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Abstract

We explore some foundational issues in the development of a theory of intensional semantics. A

programming language may be given a variety of semantics, di�ering in the level of abstraction; one

generally chooses the semantics at an abstraction level appropriate for reasoning about a particular

kind of program property. Extensional semantics are typically appropriate for proving properties

such as partial correctness, but an intensional semantics at a lower abstraction level is required

in order to reason about computation strategy and thereby support reasoning about intensional

aspects of behavior such as order of evaluation and e�ciency. It is obviously desirable to be able to

establish sensible relationships between two semantics for the same language, and we seek a general

category-theoretic framework that permits this.

Beginning with an \extensional" category, whose morphisms we can think of as functions of some

kind, we model a notion of computation as a comonad with certain extra structure and we regard the

Kleisli category of the comonad as an intensional category. An intensional morphism, or algorithm,

can be thought of as a function from computations to values. This view accords with a lazy

operational interpretation of programs. Under certain rather general assumptions the underlying

category can be recovered from the Kleisli category by taking a quotient, derived from a congruence

relation that we call extensional equivalence. We then focus on the case where the underlying

category is cartesian closed. Under further assumptions the Kleisli category satis�es a weak form

of cartesian closure: application morphisms exist, currying and uncurrying of morphisms make

sense, and the diagram for exponentiation commutes up to extensional equivalence. When the

underlying category is an ordered category we identify conditions under which the exponentiation

diagram commutes up to an inequality. We illustrate these ideas and results by introducing some

notions of computation on domains and by discussing the properties of the corresponding categories

of algorithms on domains.



1 Introduction

Most existing denotational semantic treatments of programming languages are extensional, in that

they abstract away from computational details and ascribe essentially extensional meanings to

programs. For instance, in the standard denotational treatment of imperative while-programs the

meaning of a program is taken to be a partial function from states to states; and in the standard

denotational model of the simply typed �-calculus, the meaning of a term of function type is taken

to be a continuous function. Extensional models are appropriate if one wants to reason only about

extensional properties of programs, such as partial correctness of while-programs. However, such

models give no insight into questions concerning essentially intensional aspects of program behavior,

such as e�ciency or complexity. For instance, in a typical extensional model all sorting programs

denote the same function, regardless of their computation strategy, and therefore regardless of

their worst- or average-case behavior. It is desirable to have a semantic model in which sensible

comparisons can be made between programs with the same extensional behavior, on the basis of

their computation strategy.

We emphasize that we regard intensionality as a relative term; given a programming language

we might wish to provide an extensional semantics and also an intensional semantics that contains

more computational information and is thus at a lower level of abstraction. We would like to be

able to extract extensional meanings from intensional meanings, and to show that the intensional

semantics \�ts properly" on top of the extensional semantics. Suppose that we have an extensional

semantics provided in a category whose objects represent sets of data values and whose morphisms

are functions of some kind; and that we have an intensional semantics in a category with the

same objects but with morphisms that we regard as algorithms, which correspond to functions

equipped with a computation strategy. It seems reasonable that we should be able to de�ne an

equivalence relation on algorithms (in the same hom-set) that identi�es all pairs of algorithms with

the same \extensional part"; that composition of algorithms should respect this equivalence; and

that quotienting the algorithms from A to B by this equivalence relation should yield precisely the

extensional morphisms.

In this paper we set out a basis for a category-theoretic approach to intensional semantics,

motivated by the following intuition. If the extensional meaning of a program may be modelled as

some kind of function from data values to data values, then we can obtain an intensional semantics

by introducing a notion of computation and de�ning an intensional meaning to be a function from

computations to values. This accords with an intuitive operational semantics for programs in which

the execution of a program proceeds lazily in a coroutine-like manner [10]: the program responds

to requests for output (say, from a user) by performing input computation until it has su�cient

information to supply an output value. We formalize what we mean by a notion of computation in

abstract terms as follows. Suppose that extensional meanings are given in some category C. Then,

for each object A, we specify an object TA of computations over A and we specify how to lift a

morphism f from A to B into a morphism Tf from TA to TB; we require that T be a functor on

C. We specify, for each object A, a morphism �

A

: TA ! A from computations to values and a

morphism �

A

: TA! T

2

A that maps a computation over A to a computation over TA. Intuitively,

� maps a computation to the value it computes, and � shows how a computation may itself be

computed. We require that (T; �; �) be a comonad over C. Then we regard the Kleisli category of

this comonad as an intensional category; it has the same objects as C, and an intensional morphism

from A to B is just a morphism in C from TA to B.

We say that a comonad is computational if there is a natural way to convert a data value into

a degenerate computation returning that value. This enables us to extract from an algorithm a
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function from values to values, and we obtain an extensional equivalence relation on algorithms by

identifying all pairs of algorithms that determine the same function. We show that if the comonad

is computational then the Kleisli category collapses onto C under extensional equivalence.

We then show that, assuming certain further conditions concerning products, the Kleisli cate-

gory satis�es an intensional analogue of the cartesian closedness property. This generalizes from

the known result that if the underlying category is cartesian closed and the (functor part of the)

comonad preserves products then the Kleisli category is also cartesian closed. When the underly-

ing category C is an ordered category, we identify conditions under which the Kleisli construction

preserves certain lax forms of cartesian closedness.

Throughout the paper we motivate our de�nitions and results by means of notions of com-

putation on domains. We focus primarily on three forms of computation at di�ering levels of

abstraction. At the end of the paper we discuss brie
y some further examples that indicate the

broader applicability of our ideas.

We assume familiarity with elementary category theory and domain theory. We refer the reader

to [11] and [1] for categorical background and to [8] for the relevant domain theory.

2 Computations, Comonads and Algorithms

Let C be a category that we regard as providing an extensional framework. We wish to encap-

sulate in abstract terms what a notion of computation over C is, and to build an \intensional"

category whose morphisms can be thought of as extensional morphisms equipped with additional

computational information. We model a notion of computation over C as a comonad over C, the

functor part of which maps an object A to an object TA representing computations over A. The

two other components of the comonad describe how to extract a value from a computation, and

how a computation is built up from its sub-computations. We then take an intensional morphism

from A to B to be an extensional morphism from TA to B, essentially a morphism from input

computations over A to output values in B. This leads us to use for our intensional category the

Kleisli category C

T

[11], which has the same objects as C and in which the morphisms from A to

B are exactly the C-morphisms from TA to B. Typically C is a category in which morphisms are

functions of some kind, and we will refer to intensional morphisms in C

T

as algorithms to emphasize

their computational content. In case we need to compare Kleisli categories for di�erent comon-

ads over the same underlying category we will use the term T -algorithm, indicating the comonad

explicitly.

2.1 Comonads and the Kleisli category

De�nition 2.1 A comonad over a category C is a triple (T; �; �) where T : C ! C is a functor,

� : T

:

! I

C

is a natural transformation from T to the identity functor, and � : T

:

! T

2

is a natural

transformation from T to T

2

, such that the following associativity and identity conditions hold, for

every object A:

T (�

A

) � �

A

= �

TA

� �

A

�

TA

� �

A

= T (�

A

) � �

A

= id

TA

:

Figures 1 and 2 express these requirements in diagrammatic form. �

De�nition 2.2 Given a comonad (T; �; �) over C, the Kleisli category C

T

is de�ned by:
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Figure 1: Naturality of � and � in a comonad: these diagrams commute, for all A, B, f : A!
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Figure 2: Identity and associativity laws of a comonad: these diagrams commute, for all A.

� The objects of C

T

are the objects of C.

� The morphisms from A to B in C

T

are the morphisms from TA to B in C.

� The identity morphism

b

id

A

on A in C

T

is �

A

: TA!

C

A.

� The composition in C

T

of a : A!

C

T

B and a

0

: B !

C

T

C, denoted a

0

�
� a, is the composition

in C of �

A

: TA!

C

T

2

A, Ta : T

2

A!

C

TB and a

0

: TB !

C

C, i.e.,

a

0

�
� a = a

0

� Ta � �

A

:

The associativity and identity laws of the comonad ensure that C

T

is a category [11]. �

This use of morphisms from TA to B to model algorithms from A to B �ts well with an intuitive

operational semantics based on the coroutine mechanism [10]. A program responds to requests for

output by performing some computation on its input (typically, to evaluate some portion of the

input) until it has enough information to determine what output value to produce. Execution is

lazy, in that computation is demand-driven. The operational behavior of algorithm composition

can be described as follows. Let a : A !

