STABLE SPLITTINGS OF MAPPING SPACES

C.-F. B6digheimer

0. Introduction.

In this note we elaborate on two observations concerning configuration
spaces; they will lead to a stable splitting of certain mapping spaces

into infinite bouquets of simpler spaces.

Let K be a finite complex, Ko a subcomplex, and X a connected CW-complex.
Then choose a smooth, compact and parallelizable m-manifold M with a
submanifold Mo such that the pairs (K,Ko) and (M,Mo) are hqmotopy equi-
valent. For the space map(K,KO;SmX) of based maps from K/Ko to s™X we

prove

PROPOSITION 1.

There is a stable equivalence

=~
m
map(K,Ko,S X) : >=/1°Ok :

the spaces &)k depend on M,Mo and X, in particular 431 = (M\MO,EM\MO)AX-
Several special cases of this proposition are well-known.

EXAMPLE 1. K =M = [0,1], K = Mo = {0,1}.

The proposition gives a splitting of the suspension spectrum sTqasx; a

refinement of the proof would yield the splitting of SQSX found by

Milnor [17], see Remark 3.
m

EXAMPLE 2. K =M=D , K_=M_= 3D

m
(o] [¢] .

This is the stable splitting of Q™s™X found by Snaith [20].
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EXAMPLE 3. K=M=S8, KO = MO = @.

A stable splitting of the free loop space ASX of SX has recently been

obtained by Goodwillie (unpublished).

m

n-1
m =M =5 x {0,1}.

EXAMPLE 4. K = M = s™ ' x [0,1], K

This example gives a stable splitting of ﬁmsmx, the space of maps

£ : S"— s™X such that f(so)'= f(—so) = %, where s2 and * are the

basepoints; it is particularly interesting for Z/2- and S1—equivariant

homotopy theory, (N.B. o s™x = Q™s™x x as"x.)

EXAMPLE 5. K =D, K, = ", M =D"x[0,1], M_ = " x [0,1].

In this case we obtain - also for non-connected X - a stable splitting

of Qmsm+1x; it is different but equivalent to the corresponding one re-

placing X by SX in Example 2.
EXAMPLE 6. K =M = G a compact Lie group of dimension m, K

o~ Mo = g.

Here the mapping space is the space of all unbased maps from G to s™x.

EXAMPLE 7. K = point, K = ¢, M=D , M = Q.

We have map(K,Ko;SmX) =g = O , all other &)  are contractible.

1 k

EXAMPLE 8. 1In general one can choose an embedding K c:mm of K, a regqu-
lar neighbourhood M, a submanifold Mo with KO < MO and a deformation

retraction of pairs r (M,Mo) — (K,Ko). Hence map(K,KO;SmX) always

t
stably splits into a bouquet, if m is at least the embedding dimension

of K.

Such splittings are usually obtaiend by splitting appropriate confiqu-
ration space models for the mapping spaces. In Section 1 we will define
these models. In Section 2 we observe that (under certain connectivity

assumptions) they are equivalent to mapping spaces. In Section 3 we ob-




176

serve that these models split stably, and we conclude Proposition 1. In

Section 4 we list some properties of the splittings.

We do not claim any originality, In fact, all the constructions and
proofs either can be found in the literature (e.g. [2], [5], [16] and
[20]) are well-known to the experts. Only the importance of such

splittings may justify the publication of a unified approach.
The author is indepted to the referee and to F., Cohen for demanding
more details to make the following pages more self-contained and read-

able.

1. The Configuration Spaces.

Let N be a smooth m-manifold, No a submanifold (closed as a subspace),
and X a CW-complex with basepoint *. We denote by C(N,NO;X) the space
of finite configurations of particles in N with parameters (or labels)
in X, which are annihilated in No or for vanishing; more precisely, let
T(N,k) = {((zy,00002) € N< lzi * zy for i # j} be the space of ordered

(unlabeled) confiqurations of k points in N; then C(N,NO;X) is the quo-

-]
tient of 1L T(N,k) x XX by the following identifications:
k=1

(1.1) actions of the symmetric groups Yy

(z1,...,zk;x1,...,xk)~«(28(1),...,zs(k);xs(1),...,xs(k)) for s €Y, ;
(1.2) annihilation of particles with parameter %

