
Fuzzy models of linear logic
Michael Barr∗

Department of Mathematics and Statistics
McGill University

Montreal, Quebec, Canada

Email: barr@math.mcgill.ca
1999-06-11

1 Introduction

There has long been a perception among fuzzy set theorists that the negation based on
the operation a 7→ 1 − a is the “correct” negation. It is easy to see why this is so. In
the model of fuzzy sets based on the unit interval [0, 1], the classical complement of a
subset is a destructive operation. For example, if A0 is a fuzzy subset of a crisp set A ,
then in the classical complement of A0 every element has degree of membership either
0 or 1. Any element that has any positive degree of membership in A0 is entirely out
of the complement. This operation is simply too destructive to be useful. It turns out
that if the logic is weakened to be linear that the “linear” negation based on a 7→ 1− a
works. As is expected in linear logic the model uses not the category of morphisms,
but of relations.

A word about notation. We follow the practice, standard in computer science, of
denoting the composite of arrows f :X −→ Y and g:Y −→ Z by f ; g:X −→ Z . In order
to avoid excess parentheses, we also put functions to the right of the argument, also
delimited by semicolons, so that we write x; f ; g instead of (f ; g)(x). This is based on
the perception that there is no difference between thinking of elements of x ∈ X and
functions x: 1 −→ X . Thus x; f ; g can be read indifferently as the element x to which
the composite f ; g is applied or the element x; f to which the function g is applied. Of
course, this notation is abandoned for binary operations that it is customary to infix.

∗ In the preparation of this paper, I have been assisted by a grant from the NSERC of Canada and
one from the FCAR of Quebec.

1



2 Lattice models

Let L be a complete ∗-autonomous lattice. This means that L is a complete lattice
(whose top and bottom we denote by 1 and 0, respectively) that is also a ∗-autonomous
category. (See [Barr, 1979] or [Barr, 1991] for explanation of ∗-autonomous categories.)
That is, there are objects > and ⊥ and operations ⊗ , ⊕ , (−)⊥ such that (⊗,>)
and (⊕,⊥) are symmetric monoidal structures, (−)⊥ is an anti-involution of the order
structure that interchanges ⊗ and ⊕ and interchanges > and ⊥ . In addition we
require that

a⊗ b ≤ c ⇐⇒ a ≤ b⊥ ⊕ c
Note that saying that ⊗ and ⊕ are monoidal structures implies that they are covariant
functors, that is order preserving.

2.1 Example. An example of such a structure is given by letting L be the unit
interval [0, 1] with > = 1, ⊥ = 0, a ⊕ b = min(a + b, 1), a ⊗ b = max(a + b − 1, 0)
and a⊥ = 1− a . Other examples using the same operations include the set of rationals
in the unit interval and the finite sets of all rationals with a fixed denominator. Since
an arbitrary cartesian products of these lattices in again one, we can construct many
others that are not total orders.

2.2 Example. Here is another class of examples in which (with one exceptional case)
the four constants 0, 1, > and ⊥ are all different, as are the four binary operations +,
× , ⊗ and ⊕ . Take L to be the two point completion of the real line (so it is again
the unit interval, but it is hard to describe the operations if we think of it as that). In
order to avoid confusion, we will denote the added elements by −∞ and ∞ (instead
of 0 and 1). Let a be a real number, which is a parameter. Let > = −a and ⊥ = 0.
The operations ⊕ and ⊗ are given by the following tables, in which x and y stand for
finite numbers.

⊕ ∞ −∞ x
∞ ∞ ∞ ∞
−∞ ∞ −∞ −∞
y ∞ ∞ x+ y

⊗ ∞ −∞ x
∞ ∞ −∞ ∞
−∞ −∞ −∞ −∞
y ∞ −∞ x+ y + a

The case a = 0 is also interesting. There ⊗ = ⊕ and > = ⊥ .
Except for the ∞ and −∞ , this is the same as the shift monoid recently discovered

by Robin Cockett [Cockett & Seely, to appear].
To show that this is ∗-autonomous, we begin with the semi-distributive identity (see

[Cockett & Seely, to appear]).

