The type theory behind Agda The user interface

Overview of the Agda proof assistant

Guillaume Brunerie

November 28, 2012



Introduction

e Agda is a dependently typed functional programming
language (can be compiled to Haskell, Epic or Javascript)

e Agda is a proof assistant based on Martin—Lof dependent type
theory



The type theory behind Agda The user interface

Contents

@ The type theory behind Agda

@ The user interface



The type theory behind Agda The user interface

Contents

@ The type theory behind Agda



The type theory behind Agda The user interface

The core theory

e Infinite hierarchy of universes a la Russel (no coercions)
Set = Setg, Setj, Sety, ..., Sety, ...

Setn . Setn+1



The type theory behind Agda

The core theory

e Infinite hierarchy of universes a la Russel (no coercions)
Set = Setg, Setj, Sety, ..., Sety, ...

Setn . Setn+1
e Dependent product

A : Set, x : AF P x : Sety
(x : A) = P x : Setpaymm)




The type theory behind Agda

The core theory

e Infinite hierarchy of universes a la Russel (no coercions)
Set = Setg, Setj, Sety, ..., Sety, ...

Setn . Setn+1
e Dependent product

A : Set, x : AF P x : Sety
(x : A) = P x : Setpaymm)

e Variables, application (u v), abstraction (A x — u)



The type theory behind Agda

The core theory

The user interface

e (n-equality for functions, type directed conversion algorithm:

A

Fux=vzx:Px

v o

(x :

A) - P x



The type theory behind Agda

The core theory

e (n-equality for functions, type directed conversion algorithm
X :AFux=vzx:Px

Fu=v: (x:A) - Px

e No cumulativity, A : Set i # A :
(a lifting operation can be defined using records)

Set (suc i)



The type theory behind Agda

The core theory

e (n-equality for functions, type directed conversion algorithm:
X :AFux=vzx:Px

Fu=v: (x:A) - Px

e No cumulativity, A : Set i # A :
(a lifting operation can be defined using records)

Set (suc i)

e No impredicativity



The type theory behind Agda The user interface

Inductive types

e Strictly positive inductive types and inductive families



The type theory behind Agda

Inductive types

e Strictly positive inductive types and inductive families

e No dependent eliminator, no match, no fix, but definitions by
pattern matching and termination checker

f: N> A
f0=x
f (Sn) =hn (f n)



The type theory behind Agda

Inductive types

e Strictly positive inductive types and inductive families

e No dependent eliminator, no match, no fix, but definitions by
pattern matching and termination checker

f: N —> A
f0=x
f (Sn) =hn (f n)
e Default pattern matching algorithm is too strong for HoTT (it
implies K)



The type theory behind Agda

Inductive types

e Strictly positive inductive types and inductive families

e No dependent eliminator, no match, no fix, but definitions by
pattern matching and termination checker

f: N —> A
f0=x
f (Sn) =hn (f n)
e Default pattern matching algorithm is too strong for HoTT (it
implies K), use the option --without-K

$ agda --help
[...]

--without-K disable the K rule (maybe)
..




The type theory behind Agda The user interface

Records

e Enjoy definitional n-equality (gives n for unit and ¥)



The type theory behind Agda The user interface

Records

e Enjoy definitional n-equality (gives n for unit and ¥)
Fmiu=m v : A Fmu=mv:P (m1 u
Fu=v:ZAP




The type theory behind Agda

Records

e Enjoy definitional n-equality (gives n for unit and ¥)

Fmiu=m v : A Fmu=mv:P (m1 u

Fu=v:ZAP
e Gives lifting operation for universes

record 1lift {i} (A : Set i) : Set (suc i) where
constructor 1
field | : A



The type theory behind Agda The user interface

Universe polymorphism

e There is an abstract type of universe levels

Level : Setg (= Set zero)
zero : Level

suc : Level — Level

max : Level — Level — Level



The type theory behind Agda The user interface

Universe polymorphism

e There is an abstract type of universe levels
Level : Setg (= Set zero)
zero : Level
suc : Level — Level
max : Level — Level — Level

e One can quantify over universe levels

id : {i : Level} {A : Set i} — (A — A)
id x = x



The type theory behind Agda

Universe polymorphism

e There is an abstract type of universe levels

Level : Setg (= Set zero)
zero : Level
suc : Level — Level
max : Level — Level — Level
e One can quantify over universe levels
id : {i : Level} {A : Set i} — (A — A)
id x = x

e Not all types belong to some universe



The type theory behind Agda

Universe polymorphism

i : Level

Set i : Set (suc i)