C

T

B and a

0

: B !

C

T

C. Then a

0

�
� a responds to a

request for output (in C) by performing an input computation t over A, transforming this into a

computation t

0

over B by applying a to the pre�xes of t, and supplying t

0

as argument to a

0

. For

further details concerning operational semantics we refer to [5].
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3 Notions of computation on domains

Our main examples will be based on a category of domains and continuous functions. To avoid

repetition and to be precise, let us remark that by a domain we mean a directed-complete, bounded-

complete, algebraic partial order with a least element. That is, a domain (D;v) is a set D equipped

with a partial order v satisfying the following conditions:

� D has a least element, denoted ?

D

.

� Every non-empty directed subset X � D has a least upper bound

F

X.

� Every non-empty bounded (or consistent) subset X � D has a least upper bound

F

X.

� Every element of D is the least upper bound of its (directed set of) �nite approximations.

A set X is directed i� for all x; y

2

X there is a z

2

X such that x v z and y v z. A set X is

bounded i� there is a z

2

D such that x v z for all x

2

X. An element e

2

D is �nite i�, for all

directed subsets X � D, if e v

F

X then e v x for some x

2

X.

We remark that none of our example comonads really requires that the underlying domain be

algebraic, and nor does the presence of a least element play any prominent rôle (except, of course,

in justifying the existence of least �xed points). We could just as well work in the category of

directed-complete, bounded complete partial orders and continuous functions. Nevertheless, the

property of algebraicity is very natural in the computational setting and all of our example functors

on domains preserve algebraicity. At the end of the paper we will discuss further examples based

on di�erent categories and di�erent types of domain.

3.1 Increasing paths

The �rst notion of computation that we introduce models in abstract terms a sequence of time

steps in which some incremental evaluation is being performed. For example, a program with two

inputs may need to evaluate one or more of its input arguments and it may attempt to perform

evaluations in parallel or in sequence; moreover, it may only require partial information about its

arguments, as is typically the case, say, when an argument is a function and the program needs

to apply that argument to an already known parameter. One natural way to formalize this form

of computation is as an increasing sequence of values drawn from a domain, whose partial order

re
ects the amount of information inherent in a value.

We de�ne the comonad T

1

of \increasing paths" as follows

1

.

� For a given domain (D;v), let T

1

D be the set of �nite or in�nite increasing sequences over

D, ordered componentwise. For convenience we represent a �nite sequence as an eventually

constant in�nite sequence. Thus, the elements of T

1

D have form hd

n

i

1

n=0

, where for each

n � 0, d

n

v d

n+1

; and we de�ne hd

n

i

1

n=0

v

T

1

D

hd

0

n

i

1

n=0

i� for all n � 0, d

n

v

D

d

0

n

.

� For a continuous function f : D ! D

0

, let T

1

f : T

1

D ! T

1

D

0

be the function that applies f

componentwise. That is, (T

1

f)hd

n

i

1

n=0

= hfd

n

i

1

n=0

.

� For t

2

T

1

D let �

D

t be the least upper bound of t. That is, �hd

n

i

1

n=0

=

F

1

n=0

d

n

.

1

This comonad, adapted for Scott domains, was �rst introduced in [4].
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@

Figure 3: The domain Two� Two.

� For t

2

T

1

D let �

D

t be the sequence of (�nite) pre�xes of t. That is, if t = hd

n

i

1

n=0

, then for

each n � 0, (�t)

n

= d

0

. . . d

n

d

!

n

.

Intuitively, a computation may be viewed as a (time-indexed) sequence of increments in the amount

of information known about a data value, and the value \computed" by such a computation is its

least upper bound; each computation is itself built up progressively from its pre�xes. Equivalently,

we can regard a computation over D as a continuous function from the domain VNat of \verti-

cal" natural numbers (together with limit point !) to D. Our ordering on computations then

corresponds exactly to the pointwise ordering on such functions.

The least element of T

1

D is the sequence ?

!

. The �nite elements of T

1

D are just the eventually

constant sequences all of whose elements are �nite in D. It is easy to verify that T

1

maps domains to

domains and is indeed a functor. The comonad laws hold: naturality of � corresponds to continuity

of f ; naturality of � states that the operation of applying a function componentwise to a sequence

\commutes" with taking pre�xes; every computation is the least upper bound of its pre�xes; and

every pre�x of a pre�x of t is also a pre�x of t.

For illustration, let Two be the domain f?;>g. The domain Two � Two is shown in Figure 3,

and Figure 4 shows the six continuous functions from Two�Two to Two, ordered pointwise. We give

these functions mnemonic names: ? and > are constant functions; l is strict in its left argument;

r is strict in its right argument; b is strict in both arguments; poll returns > if either of its two

arguments is >, so that poll is not strict in either argument. Each function is depicted by a Hasse

diagram corresponding to Figure 3, in which the nodes are shaded to indicate their image under

the function being described: � corresponds to ?, � to >.

Figure 5 shows part of T

1

(Two�Two). Figure 6 shows some of the T

1

-algorithms from Two�Two

to Two, ordered pointwise. The notation for describing algorithms is based on Figure 5, again

with � representing ? and � representing >. In each case the intended algorithm is the least

continuous function on paths consistent with this description. The nomenclature is intended to

indicate (as yet only informally) the function computed by each algorithm and what computation

strategy the algorithm uses. For instance, the algorithms pb, lb, rb and db all compute the function

b; pb computes both arguments in parallel immediately, lb computes left-�rst and then right, rb

computes right-�rst and then left, and db computes both arguments in either order. Since the

diagram includes only one algorithm for poll, for ?, and for >, in these cases we use the same name

for the algorithm as for the function.

Since T

1

(Two� Two) includes paths with repeated steps, we can also make distinctions between

algorithms which di�er not in the order in which they evaluate their arguments, but in the amount

of time they are prepared to wait for each successive increment to be achieved. For instance, for

the function b there are algorithms pb

n

, lb

n

, rb

n

and db

n

for each n � 0, characterized as the least
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Figure 4: Continuous functions from Two� Two to Two, ordered pointwise.
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Figure 5: Some paths in T

1

(Two� Two):
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-algorithms from Two� Two to Two, ordered pointwise.
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functions on paths such that

pb

n

(h?;?i

n

h>;>i

!

) = >

lb

n

(h?;?i

n

h>;?i h>;?i

n

h>;>i

!

) = >

rb

n

(h?;?i

n

h?;>i h?;>i

n

h>:>i

!

) = >

db

n

(h?;?i

n

h>;?i h>;?i

n

h>;>i

!

) = >

db

n

(h?;?i

n

h?;>i h?;>i

n

h>;>i

!

) = >:

Informally, pb

n

is the algorithm which needs to evaluate both arguments and returns > provided

each evaluation succeeds (with result >) in at most n time steps. Similarly, lb

n

evaluates both

arguments and returns > provided evaluation of the left argument succeeds in at most n time steps

and evaluation of the right argument succeeds in at most 2n+ 1 time steps.

The following relationships hold, for all n � 0:

pb

n

v lb

n

v pb

2n+1

pb

n

v rb

n

v pb

2n+1

db

n

= lb

n

t rb

n

:

Moreover, pb

n

v pb

n+1

, lb

n

v lb

n+1

, r

n

v r

n+1

, and db

n

v db

n+1

for all n � 0. Each of these

sequences of algorithms has the same least upper bound, characterized as the algorithm b

�

that

maps every path with lub h>;>i to >. Of course, in Figure 6, pb is just pb

0

, and so on.

3.2 Strictly increasing paths

In the comonad T

1

a computation has a built-in measure of the number of time steps it takes between

successive proper increments. We obtain a more abstract notion of computation by retaining only

the increments themselves, so that we may still make distinctions on the basis of the order of

evaluation of arguments. To do this we model a computation as a \strictly increasing path". We

de�ne the strictly increasing path comonad T

2

as follows.

� Let T

2

D be the set of �nite or in�nite strictly increasing sequences over D. Again, for

convenience, we represent a �nite sequence as an eventually constant in�nite sequence. That

is, the elements of T

2

D are either of form hd

n

i

1

n=0

, with d

n

@

D

d

n+1

for all n � 0; or of form

d

0

. . .d

N�1

d

!