2



2.3 Proposition. For any x, y , z ∈ L, we have

x⊗ (y ⊕ z) ≤ (x⊗ y)⊕ z

Proof. We clearly have equality if all three elements are finite. For the rest, it is just a
matter of looking at cases. If x = −∞ , then the left hand side is −∞ so the inequality
is certainly satisfied. Similarly, if z = ∞ , then the right hand side is ∞ . If x = ∞ ,
then the right hand side is ∞ unless y = −∞ . In that case, the left hand side is −∞
unless z = ∞ , a case we have already dealt with. Dually, the inequality is satisfied if
z = −∞ . This takes care of all cases in which either x or z is infinite. If they are both
finite and z is not, then both sides reduce to z .

The remaining things, such as that ⊗ and ⊕ are commutative monoids, that x⊥⊥ =
x , (x ⊗ y)⊥ = x⊥ ⊕ y⊥ , x ⊗ x⊥ ≤ ⊥ and their duals, are trivial. From this we can
readily show that x ⊗ y ≤ z if and only if x ≤ y⊥ ⊕ z . In fact, assuming the first, we
have

x = >⊗ x ≤ (y⊥ ⊕ y)⊗ x ≤ y⊥ ⊕ (y ⊕ x) ≤ y⊥ ⊕ z
The other direction is dual.

We note that when a > 0, we do not have x ⊗ y ≤ x ⊕ y , which means the “mix”
rule (see [Cockett and Seely, to appear) is not always satisfied.

3 L-fuzzy sets

3.1 The category. If L is a ∗-autonomous lattice, an L-fuzzy set is a pair (X, ξ)
where X is a set and ξ:X −→ L is a function. If (X, ξ) and (Y, θ) are L-fuzzy sets, an
L-fuzzy relation φ: (X, ξ) −→ (Y, θ) is a function φ:X × Y −→ L such that (x, y);φ ≤
(x; ξ)⊥⊕y; θ . This condition is equivalent to the assumption that x; ξ⊗ (x, y);φ ≤ y; θ .

We compose arrows as follows. If φ: (X, ξ) −→ (Y, θ) and γ: (Y, θ) −→ (Z, ζ) are
arrows, we let φ; γ: (X, ξ) −→ (Z, ζ) by

(x, z);φ; γ =
∨
y∈Y

(x, y);φ⊗ (y, z); γ

We have for any x ∈ X , y ∈ Y and z ∈ Z ,

x; ξ ⊗ (x, y);φ⊗ (y, z); γ ≤ y; θ ⊗ (y, z); γ ≤ z; ζ

whence (x, y);φ⊗ (y, z); γ ≤ (x; ξ)⊥ ⊕ z; ζ . Taking the sup over all y we conclude that

(x, z);φ; γ ≤ (x; ξ)⊥ ⊕ z; ζ

3



We show associativity of composition as follows. Since − ⊗ b , is left adjoint to
−⊕ b⊥ , it preserves sup. Then for η: (Z, ζ) −→ (T, τ), x ∈ X and t ∈ T ,

(x, t); (φ; γ); η =
∨
z∈Z

(x, z);φ; γ ⊗ (z, t); η

=
∨
z∈Z

(∨
y∈Y

(x, y);φ⊗ (y, z); γ

)
⊗ (z, t); η

=
∨
z∈Z

(∨
y∈Y

(x, y);φ⊗ (y, z); γ ⊗ (z, t); η

)

=
∨

(y,z)∈Y×Z
(x, y);φ⊗ (y, z); γ ⊗ (z, t); η

The similar computation of (x, t);φ; (γ; η) establishes the associativity of composition.
The identity arrow ι: (X, ξ) −→ (X, ξ) is defined by

(x1, x2); ι =

{>, if x1 = x2

0, otherwise

The verification that this is the identity is left to the reader. It requires knowing that
a ⊗ > = a , which is part of the definition of monoidal categories and that a ⊗ 0 = 0
which follows from the fact that a⊗− , being a left adjoint, preserves the bottom.

