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Abstract

In this paper we consider an intuitionistic modal logic, which we call IS45. Our
approach is different to others in that we favour the natural deduction and sequent
calculus proof systems rather than the axiomatic, or Hilbert-style, system. Our nat-
ural deduction formulation is simpler than other proposals. The traditional means of
devising a modal logic is with reference to a model, and almost always, in terms of a
Kripke model. Again our approach is different in that we favour categorical models.
This facilitates not only a more abstract definition of a whole class of models but also
a means of modelling proofs as well as provability.

1 Introduction

Prawitz-style natural deduction is a framework somewhat underestimated by modal logi-
cians. But it is the cornerstone of functional programming, via the Curry-Howard corre-
spondence, which is one of the most exciting applications of logic to date.

Modal logic’s intensional notions of necessity and possibility have proved useful in
many areas of computer science; so it would be good to extend the Curry-Howard corre-
spondence, with all its functional programming possibilities, to modal logic. This task is
nevertheless difficult in two respects. Firstly modal logics are traditionally defined in terms
of classical logic, whereas functional programming corresponds to intuitionistic logic. Sec-
ondly providing any sort of formulation other than an axiomatic one is difficult for many
of the proposed modal logics. Indeed providing a natural deduction formulation seems
harder than providing a sequent calculus one.

Addressing the first difficulty has recently become a popular topic, with many authors
trying to understand the notion of a constructive modal logic. Once the classical basis is
replaced, a multitude of intuitionistic versions becomes possible and it is challenging to
justify one choice over another. Most choices are made with reference to the model theory,
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although almost exclusively in terms of Kripke-style models. Kripke semantics works both
for intuitionistic and modal logic, using separate accessibility relations for each, and the
choices appear in deciding how these relations are to interact.

The approach we persue here is somewhat different. We also use models to guide
our work but we prefer categorical ones. One reason is that, unlike the situation for
Kripke semantics, we are interested in modelling not just provability but also the proofs
themselves. This approach is often termed categorical proof theory, or simply categorical
logic [18]. Category theory provides a language for describing abstractly what is required
of a model or, more precisely, what extra structures are needed for an arbitrary category to
model the logic. Checking that a candidate is a concrete model then simplifies to checking
that it satisfies the abstract definition. Thus soundness, for example, need only be checked
once and for all, for the abstract definition. Then all concrete models which satisfy the
abstract definition are also sound. Thus categorical semantics provide a general and often
simple formulation of what it is to be a model. This is of interest because it is often the
case that more traditional models lack any generality or are quite complicated to describe
(or both). In particular categorical semantics enable one to model some very powerful
logics such as impredicative type theories and intuitionistic higher order logic.

This paper is organised as follows. In §§2 3 we give axiomatic and sequent calculus
formulations of IS4, respectively. The theorems proven in these sections are surely known
to those working in this area, although we repeat them here for completeness. In §4 we
give our natural deduction formulation and compare it to Prawitz’s proposal for a similar
logic. In §5 we define the A”-calculus, which is given by the Curry-Howard correspondence
from our natural deduction formulation. We also suggest a possible computer science
application for this calculus. In §6 we give in detail our categorical analysis of the necessity
modality. We give a sound definition of a categorical model for IS4p.

2 An Axiomatic Formulation of 1S4

Axiomatic, or Hilbert-style, formulations are probably the more familiar method of defin-
ing modal logics. They consist of a series of axioms and a few deduction rules. For IS4n
this consists of an axiomatic presentation of intuitionistic logic augmented with three new
axioms (K, T and 4) and a new rule, Nec. The formulation is given in Figure 1.

It is worth explaining our axiomatic formulation. In giving the Nec rule it is vital
to insist that there are no free assumptions, otherwise one could deduce, for example,
A D OA. This restriction can be found in all presentations of necessity operators (e.g. [22]).
Given the importance of the context for this rule, it is surprising to find that most authors
disregard the context for the other rules. Here we keep the context explicit in all the rules,
thus in the Identity rule we allow an arbitrary weakened context, viz. from assuming I', A
we can deduce A. The Aziom rule says that from any assumptions I' we can deduce one
of the axioms from the list in Figure 1.

Where it is not obvious by context a deduction in the axiomatic system is denoted by
the annotated turnstile 4. An important property possessed by this formulation, which
is not always the case for modal logics, is the deduction theorem.