N

, where N � 0 and d

n

@

D

d

n+1

for 0 � n < N . Let v

T

2

D

be the least partial

order on T

2

D such that

d

0

. . . d

N�1

d

!

N

v

T

2

D

d

0

. . .d

N�1

t if t

2

T

2

D & d

N

v

D

t

0

:

This ordering is based on the pre�x ordering on sequences, but adjusted to take appropri-

ate account of the underlying order on data values. The order v

T

2

D

is actually the stable

ordering [2] on T

2

D, when we regard the elements of T

2

D as (strictly increasing, possibly

eventually constant) stable functions from VNat to D. Note that every continuous function

from VNat to D is also stable.

� For a continuous function f : D ! D

0

we de�ne T

2

f to be the function which applies f

componentwise and suppresses any repetitions (except for constant su�xes). That is, T

2

f is

the least continuous function such that for all d

2

D, for all d

0

; d

1

2

D such that d

0

@ d

1

, and

for all t

2

T

2

D,

T

2

f(d

!

) = (fd)

!

T

2

f(d

0

d

1

t) = (fd

0

)(T

2

f(d

1

t)) if fd

0

6= fd

1

= T

2

f(d

1

t) if fd

0

= fd

1

:
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Figure 7: Part of T

2

(Two� Two).

� For all t

2

T

2

D, let �

D

t be the lub of t. That is, �hd

n

i

1

n=0

=

F

1

n=0

d

n

.

� For all t

2

T

2

D, let �

D

t be the sequence of pre�xes of t. Again, if t = hd

n

i

1

n=0

then for each

n � 0, (�t)

n

= d

0

. . .d

n

d

!

n

. Note that if t is strictly increasing, so is �t.

The least element of T

2

D is the sequence ?

!

. The lub of a directed (or consistent) set of strictly

increasing paths is again a strictly increasing path

2

. The �nite elements of T

2

D are the eventually

constant sequences of form hd

0

. . .d

N�1

id

!

N

, where N � 0 and d

N

is a �nite element of D. Ev-

ery element of T

2

D is the lub of its �nite approximations. Thus, T

2

maps domains to domains.

Functoriality is easily checked.

Although the order is not pointwise, it is still true that every t

2

T

2

D is the lub of its pre�xes.

The comonad laws hold for (T

2

; �; �).

Figure 7 shows some of the paths in T

2

(Two� Two). Figure 8 shows some of the T

2

-algorithms

from Two� Two to Two, ordered pointwise, using a notation based on Figure 7. Again the nomen-

clature is chosen to indicate the function computed and the computation strategy. Each of the

T

1

-algorithms of Figure 6 has a corresponding T

2

-algorithm, for which we use the same name; but

because of the di�erent ordering on paths, there are three additional T

2

-algorithms. Note also that

since T

2

D does not include paths with repeated elements, only pb

0

and pb

1

of the family of pb

n

algorithms de�ned above have corresponding T

2

-algorithms.

3.3 Timed data

A simple notion of computation over domains is obtained by regarding a computation as a pair

consisting of a data value and a natural number, intuitively representing the amount of time or

the cost associated with the calculation of the value. With this intuitition it seems reasonable to

regard one computation hd; ni as approximating another hd

0

; n

0

i i� d v d

0

and n

0

� n; that is, a

better computation produces a more precise data value in less time. This suggests the use of the

following comonad:

� T

3

D = D � VNat

op

, ordered componentwise.

� For f : D ! D

0

, (T

3

f) hd; ni = hfd; ni.

� � hd; ni = d.

2

However, this would not be the case if we ordered T

2

D componentwise, since T

2

D is not directed-complete under

the componentwise ordering.
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Figure 8: Some T

2

-algorithms from Two� Two to Two, ordered pointwise.
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� � hd; ni = hhd;ni ; ni.

Here VNat

op

is the domain consisting of the natural numbers together with !, ordered by the

reverse of the usual ordering, so that ! is the least element. The least element of T

3

D is h?

D

; !i.

We may de�ne for each continuous function f : D ! D

0

and each n

2

VNat an algorithm f

n

from D to D

0

:

f

n

hd; ki = fd if k � n

= ? otherwise:

Clearly, whenever f v g we also get f

n

v g

n

. Moreover, because of our ordering on T

3

D, we

get f

n

v f

n+1

for each n � 0; and f

!

is simply � hd; ni :fd. The lub of the f

n

is the function

f

�

= � hd; ni :(n = ! ! ?; fd); which is below f

!

. Using this nomenclature, we show some of the

T

3

-algorithms from Two� Two to Two in Figure 9.

It is also possible to de�ne a comonad based on the functor TD = D � VNat, using the usual

ordering on the integer component.

4 Relating algorithms and functions

4.1 Computational comonads

We will say that a comonad is computational if for each object A, every data value in A can

be regarded as a \degenerate" computation in TA, and degenerate computations possess certain

simple properties. This permits us to extract from an algorithm a function from values to values,

by looking at the algorithm's e�ect when applied to degenerate computations. Two algorithms are

called extensionally equivalent i� they determine the same function.

More precisely, we require the existence of a natural transformation 
 : I

C

:

! T satisfying some

axioms which capture formally what we mean by degeneracy. We then show that this permits us

to de�ne an \extensional equivalence" relation on each hom-set in C

T

. Extensional equivalence is

preserved by composition, so that we actually have a congruence on C

T

. The underlying category

C may then be recovered from C

T

by taking a quotient.

De�nition 4.1 A computational comonad over a category C is a quadruple (T; �; �; 
) where (T; �; �)

is a comonad over C and 
 : I

C

:

! T is a natural transformation such that, for every object A,

� �

A

� 


A

= id

A

� �

A

� 


A

= 


TA

� 


A

.

Naturality guarantees that, for every morphism f : A!

C

B,

� Tf � 


A

= 


B

� f .

Figure 10 shows these properties in diagrammatic form. �

As an immediate corollary of these properties, �

A

is epi and 


A

is mono, for every object A.

Proposition 4.2 If (T; �; �; 
) is a computational comonad, then there is a pair of functors (alg; fun)

between C and C

T

with the following de�nitions and properties:

� alg : C ! C

T

is the identity on objects, and alg(f) = f � �

A

, for every f : A!

C

B.
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Figure 9: Some T

3

-algorithms from Two� Two to Two, ordered pointwise.
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TA

A A

-

id

A

A

A

A

A

A

A

A

A

AU




A

�

�

�

�

�

�

�

�

��

�

A

TA T

2

A

A TA

-




TA

?




A

?

�

A

-




A

A B

TA TB

-

f

?




A

?




B

-

Tf

Figure 10: Properties of a computational comonad: these diagrams commute, for all A, B, and all

morphisms f : A!

C

B.

� fun : C

T

! C is the identity on objects, and fun(a) = a � 


A

, for all a : A!

C

T

B.

� fun induces an equivalence relation =

e

on C

T

, given by a

1

=

e

a

2

() fun(a

1

) = fun(a

2

):

This relation is a congruence; that is, for all a

1

; a

2

: A!

C

T

B and a

0

1

; a

0

2

: B !

C

T

C,

a

1

=

e

a

2

& a

0

1

=

e

a

0

2

) a

0

1

�
� a

1

=

e

a

0

2

�
� a

2

:

� The quotient category of C

T

by =

e

is isomorphic to C.

� fun � alg = I

C

. That is, for all f : A!

C

B, fun(alg f) = f .

� alg � fun =

e

I

C

T

, in that for all a : A!

C

T

B, alg(fun a) =

e

a.

Proof: Functoriality of alg and fun are straightforward. For instance:

fun(a

0

�
� a) = (a

0

�
� a) � 


= (a

0

� Ta � �) � 


= a

0

� Ta � 
 � 
 since � � 
 = 
 � 


= a

0

� 
 � a � 
 by naturality of 


= fun(a

0

) � fun(a):

A similar calculation shows that =

e

is a congruence.

The quotient of C

T

by =

e

has the same objects as C

T

(and therefore the same objects as C),

and the morphisms in the quotient category from A to B are the =

e

-equivalence classes of

morphisms from A to B in C

T

. Let us write [a] for the equivalence class of a. Clearly, the

map f 7! [alg(f)] is an isomorphism of hom-sets, showing that C

T

=

=

e

is isomorphic to C.