We denote the resultant category by Rel(L). If (X, ξ) is an object of this category,
we will say that X is its carrier and ξ its structure map.

3.2 Crisp maps. For any set X , let (X, ξ0) denote the object of Rel(L) given by
x; ξ0 = > for all x ∈ X . This is called the crisp object of Rel(L) corresponding to
X . If f :X −→ Y is a function and (Y, θ0) is the crisp object corresponding to Y , let
f0:X × Y −→ L be defined by

(x, y); f0 =

{>, if y = x; f
0, otherwise

Then for any x ∈ X , x; ξ ⊗ (x, y); f0 ≤ y; θ0 is automatic since the right hand side is
> . If g:Y −→ Z is another function, then for x ∈ X and z ∈ Z ,

(x, z); f0; g0 =
∨
y∈Y

(x, y); f0 ⊗ (y, z); g0

If z = x; f ; g there is just one non-0 term in that sup, namely (x, x; f) ⊗ (x; f, z) =
>⊗> = > and if z 6= x; f ; g there are none since for all y ∈ Y at least one of (x, y); f0

and (y, z); g0 is 0. Thus f0; g0 = (f ; g)0 . We have just seen that ι = id0 is the identity,
so that this construction describes a functor from sets to L-fuzzy sets.

4



3.3 The duality. There is a functor that we denote by (−)⊥: Rel(L)op −→ Rel(L)
such that (X, ξ)⊥ = (X, ξ⊥) where we let x; ξ⊥ = (x; ξ)⊥ . Now φ:X ×Y −→ L satisfies
(x, y);φ ≤ x; ξ⊥ ⊕ y; θ if and only if it also satisfies (x, y);φ ≤ (y; θ⊥)⊥ ⊕ x; ξ⊥ . Thus
we can define (y, x);φ⊥ = (x, y);φ . Note that ((x, y);φ)⊥ does not work.

Hence (−)⊥ is a contravariant involution on Rel(L).

3.4 The tensor and cotensor. Let (X, ξ) and (Y, θ) be objects of Rel(L). We
define (X, ξ)⊗ (Y, θ) = (X×Y, ξ⊗θ) where (x, y); (ξ⊗θ) = x; ξ⊗y; θ . This defines the
tensor; the cotensor is defined by duality. This evidently gives that (X, ξ) ⊕ (Y, θ) =
(X × Y, ξ ⊕ θ) where (x, y); (ξ ⊕ θ) = x; ξ ⊕ y; θ .

3.5 Proposition. There is a one-one correspondence between arrows (X, ξ)⊗ (Y, θ)
−→ (Z, ζ) and arrows (X, ξ) −→ (Y, θ)⊥ ⊕ (Z, ζ).

Proof. Both kinds require a function φ:X × Y × Z −→ L . The first one subjects φ
to the condition (x, y, z);φ ≤ (x, y); (ξ ⊗ θ)⊥ ⊕ z; ζ while the second to the condition
φ(x, y, z) ≤ x; ξ⊥ ⊕ y; θ⊥ ⊕ z; ζ and these are evidently the same.