Theorem 1 IfI') A — B then there exists a proof of ' v A D B.

Proof. By induction on the structure of the derivation. [ |
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Figure 1: Axiomatic Formulation of IS4p.

3 A Sequent Calculus Formulation of IS45

The sequent calculus formulation presented here is adapted from Curry’s book [5] and is
given in Figure 2.

I', A are used to represent sequences of formulae and A, B for single formulae. The
Ezchange rule simply allows the permutation of assumptions. The Weakening rule per-
mits assumptions to be discarded and the Contraction rule allows an assumption to be
duplicated. In what follows the Exchange rule is considered to be implicit, whence the
convention that I'; A denote multisets. Negation is defined, as usual for intuitionistic logic,

as

A A5

The sequent calculus formulation, where we use the symbol Fg to represent a sequent
deduction, is equivalent to the axiomatic presentation given in the previous section.

Theorem 2 Fs '+ A iff Fo ' + A.

Proof. By induction on the structure of the derivation. For example consider the following
case. Given a sequent derivation of the form
D
or +— A
aor ~ OA

(Or)
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Figure 2: Sequent Calculus formulation of 1S44.

Then by induction we have the axiomatic deduction of D, F, OI' + A. Assume that OI
represents the multiset {0G,...,0G,}. Then we can form the following deduction.

or e A

D.rT."

- O0G; D (0G2, D ...(OG, D A))
Nec

K 000G D(0G: D ...(0G, D A))) + 0G, D O00G, 0OG, v+ OGy

+ 00G: D O0(0G, O ... (OG, D A)) oG, v 000G,

OG: v+ O0(0G:2 D ...(OG, D A))

0Gi,...,0G,_1 + O(0OG, > A) b 0G, D 00G, 0G, v O0G,

oG,,...0G,-: v+ 0O0G, D OA oG, - 0oG,

M.P.

0G4, ...,0G, 1,0G, — OA

where D.T." represents n applications of the Deduction Theorem and K denotes a suitable
instance of the K axiom from Figure 1. [ |

An important property of sequent formulations is the so-called cut-elimination theo-
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rem. Here instances of the Cut rule are analysed and replaced with instances on smaller
proofs (the technical details are a little delicate; Gallier [8] gives a nice explanation). The
important new case for our logic is an instance of a (Og, Of)-cut, viz.

ar e« A (Or) AJA v B (Op)
— _ (O

ar' v~ 0OA & A,0A + B £
Cut

Oor,A + B

which is rewritten to
Or v+ A AAv B
or,A + B

Cut.

Theorem 3 Given a derivation © of T v+ A, a derivation ' of T v+ A can be found which
contains no instances of the Cut rule.

4 A Natural Deduction Formulation of 1S4

In a natural deduction system, originally due to Gentzen [9], but subsequently expounded
by Prawitz [19], a deduction is a derivation of a proposition from a finite set of assump-
tion packets, using some predefined set of inference rules. Within a deduction, we may
‘discharge’ any number of assumption packets. Assumption packets can be given natural
number labels (denoted by z) and applications of inference rules can be annotated with
the labels of those packets which they discharge.

The formulation is given in Figure 3. Our formulation differs from others in its simpler
treatment of the modality.

Some care should be taken with the (Oz) rule. The semantic braces, [---], mean not
only that all the assumptions are modal® but they are all discharged (and re-introduced).
The advantage of this formulation of this rule is that it satisfies a fundamental feature of
natural deduction in that it is closed under substitution. One might have been tempted to
give the rule for (O7) as

OA,--- DAk

B
— (O
DB( I)a

where the assumptions must all be modal but are not discharged and reintroduced, though
clearly this rule is not closed under substitution. For example, substituting for OA;, the
deduction

co0o4, C
04,

(De)

we get the following deduction

In comparison with our (D7) rule where the standard notation is taken to mean that only one assump-
tion, A, is discharged.



[47] : :
ASDB A
B — (D¢)
) s €
153 (D7) B
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-4 [B]
A B 3
(Vz) (Vz) AvB ¢ ¢
AV B AV B % (Ve)
. [OAT" - OALF]
uy : :
_B (Dg) 0A, OA, B
OB (DI)m, Xk

Figure 3: Natural Deduction Formulation of IS4p.

