
CHAPTER 7

Wess{Zumino{Witten Model

In this 
hapter, we give a 
onstru
tion of what is probably the best known

example of a modular fun
tor. This modular fun
tor is based on the 
ategory

of integrable representations of an aÆne Lie algebra and appears naturally in the

Wess{Zumino{Witten model of 
onformal �eld theory; abusing the language, we

will 
all it the WZW modular fun
tor. The literature devoted to this measures in

hundreds of papers; the most prominent among them are [KZ℄, [MS1℄, [TUY℄,

[BFM℄. For more detailed exposition of 
onformal �eld theory in general and

WZW model in parti
ular, we refer the reader to [FMS℄ and referen
es therein.

The main goal of this 
hapter is to prove the following result. Fix a simple


omplex Lie algebra g, and let O

int

k

be the 
ategory of integrable modules of level

k 2 Z

+

over the 
orresponding aÆne Lie algebra

b

g.

Theorem 7.0.1. The 
ategory O

int

k

has a stru
ture of a modular tensor 
ate-

gory.

Of 
ourse, in this form the theorem is not very pre
ise sin
e we have not de�ned

the tensor produ
t (whi
h is usually 
alled the fusion produ
t, and denoted

:


, to

distinguish it from the usual tensor produ
t of ve
tor spa
es). We will give a pre
ise

de�nition later (see Corollary 7.9.11).

Another important result, whi
h, unfortunately, we will not prove, is the follow-

ing. Re
all that in Se
tion 3.3 we de�ned a stru
ture of a modular tensor 
ategory

on a 
ertain subquotient C

int

(g;{) of the 
ategory of representations of the quantum

group U

q

g, q = e

�i=m{

.

Theorem 7.0.2 ([F℄). The 
ategory O

int

k

is equivalent to the 
ategory C

int

(g;{)

as a modular tensor 
ategory for { = k+h

_

, where h

_

is the dual Coxeter number

for g.

Be
ause of the importan
e of these two theorems, we will 
omment here on

their history. They have appeared in somewhat vague form in physi
s literature in

the 1980s. The a

urate 
onstru
tion of the tensor stru
ture on O

int

k

�rst appeared

in [MS1℄; however, Moore and Seiberg did not give a 
omplete proof.

To the best of our knowledge, there are three known proofs of Theorem 7.0.1.

The �rst one, whi
h we present in this 
hapter, is based on the use of the notion

of modular fun
tor. The 
orresponding modular fun
tor (whi
h, as we mentioned

above, naturally appears in the Wess{Zumino{Witten model of 
onformal �eld

theory) is de�ned in terms of the spa
es of 
oinvariants. The 
ru
ial step in proving

that these spa
es satisfy the axioms of a modular fun
tor is 
he
king the gluing

axiom, whi
h was done by Tsu
hiya, Ueno, and Yamada [TUY℄. Another proof of

the gluing axiom 
an be obtained by suitably modifying the proof for the minimal

models given in [BFM℄.
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The se
ond proof of Theorem 7.0.1 was given by Finkelberg [F℄, who based

his approa
h on the series of papers of Kazhdan and Lusztig [KL℄. They proved

that for negative integer level k, the 
ategory O

k

is a ribbon 
ategory, whi
h is

equivalent to the 
ategory C(g;{) of representations of the quantum group U

q

g.

Therefore, this 
ategory 
ontains a subquotient 
ategory whi
h is equivalent to the

MTC C

int

(g;{). Combining this result with a 
ertain duality between the 
ategories

O

k

and O

�2h

_

�k

, Finkelberg showed that this subquotient is dual to the 
ategory

O

int

k

, thus establishing simultaneously Theorems 7.0.1 and 7.0.2.

Finally, the third proof of Theorem 7.0.1, based on the theory of vertex operator

algebras, was re
ently given by Huang and Lepowsky [HL℄.

Unfortunately, none of these proofs is easy. Finkelberg's proof is based on a 250

pages long series of papers [KL℄, whi
h is very tersely written; few people (if any

at all) have expertise and patien
e to follow all the details of this proof. Similarly,

the proof of Huang and Lepowsky is heavily based on a number of their previous

papers on vertex operator algebras, whi
h 
an sometimes get rather te
hni
al. The

modular fun
tor approa
h seems to be the easiest of all three, but it still requires all

the formalism of modular fun
tors and their relation with tensor 
ategories (whi
h

took the previous 140 pages of this book) and some non-trivial algebrai
 geometry

used in [TUY℄, also not an easy reading.

