STABLE SPLITTINGS OF MAPPING SPACES

C.-F. Bödigheimer

O. Introduction.

In this note we elaborate on two observations concerning configuration spaces; they will lead to a stable splitting of certain mapping spaces into infinite bouquets of simpler spaces.

Let K be a finite complex, K_O a subcomplex, and X a connected CW-complex. Then choose a smooth, compact and parallelizable m-manifold M with a submanifold M_O such that the pairs (K,K_O) and (M,M_O) are homotopy equivalent. For the space map $(K,K_O;S^mX)$ of based maps from K/K_O to S^mX we prove

PROPOSITION 1.

There is a stable equivalence

$$map(K,K_0;S^mX) \simeq \bigvee_{k=1}^{\infty} \mathcal{O}_k$$
;

the spaces \mathcal{D}_k depend on M,Mo and X, in particular $\mathcal{D}_1 = (M \setminus M_O, \partial M \setminus M_O) \wedge X$.

Several special cases of this proposition are well-known.

EXAMPLE 1. $K = M = [0,1], K_0 = M_0 = \{0,1\}.$

The proposition gives a splitting of the suspension spectrum $S^{\infty}\Omega SX$; a refinement of the proof would yield the splitting of $S\Omega SX$ found by Milnor [17], see Remark 3.

EXAMPLE 2. $K = M = D^{m}, K_{o} = M_{o} = \partial D^{m}.$

This is the stable splitting of $\Omega^{m}S^{m}X$ found by Snaith [20].

EXAMPLE 3. $K = M = S^1$, $K_0 = M_0 = \emptyset$.

A stable splitting of the free loop space ΛSX of SX has recently been obtained by Goodwillie (unpublished).

EXAMPLE 4. $K = M = S^{m-1} \times [0,1], K_0 = M_0 = S^{m-1} \times \{0,1\}.$ This example gives a stable splitting of $\overline{\Omega}^m S^m X$, the space of maps $f: S^m \longrightarrow S^m X$ such that $f(s_0) = f(-s_0) = *$, where s_0 and * are the basepoints; it is particularly interesting for $\mathbb{Z}/2-$ and S^1- equivariant homotopy theory, (N.B. $\overline{\Omega}^m S^m X \simeq \Omega^m S^m X \times \Omega S^m X.$)

EXAMPLE 5. $K = \mathbb{D}^m$, $K_0 = 3\mathbb{D}^m$, $M = \mathbb{D}^m \times [0,1]$, $M_0 = 3\mathbb{D}^m \times [0,1]$. In this case we obtain - also for non-connected X - a stable splitting of $\Omega^m S^{m+1} X$; it is different but equivalent to the corresponding one replacing X by SX in Example 2.

EXAMPLE 6. K = M = G a compact Lie group of dimension m, $K_O = M_O = \emptyset$. Here the mapping space is the space of all unbased maps from G to $S^m X$.

EXAMPLE 7. K = point, $K_0 = \emptyset$, $M = \mathbb{D}^m$, $M_0 = \emptyset$. We have map $(K, K_0; S^m X) = S^m X = \mathcal{Q}_1$, all other \mathcal{Q}_k are contractible.

EXAMPLE 8. In general one can choose an embedding $K \subset \mathbb{R}^m$ of K, a regular neighbourhood M, a submanifold M_O with $K_O \subset M_O$ and a deformation retraction of pairs $r_t: (M,M_O) \longrightarrow (K,K_O)$. Hence $map(K,K_O;S^mX)$ always stably splits into a bouquet, if m is at least the embedding dimension of K.

Such splittings are usually obtaiend by splitting appropriate configuration space models for the mapping spaces. In Section 1 we will define these models. In Section 2 we observe that (under certain connectivity assumptions) they are equivalent to mapping spaces. In Section 3 we ob-

serve that these models split stably, and we conclude Proposition 1. In Section 4 we list some properties of the splittings.

We do not claim any originality. In fact, all the constructions and proofs either can be found in the literature (e.g. [2], [5], [16] and [20]) are well-known to the experts. Only the importance of such splittings may justify the publication of a unified approach.

The author is indepted to the referee and to F. Cohen for demanding more details to make the following pages more self-contained and readable.