C D OA C
(De)
04, .. OA,

~ (o0
- DI
oB
which is no longer a valid deduction as the assumptions are not all modal. We conclude
that (O7) should be formulated as in Figure 3, where the substitutions are given explicitly.
It is possible to present natural deduction rules in a ‘sequent-style’, where given a
sequent I' — A, then I' represents all the undischarged assumptions and A represents the
conclusion of the deduction. This formulation should not be confused with the sequent
calculus formulation, which differs by having operations which act on the left and right of
the turnstile, rather than rules for the introduction and elimination of logical operators.
The ‘sequent-style’ formulation of natural deduction for IS45 is given in Figure 4.
Two important admissible rules are
'-B A, A+ B

—— Weakening and —— Contraction.
I'Awv B I'Awv B

>This rule originates from the natural deduction formulation of intuitionistic linear logic [3].
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Figure 4: Natural Deduction formulation of IS4 in sequent-style.

This formulation (where we use the symbol |y to represent a natural deduction) is equiv-
alent to the axiomatic formulation given in §2.

Theorem 4 Fy '+ A iff k4 T + A.

Proof. By induction on the structure of the derivation. [ |

4.1 Comparison with Prawitz’s Proposal

In his monograph [19, Chapter VI| Prawitz considers adding both necessity and possibil-
ity operators to natural deduction formulations of both intuitionistic and classical logic.
Our system is equivalent in terms of provability to the system he calls ls4. Prawitz also
noticed the problem of closure under substitution, but his solution involves a new notion
of “essentially modal” formulae. What this amounts to is a relaxing of the restriction
that all the undischarged formulae are modal, but rather that there is somewhere in the
deduction a complete set of modal formulae which could have had deductions substituted

in for them. In tree-form this amounts to the rule (where the complete set of formulae is
in bold face)



A Ay
DAI DAk

0 (O7)

— (O7).

OB
Of course there is the extra work of finding this complete set; and indeed there may be
more than one (the rather serious proof and model theoretic consequences of this are
discussed in §7). We feel that our proposal is conceptually clearer: the only feature we
use is the discharging of formulae, which is already present.

4.2 Normalisation

With a natural deduction formulation we can produce so-called detours in a deduction,
which arise where we introduce a logical connective only to eliminate it immediately af-
terwards. We can define a reduction relation, denoted ~»3, (and called g-reduction) by
considering each case in turn. The treatment of the familiar intuitionistic connectives is
entirely standard and the reader is referred to other works [19]. The new case is where
(Oz) is followed by (Og). Thus

[[DAl - DAk]]
04, ... O4, B
(B1)
OB (0¢)
Od
B £
is reduced to
[[D:Al DAk]]
B.

As is standard, we say that a proof containing no instances of a B-reduction is in G-normal
form. Our formulation of IS4 has the following property.

Proposition 1 IfI' v A in IS4 then there is a natural deduction of A from I which is
in [B-normal form.

5 Term Assignment for 1S4

The Curry-Howard correspondence [11] relates constructive logics to typed A-calculi. It
essentially annotates each stage of a deduction with a ‘term’, which is an encoding of the
construction of the deduction so far. Consequently a logic can be viewed as a type system
for a term assignment system. The correspondence also links proof normalisation to term
reduction.



The Curry-Howard correspondence can be applied to the natural deduction formulation
to obtain the term assignment system given in Figure 5. It should be pointed out that
the natural number labels mentioned above, are replaced by (the more familiar) variable
names. The resulting calculus we call the A\~-calculus.

z:Abx: A
I's M: — ()
ToVaA(M):A ©
Daz:A>M:B 'sM:A— B '>N:A
(—1) (—e)
' z:AM:A— B I'sMN:B
I'sM:A I's N:B I'sM:AxB I'sM:Ax B

X¢g)

s (M,N):Ax B (xz) FDfst(M):A(XE) FDsnd(M):B(

I'sM: A I's>M:B

FDi”'(M)iA'FBHI) FDinr(M)ZA+B(+I)

I'sM:A+ B ILz:A>N:C I'y: B> P:C

+
T case M of inl(z) — N | inr(y) — P:C e)

FDM1:|:|A1 FDMkZDAk fElimAl,...,meDAkDNiB

: (Oz)
I'> box N with My, ..., My forzy,...,zx: OB

> M:0A
['>unbox(M): A

(B¢)

Figure 5: Term Assignment for IS4n

An important property of our system is that substitution is well-defined in the following
sense.