We have to say how tensor and cotensor act as functors. For tensor, this is as
expected. If α: (X, ξ) −→ (X ′, ξ′) and β: (Y, θ) −→ (Y ′, θ′) are morphisms, then α ⊗
β: (X × Y, ξ ⊗ θ) −→ (X ′ × Y ′, ξ′ ⊗ θ′) is given by

(x, y, x′, y′);α⊗ β = (x, x′);α⊗ (y, y′); β

Since (x, x′);α⊗ x; ξ ≤ x′; ξ′ and (y, y′); β ⊗ y; θ ≤ y′; θ′ , we have

(x, y, x′, y′); (α⊗ β)⊗ (x, y); (ξ ⊗ θ) = (x, x′);α⊗ (y, y′); β ⊗ x; ξ ⊗ y; θ ≤ x′; ξ′ ⊗ y′; θ′

so that α⊗ β is a morphism. The cotensor is not quite as expected. In fact,

(x, y, x′, y′); (α⊕ β) = (x, x′);α⊗ (y, y′); β

which is exactly the same formula as the tensor. The explanation for this (aside from
the fact that the formula with a ⊕ on the right hand side does not work) is that we
work out the cotensor by dualizing, taking the tensor and dualizing and the dual of an
arrow has the same formula as the arrow. Hence the same formula must give both the
tensor and cotensor.

The next proof also shows that the tensor and cotensor have to have the same
formula.

3.6 Proposition. The correspondence between arrows of Proposition 3.5 is natural
in all three arguments.

5



Proof. Suppose we have arrows α: (X ′, ξ′) −→ (X, ξ), β: (Y ′, θ′) −→ (Y, θ) and ψ: (Z, ζ)
−→ (Z ′, ζ ′). We must show that the square

Hom((X ′, ξ′)⊗ (Y ′, θ′), (Z ′, ζ ′)) Hom((X ′, ξ′), (Y ′, θ′)⊥ ⊕ (Z ′, ζ ′))-

Hom((X, ξ)⊗ (Y, θ), (Z, ζ)) Hom((X, ξ), (Y, θ)⊥ ⊕ (Z, ζ))-

? ?

commutes. Assume that φ: (X, ξ)⊗ (Y, θ) −→ (Z, ζ)) is given and φ̂: (X, ξ) −→ (Y, θ)⊥⊕
(Z, ζ) is its transpose. We must show that the two composites

(X ′, ξ′)⊗ (Y ′, θ′)
α× β−−−−−→ (X, ξ)× (Y, θ)

φ−−→ (Z, ζ)
ψ−−→ (Z ′, ζ ′)

and

(X ′, ξ′) α−−→ (X, ξ)
φ̂−−→ (Y, θ)⊥ ⊕ (Z, ζ)

β⊥ ⊕ ψ−−−−−−→ (Y ′, θ′⊥)⊕ (Z ′, ζ ′)

have the same formula. The first is given by the formula

(x′, y′, z′);α⊗ β;φ;ψ =
∨
x,y,z

(x′, x);α⊗ (y′, y); β ⊗ (x, y, z);φ⊗ (z, z′);ψ

The second is given by

(x′, y′, z′);α; φ̂; β⊥ ⊕ ψ =
∨
x,y,z

(x′, x);α⊗ (x, y, z); φ̂⊗ (y, z, y′, z′); (β⊥ ⊕ ψ)

But (x, y, z); φ̂ = (x, y, z);φ and

(y, z, y′, z′); (β⊥ ⊕ ψ) = (y, y′); β⊥ ⊗ (z, z′);ψ = (y′, y); β ⊗ (z, z′);ψ

so the two formulas are the same.

Thus we have the adjointness required for a ∗-autonomous category. Let > denote
the object (1,>), that is the object with one element carrier and the function taking
it to > ∈ L and similarly ⊥ denote (1,⊥). One sees immediately that >⊥ = ⊥ , that
> is a unit for ⊗ and ⊥ is a unit for ⊕ . Thus these structures give a ∗-autonomous
category.

4 Category-based fuzzy sets

Following a suggestion of Robin Cockett’s we show that there is a very similar con-
struction in which we replace a ∗-autonomous poset by a ∗-autonomous category.