1. The Configuration Spaces.

Let N be a smooth m-manifold, N_O a submanifold (closed as a subspace), and X a CW-complex with basepoint *. We denote by $C(N,N_O;X)$ the space of finite configurations of particles in N with parameters (or labels) in X, which are annihilated in N_O or for vanishing; more precisely, let $\widetilde{C}(N,k) = \{(z_1,\ldots,z_k) \in N^k \mid z_i \neq z_j \text{ for } i \neq j\}$ be the space of ordered (unlabeled) configurations of k points in N; then $C(N,N_O;X)$ is the quotient of $\coprod_{k=1}^{\infty} \widetilde{C}(N,k) \times X^k$ by the following identifications:

- (1.1) actions of the symmetric groups Υ_k $(z_1, \dots, z_k; x_1, \dots, x_k) \sim (z_{s(1)}, \dots, z_{s(k)}; x_{s(1)}, \dots, x_{s(k)}) \text{ for } s \in \Upsilon_k;$
- (1.2) annihilation of particles with parameter * $(z_1, \dots, z_k; x_1, \dots, x_k) \sim (z_1, \dots, z_{k-1}; x_1, \dots, x_{k-1}) \text{ if } x_k = *;$
- (1.3) annihilation of particles in N_O $(z_1, \dots, z_k; x_1, \dots, x_k) \sim (z_1, \dots, z_{k-1}; x_1, \dots, x_{k-1}) \text{ if } z_k \in \text{N}_O.$

Because of (a) we will write a configuration $\xi \in C = C(N,N_O;X)$ as a formal sum $\xi = \Sigma z_i x_i$ bearing in mind that C is a subspace of the infinite symmetric product $SP_{\infty}((N/N_O) \land X)$; then (1.2) and (1.3) can be re-

placed by: zx = 0 if x = * or $z \in N_O$, respectively, where O denotes the basepoint in C (which is represented by any $\xi = \Sigma z_i x_i$ such that for all i, $x_i = *$ or $z_i \in N_O$ holds).

Such configuration spaces have been extensively studied by Fadell-Neuwirth [8] for $N_O = \emptyset$ and $X = S^O$, by Mc Duff [16] for $N_O = \partial N$ and $X = S^O$, and by Cohen-Taylor [2] for $N_O = \emptyset$.

EXAMPLE 9. $C(\mathbb{R}^m; X) = C(\mathbb{R}^m, \emptyset; X)$ are the well known configuration spaces of May [13] and Segal [19]. $C(\mathbb{R}^1; X)$ is homotopy equivalent to the James construction [9].

The length k of a configuration $\xi = \sum_{i=1}^k z_i x_i$ induces a natural filtration of C by closed subspaces $C_k(N,N_0;X) = (\coprod_{i=1}^k \widetilde{C}(N,k) \times X^k)/\sim$. The inclusion $C_{k-1} \longrightarrow C_k$ is a cofibration, because $N_0 \longrightarrow N$ and $* \longrightarrow X$ are. C_0 consists of O only, and C_1 is $(N,N_0) \land X$.

If the pair (N,N_O) or X is connected then each particle z_i of a configuration ξ can be moved to N_O or its parameter x_i can be moved to *; therefore ξ can be moved to O, i.e. C is connected. If N is connected, N_O = \emptyset and X = S^O, then the strata $C_k - C_{k-1} = \widetilde{C}(N,k)/\gamma_k = C(N,k)$ of C = C(N) = C(N, \emptyset ; S^O) are the connected components of C.

So far we have not used that N is a manifold - indeed N might have been any space; in particular, $C(\mathbb{R}^{\infty};X)$ will be of importance to us (see Example 13 and Section 3).

EXAMPLE 10. The connected components of $C(\mathbb{R}^{\infty})$ are the classifying spaces of the symmetric groups; those of $C(\mathbb{R}^2)$ are the classifying spaces of Artin's braid groups.

Mathematicones Insului der Universität Bores EXAMPLE 11. C(D^m, 3D^m; X) is homotopy equivalent to S^mX, see [16; p. 95].

The construction C is a homotopy functor in X, but only an isotopy functor in (N,N_{\odot}) .