Theorem 5 IfI'> N: A and I',z: A> M: B then I'> M|z := N]: B.

Proof. By induction on the derivation I';z: A> M: B. [

Before we continue, a quick word concerning the (O7) rule. At first sight this seems
to imply an ordering of the M; and z; subterms. However, the Exchange rule (which does
not introduce any additional syntax) tells us that any such order is really just the effect
of writing terms in a sequential manner on the page.

The reduction rules derived from §4.2 can be given at the level of terms. These are
given in Figure 6 where the symbol ~» 5 is used to denote term reduction. We have also used
the shorthand M in place of the sequence My, ... M. The last reduction rule corresponds
to the proof reduction discussed in §4.2.



(Az: AM)N ~g Mz :=N]
fst((M, V) ~g M
snd((M, N)) ~g N
case inl(M) of inl(z) — N ||inr(y) = P ~s5 Nz := M|
caseinr(M) of inl(z) — N ||inr(y) = P ~sg Ply:= M]

unbox(box N with M for 7) ~g N[i:= M]
Figure 6: (B-reduction rules.

5.1 A Computational Interpretation

As is now well known, the typed A-calculus can be thought of as a prototypical functional
programming language. An alternative view is that it can be thought of as an intermediate
language inside a functional language compiler. (The classic treatment of this is in Peyton
Jones’ book [12].) The equational reasoning of the A-calculus enables one to view compiler
optimisations as manipulations of terms of the intermediate language.

Inside a compiler there is a difference between values stored directly in the local stack
and those stored in the heap. Of course in the intermediate language (the A-calculus) such
operational differences are not distinguished. Certain optimisations in compilers involve
moving between these different representations.

It seems that the A\”-calculus is an appropriate language for such distinctions to be
made explicit at the term, and type, level. Thus a value of type A is to be considered
a ‘local’ value of (type A) and a value of type OA a stored one. The restriction of the
Ox rule can be interpreted as follows: if a value is to be placed on the heap then it must
only reference values also on the heap (i.e. the free variables should be of type OB).
Manipulations of values to and from the heap are now represented by explicit terms.
This is analogous to Moggi’s [16] proposal of differentiating, at the term level, between
canonical values and computations.? Indeed it would appear that a language combining
both Moggi’s ideas and those above, is worthy of further study.*

6 The Categorical Model

The fundamental idea of a categorical treatment of proof theory is that propositions should
be interpreted as the objects of a category and proofs should be interpreted as morphisms.
The proof rules correspond to natural transformations between appropriate hom-functors.
The proof theory gives a number of reduction rules, which can be viewed as equalities
between proofs. In particular these equalities should hold in the categorical model.
Other categorical studies have been carried out, notably by Flagg [7]; Meloni and
Ghilardi [10] and Reyes and Zolfaghari [20]. However these have been mainly concerned

#Moggi’s language, the computational A-calculus, can also be seen as a modal logic [2].

*In fact, this idea is being studied (and considerably extended) by P.N. Benton (private communication).
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with categorical model theory, rather than categorical proof theory. In particular, they all
assume an isomorphism, OOA = OA. In this work we have morphisms in both directions
(as they are provably equivalent) but we have not collapsed the model so that they are
isomorphic.

Let us fix some notation. The interpretation of a proof is represented using seman-
tic braces, [—], making the usual simplification of using the same letter to represent a
proposition as its interpretation. Given a term I'> M: A where M ~»5 N, we shall write
I'>M = N:A.

Definition 1 A category, C, is said to be a categorical model of a logic/term calculus iff

1. For all proofs T'> M: A there is a morphism [M]:T' — A in C; and

2. For all proof equalities T'> M = N: A it is the case that [M] =¢ [N] (where =¢
represents equality of morphisms in the category C).

Given this definition we simply analyse the introduction and elimination rules for each
connective. Both this and consideration of the reduction rules should suggest a particular
categorical structure to model the connective. The case for intuitionistic logic is well
known; the reader is referred to Lambek and Scott’s book [13] for a good discussion.
Essentially the categorical model of intuitionistic logic (with disjunction) is a cartesian
closed category (CCC) with coproducts. Hence all we need do here is consider the modality,
which we shall do in some detail. The less-categorically minded reader may wish simply
to skip to Definition 2.
The introduction rule for the modality is of the form

FDMlllel FDMkZDAk x1:DA1,...,mk:DAkI>N:B
I' > box N with M for 7: OB

(Oz)
To interpret this rule we need a natural transformation with components
Bp:C(T, 0AL) x - x C(T, 0Ay) x C(OA; x - x DAy, B) — C(T, 0B)

Given morphisms e;: ' — OA;, ¢:I" — I’ and d: OA; x --- x OA; — B, naturality gives
the equation

;®r(er, ... ep,d) = Ppi((cer),...,(ceg),d).