(ZgreeerZyixqreea,x)) ~(Zgreearzy qiXgsee Xy g) 1 X = %
(1.3) annihilation of particles in N

(21,-o-,zk;x1,...,xk) ~(Z.I,-..,Zk_17X1,...,Xk_1) 1f zk € No-

Because of (a) we will write a configuration E €C = C(N,NO;X) as a
formal sum £ = Zzixi bearing in mind that C is a subspace of the infi-

nite symmetric product SPm((N/NO) AX); then (1.2) and (1.3) can be re-
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placed by: zx = 0 if x = % or z € N, respectively, where O denotes the
basepoint in C (which is represented by any & = Zzixi such that for

all i, x, = * or 2z, € N_ holds).
i i o

Such configuration spaces have been extensively studied by Fadell-
Neuwirth [8] for N, =@ and X = s®, by Mc Duff [16] for N, = 3N and

X = 8°, and by Cohen-Taylor [2] for N, = ?.

EXAMPLE 9. CGRm;X) = CORm,¢;X) are the well known configuration spaces
of May [13] and Segal [19]. CGR1;X) is'homotopy equivalent to the

James construction [9].

k

The length k of a configuration £ = X z Xy induces a natural fil-
i=1 k

tration of C by closed subspaces Ck(N,NO;X) = (1 C(N,k) xxk)/~. The

i=1
inclusion Ck_1-—» Ck is a cofibration, because No — N and * — X

are. Co consists of O only, and (o is (N,No) AX.

If the pair (N,No) or X is connected then each particle zy of a confi-

guration £ can be moved to No or its parameter X; can be moved to *;

therefore £ can be moved to O, i.e. C is connected. If N is connected,

N =@ and X = So, then the strata C

o = B(N,k) /v, = C(N,k) of

x ~ Cx-1
C = C(N) = C(N,8;5°) are the connected components of C.

So far we have not used that N is a manifold - indeed N might have been
any space; in particular, CMR™;X) will be of importance to us (see

Example 13 and Section 3).

EXAMPLE 10. The connected components of C(R”) are the classifying spaces
of the symmetric groups; those of CGR2) are the classifying spaces of

Artin's praid groups.
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EXAMPLE 11. c(@",aD ;X) is homotopy equivalent to SmX, see [16; p, 95].

The construction C is a homotopy functor in X, but only an isotopy

functor in (N,No).

So, for example, the inclusion NN3N — N induces a homotopy equiva-~
lence C(N"\aN,No'\aN;X)-—~ C(N,NO;X). The excision property

C(N,N°7X) = C(N‘\U,No*xU;X) for U < N, and U open in N, and the product
property C(N,N_;X) = C(N',N' NN_;X) x C(N",N"NN_;X) for N = N' UN" and
N' AN" < No follow easily from the definition. The crucial property of

C is contained in the following lemma.

Lemma.

Let H c N be an m-dimensional submanifold. Then the isotopy cofibration

q
(H)H N N) — (N.,No) — (N,H U N)

induces a quasifibration

Q
C(H,H n NgiX) — C(N,NO;X) — C(N,H U NO:X)

provided (H,H n No) or X is connected.

Proof: Except for the presence of a parameter space X the proof is that

of [16; Proposition 3.1]; we list the various steps.

(1) We filter the base space B = C(N,HUN_;X) by B = C (N,HUN_;X), and
the total space E = C(N,NO;X) by E, = Q-1(Bk), and we denote the
fibre by F = C(H,Hr1N0;X).

(2) Observe that for each k there is homeomorphism

h + E.NE _, = (By ~By_4) xF over By ~By, 4 -

(3) A tubular neighbourhood U of H defines for each k a neighbourhood

Uk of By in Bk+1' and an isotopy retraction r : U - H induces
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retractions r, U = By, and retractions
-1

= ~1 _ .
re + Q (Uk) - 0 (Bk) = B lying over r .

