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1. Introduction. D. K. Harrison has recently developed a co-

homology theory for commutative algebras over a field [2]. A few key

theorems are proved and the results applied to the theory of local

rings and eventually to algebraic geometry. The main problem is that

both his definitions and proofs require involved calculations.

In this paper we define a cohomology theory which (a) relies on

more or less straightforward techniques of homological algebra and

(b) defines a cohomology theory for an algebra over any commutative

ring K, whose H2 group is the group of all singular extensions, whether

X-split or not. Of course, a suitable specialization of the theory gives

relative case (see §4, below). The definitions are based on an idea of

M. Gerstenhaber [3].

2. Definitions. Throughout this paper K is a commutative ring,

R a commutative üT-algebra (with unit) and M is a (left) i?-module

(equivalently, M is a symmetric two-sided i?-module). A derivation

d: R-+M is a X-linear mapping with d(xy) =xd(y)+yd(x). An «-long

singular extension of R by M is an exact sequence

0-
dn

>M-»Jlf„.
-1,,     á«-*
-+M„-i-» d\       4>

-+M1-»F->R- »0

in which T is a commutative X-algebra and <p is a morphism of K-

algebras whose kernel Mo has square zero (and hence is an i?-module)

and the remainder of the sequence is an exact sequence of i?-modules.

In particular a 1-long singular extension will be called a short singular

extension. If E and E' are two singular extensions, a morphism

/: E—»£' is a sequence of maps/,: Mi—*Ml with suitable maps at the

ends so that the following is commutative

0->M -*Mn-i-

fn-l

0-+M -»M„_i-

»Mi-»r -*R-+0

U

>Mv-+T -»2î-»0.
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In particular if /„ is an isomorphism, then/ is called an equivalence

of P with E' (written/: P»P'). The concept of an co-long extension

of P is obvious. A short singular extension is called generic if it ad-

mits a morphism to every singular extension.

Proposition 1. Short generic singular extensions exist.

Proof. For let P-+R any P projective module mapping onto P

and S(P) the symmetric algebra over P. Then S(P) has the property

that any P-linear mapping of P to a commutative P-algebra T can

be extended uniquely to a P-algebra morphism of S(P) to P. In par-

ticular, we have a: S(P)-^R, an epimorphism of P-algebras. Let

A = ker a and F=S(P)/N2. Then we have a singular extension

0->A7A2-»F->"P->0. If 0->ikf->r->P-*0 is any other singular ex-

tension, we have T—>*P—>0 gives a map ß: P—>T so that aß=<p which

induces an algebra map S(ß): S(P)—+T with the same property. But

then j3(A0 QM and so ß(N2) QM2 = 0 and thus ß induces a mapping

of S(P)/N2-*T whose restriction to N/N2 maps the latter to M.

Q.E.D.
A long singular extension (possibly co-long) is called a generic reso-

lution if it admits a morphism to any long singular extension. Using

standard techniques and Proposition 1 it is easily proved that,

Proposition 2. Suppose 0—»A7—>F—*"R—>0 is a generic singular ex-

tension and • • • —*X,—^"Xi-i—»,i_1 • • • —>Xi—**lN—»0 «5 an R-

projective resolution of N, then ■ ■ ■ —>X—><<Xi_i—>'i_1 • • • —>Xi—>nF

—>aP—>0 is a generic resolution of P. This will be abbreviated by X—>'F
-**R-*0.

In [4], Baer addition of equivalence classes of short singular exten-

sions of algebras is defined. When the extensions are commutative, so

is their Baer sum. In an obvious way this can be extended to addition

of equivalence classes of long singular extensions. The monoid thus

formed of equivalence classes of (w+l)-long singular extensions is

denoted by Hn(R, M), for «>1 and we let H^R, M) = Der(R, M)