In particular if we have morphisms m;:T" — OA; then we take ¢ = (my,...,mg), ¢; to be
the ¢-th product projection, written 7;, and d to be some morphism p: OA; x---xOA, — B,
then by naturality we have

(mla s amk>; (I)DAl,...,DAk (7(1, cee ,Wk,p) = QDAl,-..,DAk (mla s amkap)'

Thus ®(myq,...,mg,p) can be expressed as the composition (my,...,mg); U(p), where ¥
is a transformation

\I/!C(DAl X .- X DAk,B) — C(DAl X --- X DAk, DB)

For the moment, the effect of this transformation will be written as (—)* and so we can
make the preliminary definition
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[['> box N with M, ..., My, for z1, ...,z 0B8] &

([T > My:OAL]), ..., ([T > My: OAL])); (Jx1: OAq,. .., 25 DA > N: B])*
The elimination rule for the modality is of the form

I'>M:OA

['>unbox(M): A (Be)

To interpret this rule we need a natural transformation
O:C(—,04) = C(—,A).
It follows from the Yoneda Lemma [14, Page 61] that there is the bijection
[CP, Sets|(C(—,0A),C(—,A)) ZC(OA, A).

By constructing this isomorphism one can see that the components of ® are induced by
postcomposition by a morphism e: JA — A. Thus we make the definition

[T & unbox(M): A] &[> M: DAJ; €.

From Figure 6 we have the term equality

I's M:OA4; --- I'> M,:0OA; z1:0A4,...,zp: 04> N: B
I > unbox(box N with Z for M) = N[ := M]: B

Taking morphisms m;:I" — OA; and p: 0A; X --- x OA, — B, say, this term equality
amounts to the categorical equality

*

(my,...,me); (p)se = (ma,...,mg);p. (1)
We can certainly define an operation

0:C(T',A) — Cc(Or',0A),

fe ()
We shall make the simplifying assumption that this operation is a functor. However, notice
that if T' is the object Ay X -+ - X Ag, then OI" will be represented by O(A; X - -+ X Ag), but
clearly we mean OA; X --- x OAg. Thus we shall make the further simplifying assumption

that O is a symmetric monoidal functor, (O, m4 g, my). This notion is originally due to
Eilenberg and Kelly [6]. In essence this provides a natural transformation

ma p:0A x OB — O(A x B)

and morphism
mp:1 — O1

which satisfy a number of conditions which are detailed in Appendix A.
Equation 1 gives
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(eas f)sep=casf

for any morphism f: A — B; or, in other words the diagram

OA B/ oB

€ €

A B
f

commutes. Given the assumption that O is a symmetric monoidal functor, this diagram
suggests that e is a monoidal natural transformation. Again the unfamiliar reader is
referred to the appendix for definitions.

We have that from the identity morphism idgs: OA — OA, we can form the canonical

morphism 6,4 © (ido4)*. Equation 1 gives

Saie0a = idoa.

The categorically-minded reader will recognise this equation as one of the three for a
comonad. We shall make the simplifying assumption that not only does (O, ¢,6) form a
comonad but that § is also a monoidal natural transformation. Hence the comonad is
actually a monoidal comonad. Thus our definition of a categorical model for IS4y is as
follows.

Definition 2 A categorical model for 1S4 consists of a cartesian closed category with
coproducts, together with a monoidal comonad (O, e,,m4 g, my).

We can now finalise the interpretation of the introduction rule for the modality.

[I'> box N with M for z:0B] % ([I's My:0OA ], ..., [I's My: OA]);

0A; X == X 04, 5MOA, DAL
Ofz1: 0A,,...,z5: 0A; > N: B]

Fact. Recall that by condition 2 of our definition of a categorical model (Definition 1)
if two proofs are equal then so are their denotations. In more traditional model-theory
parlance this is a soundness theorem. Hence any concrete model satisfying the abstract
conditions of Definition 2 is a sound model of IS4.