So, for example, the inclusion $N \to N$ induces a homotopy equivalence $C(N \to N, N_O \to N; X) \longrightarrow C(N, N_O; X)$. The excision property $C(N, N_O; X) \cong C(N \to U, N_O \to U; X)$ for $U \subset N_O$ and U open in N, and the product property $C(N, N_O; X) \cong C(N', N' \cap N_O; X) \times C(N'', N'' \cap N_O; X)$ for $N = N' \cup N''$ and $N' \cap N'' \subset N_O$ follow easily from the definition. The crucial property of C is contained in the following lemma.

Lemma.

<u>Let</u> $H \subset N$ <u>be</u> <u>an</u> m-<u>dimensional</u> <u>submanifold</u>. <u>Then</u> <u>the</u> <u>isotopy</u> <u>cofibration</u>

$$(\mathtt{H},\mathtt{H} \ \cap \ \mathtt{N}_{\scriptscriptstyle{O}}) \longrightarrow \ (\mathtt{N},\mathtt{N}_{\scriptscriptstyle{O}}) \stackrel{\mathtt{q}}{\longrightarrow} \ (\mathtt{N},\mathtt{H} \ \cup \ \mathtt{N}_{\scriptscriptstyle{O}})$$

induces a quasifibration

$$C(H,H \cap N_0;X) \longrightarrow C(N,N_0;X) \stackrel{Q}{\longrightarrow} C(N,H \cup N_0;X)$$

<u>Proof:</u> Except for the presence of a parameter space X the proof is that of [16; Proposition 3.1]; we list the various steps.

- (1) We filter the base space $B = C(N, H \cup N_O; X)$ by $B_k = C_k(N, H \cup N_O; X)$, and the total space $E = C(N, N_O; X)$ by $E_k = \Omega^{-1}(B_k)$, and we denote the fibre by $F = C(H, H \cap N_O; X)$.
- (2) Observe that for each k there is homeomorphism ${}^h{}_k: {}^E{}_k {}^{\setminus}{}^E{}_{k-1} \stackrel{\cong}{=} ({}^B{}_k {}^{\setminus}{}^B{}_{k-1}) \times F \quad \text{over} \quad {}^B{}_k {}^{\setminus}{}^B{}_{k-1} \; .$
- (3) A tubular neighbourhood U of H defines for each k a neighbourhood U_k of B_k in B_{k+1} , and an isotopy retraction $r:U\to H$ induces

retractions $r_k: U_k \to B_k$, and retractions $\bar{r}_k: Q^{-1}(U_k) \to Q^{-1}(B_k) = E_k$ lying over r_k .

(4) For every $b \in U_{\nu}$ the induced map

$$F \stackrel{\cong}{\longleftarrow} \Omega^{-1}(b) \stackrel{\cong}{\longrightarrow} \Omega^{-1}(r_{k}(b)) \stackrel{\cong}{\longrightarrow} F$$

$$h_{k+1} | \bar{r}_{k} | h_{k} |$$

is a homotopy equivalence (precisely because (H,H \cap ${\rm N}_{_{\mbox{\scriptsize O}}})$ or X is connected).

It follows from the Dold-Thom criterion [8; 2.10, 2.15, 5.2] that Q is a quasifibration. \square

2. The Section Spaces

The space $C(N,N_0;X)$ is under certain connectivity conditions equivalent to the space of sections of a certain bundle with fibre S^mX , and whence sometimes equivalent to a space of maps into S^mX . To make this precise let W be any smooth m-manifold without boundary which contains N (for example, W = N if $\partial N = \emptyset$, or W = N U ($\partial N \times [0,1[$) otherwise); if $\widehat{T}(W)$ denotes the fibrewise compactification of the tangent bundle T(W) of W, then define $\widehat{T}(W;X) = \widehat{T}(W) \wedge X$ to be fibrewise smash product of $\widehat{T}(W)$ and X; this is a new bundle $\widehat{\tau}: \widehat{T}(W;X) \longrightarrow W$ with fibre S^mX .