6



4.1 The category Fuz(A ). Let A be a ∗-autonomous category in which every
family {Ai | i ∈ I} of objects has a sum, which we denote

∑
i∈I Ai . Let A0 and A1

be the sets of objects and arrows, respectively, of the category underlying A . We are
going to define a category Fuz(A ) of A -valued fuzzy sets. Although it is not strictly
necessary, we will simplify the exposition by supposing that there is a unique initial
object 0 and that the isomorphisms A ∼= A⊗0 ∼= 0 and A⊗> ∼= >⊗A ∼= A are actual
equalities for all objects A of A .

An A -valued fuzzy set consists of a pair (X, ξ) where X is a set and ξ:X
−→ A0 is a function. If (X, ξ) and (Y, θ) are A -valued fuzzy sets, a morphism is an
equivalence class of pairs (φ0, φ1) where φ0:X × Y −→ A0 and φ1:X × Y −→ A1 are
functions such that for all (x, y) ∈ X × Y ,

(x, y);φ1:x; ξ ⊗ (x, y);φ0 −→ y; θ

We say that (φ0, φ1) = (φ′0φ
′
1) if there is an X × Y -indexed family of isomorphisms

(x, y);α: (x, y);φ0 −→ (x, y);φ′0 such that for all x ∈ X and y ∈ Y , the triangle

x; ξ ⊗ (x, y);φ0 x; ξ ⊗ (x, y);φ′0-x; ξ ⊗ (x, y);α

y;θ

(x, y);φ1

@
@
@
@
@
@R

(x, y);φ′1

�
�

�
�
�
�	

commutes.
The transpose of a morphism (φ0, φ1) is the pair (φ0, φ̂1) where φ̂1: (x, y);φ0 −→

x; ξ⊥⊕y; θ is the transpose of φ1 . Morphisms could be defined in terms of the transpose
and both possible definitions of morphism will have their use.

4.2 Composition and identities. Here is how we compose morphisms. This
definition could not possibly be associative without the equivalence relation just defined.
As a matter of fact, it is not even well defined, given that sums are defined only up to
isomorphism. If (φ0, φ1):X −→ Y and (γ0, γ1):Y −→ Z are morphisms, we define the
composite (φ0, φ1); (γ0, γ1) = (η0, η1):X −→ Z as follows.

(x, z); η0 =
∑
y∈Y

(x, y);φ0 ⊗ (y, z); γ0

To define η1 we first note that since A⊗− has a right adjoint for any object A of A ,
it commutes with arbitrary sums. Thus,

x; ξ ⊗ (x, z); η0
∼=
∑
y∈Y

(x, y);φ0 ⊗ (y, z); γ0

7



Let us introduce the nonce notation

〈〈x, y, z〉〉: x; ξ ⊗ (x, y);φ0 ⊗ (y, z); γ0 −→ x; ξ ⊗ (x, z); η0

for the canonical inclusion. Then to define η1 it is sufficient to define 〈〈x, y, z〉〉; η1 for
all x , y and z . We define it as the composite

x; ξ ⊗ (x, y);φ0 ⊗ (y, z); γ0
(x, y);φ1 ⊗ id−−−−−−−−−−−→ y; θ ⊗ (y, z); γ0

γ1−−→ z; ζ

as required. To prove associativity, we suppose also a morphism (κ0, κ1): (Z, ζ) −→
(W,ω). Then after the distributive isomorphisms of tensor over sum are applied, both
composites turn out to the same morphism

x; ξ ⊗ (x, y);φ0 ⊗ (y, z); γ0 ⊗ (z, w);κ0
(x, y);φ1 ⊗ id⊗ id−−−−−−−−−−−−−−−→ y; θ ⊗ (y, z); γ0 ⊗ (z, w)

γ1 ⊗ id−−−−−−→ z; ζ ⊗ (z, w)
κ1−−−→ (z, w)

The identity morphism of (X, ξ) is given by (ι0, ι1) where

(x, x′); ι0 =
{> if x = x′

0 otherwise

Note that this alternates between the tensor unit and the categorical initial object. The
reason is that > is the tensor unit and 0 is the tensor zero. It does not mean that they
are in any sense operations dual to each other. The morphism (x, x′); ι1:x; ξ⊗ (x, x′); ι0
−→ x′; ξ is defined as