The facts that fun�alg = I

C

and alg�fun =

e

I

C

T

are elementary consequences of the de�nitions.

We say that fun(a) is the extensional morphism computed by a. Since fun(algf) = f , every

extensional morphism f is computed by some (not necessarily unique) intensional morphism.

These results show that every computational comonad can be used to produce an intensional

category that yields back the underlying extensional category when we take the extensional quo-

tient. Next we show that fun and alg are natural transformations. Let Set be the category of sets

and functions.
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C(A;B) C(A

0

;B

0

)

C(TA;B) C(TA

0

; B

0

)

?

fun

?

fun

-

C(Tf; g)

-

C(f; g)

C(A;B) C(A

0

;B

0

)

C(TA;B) C(TA

0

;B

0

)

6

alg

6

alg

-

C(Tf; g)

-

C(f; g)

Figure 11: Naturality of fun and alg for a computational comonad: these diagrams commute, for

all f : A

0

!

C

A and g : B !

C

B

0

.

De�nition 4.3 The two-variable hom-functor C(T (�);�) from C

op

� C to Set takes a pair (A;B)

of objects to C(TA;B) and takes a pair of morphisms (f; g) with f : A

0

!

C

A and g : B !

C

B

0

to

C(Tf; g) : C(TA;B)! C(TA

0

;B

0

), where for all a : TA!

C

B,

C(Tf; g)(a) = g � a � Tf:

Similarly, the two-variable hom-functor C(�;�) takes (A;B) to C(A;B) and (f; g) to C(f; g),

where for all h : A!

C

B,

C(f; g)(h) = g � h � f:

�

Proposition 4.4 Let (T; �; �; 
) be a computational comonad over a category C. Then fun and alg,

as de�ned in Proposition 4.2, are natural transformations:

fun : C(T(�);�)

:

! C(�;�)

alg : C(�;�)

:

! C(T (�);�):

That is, for all f : A

0

!

C

A and g : B !

C

B

0

, the following identities hold:

fun � C(Tf; g) = C(f; g) � fun

C(Tf; g) � alg = alg � C(f; g):

Figure 11 expresses these properties in diagram form.

Proof: Straightforward, using naturality of 
 and �.

We now show that the three example comonads introduced earlier can be extended to become

examples of computational comonads.
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4.2 Examples.

1. For the increasing paths comonad T

1

, let 


D

: D! T

1

D be de�ned by 


D

d = d

!

, for all d

2

D.

Clearly 


D

is continuous, and 
 is a natural transformation. Moreover, the computational

comonad laws hold, since the lub of d

!

is d, and all pre�xes of d

!

are equal to d

!

.

The functor fun maps each algorithm from Two� Two to Two into a function from Two� Two

to Two. In particular, fun(pb) = fun(lb) = fun(rb) = fun(db) = b. Similarly, fun(pb

n

) = b for

all n � 0, and fun(b

�

) = b. In fact, b

�

= alg(b).

Figure 12 illustrates the result of taking the extensional quotient of Figure 6. Boxes enclose

equivalence classes of algorithms, arcs between boxes represent the quotient ordering, and

within each box we retain the pointwise order to ease comparison with Figure 6. As expected,

the quotient �gure is isomorphic to Figure 4 when we identify each equivalence class with the

function computed.

2. For the strictly increasing paths comonad, we may again let 


D

: D ! T

2

D be 


D

d =

d

!

. Again this is a continuous function, and 
 is a natural transformation. Again the

computational comonad laws hold. Figure 13 shows the quotient of Figure 8 by extensional

equivalence. Note that fun(d?) = fun(l?) = fun(r?) = fun(?) = ?.

Again the quotient diagram is isomorphic to Figure 4.

3. For the timed data comonad, we obtain a suitable 
 by deciding what cost to associate with

a degenerate computation. For each k

2

VNat we may take 


k

d = hd; ki and obtain a natural

transformation satisfying the requirements of a computational comonad. De�ne fun

k

to be

the functor whose action on algorithms is given by fun

k

(a) = a � 


k

, and let =

e

k

be the

equivalence relation induced by 


k

. For example, we have, for each k � 0:

fun

k

(b

n

) = b if k � n

= ? if k > n:

Clearly, b

n

=

e

k

b

n+1

i� k 6= n+ 1.

Again the Kleisli category quotients onto the underlying category under the congruence in-

duced by 


k

. Figure 14 shows the quotient of Figure 9 under the equivalence induced by




n+1

.

5 Products and Exponentiation

5.1 Products

Now suppose that the underlying category C has products, and for each pair of objects A

1

and A

2

there is a distinguished product, which we denote A

1

�A

2

, with �

i

(i = 1; 2) being the projections.

It is easy to show that distinguished product objects in C are also product objects in C

T

, with

projections in C

T

given by:

b

�

i

: A

1

�A

2

!

C

T

A

i

b

�

i

= �

A

i

� T �

i

= �

i

��

A

1

�A

2

:

Pairing of morphisms in C

T

is the pairing of morphisms in C, and the combination hT �

1

; T �

2

i

plays a special rôle in light of the following properties.
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Figure 12: Quotient of Figure 6 by extensional equivalence.
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Proposition 5.1 If C has products then � : T (���)

:

! T (�)� T (�) de�ned by:

�

A;B

: T (A�B)! TA� TB

�

A;B

= hT �

1

; T �

2

i

is a natural transformation such that, for all objects A and B,

(�

A

� �

B

) � �

A;B

= �

A�B

(�

A

� �

B

) � �

A;B

= �

TA;TB

� T�

A;B

� �

A�B

�

A;B

� 


A�B

= 


A

� 


B

:

Proof: Naturality of � follows from the universal property of products and the functoriality of T .

The remaining properties are easy consequences of naturality of �, �, and 
. Note the identity

� � T hf; gi = hTf; Tgi. In particular, � � T� =




T

2

�

1

; T

2

�

2

�

.

5.2 Exponentiation

Now suppose that the underlying category C is cartesian closed. That is, we assume that C has a

distinguished terminal object and distinguished binary products, and that for every pair of objects

B and C there is a distinguished exponentiation object B ! C satisfying the usual requirements:

for all B and C there is a morphism app

B;C

: (B ! C) � B !

C

C such that, for all A and all

morphisms f : A � B !

C

C there is a unique morphism curry(f) : A !

C

(B ! C) such that

app

B;C

�(curry(f)� id

B

) = f .

Equivalently, a category is cartesian closed if it has �nite products and there is a pair of natural

isomorphisms

curry : C(�� B;C)

:

! C(�; B ! C)

uncurry : C(�;B ! C)

:

! C(��B;C):

Here C(� � B;C) and C(�;B ! C) are contravariant hom-functors from C

op

to the category

Set , with the standard de�nitions [1]. This is the same as requiring that curry(uncurry h) = h

and uncurry(curry g) = g, together with the following naturality conditions: for all f : A !

C

A

0

,

g : A

0

�B !

C

C, and h : A

0

!

C

(B ! C),

curry(g � (f � id)) = (curry g) � f

uncurry(h) � (f � id) = uncurry(h � f):

It follows easily from these conditions that one can choose app = uncurry(id) as a suitable

application morphism.

We want to give some general conditions under which analogous properties can be obtained for

the Kleisli category C

T

. Assuming that C is cartesian closed, the obvious candidate in C

T

for the

exponential object of B and C is TB ! C. Moreover, we know that there is a natural isomorphism

between C

T

(A;TB ! C) and C(TA�TB;C). Since C

T

(A�B;C) is just C(T(A�B); C), it is clear

that we must make some assumptions about the relationship between T (A� B) and TA� TB.

If T(A�B) and TA�TB are naturally isomorphic it is easy to show that C

T

is cartesian closed

whenever C is. This is apparently a \Folk Theorem". The comonad T

1

has this property, and we

gave in [4] a proof using this property that the Kleisli category of T

1

is cartesian closed.