A : Set i x : AFPx : Set j j : Level

(x : A) - P x : Set (max i j)

(j does not depend on x)

A type x : AFPx type
(x : A) =+ P x type

A : Set i
A type



The type theory behind Agda The user interface

Instance arguments

e Agda’'s version of type classes



The type theory behind Agda The user interface

Instance arguments

e Agda’'s version of type classes

e Arguments declared as instance arguments are inferred from
the context if there is exactly one matching value



The type theory behind Agda

Instance arguments

e Agda’'s version of type classes

e Arguments declared as instance arguments are inferred from
the context if there is exactly one matching value

postulate
group-structure : Set — Set
_e_ : {G : Set} {{G-str : group-structure G}}
- G —-G—G
H : Set
H-str : group-structure H

function : H - H - H —+ H
function x yz = (x e y) o (z @ (x @ y))



The type theory behind Agda

Instance arguments

e They can have other uses

axiom-of-choice : Set
axiom-of-choice = [...]

lemma : {{ac : axiom-of-choice}} — [...]
lemma {{ac}} = [...] ac [...]

theorem : {{ac : axiom-of-choice}} — [...]
theorem = [...] lemma [...]



The type theory behind Agda

Instance arguments

e They can have other uses

axiom-of-choice : Set
axiom-of-choice = [...]

lemma : {{ac : axiom-of-choice}} — [...]

lemma {{ac}} = [...] ac [...]

theorem : {{ac : axiom-of-choice}} — [...]
theorem = [...] lemma [...]

e Main drawback: instance arguments are non-recursive (design
choice)



The type theory behind Agda

Abstract blocks

In the following situation

abstract

f .

f

(0}

h :
h=

(...
(...

[..
[..

-]
-]

The user interface

g can access the definition of £ but h cannot access the definition

of either f or g.



The type theory behind Agda

Other features

e Induction-recursion

e Irrelevant arguments

e Coinduction

o Reflection

e Positivity checking can be disabled

e Termination checking can be disabled
e Coverage checking can be disabled

e Type in type can be enabled



Contents

@ The type theory behind Agda

@® The user interface

«O>r «Fr «=>»

«E)»

DA



The type theory behind Agda The user interface

Emacs mode

e The only supported way to use Agda interactively is emacs
with the agda-mode



The user interface

Emacs mode

e The only supported way to use Agda interactively is emacs
with the agda-mode

e Input method for Unicode characters



The user interface

Emacs mode

e The only supported way to use Agda interactively is emacs
with the agda-mode

e Input method for Unicode characters

e Key bindings for interactive edition of proofs



1l >

< > MR

\lambda,\GlI
\to, \->
\equiv,\==
\simeq,\~-
\Sigma,\GS
\forall,\all
\wedge,\and
\vee,\or

Input method

IN & —~ ~ 3 O X

]

\times, \x
\ bigcirc
\tau
\<
\>
\.

\le, \<=
\neg

I

- N Z -

Use M-x describe-char to see how to input a particular
character and M-x describe-input-method to have a full list.

The user interface

\pi
\-4
\"2
\bot
\bn
\bz



The type theory behind Agda The user interface

Interactive proofs

e There are no tactics, you write A-terms directly

e You can write A-terms with holes, which will be filled later



C-c

C-c C-SPC

C-c
C-c
C-c
C-c
C-c
C-c

C-u C-c C-t
C-u C-c C-d
C-u C-c C-.

Cc-1

C-a
C-c
C-r
C-t
C-d
C-.

The user interface

Common commands

Load the file
Fill the current goal
Try to automatically fill the current goal
Case split
Introduction of A or record constructors
Gives the type of the goal
Gives the type of the given term
Gives the type of the goal and of the given term
Same without normalizing
Same without normalizing

Same without normalizing



Examples

(examples)
« 0 ‘6 o :E )

«E»

Q>



	The type theory behind Agda
	The user interface