(x, x′); ι1 =

{
id:x; ξ ⊗> −→ x; ξ if x = x′

0 −→ x′; ξ otherwise

Let us write (ι0, ι1); (φ0, φ1) = (φ′0, φ
′
1). Then

(x, y);φ′0 =
∑

x′∈X
(x, x′); ι0 ⊗ (x′, y);φ0

But (x, x′) = 0, unless x = x′ , 0 ⊗ (x′, y) ∼= 0 and 0 is the unit for the categorical
sum so that (x, y);φ′0 ∼= (x, y);φ0 . Moreover, φ′1 corresponds under the isomorphism to
〈〈x, x, y〉〉; (x, y);φ0 which is

x; ξ ⊗ (x, y);φ0
id⊗ id−−−−−−→ x; ξ ⊗ (x, y);φ0

φ1−−−→ y; θ

which is (φ0, φ1). The argument on the other side is similar.

8



4.3 Crisp morphisms. Just as in the case of L-fuzzy sets, there is a natural
embedding of functions X −→ Y as morphisms of Fuz(A ). If f :X −→ Y is a function,
define f0:X × Y −→ A0 by

(x, y); f0 =
{> if y = x; f

0 otherwise

and f1:X × Y −→ A1 by

4.4 The *-autonomous structure. Let (X, ξ) and (Y, θ) be objects of Fuz(A ).
We define

(X, ξ)⊗ (Y, θ) = (X × Y, ξ ⊗ θ)
where (x, y); ξ ⊗ θ = x; ξ ⊗ yθ . If (φ0, φ1): (X, ξ) −→ (X ′, ξ′) and (γ0, γ1): (Y, θ) −→
(Y ′, θ′) are arrows of Fuz(A ), we define

(φ0, φ1)⊗ (γ0, γ1) = (φ0 ⊗ γ0, φ1 ⊗ γ1): (X, ξ)⊗ (X ′, ξ′) −→ (Y, θ)⊗ (Y ′, θ′)

by the formulas
(x, y, x′, y′);φ0 ⊗ γ0 = (x, x′);φ0 ⊗ (y, y′); γ0

x; ξ ⊗ y; θ ⊗ (x, x′);φ0 ⊗ (y, y′); γ0 −→ x; ξ ⊗ (x, x′);φ0 ⊗ y; θ ⊗ (y, y′); γ0

φ1 ⊗ γ1−−−−−−→ x′; ξ′ ⊗ y′; θ′
The second formula uses the symmetry of the tensor in a non-trivial way and there
does not appear to be any way of making this work in the non-symmetric case.

The unit for the tensor is (1,>) where we use > to denote the constant map whose
value is > . It is evident that this is the unit for the tensor. For an object (X, ξ), the
dual object (X, ξ)⊥ = (X, ξ⊥) where ξ⊥ is defined by x; ξ⊥ = (x; ξ)⊥ . This implies
that (X, ξ)⊕ (Y, θ) = (X × Y, ξ ⊕ θ). Just as in the case of a poset, the tensor sum of
(φ0, φ1): (X, ξ) −→ (X ′, ξ′) and (γ0, γ1): (Y, θ) −→ (Y ′, θ′) is given by

(x, y, x′, y′);φ0 ⊕ g = (x, x′); f ⊗ (y, y′); γ0

and

x; ξ ⊕ y; θ ⊗ (x, x′);φ0 ⊗ (y, y′); γ0 −→ x; ξ ⊗ (x, x′);φ0 ⊗ y; θ ⊗ (y, y′); γ0

φ1 ⊗ γ1−−−−−−→ x′; ξ′ ⊗ y′; θ′

9



5 Completeness

5.1 Products and sums. In this section we show that the sums in the category
A lead to a construction in Fuz(A ) that is simultaneously the sum and product.
Let {(Xi, ξi)} be a family, which we will suppose disjoint, of objects of Fuz(A ). Let
X =