However, there are reasonable examples in which T does not preserve products, including T

2

and T

3

as described earlier. Instead, we will make a weaker assumption: that the comonad can be

equipped with natural ways to move back and forth between T (A�B) and TA�TB that interact

sensibly with the comonad operations �, �, and 
. This can be conveniently summarized by means

of two natural transformations split and merge satisfying certain combinational laws.
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De�nition 5.2 Let (T; �; �; 
) be a computational comonad. A computational pairing is a pair of

natural transformations

split : T (�� �)

:

! T(�)� T (�)

merge : T (�)� T (�)

:

! T (�� �)

such that, for all objects A and B, the following properties hold:

(�

A

� �

B

) � split

A;B

= �

A�B

�

A�B

�merge

A;B

= �

A

� �

B

split

A;B

�


A�B

= 


A

� 


B

merge

A;B

�(


A

� 


B

) = 


A�B

(�

A

� �

B

) � split

A;B

= split

TA;TB

�T split

A;B

��

A�B

merge

TA;TB

�(�

A

� �

B

) = T split

A;B

��

A�B

�merge

A;B

:

Naturality of split and merge requires that for all f : A!

C

A

0

and g : B !

C

B

0

,

split

A

0

;B

0

�T (f � g) = (Tf � Tg) � split

A;B

merge

A

0

;B

0

�(Tf � Tg) = T (f � g) �merge

A;B

:

We summarize these properties in diagram form in Figure 15.

�

The properties listed above formalize the sense in which we require the splitting and merging

operations to interact sensibly with �, �, and 
. In particular, the following properties follow

immediately.

Corollary 5.3 Let (T; �; �; 
) be a computational comonad and let split and merge form a compu-

tational pairing. Then for all A and B,

(�

A

� �

B

) � split

A;B

�merge

A;B

= (�

A

� �

B

)

split

A;B

�merge

A;B

�(


A

� 


B

) = (


A

� 


B

)

�

A�B

�merge

A;B

� split

A;B

= �

A�B

merge

A;B

� split

A;B

�


A�B

= 


A�B

:

We have already seen that � = hT �

1

; T �

2

i quali�es as a suitable split operation (Proposi-

tion 5.1). Despite this fact, split (and merge) are not generally uniquely determined by the com-

putational pairing laws and we wish to permit the use of comonads with \non-standard" choices

of split. Moreover, naturality of split and merge does not by itself imply the computational pairing

laws.

5.3 Examples

1. Return again to the increasing path comonad T

1

. The natural transformation � = hT

1

�

1

; T

1

�

2

i

is given by: �(u) = h�n: �

1

(u

n

); �n: �

2

(u

n

)i : This is actually an isomorphism, with inverse

given by merge(hs; ti) = �n: hs

n

; t

n

i : Intuitively, each of these two operations works \in par-

allel" on the two components.

Both � and merge are natural transformations, and they satisfy the computational pairing

laws, which state that:

� Merging and splitting commute with componentwise application of functions.
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TA� TB

T (A� B) T (A

0

� B

0

)

TA

0

� TB

0

?

split

A;B

?

split

A

0

;B

0

-

T (f � g)

-

Tf � Tg

T(A� B)

TA� TB TA

0

� TB

0

T (A

0

� B

0

)

?

merge

A;B

?

merge

A

0

;B

0

-

T (f � g)

-

Tf � Tg

TA� TB

T (A� B) A�B

?

split

A;B

�

�

�

�

�

�

�

�

��

�

A

� �

B

-

�

A�B

A�B

TA� TB

T (A�B)

?

split

A;B

@

@

@

@

@

@

@

@

@R




A

� 


B

-




A�B

TA� TB

?

merge

A;B

@

@

@

@

@

@

@

@

@R

�

A

� �

B

TA� TB

?

merge

A;B

�

�

�

�

�

�

�

�

��




A

� 


B

TA� TB

T(A� B)

TA� TB

T

2

(A� B)

T

2

A� T

2

B

T (TA � TB)

T

2

A� T

2

B

?

merge

A;B

?

split

A;B

-

�

A

� �

B

-

�

A

� �

B

-

�

A�B

-

T split

A;B

?

merge

TA;TB

?

split

TA;TB

Figure 15: Properties of a computational pairing: these diagrams commute for all A, A

0

, B, B

0

and all f : A!

C

A

0

, g : B !

C

B

0

.
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� Merging and splitting respect lubs of sequences.

� Merging and splitting respect pre�xes.

� Merging two degenerate computations produces a degenerate computation, and splitting

a degenerate computation produces a pair of degenerate computations.

2. There are other intuitively sensible ways to split and merge in the increasing paths comonad

T

1

. We can de�ne a form of (left-�rst) interleaving by:

lmerge(hs; ti) = �n:

D

s

dn=2e

; t

bn=2c

E

:

For example, this gives:

lmerge(s

0

s

1

s

!

2

; t

0

t

1

t

!

2

) = hs

0

; t

0

i hs

1

; t

0

i hs

1

; t

1

i hs

2

; t

1

i hs

2

; t

2

i

!

:

To go with lmerge, we de�ne a split that operates only on alternate steps of a computation:

split

2

(u) = h�n: �

1

(u

2n

); �n: �

2

(u

2n

)i :

We then obtain the identity split

2

� lmerge = id.

It is easy to verify that lmerge and split

2

are natural transformations, and that the compu-

tational pairing properties hold, making use of the equalities bmin(i;2j)=2c = min(bi=2c; j)

and dmin(i; 2j)=2e = min(di=2e; j).

There is clearly also a right-�rst version of interleaving rmerge and this also interacts sensibly

with split

2

as given above.

3. For the strictly increasing paths comonad, each of the split-merge combinations above adapts

in the obvious way, modi�ed so as to ensure that the result of splitting a strictly increasing

sequence of pairs is a pair of strictly increasing sequences. Thus, for example,

�(h?;?i h>;?i h>;>i

!

) = h?>

!

;?>

!

i

merge(?>

!

;?>

!

) = h?;?i h>;>i

!

:

In fact T

2

(A�B) and T

2

A� T

2

B are not generally isomorphic, because a strictly increasing

sequence of pairs does not necessarily increase strictly in both components at each stage.

Nevertheless, � and merge are still natural transformations satisfying the requirements listed

above for a computational pairing, and we have the identity � �merge = id.

The (appropriately adjusted) lmerge and split

2

operations also form a computational pairing,

and split

2

� lmerge = id; similar properties hold for rmerge and split

2

.

5.4 Pairing, currying and uncurrying on algorithms

Using the split operation of a computational pairing provides a way to combine a pair of algorithms

into an algorithm on pairs. If split is taken to be �, this is the standard way to form the product

of two morphisms in the Kleisli category. We can also use split to de�ne intensional analogues to

the contravariant hom-functors C(��B;C) and C(�;B ! C).
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De�nition 5.4 Let C be a category with �nite products, let (T; �; �; 
) be a computational comonad,

and let split be a natural transformation from T (� � �) to T � �T�. For f : A !

C

T

A

0

and

g : B !

C

T

B

0

we de�ne (f

^

� g) : (A�A

0

)!

C

T

(B �B

0

) by f

^

� g = (f � g) � split. �

Proposition 5.5 Let C be a category with �nite products, let (T; �; �; 
) be a computational comonad

and let split and merge form a computational pairing. Then there is a functor

^

� from C

T

� C

T

to C

T

that maps a pair of objects (A;B) to A � B and maps a pair of morphisms (a; b) to

(a

^

� b) = (a� b) � split.

Proof: To show that

^

� maps identity morphisms to identity morphisms:

(

b

id

A

^

�

b

id

B

) = (�

A

� �

B

) � split = �

A�B

=

b

id

A�B

:

To show that

^

� preserves composition, let a : A!

C

T

A

0

, b : B !

C

T

B

0

, a

0

: A

0

!

C

T

A

00

, and

b

0

: B

0

!

C

T

B

00

. Then:

(a

0

^

� b

0

)
�
� (a

^

� b) = ((a

0

� b

0

) � split)
�
� ((a� b) � split)

= (a

0

� b

0

) � split �T(a� b) � T split ��

= (a

0

� b

0

) � (Ta� Tb) � split �T split ��

= (a

0

� b

0

) � (Ta� Tb) � (� � �) � split

= ((a

0

� Ta � �)� (b

0

� Tb � �)) � split

= ((a

0

�
� a)� (b

0

�
� b)) � split

= (a

0

�
� a)

^

� (b

0

�
� b):

De�nition 5.6 Let C be a cartesian closed category, let (T; �; �; 
) be a computational comonad,

and let split and merge form a computational pairing. The contravariant functor C

T

(�

^

�B;C) from

C

T

op

to Set is de�ned as follows.