(4) For every b € U, the induced map

k

e 07" (x, (b))

F F

2l

By k| kl

is a homotopy equivalence (precisely because (H,H N No) or X is
connected) .
It follows from the Dold-Thom criterion [8 ; 2.10, 2.15, 5.2] that Q is

a quasifibration. o

2. The Section Spaces

The space C(N,NO;X) is under certain connectivity conditions equivalent
to the space of sections of a certain bundle with fibre SmX, and whence
sometimes equivalent to a space of maps into s™X. To make this precise
let W be any smooth m-manifold without boundary which contains N (fér
example, W =N if 3N = @, or W = N U (3N x [0,1[) otherwise); if %(W) de-
notes the fibrewise compactification of the tangent bundle T (W) of W,

then define T(W;X) = T(W) A X to be fibrewise smash product of T(W) and
T

X; this is a new bundle T : T(W;X) — W with fibre Smx.

The inclusion of the basepoint into each fibre yields a section g, of ;.
For Ao < AcW let P(A,AO;X) denote the space of sections of ; which
are defined on A and agree with g, on Ao; it is equipped with the (com-
pactly generated topology induced by the) compact-open topology. (For

o

~ ~
example, if X = S~ then T(W,SO) = T(W) and the sections are the vector

fields with possible poles.)
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The main theorem about configuration spaces on manifolds is the follow-

ing duality.

PROPOSITION 2.

For compact N there is amap v : C(N,NO;X)-—» F(w-NO,W~\N;X), which

is a (weak) homotopy equivalence provided (N,NJ) or X is connected.

Proof: The proof is essentially contained in Mc Duff [16 ; Theorem 1.4]

or [15]. For convenience we indicate the various steps.

(1)

(2)

(3)

(4)

Following ideas of Gromov the map v is defined as in [16; p. 95],

or as in [15; p. 90] using Example 11, we have v (0) = 9.

We start to prove the assertion with the case of (N,No) being a
handle an Dk xsm—k_1) of index k. First, the assertion is true
for k = 0 by Example 11. Consider for k = 122540 ;0 in X = [o,11™
the subspace Iﬂ of all y = (yi,...,ym) such that yi = 0 or yi =1
for some i = k+1,...,m, or yk = 1; set B - [O,1]k_1XIO,%]X[O,1]m-k.

In the sequence

(Hy H N Ii)-—* (Im,IQ)-—* (Im,Hk u IE) the left hand pair is a
handle of index k, the right hand pair is a handle of index k-1. We
apply C( ;X) to (3) and obtain by the above lemma a quasifibration
for k = 1,...,m-1 if X is arbitrary, and in addition for k = m if X
is arbitrary, and in addition for k = m if X is connected. We apply
I'( ;X) to the complements in W =R" of (3) and obtain a fibration;
Y maps the quasifibration to the fibration. Notice that both total
Spaces are contractible. Hence we conclude by induction the asser-
tion for all handles of index k = 0,1,...,m=1 if X is arbitrary,

and in addition for the handle of index m if X is connected.

For the case (N,3N) choose a handle decomposition of N, and if (N,5N)
is connected choose one without handles of index m. Attaching a new

handle gives a quasifibration for C and a fibration for I', y mapping
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(6)

(7)

(8)

(9)
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one to the other. Induction on the number of handles proves the

assertion for (N,9N).

For the case (N’No) with No < 9N we choose a complementary submani-
fold L =« 3N, i.e. L U NO = 93N and L N NO = 3L = aNo. We attach a

closed collar to N, N=NU (Nx[0,1]), and consider the sequence

(L,LNN)— (NN)— (N,L U N)) with L =1Lx[0,1] and
ﬁo = N° x [0,1]. The assertion is true for the right hand pair by
(4) since (N,L U ﬁo) = (N,3N)

ne

(N,dN). As before, the assertion
will follow for (ﬁ,ﬁo) = (N,No) if we can prove it for

(L,L n NO) = (L,3L) = (L,53L) x [0,1].

For this case we use the sequence

(LIBL) x [011] —=b! (L,BL) x ([01211{2}) = (L x [OIZ]IB(L x [012]))0
The assertion is true for the right hand pair by (4); it is true
for the middle pair, since this gives contractible spaces. Hence

the assertion follows for the left hand pair.