The inclusion of the basepoint into each fibre yields a section g_{∞} of $\hat{\tau}$. For $A_O \subset A \subset W$ let $\Gamma(A,A_O;X)$ denote the space of sections of $\hat{\tau}$ which are defined on A and agree with g_{∞} on A_O ; it is equipped with the (compactly generated topology induced by the) compact-open topology. (For example, if $X = S^O$ then $\hat{T}(W,S^O) = \hat{T}(W)$ and the sections are the vector fields with possible poles.)

The main theorem about configuration spaces on manifolds is the following duality.

PROPOSITION 2.

For compact N there is a map γ : $C(N,N_o;X) \longrightarrow \Gamma(W \setminus N_o,W \setminus N;X)$, which is a (weak) homotopy equivalence provided (N,N_o) or X is connected.

<u>Proof:</u> The proof is essentially contained in Mc Duff [16; Theorem 1.4] or [15]. For convenience we indicate the various steps.

- (1) Following ideas of Gromov the map γ is defined as in [16; p. 95], or as in [15; p. 90] using Example 11, we have $\gamma(0) = g_{\infty}$.
- (2) We start to prove the assertion with the case of (N,N_0) being a handle $(\mathbb{D}^m, \mathbb{D}^k \times S^{m-k-1})$ of index k. First, the assertion is true for k=0 by Example 11. Consider for $k=1,2,\ldots,m$ in $I^k=[0,1]^m$ the subspace I_k^m of all $y=(y^1,\ldots,y^m)$ such that $y^1=0$ or $y^1=1$ for some $i=k+1,\ldots,m$, or $y^k=1$; set $H^k=[0,1]^{k-1}\times[0,\frac{1}{2}]\times[0,1]^{m-k}$. In the sequence
- (3) $(H_k, H_k \cap I_k^m) \longrightarrow (I^m, I_k^m) \longrightarrow (I^m, H_k \cup I_k^m)$ the left hand pair is a handle of index k, the right hand pair is a handle of index k-1. We apply C(;X) to (3) and obtain by the above lemma a quasifibration for $k = 1, \ldots, m-1$ if X is arbitrary, and in addition for k = m if X is arbitrary, and in addition for k = m if X is connected. We apply $\Gamma(;X)$ to the complements in $W = \mathbb{R}^m$ of (3) and obtain a fibration; γ maps the quasifibration to the fibration. Notice that both total spaces are contractible. Hence we conclude by induction the assertion for all handles of index $k = 0, 1, \ldots, m-1$ if X is arbitrary, and in addition for the handle of index m if X is connected.
- (4) For the case (N, ∂ N) choose a handle decomposition of N, and if (N, ∂ N) is connected choose one without handles of index m. Attaching a new handle gives a quasifibration for C and a fibration for Γ , γ mapping

- one to the other. Induction on the number of handles proves the assertion for $(N,\partial N)$.
- (5) For the case (N,N_O) with $N_O \subset \partial N$ we choose a complementary submanifold $L \subset \partial N$, i.e. $L \cup N_O = \partial N$ and $L \cap N_O = \partial L = \partial N_O$. We attach a closed collar to N, $\overline{N} = N \cup (N \times [0,1])$, and consider the sequence
- (6) $(\bar{L}, \bar{L} \cap \bar{N}_{O}) \longrightarrow (\bar{N}, \bar{N}_{O}) \longrightarrow (\bar{N}, \bar{L} \cup \bar{N}_{O})$ with $\bar{L} = L \times [0,1]$ and $\bar{N}_{O} = N_{O} \times [0,1]$. The assertion is true for the right hand pair by (4) since $(\bar{N}, \bar{L} \cup \bar{N}_{O}) = (\bar{N}, \partial \bar{N}) \cong (N, \partial N)$. As before, the assertion will follow for $(\bar{N}, \bar{N}_{O}) \cong (N, N_{O})$ if we can prove it for $(\bar{L}, \bar{L} \cap \bar{N}_{O}) = (\bar{L}, \partial \bar{L}) = (L, \partial L) \times [0,1]$.
- (7) For this case we use the sequence
- (8) $(L,\partial L) \times [0,1] \rightarrow (L,\partial L) \times ([0,2],\{2\}) \rightarrow (L \times [0,2],\partial (L \times [0,2]))$. The assertion is true for the right hand pair by (4); it is true for the middle pair, since this gives contractible spaces. Hence the assertion follows for the left hand pair.
- (9) For the case of an arbitrary submanifold $N_{\rm O} \subset N$ we replace $N_{\rm O}$ by closed tubular neighbourhood and then remove the interior of this neighbourhood. By isotopy invariance and excision property both manipulations leave the homotopy type of C unaltered. But now we are in case (5). \square