the group of derivations of P to M. If X—>'F—>"P—»0 is a generic

resolution we let H"(R, M) denote the (« — l)st cohomology group of

the complex, 0—»Der(F, M)—*rlomR(X, M) where the first map is

defined to be composition with ei which, strangely enough, maps

derivations to P-homomorphisms. The facts that Hn(R, M) is a

group, and in particular, a set and that Hn(R, M) does not depend

on the particular choice of a generic resolution are clear from

Theorem 3. There is a natural isomorphism of Hn(R, M) with

^"(R, M).
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Here "natural" is used somewhat loosely for it has not been shown

that either Hn or Hn is a functor. However, H" clearly is and Hn can

be easily shown to be, and the isomorphism we construct is a natural

equivalence. For « = 1, the result is obvious given that Der( —, M)

is a left exact contravariant functor (see [4]). For «> 1 we construct

a mapping of Hn(R, M) to Hn(R, M) and leave the details of the proof

to the reader. It is well defined and gives an isomorphism. So let

X—r'F—raR—»0 be a generic singular resolution of R and A^ = ker a.

Suppose

ß
0-»M-»M»_i-» • • • -»Mr-»r-».R-»0

is a long singular extension and Mo = ker ß. Then 0—*N—»F—*R—»0 is

a short generic singular extension so it maps to 0—»Mo—»F—»22—»0

which induces /0 : A7—»M0. But then • • • —»Xn—► • • • —*Xi—»A7—»0 is

a projective resolution of A7 and we can map it to 0—»M—»M„_i—» • • •

—»Mi—»Mo—»0 so that it commutes with/0. Thus we have defined (not

uniquely; it must be shown to be unique up to homotopy) a map

/„: X„-+M. Then the isomorphism is the function which associates

the above extensions to the class of/„ in Hom¡i(X„, M).

Henceforth, using this isomorphism, we do not distinguish between

Hn and Hn.

Proposition 4. Hn is a connected functor, i.e. if 0—>M'—»M—»M"—»0

is an exact sequence of R-modules, then there are connecting homomor-

phisms such that

0-»Der(ic, M')^Der(R, M)-+Dex(R, M")

-+H2(R, M') -*H2(R, M) -^H2(R, M")

->H»(R, M') -*#"(£, M) ->#»(£, M")-+ ■ ■ ■

is exact.

Proof. This follows from the fact that when F is a generic exten-

sion of R,

0-»Der(F, M')-»Der(F, M)-»Der(F, M")-»0

is exact (see [4]), together with well-known results.

3. Main results. In this section we obtain the main results analo-

gous to Harrison's.

Theorem 5. Let R = k[X], the algebra of polynomials in a set X of

variables and M be an R-module. Then iT-(i?, M) = Mx and H*(R, M)

= 0fori>\.
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Proof. The first assertion follows from the fact that every map of

X to M can be uniquely extended to a derivation and the second from

the fact that a polynomial algebra is a generic extension of itself

(see [4] for details).

In what follows, ®, Tor, "flat," "projective" will mean ®K, Torx,

"K-ñat," and "X-projective" respectively. Before going any further

we require a lemma proved in [l, p. 165] which, for commutative

.K-algebras, may be stated as follows:

Lemma 6. Let L, L', L" be commutative K-algebras, M an V—L"

bimodule, M' an L—L" bimodule and M" an L—L' bimodule. There is

an isomorphism

RommL,(M ® M', M"J ~ Hom^^CM, Hom^M', M"))

which establishes a natural equivalence of functors.

Theorem 7. Let R and R' be flat algebras and M an R®R'-module

(this is equivalent to an R—R' bimodule), then

H"(R ® R', M) « H"(R, M) © H"(R', M).

Proof. Let Z-»F-»ai?-»0 and X'-+F'-^a'R'-+0 he generic singular

resolutions with A^ = ker a, N' = ker a.'.

a ® a'
F ® F'-» R <g> R'

would be a generic singular extension if it were singular, a defect

remediable by factoring out the square of the kernel. From the flat-

ness of R and R' we get the following exact commutative diagram

0 0 0

1 1        1
0-> N <g> N' -» N ® F' -» N ® R' -»0

1        I        1
0-»F ®Ar'-»F ® F'-*F ® R'-+0

1        l\    1
0-»l? ®A^'-»2? ®F'-»22 ® R'-+0

1        1        1
0 0 0
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where the diagonal arrow is a®a'. Then by diagram chasing we see

that ker(a(g>a') = F<g>A' + 2v'®F' and that (F®N')f~\(N®F')

= N®N'. But then

(ker(a ® a'))2 = F ® N'2 + N ® N' + N2 ® F'

= N ® N'

and the quotient is

(F ® N'/N ® N') © (N ® F'/N ® N') = R® N' © N ® R'.