7 Prawitz’s Formulation and the Categorical Model

Although Prawitz’s formulation has the appearence of being equivalent to the formula-
tion presented in this paper, in fact it has rather unfortunate proof and model theoretic
consequences. Consider the following deduction in Prawitz’s formulation.
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(De)

- DI

DA( )
The problem is deciding which formula was the (modal) assumption when the O was
introduced (the so-called ‘complete set’ from §4.1). In particular two possibilities are (1)
and (2). In our formulation presented in §4, these alternatives represent two distinct
derivations, viz.

[OOA]
O¢)
OooA OA
—— () — (@)
OA (Oz)
and
OooA
O0A S%) HDAHD
75;4 £) _Z_; £)
DA (Oz)

Prawitz’s formulation essentially collapses these two derivations into one. In other words
his formulation forces a seemingly unnecessary identification of proofs. Let us consider
the consequences of this identification with respect to the categorical model. The two
derivations above are modelled by the morphisms

enna;004; O(enna); O(ena): 0004 — A

and
€00A4;€04;04; 0e4: 000A — A

respectively. Insisting on these being equal amounts to the equality
copA;Ues = €opajena.
Precomposing this equality with the morphism dg4 gives
Oegq = €ena.-

It is easy to see that this is sufficient to make the comonad idempotent, i.e. OA = OOA.
It is worth reiterating that our formulation does not impose this identification of proofs
and consequently does not force an idempotency.
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8 Conclusions

In this paper we have considered the propositional, intuitionistic modal logic IS4n, and
have given axiomatic, sequent calculus and natural deduction formulations; the corre-
sponding term assignment system as well as a general categorical model.

As menioned in the introduction we place particular importance on the natural de-
duction proof system. In his seminal monograph, Prawitz also considered formulations of
modal operators although he requires extra machinery specifically for these modalities. At
the level of proofs his formulation introduces seemingly unnecessary identifications, which
in the model forces an idempotency. Other authors have proposed alternative natural
deduction formulations but again they all require significant extensions to the essential
nature of natural deduction (for example, by indexing formulae with certain informa-
tion). Examples of other proposals are those of Segerberg [4, pages 29 30], Benevides and
Maibaum [1] and Mints [15, Pages 221-294].> Again we reiterate the conceptual simplicity
of our proposal.

We also prefer the use of categorical models. Unlike other categorical work we have
placed emphasis on modelling the proof theory not just provability. Our resulting model
is considerably simpler than other proposals.

For the future we should like to consider other modal logics within our framework. It is
clear that not all of the hundreds of modal logics will fit into our framework. However we
do not view this as a weakness of our work. Rather we feel it is important to identify those
modal logics which have interesting proof theories and mathematically appealing classes
of models. We should also like to pursue the computational interpretation discussed in

§5.1.
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A Monoidal Comonads

In this appendix we simply spell out the conditions implied by requiring that (O, d,e,m4 g, mq)
is a monoidal comonad. These notions are due to Eilenberg and Kelly [6].
Firstly requiring that (O, ¢, §) form a comonad amounts to the following two diagrams.

OA OA 04 O0A
idog dA idoa 54 oA
'1
O oo
A E0A A O(ea) OA OoA 004 oooA

Requiring that (O,m4 g, m;) is a monoidal functor amounts to the following four com-
muting diagrams.

01 x 04 — A L 51 x 4) 04 x 01 — 220 L g(ax1)
my X idgg D(SndA) idoga X my D(fStA)
1 x0OA OA OAx 1 OA
sndoa fstoa
X id
(0A x OB) x DCM»D(AXB) x OC —DAXBC O((A x B) x O)
QOA,0BOC O(aa,B,c)
| ]
Ax( AXDC)idDAxmB,C OA x O(B x C) M A BRC O(A x (B x O)
04 x 0B —242 54 x B)
YA,B O(va,B)
OB x OA M5 O(B x A)

Requiring that € is a monoidal natural transformation amounts to the following two com-
muting diagrams.
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ma, B

0OA x OB O(A x B) 1
EA X ERB EAxXB my id1
Ax B o1 1

€1

Requiring that J is a monoidal natural transformation amounts to the following two com-

muting diagrams.

ma B

0OA x OB O(A x B)
da X 0p daxB
0O0A x OOB MoAo0B O(0A x OB) S(map) O0(A x B)
1 m 01
my 61
01 Ty m[m}|
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