For the case of an arbitrary submanifold NO c N we replace No by
closed tubular neighbourhood and then remove the interior of this
neighbourhood. By isotopy invariance and excision property both

manipulations leave the homotopy type of C unaltered. But now we

are in case (5). o

EXAMPLE 12. (Example 8 continued). Under the assumptions of Proposition

1 set N = M\M0 and No = 8M~\MO, and W =M U (M x [0,1[) if 3M *# @, or

W

M if 3M = . As a corollary we have

C(M‘\MO,BM*\MO;X) o~ F(W~\(3M~\Mo),W*\(M~\MO)3X) by Proposition 12

= T(W~3M) U MO,(W~\M) V] MO;X)
= T(M*\aM,MO"\BM;X) by excision
~ F(M,MO;X) by extension over 35M

map(M,MO;SmX) by parallelizability
o map(K,KO;SmX) ’
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where we should replace Mo by an open tubular neighbourhood to ensure
compactness of M"\Mo.

EXAMPLE 13 (Example 2, 9 and 10 continued), If N =:Dm, N, = @ and

w =2Rm, then v is the well-known approximation

C®™:X) ~ CO";X) — map®R", R"~D™;s™%) ~ o"s™X of May [13] and Segal
[19]. Passing to the limit over m yields v~ : CR™;X) — 0%s™x = (X).

See also Vogel [21].

Remark 1. For C(M*~M°,3M-M°;X) to be a model for map(K,Ko;Smx) it is
obviously enough that (M,MO) is relatively compact and relatively pa-
rallelizable; but more important is that X need not be connected if
(M~\M0,8M~fMo) happens to be connected, see e.g. Example 5. In general,
Y approximates the homology of the section space, see [16]; so in case
N # @, vy is a completion of homology modules over H*(SImap(aN;SmX)).
An interesting example is CORPm), since FGRPm) = FGRPm;So) is the space
of self-maps of s™ which are equivariant with respect to the antipodal

action.

3. The Stable Splittings.

In [20] Snaith has obtained a stable splitting of Q™s™x using the mo-
dels C(R™;X). Since then several authors have given very elegant proofs
of this result, see F. Cohen [5], R. Cohen [6], Cohen-May-Taylor [3],
May-Taylor [14], Vogt [22]. oOur construction of a stable splitting of

C = C(N,NO;X) is almost verbatim taken from [5].

Let D = Dk(N,NO;X) denote the filtration quotients Ck/Ck—1 and consi-

-]

der the bouquet V = V(N,NO;X) = \V/ Dk with the filtration given by

kZ1
v, = \V/ D

Next we define the "power set map" P : ¢ — Caﬁm;v). Take some
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E = § z;X, €C and a (non-empty) subset o = {11,...,ik} of the index

set I(£) of £. Define Za to be the (unlabeled) configuration
k

Z = I Z

o consisting of all z; in £ such that i € a; Za is in

. b igh
j=1 ]
E(N,k)/zk = C(N,k) which is an km~manifold; we choose an embedding of

their disjoint union C(N) = 1L C(N,k) into‘m?, and let Ea € R* denote
k=1
the image of Za under this embedding. Correspondingly, define Ea to be
k
the subconfiguration Ea = I zy x5 of £ consisting of all labeled
j=1 373

particles z X, of £ such that i € a; Eq is in Ck = Ck(N,NO;X); using

the quotient map C, — D, and the inclusion D, — V we let { € V

denote the image of Ea under the composition of these two maps. Final~

ly, we define P(£) = X Eagd in Caﬁm;V) where the sum is over all sube~
o

sets of I(g).

Notice that the Eu are mutually different since two of the same length
k have already different Zq in C(N,k), and the various C(N,k) are dis-
jointly embedded into R. P is continous since it is well-defined: (1.1)
is respected because a permutation of I(f) only permutes the new indices

a; (1.2) and (1.3) are respected because if z,

i € NO or xi = x, then,

for any a such that i € a, Ea is the basepoint in Dk and in V, hence
E, = 0 in CR™:V).