Thus

0->P<g>A'ffiA®P'->F® F'/N ® N'-*R® P' -► 0

is a singular extension of R®R' which is easily seen to be generic.

Now both P and R' are flat, hence P and R' projectives are also flat.

This means that X—*N—>0 and X'-+N'-*0 are flat resolutions and

that the homology of X®R' and R®X' are Tor(A, R')=N®R' and

Tor(P, N')=R®N' respectively. But this means that X®R'

->A®P'->0 and R®X'-*R® A'->0 are acyclic. Now for any R®R'

module M we apply Lemma 6 to obtain

HomB®B.(P ®  X'  ©  X ® R', M)

« HomB®B.(P ® X', M) © HomB8,B,(X ® R', M)

« HomB,(X', HomB(P, M)) © HomB(Z, HomB,(2c', M))

« HomB.(X', M) © HomBfX, M).

This shows both that R®X'®X®R' is projective and that the

complex HomB®B'(P ® X' © X ® R', M) is the direct sum of

HomB(Ar, M) and HomB<(X', M). The easily proved assertions that

Der(F®F, M)~Der(F, M)®Der(F', M) and that these are all

natural equivalences complete the proof.

Theorem 8. Let S be a multiplicatively closed subset of R with

0 (£5, and suppose that there are no zero divisors of R in S. Suppose M

is an Rs-module, then Hn(R, M) ^Hn(Rs, M).

Proof. Let 0—»A7—»F—r"R—»0 be a generic singular extension of P

and C=or1(S). Then by direct computation 0^A®BPs-^Pc-^asPs

—»0 is exact. I claim it is a generic singular extension. For let 0—>M

-+T-+PRS-+0 he a singular extension. Then 0-^-M-^ß-1(R)-^R-^0 is

a singular extension of P and we can map </>: P—>ß_1(P) with ß<p = c.

Now given cQ C we can find a unique 8(c) Q T with 0(c)<£(c) = 1. Then

extending 4> to <ps: FC-*T by <ps(x/c) =<p'(x)ß(c) the claim is proved.

Now since no zero divisors of P are in S,
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Rs = mjlim{(l/s)R\sES}

is 2?-flat being a direct limit of i?-flat modules. Then if X—»A7—»0

is an i?-projective resolution of N, then homology of X®SRS is

TorB(N, Rs)=N®rRs so that X®rRs-+N®rRs-*0 is acyclic.

Moreover, for any i?s-module M, we have by Lemma 6

HomRa(X®rRs, M)«HomÄ(X, UomRs(Rs, M))«HomÄ(X, M)

showing that X®rRs is i?s-projective and that the complexes

HomB(X, M) and HomRs(X ® rRs, M) are isomorphic. The fact that

Der(F, M) ~ Der(Fc, M) is easily seen and completes the proof.

The assumption above that 5 contains no zero divisors may be

omitted; Robert M. Fossum has pointed out that Rs is always i?-flat.

4. Generalizations, specializations, etc. In a subsequent paper it

will appear how to specialize the theory to Z-split or ÜT-split exten-

sions (or, any ring in between) on the one hand and to generalize to a

functor H+, for any singular epimorphism of K-algebras xp: S'-+S in

such a way that if A7=ker \\i and M is an 5-module, then we have an

exact sequence

0 -» Der(S, M) -» Der(5', M) -» Homa(N, M)

-» H\S, M)   -> hI(S', M)  -» Ext8(N, M)

-> Hn(S, M)  -> Hl(S', M)  -» Exts \n, M) -» • • • .

Thus we have a connected sequence in the first variable.
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