathcal{H}, I)^{\top}=\mathcal{A}(A)$, instead of $\mathcal{X}^{(A}$. a relative functor need not be a functor at all, it is a functor in if with domain category 1 , a category in \mathcal{X}, and such that the rule
for being a functor is encoded into two maps in x, one giving the rule for the objects of the category $\mathbf{X} \xrightarrow[\mathbf{E}]{ } \mathbf{I}$, and another giving the rule of the functor for the maps of the category 4 , X 次 $4 \xrightarrow{\varphi} \mathrm{X}$. This expresses the usual idea that a functor has two "parts" one is that of being a function defined on the objects, and the other on the maps of the category.

We recall now that any endofunctor of f which has a cosdjoint is of the form () $\times 4$ for some set 4 . It has a unique cotriple structure as we have shown in $\S 17$, but we remark that it need not have a triple structure at all. actually, if () XA had a triple structure, this would mean that there are natural transformations

 But since the maps above are always induced by maps $1 \longrightarrow 1$ and $A \times 4$, atialying the equations for 4 to be a nonoid, we. have that ($\times 4$ is a triple on d ifs 4 is a monoid. (The converse to the above is trivially true). Therefore, we have that

$$
\text { Adjoint Triples }(\infty) \cong \text { Monoids }
$$

In this case, the universal resolution is given by a category whose objects are pairs (X, f) where X io a set and $f: X \times A \longrightarrow I$ is the rule by which the monoid A operates on the set X We remark that, since 1 is the ground object for the categorical
product in \mathcal{S}, the relative categories in \mathcal{X} with 1 object are, by definition, the monoids in the category $(\mathcal{S}, 1 \times 1) \approx \mathscr{D}$, i.e., the categories in \mathcal{X} wits 1 object are the monoida, but the usual categorical motion of monoid is precisely, that it ia any category with exactly one object and endomorphisms of that object.

Using the same arguments, we Have the conclusion that all adjoint triples on the category of abelian groups are given precisely by fundtors of the form "tensoring with a ring with unit". As for the algebras, they are abelian groups on which the ring A acts (if the triple considered is () Q (0 , therefore, they are all B-modules Finally, since Z is the ground object for 6 in Q^{\prime}, we have that Rings \equiv Adjoint Triples (Q) however, in this case they are not relative categories since 8 is not the product but the coproduct in -

From § 24 , we know that $\operatorname{sjj}\left(\delta^{I}\right) \cong \delta^{I \times I}$. Ye now show that for any set I, viewed as a discrete category,

$$
(\mathscr{S} \cdot 1) \cong \underbrace{I}
$$

this is so because: if $A \xrightarrow{p}$ I is any object in (\boldsymbol{d}, I), let $A^{*}: I \rightarrow d$ a functor, be defined as follows:
(i) $A^{*}=A_{i}=(i) p^{-1}$. And for $A \xrightarrow{f} A^{i}$ amapin (∞, i), (ice., such that $p=f^{i}$), define the corresponding natural tranafor-
 $(i)_{p}^{-1} f p^{\prime}=(i) p^{-1} p=1$, then $(i) p^{-1} f \in(i) p^{-1}=(i) A^{i *}$. Converealy, given any faitor $I: I \rightarrow d$, let $u=\sum_{i \in I}(1) F$ and let $a \xrightarrow{P}$ I simply be such that for each $x, ~ x 9=1$ ff
 have $\eta_{L}:(i)=(i) F \mathbf{w h i c h}$ induces

$$
A=\sum_{i \in I}(i) F \longrightarrow \sum_{i \in I}(i) F i=A^{0}
$$

which is comentative, since for $I \in A$, say $x \in(i) F$ for some $1 \in I$, then $\mathbf{x p}=\mathrm{i}$ by definition of p and
 compositions of the two functors defined give the corresponding identities.

With this reault, we can finally prove that the adjoint triples on d^{I} are given by the enall categories with a set of objects isomorphic to the set I : we have that $\operatorname{Adj}(d, I) \cong \operatorname{Adj}\left(d^{I}\right) \cong d^{I \times I} N$ $\approx(\mathbb{J}, I \times 1)$ so that
 N $\operatorname{Cat}_{S}(I)$ (
let $\boldsymbol{C}_{\mathrm{I}}$ denote the category of all amall categories with a set of
 we have that
dja Iriples $\left(\int^{I}\right) \cong$ Cx
sud for asch C ach that $|C| \approx I$, the correaponding adjoint triple on d^{I} has a resolution given by the diagramatic category $d^{\mathbb{C}}$, which, though not the marimal one, can be approrimeted to the category of algebras corresponding to the triple, which is precisely the functor category (relative) which we have denoted \varnothing (\mathbb{C}).

[^0]: BUNGE, Marta Cavallo, 1938CATEGORIES OF SET VALUED FUNCTORS. University of Pennsylvania, Ph.D., 1966 Mathematics