Now let ¢ : S°C — SV denote the adjoint of the composition

Y oP : C — CGR“;V)-—» Q(v) = 0%”s™v with Ym as in Example 13.

PROPOSITION 3.

(==
0 is a stable equivalence C(N,NO;X)-—~ >!< Dk(N,NO;X) for any (N,NO)

and X.

Proof: o obviously preserves the filtration and we have a commutative

lower square in the diagram
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whereas the upper square is only homotopy commutative. Since the verti-
cal sequences are cofibrations and since C1 = V1 the assertion follows

by induction on k. o

Proof of Proposition 1 (Example 7 and 11 continued). The stable split-

ting of map(K,KO;SmX) now follows from that of C(M‘\MO,BM~\M°;X). The
spaces °Ok are Dk(M\MOIBM\MO;X) + in particular we have

D

1 = C4 (M\MO,BM\MO;X) = (M\MO,BM\MO) A X. o

EXAMPLE 14 (Example 2, 8 and 12 continued). The splitting we obtain for

K=M-=D" and K, = M_ = 3D" is the Snaith splitting of [20].

Remark 2. In the proof of Proposition 3 we did not use that N is a
manifold; the proof covers also the case of C(R”;X) which is equivalent
to @"s"X if X is connected. A stable splitting of Q°S”X was first ob-
tained by Kahn, see [1], [10], [11] and [12]. Furthermore, we did not
use that (N,No) or X is connected. This and Remark 1 shows that Propo-

sition 1 is more generally true than stated, see e.g. Example 5.

Remark 3. A splitting of SQSX is achieved by refining the power set map
toamap P : C = C(R;X) — CR;V(R;X)); the order of the particles zy
on the real line induces a lexicographic order of the sets a, and the
hereby induced order of the Za is used to define particles Za in R in-

stead of R".
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4. Naturality and Homology.

Assume we have two situations as in the introduction, a map

f : (K,Ko)——» (K',Ké) together with an embedding

o (M,Mo)—-» (M',Mé) making the obvious 4diagram commutative, m = m'
and X = X'. Then f induces f*: map(K',Ké;Smx)——+ map(K,Ko;Smx), while

F induces F* : C(M'\M('),BM\M('D;X)—-» C(M\MO,BM\MO;X) and

F; s Dk(M'-Mé,BM'~\Mé;X)-—a Dk(M~\M°,8M~\M0;X). The approximation map
Y of Proposition 2 and the splitting map o of Proposition 3 commute with

these induced maps.

Examples for such maps f are the inclusions KO——* K and K — (K,Ko),
the inclusion of a bottom cell of K and the pinch map onto a top cell

of K.

Y and o are natural with respect to the suspension
map(K,Ko;Smx)-—+ map(s(K,Ko);Sm+1X), which for C and V is induced by

the equatorial inclusion (M,M) — M,M) x ([0,11,{0,1}).

An analysis of the splitting map ¢ reveals that each of the spaces 'Qk
is already after a finite number of suspensions a retract of C. An upper
bound for the smallest number is given by the embedding dimension of
C(N,k). In our standard situation of Example 7 we have N = M~M_ as a
submanifold of IRm, so &)1 = (M\MO,BM\MO) AX is a retract of

map(K,Ko;smx) after at most m suspensions.

The (stable) projection onto this first summand
m
S map(K,KO;smx) ~ s"c — Sm°81 = Sm(M*\MO,BM*\MO) A X induces the ho-
mology slant product H (map (K,K 3ST%Y ) — @H]-Q(K,K sHL, (X))
q (e] j o J=m
For X = 5% this homomorphism has been proved by Moore [18] to be an

isomorphism if g < 2(m-H dim(K,Ko)) which is twice the connectivity
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of the mapping space.

Studying the spaces &Dk(which are Thom spaces for X a sphere) is a

possible approach to the homology of the mapping spaces; we will re-

turn to this in a further article.
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Added in proof:

R. Cohen has independently found a model and a stable splitting for
ASX (see his "A Model for the Free Loop Space of a Suspension", to
appear) .