∑
Xi and ξ:X −→ A0 be the unique function whose restriction to Xi is ξi . We

define arrows πi = (πi0, π
i
1): (X, ξ) −→ (Xi, ξi). For the first, we let

(x, xi);π
i
0 =

{> if x = xi
0 otherwise

The second is defined by

πi1 =

{
id:x; ξ ⊗> −→ xi; ξi if x = xi
0 −→ xi; ξi otherwise

Suppose we have a family of morphisms (φi0, φ
i
1): (Y, θ) −→ (Xi, ξi). Define (φ0, φ1): (Y, θ)

−→ (X, ξ) as follows. For x ∈ Xi define (y, x);φ0 = (y, x);φi0 and

(y, x);φ1 = (y, x);φi1: y; θ ⊗ (y, x);φi0 −→ x; ξi0

If we write (φ0, φ1); (πi0, π
i
1) = (ηi0, η

i
1), then for x ∈ Xi ,

(y, xi); η
i
0 =

∑
x∈X

(y, x);φ0 ⊗ (x, xi)ξi

The second factor of every term in this sum is 0 except the one for which x = xi . This
term is (y, x);φ0 ⊗ > = (y, xi);φ

i
0 , so that ηi0 = φi0 . We need calculate (y, xi); η

i
1 on

the only possible non-zero summand, namely the unique one for which x = xi . On this
summand, (y, xi); η

i
1 is the composite

y; θ0 ⊗ (y, x);φ0 ⊗ (x, xi); π
i
0

(y, x);φ1 ⊗ id−−−−−−−−−−−→ x; ξ0 ⊗ (x, xi);π
i
0

πi1−−−→ xi; ξi

which is the same as

y; θ0 ⊗ (y, xi);φ
i
0

(y, xi);φ
i
1−−−−−−−−→ xi; ξ

i
0

id−−→ xi; ξi

so that ηi1 = φi1 .
The uniqueness comes about as follows. Let (γ0, γ1): (Y, θ) −→ (X, ξ) be an arrow

with (γ0, γ1); (πi0, π
i
1) = (φi0, φ

i
1) for all i . Then there is, for each i , a Y ×Xi indexed

family of isomorphisms (y, xi);αi: (y, xi);φ
i
0 −→ (y, xi); γ

i
0 such that

y; θ ⊗ (y, xi);φ0 y; θ ⊗ (y, xi); γ0
-y; θ ⊗ (y, xi);αi

y;θ

(y, xi);φ1

@
@
@
@
@
@R

(y, xi); γ1

�
�

�
�
�
�	

10



commutes. Let α:Y ×X −→ A1 be the unique family of isomorphisms whose restriction
to Y × Xi is αi for each i . Then one can readily see that these α define (φ0, φ1) =
(γ0, γ1).

5.2 Cofree coalgebras. Since sums are products, the fact that ⊗ commutes with
sums implies that it also commutes with products. Thus it follows immediately that
the cofree cocommutative coalgebra on the object (X, ξ) is given as

G(X, ξ) =
∞∏
n=0

Sn(X, ξ)

with Sn the nth symmetric tensor power, gotten by symmetrizing the nth tensor
power. Note that Fuz(A ) does not have coequalizers in general, but it does have
coequalizers of groups of automorphisms. In the present case, the carrier of the nth
symmetric power is just the nth cartesian power symmetrized.

References

M. Barr (1979), *-Autonomous categories. Lecture Notes in Mathematics 752,
Springer-Verlag, Berlin, Heidelberg, New York.

M. Barr (1991), ∗-Autonomous categories and linear logic. Math. Structures Comp.
Sci. 1, 159–178.

R. Cockett and R. A. G. Seely (To appear), Weakly distributive categories.

11