EXAMPLE 12. (Example 8 continued). Under the assumptions of Proposition 1 set N = M \sim M and N = ∂ M \sim M, and W = M U (∂ M \times [0,1[) if ∂ M \neq Ø, or W = M if ∂ M = Ø. As a corollary we have

$$\begin{split} \mathsf{C}(\mathsf{M} \smallsetminus \mathsf{M}_{\mathsf{O}}, \vartheta \mathsf{M} \smallsetminus \mathsf{M}_{\mathsf{O}}; \mathsf{X}) &\simeq \Gamma(\mathsf{W} \smallsetminus (\vartheta \mathsf{M} \smallsetminus \mathsf{M}_{\mathsf{O}}), \mathsf{W} \smallsetminus (\mathsf{M} \smallsetminus \mathsf{M}_{\mathsf{O}}); \mathsf{X}) \text{ by Proposition } \sharp \mathcal{Z} \\ &= \Gamma(\mathsf{W} \smallsetminus \vartheta \mathsf{M}) \cup \mathsf{M}_{\mathsf{O}}, (\mathsf{W} \smallsetminus \mathsf{M}) \cup \mathsf{M}_{\mathsf{O}}; \mathsf{X}) \\ &= \Gamma(\mathsf{M} \smallsetminus \vartheta \mathsf{M}, \mathsf{M}_{\mathsf{O}} \smallsetminus \vartheta \mathsf{M}; \mathsf{X}) \text{ by excision} \\ &\simeq \Gamma(\mathsf{M}, \mathsf{M}_{\mathsf{O}}; \mathsf{X}) \text{ by extension over } \vartheta \mathsf{M} \\ &\cong \mathsf{map}(\mathsf{M}, \mathsf{M}_{\mathsf{O}}; \mathsf{S}^{\mathsf{m}} \mathsf{X}) \text{ by parallelizability} \\ &\simeq \mathsf{map}(\mathsf{K}, \mathsf{K}_{\mathsf{O}}; \mathsf{S}^{\mathsf{m}} \mathsf{X}) , \end{split}$$

where we should replace M_{O} by an open tubular neighbourhood to ensure compactness of $\mathrm{M} \smallsetminus \mathrm{M}_{\mathrm{O}}$.

EXAMPLE 13 (Example 2, 9 and 10 continued). If $N = \mathbb{D}^m$, $N_0 = \emptyset$ and $W = \mathbb{R}^m$, then γ is the well-known approximation $C(\mathbb{R}^m;X) \simeq C(\mathbb{D}^m;X) \longrightarrow \max(\mathbb{R}^m,\mathbb{R}^m \setminus \mathbb{D}^m;S^mX) \simeq \Omega^m S^m X$ of May [13] and Segal [19]. Passing to the limit over m yields $\gamma^{\infty}: C(\mathbb{R}^m;X) \longrightarrow \Omega^{\infty} S^{\infty} X = (X)$. See also Vogel [21].

Remark 1. For $C(M \setminus M_O, \partial M \setminus M_O; X)$ to be a model for map $(K, K_O; S^M X)$ it is obviously enough that (M, M_O) is relatively compact and relatively parallelizable; but more important is that X need not be connected if $(M \setminus M_O, \partial M \setminus M_O)$ happens to be connected, see e.g. Example 5. In general, γ approximates the homology of the section space, see [16]; so in case $\partial N \neq \emptyset$, γ is a completion of homology modules over $H_*(\Omega map(\partial N; S^M X))$. An interesting example is $C(\mathbb{RP}^M)$, since $\Gamma(\mathbb{RP}^M) = \Gamma(\mathbb{RP}^M; S^O)$ is the space of self-maps of S^M which are equivariant with respect to the antipodal action.

