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Introduction

e Agda is a dependently typed functional programming
language (can be compiled to Haskell, Epic or Javascript)

e Agda is a proof assistant based on Martin—Lof dependent type
theory
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The core theory

e Infinite hierarchy of universes a la Russel (no coercions)
Set = Setg, Setj, Sety, ..., Sety, ...

Setn . Setn+1
e Dependent product

A : Set, x : AF P x : Sety
(x : A) = P x : Setpaymm)

e Variables, application (u v), abstraction (A x — u)
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The core theory

e (n-equality for functions, type directed conversion algorithm:
X :AFux=vzx:Px

Fu=v: (x:A) - Px

e No cumulativity, A : Set i # A :
(a lifting operation can be defined using records)

Set (suc i)

e No impredicativity
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Inductive types

e Strictly positive inductive types and inductive families

e No dependent eliminator, no match, no fix, but definitions by
pattern matching and termination checker

f: N —> A
f0=x
f (Sn) =hn (f n)
e Default pattern matching algorithm is too strong for HoTT (it
implies K), use the option --without-K

$ agda --help
[...]

--without-K disable the K rule (maybe)
..
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Records

e Enjoy definitional n-equality (gives n for unit and ¥)

Fmiu=m v : A Fmu=mv:P (m1 u

Fu=v:ZAP
e Gives lifting operation for universes

record 1lift {i} (A : Set i) : Set (suc i) where
constructor 1
field | : A
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The type theory behind Agda

Universe polymorphism

e There is an abstract type of universe levels

Level : Setg (= Set zero)
zero : Level
suc : Level — Level
max : Level — Level — Level
e One can quantify over universe levels
id : {i : Level} {A : Set i} — (A — A)
id x = x

e Not all types belong to some universe
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Universe polymorphism

i : Level

Set i : Set (suc i)

A : Set i x : AFPx : Set j j : Level

(x : A) - P x : Set (max i j)

(j does not depend on x)

A type x : AFPx type
(x : A) =+ P x type

A : Set i
A type
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Instance arguments

e Agda’'s version of type classes

e Arguments declared as instance arguments are inferred from
the context if there is exactly one matching value

postulate
group-structure : Set — Set
_e_ : {G : Set} {{G-str : group-structure G}}
- G —-G—G
H : Set
H-str : group-structure H

function : H - H - H —+ H
function x yz = (x e y) o (z @ (x @ y))
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axiom-of-choice = [...]

lemma : {{ac : axiom-of-choice}} — [...]
lemma {{ac}} = [...] ac [...]

theorem : {{ac : axiom-of-choice}} — [...]
theorem = [...] lemma [...]
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Instance arguments

e They can have other uses

axiom-of-choice : Set
axiom-of-choice = [...]

lemma : {{ac : axiom-of-choice}} — [...]

lemma {{ac}} = [...] ac [...]

theorem : {{ac : axiom-of-choice}} — [...]
theorem = [...] lemma [...]

e Main drawback: instance arguments are non-recursive (design
choice)



The type theory behind Agda

Abstract blocks

In the following situation

abstract

f .

f

(0}

h :
h=

(...
(...

[..
[..

-]
-]

The user interface

g can access the definition of £ but h cannot access the definition

of either f or g.



The type theory behind Agda

Other features

e Induction-recursion

e Irrelevant arguments

e Coinduction

o Reflection

e Positivity checking can be disabled

e Termination checking can be disabled
e Coverage checking can be disabled

e Type in type can be enabled
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Emacs mode

e The only supported way to use Agda interactively is emacs
with the agda-mode

e Input method for Unicode characters

e Key bindings for interactive edition of proofs



1l >

< > MR

\lambda,\GlI
\to, \->
\equiv,\==
\simeq,\~-
\Sigma,\GS
\forall,\all
\wedge,\and
\vee,\or

Input method

IN & —~ ~ 3 O X

]

\times, \x
\ bigcirc
\tau
\<
\>
\.

\le, \<=
\neg

I

- N Z -

Use M-x describe-char to see how to input a particular
character and M-x describe-input-method to have a full list.

The user interface

\pi
\-4
\"2
\bot
\bn
\bz
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Interactive proofs

e There are no tactics, you write A-terms directly

e You can write A-terms with holes, which will be filled later



C-c

C-c C-SPC

C-c
C-c
C-c
C-c
C-c
C-c

C-u C-c C-t
C-u C-c C-d
C-u C-c C-.

Cc-1

C-a
C-c
C-r
C-t
C-d
C-.

The user interface

Common commands

Load the file
Fill the current goal
Try to automatically fill the current goal
Case split
Introduction of A or record constructors
Gives the type of the goal
Gives the type of the given term
Gives the type of the goal and of the given term
Same without normalizing
Same without normalizing

Same without normalizing



Examples

(examples)
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