� On objects the functor maps A to C

T

(A�B;C).

� On morphisms the functor maps f : A !

C

T

A

0

to the function �g:g
�
� (f

^

�

b

id

B

) from

C

T

(A

0

�B;C) to C

T

(A� B;C).

Similarly, the contravariant functor C

T

(�; TB ! C) from C

T

op

to Set, is de�ned by:

� On objects the functor maps A to C

T

(A;TB ! C).

� On morphisms the functor maps f : A!

C

T

A

0

to the function �h:h
�
�f from C

T

(A

0

; TB ! C)

to C

T

(A;TB ! C).

�

Proposition 5.7 Let (T; �; �; 
) be a computational comonad and let split and merge be a compu-

tational pairing. Given a : T (A� B)!

C

C and b : TA!

C

(TB ! C), de�ne

d

curry(a) : TA!

C

(TB ! C)

d

uncurry(b) : T(A� B)!

C

C

d

curry(a) = curry(a �merge)

d

uncurry(b) = uncurry(b) � split :

Then:
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�

d

curry and

d

uncurry are natural transformations:

d

curry : C

T

(�

^

�B;C)

:

! C

T

(�; TB ! C)

d

uncurry : C

T

(�; TB ! C)

:

! C

T

(�

^

�B;C):

� For all a : A� B !

C

T

C,

d

uncurry(

d

curry(a)) =

e

a.

� For all f : A� B !

C

C,

d

uncurry(

d

curry(alg f)) = alg f .

Proof:

� The naturality of

d

curry amounts to the requirement that

d

curry(g
�
� (f

^

�

b

id

B

)) = (

d

curry g)
�
� f ,

for all f : A!

C

T

A

0

and g : A

0

�B !

C

T

C. This follows from naturality of currying in C and

the properties of computational pairing:

d

curry(g
�
� (f

^

�

b

id)) =

d

curry(g � T (f � �) � T split ��)

= curry(g � T (f � �) � T split �� �merge)

= curry(g � T (f � �) �merge �(� � �))

= curry(g �merge�(Tf � T�) � (� � �))

= curry(g �merge�((Tf � �)� (T� � �)))

= curry(g �merge�((Tf � �)� id))

= curry(g �merge) � (Tf � �)

=

d

curry(g) � Tf � �

=

d

curry(g)
�
� f:

� Similarly, to show naturality of

d

uncurry we need

d

uncurry(h)
�
� (f

^

�

b

id) =

d

uncurry(h
�
� f), for all

f : A!

C

T

A

0

and h : A

0

!

C

T

(TB ! C). Again the proof is straightforward:

d

uncurry(h)
�
� (f

^

�

b

id) = uncurry(h) � split �T (f � �) � T split ��

= uncurry(h) � (Tf � T�) � split �T split ��

= uncurry(h) � (Tf � T�) � (� � �) � split

= uncurry(h) � ((Tf � �)� (T� � �)) � split

= uncurry(h) � ((Tf � �)� id) � split

= uncurry(h � Tf � �) � split

= uncurry(h
�
� f) � split

=

d

uncurry(h
�
� f):

� Let a : A� B !

C

T

C. Then

d

uncurry(

d

curry(a)) � 
 = uncurry(curry(a �merge)) � split �


= (a �merge) � split �


= a � (merge� split �
)

= a � 
;

showing that

d

uncurry(

d

currya) =

e

a.
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� Let f : A� B !

C

C. Then

d

uncurry(

d

curry(alg f)) = uncurry(curry(alg(f) �merge)) � split

= alg(f) �merge� split

= f � � �merge� split by Corollary 5.3

= f � �

= alg f:

We have shown that an intensional pairing produces a weak form of exponentiation structure:

we obtain notions of currying and uncurrying on algorithms that are natural transformations but

satisfy a weaker condition than isomorphism. We may rephrase these properties in terms of the

existence of a notion of \application" in the intensional category as follows.

Proposition 5.8 Let C be a cartesian closed category, (T; �; �; 
) be a computational comonad and

let split and merge be a computational pairing. For all B and C there is an \application morphism"

d

app

B;C

: [TB ! C]�B !

C

T

C

such that, for all a : A �B !

C

T

C

d

app

B;C

�
�(

d

curry(a)

^

�

b

id

B

) =

e

a:

Proof: De�ne

d

app

B;C

=

d

uncurry(

b

id

TB!C

) =

d

uncurry(�

TB!C

): As a corollary of the naturality of

d

uncurry (Proposition 5.7), we get:

d

app
�
�(b

^

�

b

id) =

d

uncurry(

b

id)
�
� (b

^

�

b

id)

=

d

uncurry(

b

id
�
� b)

=

d

uncurry(b):

Thus, in particular,

d

app
�
�(

d

curry(a)

^

�

b

id) =

d

uncurry(

d

curry(a)) =

e

a.

Note that although

d

curry(a) is not the unique morphism h such that

d

app
�
�(h

^

� id) =

e

a, all

such morphisms satisfy the condition that

d

uncurry(h) =

e

a.

Thus, we have a weak form of cartesian closedness: instead of the usual diagram for expo-

nentiation we replace = by =

e

and we relax the uniqueness condition. This is summarized in

Figure 16.

Next we consider what happens if we make further assumptions on the relationship between

split and merge.

Proposition 5.9 Let C be a cartesian closed category and (T; �; �; 
) be a computational comonad

with a computational pairing split and merge.

� If merge� split = id then

d

uncurry �

d

curry = id.

� If split �merge = id then

d

curry �

d

uncurry = id.

As a corollary we get the following version of the \Folk Theorem":
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A�B

(TB ! C)�B

C

?

d

curry
(a)

^

�

b

id

�

�

�

�

�

�

�

�

��

d

app

-

a

=

e

Figure 16: When T has computational pairing this diagram in C

T

commutes up to extensional

equivalence, for all a : A� B !

C

T

C.

Corollary 5.10 If C is cartesian closed and (T; �; �; 
) is a computational comonad with a compu-

tational pairing such that merge� split = id and split �merge = id then the category C

T

is cartesian

closed.

Note the important fact that our de�nitions are parameterized by the choice of split and merge.

Once these are chosen,

d

app,

d

curry and

d

uncurry are determined uniquely. The Kleisli category itself

is independent of split and merge; what happens, however, is that each choice of these two natural

transformations induces a (weak form of) exponentiation structure on this category. The Kleisli

category may possess many di�erent notions of merging and splitting, and therefore many di�erent

ways to curry, uncurry and apply algorithms. This means that one may use the Kleisli category to

give an interpretation to a functional programming language containing several syntactically and

semantically distinct forms of application. This would be desirable, for instance, if the language

included both a strict and a non-strict form of application.

5.5 Examples

1. The Kleisli category based on the increasing path comonad T

1

is cartesian closed, with ex-

ponentiation structure built from the standard split-merge combination, which form an iso-

morphism.

Using the computational pairing lmerge and split

2

, we obtain intensional forms of currying,

uncurrying, and application which we will call

d

curry

l

,

d

uncurry

l

and

d

app

l

. This provides a

weak form of exponentiation:

d

curry

l

and

d

uncurry

l

are natural transformations, and for all

a : A�B !

C

T

1

C we get

d

app

l

�
�(

d

curry

l

(a)

^

�

b

id) =

e

a:

Since split

2

� lmerge = id, we have

d

curry

l

(

d

uncurry

l

h) = h but

d

uncurry

l

(

d

curry

l

g) =

e

g: For

example,

d

uncurry

l

(

d

curry

l

pb) =

d

uncurry

l

(

d

curry

l

lb) = pb;

and

d

uncurry

l

(

d

curry

l

rb) is the least algorithm mapping the path h?;>i h?;>i h>;>i

!

to >.

This algorithm of course computes the function b.