3. The Stable Splittings.

In [20] Snaith has obtained a stable splitting of $\Omega^m S^m X$ using the models $C(\mathbb{R}^m;X)$. Since then several authors have given very elegant proofs of this result, see F. Cohen [5], R. Cohen [6], Cohen-May-Taylor [3], May-Taylor [14], Vogt [22]. Our construction of a stable splitting of $C = C(N,N_0;X)$ is almost verbatim taken from [5].

Let $D_k = D_k(N, N_0; X)$ denote the filtration quotients C_k/C_{k-1} and consider the bouquet $V = V(N, N_0; X) = \bigvee_{k=1}^{\infty} D_k$ with the filtration given by $V_k = \bigvee_{j=1}^{k} D_j$.

Next we define the "power set map" P : C \longrightarrow C(\mathbb{R}^{∞} ; V). Take some

 $\xi = \frac{\tau}{i} \ z_i x_i \in C \ \text{and a (non-empty) subset} \ \alpha = \{i_1, \dots, i_k\} \ \text{of the index}$ set $I(\xi)$ of ξ . Define Z_α to be the (unlabeled) configuration $\frac{k}{\alpha} = \sum_{j=1}^{K} Z_j \ \text{consisting of all } z_j \ \text{in } \xi \ \text{such that } i \in \alpha; \ Z_\alpha \ \text{is in}$ $\widetilde{C}(N,k)/\Sigma_k = C(N,k) \ \text{which is an km-manifold; we choose an embedding of }$ their disjoint union $C(N) = \prod_{k=1}^{K} C(N,k) \ \text{into } \mathbb{R}^\infty, \ \text{and let } \overline{Z}_\alpha \in \mathbb{R}^\infty \ \text{denote}$ the image of Z_α under this embedding. Correspondingly, define ξ_α to be the subconfiguration $\xi_\alpha = \sum_{k=1}^{K} z_i x_j \ \text{of } \xi \ \text{consisting of all labeled}$ particles $z_i x_i \ \text{of } \xi \ \text{such that } i \in \alpha; \ \xi_\alpha \ \text{is in } C_k = C_k(N,N_0;X); \ \text{using}$ the quotient map $C_k \longrightarrow D_k \ \text{and the inclusion } D_k \longrightarrow V \ \text{we let } \overline{\xi}_\alpha \in V$ denote the image of $\xi_\alpha \ \text{under the composition of these two maps. Finally, we define <math>P(\xi) = \sum_{\alpha} \overline{Z}_\alpha \overline{\xi}_\alpha \ \text{in } C(\mathbb{R}^\infty;V) \ \text{where the sum is over all subsets of } I(\xi).$

Notice that the \overline{Z}_{α} are mutually different since two of the same length k have already different Z_{α} in C(N,k), and the various C(N,k) are disjointly embedded into \mathbb{R}^{∞} . P is continous since it is well-defined: (1.1) is respected because a permutation of $I(\xi)$ only permutes the new indices α ; (1.2) and (1.3) are respected because if $Z_{1} \in N_{0}$ or $X_{1} = *$, then, for any α such that $i \in \alpha$, $\overline{\xi}_{\alpha}$ is the basepoint in D_{k} and in V, hence $\overline{Z}_{\alpha}\overline{\xi}_{\alpha} = 0$ in $C(\mathbb{R}^{\infty};V)$.

Now let $\sigma: S^{\infty}C \longrightarrow S^{\infty}V$ denote the adjoint of the composition $\gamma^{\infty} \circ P: C \longrightarrow C(\mathbb{R}^{\infty}; V) \longrightarrow Q(V) = \Omega^{\infty}S^{\infty}V$ with γ^{∞} as in Example 13.

PROPOSITION 3.

 $\sigma \text{ \underline{is} \underline{a} \underline{stable} \underline{equivalence} } C(N,N_0;X) \longrightarrow \bigvee_{k=1}^{\infty} D_k(N,N_0;X) \underline{for} \underline{any} (N,N_0)$ and X.

 $\underline{\text{Proof:}}\ \sigma$ obviously preserves the filtration and we have a commutative lower square in the diagram

whereas the upper square is only homotopy commutative. Since the vertical sequences are cofibrations and since $C_1 = V_1$ the assertion follows by induction on k. \square

<u>Proof of Proposition 1</u> (Example 7 and 11 continued). The stable splitting of map(K,K_o;S^mX) now follows from that of $C(M \setminus M_o, \partial M \setminus M_o; X)$. The spaces \mathcal{D}_k are $D_k(M \setminus M_o, \partial M \setminus M_o; X)$, in particular we have $\mathcal{D}_1 = C_1(M \setminus M_o, \partial M \setminus M_o; X) = (M \setminus M_o, \partial M \setminus M_o) \wedge X$.

EXAMPLE 14 (Example 2, 8 and 12 continued). The splitting we obtain for $K = M = \mathbb{D}^{m}$ and $K_{O} = M_{O} = \partial \mathbb{D}^{m}$ is the Snaith splitting of [20].

Remark 2. In the proof of Proposition 3 we did not use that N is a manifold; the proof covers also the case of $C(\mathbb{R}^\infty;X)$ which is equivalent to $\Omega^\infty S^\infty X$ if X is connected. A stable splitting of $\Omega^\infty S^\infty X$ was first obtained by Kahn, see [1], [10], [11] and [12]. Furthermore, we did not use that (N,N_0) or X is connected. This and Remark 1 shows that Proposition 1 is more generally true than stated, see e.g. Example 5.

Remark 3. A splitting of SQSX is achieved by refining the power set map to a map $P: C = C(\mathbb{R}; X) \longrightarrow C(\mathbb{R}; V(\mathbb{R}; X))$; the order of the particles z_i on the real line induces a lexicographic order of the sets α , and the hereby induced order of the Z_{α} is used to define particles \overline{Z}_{α} in \mathbb{R} instead of \mathbb{R}^{∞} .

4. Naturality and Homology.

Assume we have two situations as in the introduction, a map $f: (K,K_{O}) \longrightarrow (K',K'_{O}) \text{ together with an embedding}$ $F: (M,M_{O}) \longrightarrow (M',M'_{O}) \text{ making the obvious diagram commutative, } m=m'$ and X=X'. Then f induces $f^*: map(K',K'_{O};S^{M}X) \longrightarrow map(K,K_{O};S^{M}X)$, while $F \text{ induces } F^*: C(M' \setminus M'_{O},\partial M \setminus M'_{O};X) \longrightarrow C(M \setminus M_{O},\partial M \setminus M_{O};X) \text{ and}$ $F_{K}^*: D_{K}(M' \setminus M'_{O},\partial M' \setminus M'_{O};X) \longrightarrow D_{K}(M \setminus M_{O},\partial M \setminus M'_{O};X). \text{ The approximation map } \gamma \text{ of Proposition 2 and the splitting map } \sigma \text{ of Proposition 3 commute with these induced maps.}$

Examples for such maps f are the inclusions $K_{0} \longrightarrow K$ and $K \longrightarrow (K,K_{0})$, the inclusion of a bottom cell of K and the pinch map onto a top cell of K.

 γ and σ are natural with respect to the suspension $\max(K, K_O; S^m X) \longrightarrow \max(S(K, K_O); S^{m+1} X), \text{ which for C and V is induced by the equatorial inclusion } (M, M_O) \longrightarrow (M, M_O) \times ([0,1], \{0,1\}).$

An analysis of the splitting map σ reveals that each of the spaces \mathcal{D}_k is already after a finite number of suspensions a retract of C. An upper bound for the smallest number is given by the embedding dimension of C(N,k). In our standard situation of Example 7 we have $N=M \setminus M_O$ as a submanifold of \mathbb{R}^m , so $\mathcal{D}_1 = (M \setminus M_O, \partial M \setminus M_O) \wedge X$ is a retract of $map(K,K_O;S^mX)$ after at most m suspensions.