Similar properties hold for the computation pairing rmerge and split

2

, with the derived oper-

ations

d

curry

r

,

d

uncurry

r

and

d

app

r

.
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2. The strictly increasing paths comonad T

2

, with computational pairing � and merge, again

has operations

d

curry,

d

uncurry and

d

app that provide weak forms of exponentiation. As we

remarked earlier, � and merge are not isomorphisms. Instead, � � merge = id and for all

u

2

T

2

(A�B) the computation merge(�(u)) is pointwise above u. Hence,

d

curry(

d

uncurry h) = h

and

d

uncurry(

d

curry g) =

e

g. As an example, we have:

d

uncurry(

d

curry lb) =

d

uncurry(

d

curry rb) =

d

uncurry(

d

curry pb) = pb:

The lmerge and split

2

computational pairing also gives rise to a weak form of exponentiation,

as does the rmerge and split

2

computational pairing.

6 Ordered categories

So far, although our principal examples were based on a cartesian closed category of domains, we

have not fully exploited the order structure. This permitted us to state and prove results that

hold in a more general category-theoretic setting. Next we suppose that the underlying category

is an ordered category: each hom-set is equipped with a complete partial order, and composition

is continuous. A functor T of ordered categories is required to respect the ordering, in that for

all f; g : A !

C

B if f � g then Tf � Tg. Moreover, T must also be continuous (in its action on

morphisms). All of our examples so far satisfy these conditions.

Suppose (T; �; �; 
) is a computational comonad over an ordered category C. Then clearly C

T

is again an ordered category. All of the results of the previous sections go through in the ordered

setting. In particular, the functors fun and alg introduced earlier respect the ordering; and the

proof of Proposition 4.2 can be adapted to show that the extensional quotient of the ordering on

C

T

(A;B) is just the order on C(A;B).

We can also obtain some slightly stronger results by taking advantage of the ordering. We omit

most of the proofs, which may be easily obtained from the results above, using monotonicity and

continuity of composition.

Proposition 6.1 Let C be an ordered ccc and let (T; �; �; 
) be a computational comonad over C

with a computational pairing.

� If split �merge � id then

d

curry �

d

uncurry � id.

� If split �merge � id then

d

curry �

d

uncurry � id.

� If merge� split � id then

d

uncurry �

d

curry � id.

� If merge� split � id then

d

uncurry �

d

curry � id.

Next we introduce a simple generalization of the notion of cartesian closed ordered category,

obtained by relaxing the requirement that currying and uncurrying form an isomorphism. Instead

we allow currying and uncurrying to form an adjunction in each homset, so that we have an example

of a local adjunction (see for example [9]) with additional properties. The relevance of \lax" notions

of adjunction such as these in computational settings (albeit with di�erent motivations) has been

pointed out in di�erent contexts by other authors, for instance in [14].
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De�nition 6.2 An ordered category C is cartesian up-closed if and only if it has �nite products and

for all pairs of objects B and C there is an object B ! C and a pair of lax natural transformations

curry, uncurry between C(��B;C) and C(�;B ! C) satisfying:

curry(uncurry h) � h

uncurry(curry g) � g

curry(g � (f � id)) � curry(g) � f

uncurry(h) � (f � id) � uncurry(h � f):

Similarly, we say that C is cartesian down-closed i� it has �nite products and there is a pair of

lax natural transformations curry, uncurry satisfying:

curry(uncurry h) � h

uncurry(curry g) � g

curry(g � (f � id)) � curry(g) � f

uncurry(h) � (f � id) � uncurry(h � f):

�

De�nition 6.3 Let C be an ordered category with �nite products.

� An up-exponential for objects B and C is an object B ! C of C together with a morphism

app

B;C

: (B ! C)� B !

C

C such that for every f : A �B !

C

C there is a least morphism

curry(f) : A!

C

(B ! C) such that

app �(curry(f)� id) � f:

� A down-exponential for objects B and C is an object B ! C of C together with a morphism

app

B;C

: (B ! C)�B !

C

C such that for every f : A�B !

C

C there is a greatest morphism

curry(f) : A!

C

(B ! C) such that

app �(curry(f)� id) � f:

�

The following result may be shown by adapting the usual proof that the two alternative de�ni-

tions of cartesian closed categories are equivalent.

Proposition 6.4 An ordered category C is cartesian up-closed i� it has �nite products and up-

exponentials.

An ordered category is cartesian down-closed i� it has �nite products and down-exponentials.

Note that if the same object B ! C and morphism app

B;C

quali�es simultaneously as an

up- and a down-exponential then it forms the usual notion of exponentiation and the category is

cartesian closed in the usual sense.

Proposition 6.5 Let C be a cartesian up-closed category, let (T; �; �; 
) be a computational comonad,

and let split and merge be a computational pairing such that

split �merge � id

merge � split � id

(� � �) � split � split �T split ��

merge �(� � �) � T split �� �merge :

Then C

T

is cartesian up-closed.
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Proof:

� Let a : A� B !

C

T

C and b : A!

C

T

(TB ! C). Then:

d

uncurry(

d

curry a) = uncurry(curry(a �merge)) � split � a �merge� split � a

d

curry(

d

uncurry b) = curry(uncurry(b) � split �merge) � curry(uncurry b) � b:

� To show that

d

curry is a lax natural transformation, let f : A!

C

T

A

0

and g : A

0

� B !

C

T

C.

Then:

d

curry(g
�
� (f

^

�

b

id)) =

d

curry(g � T (f � �) � T split ��)

= curry(g � T (f � �) � T split �� �merge)

� curry(g � T (f � �) �merge �(� � �))

= curry(g �merge�(Tf � T�) � (� � �))

= curry(g �merge�((Tf � �)� (T� � �)))

= curry(g �merge�((Tf � �)� id))

� curry(g �merge) � (Tf � �)

=

d

curry(g) � Tf � �

=

d

curry(g)
�
� f:

� To show that

d

uncurry is a lax natural transformation, suppose that f : A !

C

T

A

0

and

h : A

0

!

C

T

(TB ! C). Then

d

uncurry(h)
�
� (f

^

�

b

id) = uncurry(h) � split �T (f � �) � T split ��

� uncurry(h) � (Tf � T�) � split �T split ��

= uncurry(h) � (Tf � T�) � (� � �) � split

= uncurry(h) � ((Tf � �)� (T� � �)) � split

= uncurry(h) � ((Tf � �)� id) � split

� uncurry(h � Tf � �) � split

= uncurry(h
�
� f) � split

=

d

uncurry(h
�
� f):

A similar result holds for a cartesian down-closed category with a computational pairing satisfying

reversed inequalities.

7 Examples

We now return to the third comonad introduced earlier, after which we will introduce brie
y some

related of notions of computation on di�erent categories of domains and functions.

7.1 Timed data

In the timed data comonad T

3

, the standard split operation is:

split hha; bi ; ni = hha; ni ; hb; nii :
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Given our interpretation of hd; ni as a computation yielding d at cost n, an obvious choice for

a merge operation is:

merge(ha;mi ; hb;ni) = hha; bi ;max(m;n)i :

Both of these operations are natural transformations, and we obtain the following properties:

split �merge v id

merge � split = id

(� � �) � split = split �T

3

split ��

merge �(� � �) w T

3

split �� �merge :

The underlying category is cartesian closed, hence also cartesian up-closed. It follows from

Proposition 6.5 that the Kleisli category of T

3

is cartesian up-closed.

7.2 Strict algorithms

The category of domains and strict continuous functions is not cartesian closed, although the

category does have products. For each pair of domains D and D

0

, the set of strict continuous

functions D !

s

D

0

, ordered pointwise, is again a domain. The usual uncurrying operation on

functions preserves strictness, but the usual currying does not. Instead, we may de�ne a variant

form of currying by:

curry

s

: (A�B !

s

C)! (A!

s

(B !

s

C))

curry

s

(f) = �x:�y:(x = ? _ y = ? ! ?; f(x; y)):

When f is strict, curry

s

(f) is the best strict function approximating curry(f) pointwise. For

instance, let lor, ror and sor be the left-strict, right-strict, and doubly-strict or-functions. Then

uncurry(curry

s

lor) = uncurry(curry

s

ror) = uncurry(curry

s

sor) = sor :

It is easy to check that curry

s

is a natural transformation (and so is uncurry).

The following relationships hold, for all f : A� B !

s

C and all g : A!

s

(B !

s

C):

curry

s

(uncurry g) = g

uncurry(curry

s

f) v f:

Hence, the category of domains and strict continuous functions is cartesian down-closed.