The (stable) projection onto this first summand $s^{m}_{\text{map}}(K,K_{o};s^{m}_{X}) \simeq s^{m}_{C} \longrightarrow s^{m}_{0} \mathcal{D}_{1} = s^{m}_{0}(M \setminus M_{o},\partial M \setminus M_{o}) \wedge X \text{ induces the homology slant product } H_{\underline{q}}(\text{map}(K,K_{o};s^{m}_{X})) \longrightarrow \bigoplus_{j} H^{j-\underline{q}}(K,K_{o};H_{j-m}(X)).$

For $X = S^O$ this homomorphism has been proved by Moore [18] to be an isomorphism if $q < 2(m-H \dim(K,K_O))$ which is twice the connectivity

of the mapping space.

Studying the spaces \mathcal{Q}_k (which are Thom spaces for X a sphere) is a possible approach to the homology of the mapping spaces; we will return to this in a further article.

References.

- [1] M. Barratt and P. Eccles: Γ^+ -structures-III: the stable structure of $\Omega^\infty S^\infty A$. Topology 13 (1974), 199 207.
- [2] F. Cohen and L. Taylor: Computations of Gelfand-Fuks cohomology, the cohomology of function spaces and the cohomology of configuration spaces. Geometric Applications of Homotopy Theory I (Evanston 1977), Springer LNM 657, 106 - 143.
- [3] F. Cohen, P. May and L. Taylor: Splitting of certain spaces CX. Math. Proc. Cambridge Phil. Soc. 84 (1978), 465 496.
- [4] F. Cohen, P. May and L. Taylor: Splitting of some more spaces.
 Math. Proc. Cambridge Phil. Soc. 86 (1979), 227 236.
- [5] F. Cohen: The unstable decomposition of $\Omega^2 s^2 x$ and its applications. Math. Z. 182 (1983), 553 568.
- [6] R. Cohen: Stable proofs of stable splittings. Math. Proc. Cambridge Phil. Soc. 88 (1980), 149 - 151.
- [7] A. Dold und R. Thom: Quasifaserungen und unendliche symmetrische Produkte. Ann. of Math. 67 (1958), 239 281.
- [8] E. Fadell and L. Neuwirth: Configuration spaces. Math. Scand. 10 (1962), 119 126.
- [9] I. James: Reduced product spaces. Annals of Math. 62 (1955), 170 - 197.
- [10] D. Kahn and S. Priddy: Applications of the transfer to stable homotopy theory. Bull. Math. Soc. 78 (1972), 981 987.
- [11] D. Kahn: On the stable decomposition of $\Omega^{\infty}S^{\infty}A$. Geometric Applications of Homotopy Theory II (Evanston 1977), Springer LNM 658, 206 214.
- [12] D. Kahn and S. Priddy: The transfer and stable homotopy theory. Math. Proc. Cambridge Phil. Soc. 83 (1978), 103 - 112.

- [13] P. May: The Geometry of Iterated Loop Spaces. Springer LNM 271 (1972).
- [14] P. May and L. Taylor: Generalized splitting theorem. Math. Proc. Cambridge Phil. Soc. 93 (1983), 73 86.
- [15] D. Mc Duff: Configuration spaces. K-Theory and Operator Algebras (Athens, Georgia, 1975), Springer LNM 575, 88 95.
- [16] D. Mc Duff: Configuration spaces of positive and negative particles. Topology 14 (1975), 91 107.
- [17] J. Milnor: On the construction FK. Lecture Notes Princeton University 1956, repr. in J. F. Adams: Algebraic Topology a Student's Guide. London Math. Soc. Lect. Notes Ser. 4 (1972), 119 136.
- [18] J. Moore: On a theorem of Borsuk. Fund. Math. 43 (1956),
- [19] G. Segal: Configuration spaces and iterated loop-spaces. Invent. Math. 21 (1973), 213 221.
- [20] V. Snaith: A stable decomposition of $\Omega^n S^n X$. J. London Math. Soc. 7 (1974), 577 583.
- [21] P. Vogel: Cobordisme d'immersions. Ann. Scient. Ec. Norm. Sup. 7 317 358.
- [22] R. Vogt: Splittings of spaces CX. Manuscr. Math. 38 (1982), 21 - 39.

Sonderforschungsbereich 170 "Geometrie und Analysis" Bunsenstraße 3/5

3400 Göttingen, BRD

Added in proof:

R. Cohen has independently found a model and a stable splitting for ΛSX (see his "A Model for the Free Loop Space of a Suspension", to appear).