Let T

1

D be the set of increasing paths over D (not just the strict continuous maps from VNat

to D), ordered pointwise. The maps �, � and 
 are all strict, as are all of the split and merge

operations above. We may therefore use the Kleisli construction to build a model of strict parallel

algorithms. To illustrate this model, note that all of the algorithms of Figure 6 also belong in this

category, with the exception of >, which is non-strict.

Since the underlying category is cartesian down-closed, each of the computational pairings

discussed earlier for T

1

gives rise to a down-exponentiation structure, so that the category of

domains and strict algorithms is again cartesian down-closed.

We may also adapt the T

2

and T

3

comonads to this category.
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7.3 Computation on e�ectively given domains

The category of e�ectively given domains and computable functions is cartesian closed. A domain is

e�ectively given i� its �nite elements are recursively enumerable (hence, countable), it is decidable

whether two �nite elements are consistent, and (an index for) the lub of two consistent �nite

elements is decidable (as a function of their indices). An element of D is computable i� the set of

(indices of) its �nite approximations is recursively enumerable.

The functor T

1

can be adapted to this category, by de�ning T

1

D for an e�ectively given domain

D to be the computable increasing paths over D (equivalently, the computable continuous functions

from VNat to D, ordered pointwise). All of the auxiliary operations (�, �, 
, and so on) are com-

putable. Hence we obtain a category of e�ectively given domains and computable algorithms, and

this category quotients onto the underlying category of e�ectively given domains and computable

functions. This algorithms category is again cartesian closed.

The functor T

3

maps e�ectively given domains to e�ectively given domains, and again the

auxiliary operations are computable. We therefore obtain a category of e�ectively given domains

and T

3

-algorithms that quotients onto the underlying category and is cartesian up-closed.

The functor T

2

preserves algebraicity but not !-algebraicity, since T

2

D may have uncountably

many �nite elements. The T

2

comonad therefore does not adapt to the category of e�ectively given

domains and computable functions.

7.4 Computation on pre-domains

We use the term pre-domain for a \bottomless" domain: a directed-complete, bounded complete,

algebraic partial order with no requirement that there be a least element. The category of pre-

domains and continuous functions is cartesian closed.

Let T

4

D be the set of non-empty �nite or in�nite increasing sequences over D, ordered by

the pre�x ordering. Clearly this forms a pre-domain, and the �nite elements are just the �nite

sequences. T

4

D is generally a pre-domain rather than a domain, even if D has a least element,

because the pre�x ordering does not relate sequences with di�erent �rst elements. We make T into

a functor by specifying that (as usual) T

4

f applies f componentwise.

Again we let � be the lub operation and let �t be the sequence of (non-empty) pre�xes of t.

Then (T

4

; �; �) forms a comonad.

We may regard a computation of length 1 as degenerate, and this corresponds to de�ning the

function 
 from D to T

4

D by 
d = hdi. Although this function 
 is not continuous, so that

we cannot claim that T

4

is a computational comonad, we still obtain a congruence relation on

algorithms by de�ning

a =

e

a

0

() 8d

2

D:ahdi = a

0

hdi:

Note that for all f; g : A! B we have

(f � �) =

e

(g � �)) f = g:

It is then easy to modify the proof of Proposition 4.2 to show that the Kleisli category of this

comonad quotients onto the underlying category under =

e

.

We may de�ne splitting and merging operations as follows. The standard way to split is:

split(hx

0

; y

0

i . . . hx

k

; y

k

i) = hx

0

. . .x

k

; y

0

. . . y

k

i

split(hx

n

; y

n

i

1

n=0

) = hhx

n

i

1

n=0

; hy

n

i

1

n=0

i :
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Let merge be the least continuous function satisfying:

merge(x

0

. . .x

k

; y

0

. . . y

m

) = hx

0

; y

0

i . . . hx

n

; y

n

i (n = min(m;k))

merge(x

0

. . .x

k

; hy

i

i

1

i=0

) = hx

0

; y

0

i . . . hx

k

; y

k

i

merge(hx

i

i

1

i=0

; y

0

. . . y

m

) = hx

0

; y

0

i . . . hx

m

; y

m

i

merge(hx

n

i

1

n=0

; hy

n

i

1

n=0

) = hx

n

; y

n

i

1

n=0

:

Clearly, merge� split = id and split �merge v id. These two operations are obviously natural

and satisfy the computational pairing properties, except that ��merge v ���. The Kleisli category

is cartesian down-closed.

8 Conclusions

We have described a category-theoretic approach to intensional semantics, based on the idea that

a notion of computation or intensional behavior may be modelled by means of a computational

comonad, and that the Kleisli category thus obtained can be viewed as an intensional model. The

morphisms in this category map computations to values, and from such a morphism one may

recover a map from values to values. One may de�ne an equivalence relation that identi�es all

algorithms that compute the same function, and this equivalence relation can be used to collapse

the Kleisli category onto the underlying category.

We have identi�ed a set of conditions under which the Kleisli category possesses exponentiations

or weaker types of exponentiation, based on the existence of natural ways to pair computations.

We described a series of examples to illustrate the applicability of our de�nitions and results. In

doing so, we have placed our recent work [4] in a wider context.

Our work arose out of an attempt, begun in [3], to generalize an earlier intensional model of

Berry and Curien [6]. They de�ned a category of deterministic concrete data structures and se-

quential algorithms, showed that this category is cartesian closed, and that it collapses onto the

category of deterministic concrete data structures and sequential functions under an obvious notion

of extensional equivalence. The sequential functions category is not cartesian closed, and their con-

struction of sequential algorithms was not based on a comonad. The operational semantics implicit

in their work was again coroutine-like and lazy, but with the restriction that computation should

proceed sequentially, with at most one argument being evaluated at a time. In our generalization

of their model we relax the sequentiality restriction so as to permit parallel computation.

The query model of parallel algorithms between deterministic concrete data structures, described

in [3], contains algorithms for non-sequential functions such as parallel-or. However, the model's

construction was rather complex and we were unable to formulate a suitable notion of composition

for algorithms. Instead, in [4] we presented a much more streamlined form of algorithm between

Scott domains and for the �rst time we cast our construction in terms of a comonad. Of the

comonads introduced in this paper, T

1

corresponds to the comonad used in [4]; T

2

is closer in spirit

to the query model of [3], but we are able here to go considerably further.

Moggi has developed an abstract view of programming languages in which a notion of com-

putation is modelled as a monad [12, 13]. Examples of notions of computation as monads in-

clude: computation with side-e�ects, computation with exceptions, partial computations, and

non-deterministic computations. In this view, the meaning of a program is taken as a function

from values to computations, and an intuitive operational semantics is that a program from A to

B takes an input of type A and returns an output computation. This point of view is consistent

with an input-driven lazy operational semantics. In contrast, our \opposite" point of view based
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on comonads (which are, after all, monads on the opposite category) is consistent with a demand-

driven lazy operational semantics. Moggi states in [12] that his view of programs corresponds to

call-by-value parameter passing, and he says that there is an alternative view of \programs as

functions from computations to computations" corresponding to call-by-name. Our work shows

that there is also a third alternative: programs as functions from computations to values. Common

to these approaches is the realization that values should be distinguished from computations (and

the use of an endofunctor T ). Apart from that, the motivations and the operational intuitions

behind the monad approach and the comonad approach are di�erent, and we feel that the two

approaches should be regarded as orthogonal or complementary. The extra structure and algebraic

laws embodied in a monad seem appropriate in Moggi's context. Equally, the extra structure and

algebraic laws embodied in a comonad seem appropriate in our context. We plan to explore to what

extent (and to what e�ect) the two approaches can be combined. For instance, given a comonad T

and a monad P over the same category C one might obtain (assuming that T and P satisfy certain

properties) a category of (T;P )-algorithms, in which a morphism from A to B is a morphism in C

from TA to PB.

We plan to investigate notions of computation in further domain-theoretic settings. We are

already working on categories of algorithms on (generalized) concrete data structures [5]. It would

be interesting to see if the Berry-Curien sequential algorithms category could be embedded in the

Kleisli category of a suitable comonad over a sequential functions category. We intend to investigate

notions of computation on the category of dI-domains and stable functions [2], and on the category

of qualitative domains and linear functions [7].
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