The proof given in this 
hapter is based on the modular fun
tor approa
h; how-

ever, our proof of the gluing axiom follows the ideas of [BFM℄ rather than [TUY℄.

This proof was never published before; however, for the most part it 
losely follows

the arguments in [BFM℄, so all the 
redit belongs to Beilinson, Feigin, and Mazur.

Modifying their arguments for WZW model was rather straightforward; a

ording

to private 
ommuni
ations from Beilinson and Feigin, they intended to in
lude the

proof for WZW model in the �nal version of the manus
ript. Unfortunately, it is

not 
lear when (and if) su
h a �nal version appears, so we in
lude this proof here.

7.1. Preliminaries on aÆne Lie algebras

The aim of this subse
tion is just to �x the notation, we refer to the book of

Ka
 [K1℄ for a 
omprehensive treatment.

Let g be a �nite dimensional simple Lie algebra over C . We �x a Cartan

subalgebra h � g and let h�; �i be an invariant bilinear form on g normalized so that

h�; �i = 2 for long roots of g. We will use the same notations (and notions) as in

Se
tion 1.3.

Let g((t)) � g 


C

C ((t)) be the loop algebra of g. Then the aÆne Lie algebra

of g is

b

g = g((t))� CK(7.1.1)

with 
ommutation relations

[a
 f; b
 g℄ = [a; b℄
 fg + ha; biRes

0

(df g)K; [K;

b

g℄ = 0:

For brevity, we often use the notation x[n℄ = x
 t

n

; x 2 g.

We let

b

g

+

= tg[[t℄℄,

b

g

�

= t

�1

g[t

�1

℄. We have a de
omposition of

b

g into subal-

gebras

b

g =

b

g

+

� g� CK �

b

g

�

:

We will be interested in

b

g-modules of level k 2 C , i.e., modules V su
h that

Kj

V

= k id

V

; this is equivalent to 
onsidering modules over U(

b

g)

k

= U

b

g=U

b

g(K�k).
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We will denote by O

k

the 
ategory of

b

g-modules of level k whi
h have weight

de
omposition with �nite-dimensional weight subspa
es, su
h that the a
tion of

b

g

+

is lo
ally nilpotent and the a
tion of g is integrable.

Of spe
ial interest for us are two 
lasses of modules from O

k

: Weyl modules

and integrable modules. Weyl module V

k

�

; � 2 P

+

, is de�ned by

V

k

�

= Ind

b

g

g�

b

g

+

�CK

V

�

;(7.1.2)

where V

�

is the irredu
ible �nite-dimensional g-module with highest weight �, whi
h

we 
onsider as a module over g�

b

g

+

� CK by letting

b

g

+

a
t as 0 and K a
t as k id.

The Weyl module is free over

b

g

�

.

If k =2 Q, then Weyl modules are irredu
ible and the 
ategory O

k

is semisimple.

We will be mostly interested in the other extreme 
ase k 2 Z

+

. In this 
ase, we 
an

also 
onsider integrable highest-weight modules. We will denote by O

int

k

� O

k

the

sub
ategory of integrable modules, i.e., su
h modules that for every root �, n 2 Z,

the a
tion of e

�

[n℄ is lo
ally nilpotent. It is known that O

int

k

is semisimple with

simple obje
ts L

k

�

; � 2 P

k

+

, where P

k

+

is the positive Weyl al
ove

P

k

+

= f� 2 P

+

j (�; �

_

) � kg;(7.1.3)

see [K1℄. (Note that P

k

+

is the same set whi
h we denoted by C in Se
tion 3.3.)

The modules L

k

�

are irredu
ible and 
an be des
ribed as the quotient L

k

�

= V

k

�

=Z

�

,

where Z

�

is the unique maximal proper submodule of V

k

�

. It is known that Z

�

is

generated by one ve
tor: Z

�

= U

b

g(e

�

[�1℄)

a+1

v

�;k

, where a = k � (�; �

_

).

It is useful to note that both V

k

�

and L

k

�

have a natural Z

�

-grading (sometimes


alled the homogeneous grading), de�ned by deg v

�;k

= 0; deg a[n℄ = n; a 2 g; n 2 Z.

It is easy to see that homogeneous 
omponents of V

k

�

(and, in fa
t, any module in

the 
ategory O

k

) are �nite-dimensional.

Finally, we will de�ne the duality in the 
ategory O

k

by DV = (V

�

)

\

, where V

�

is the restri
ted dual to V , i.e. the dire
t sum of the dual spa
es to homogeneous


omponents of V , and \ is de�ned as follows: for a

b

g module W , the module

W

\


oin
ides with W as a ve
tor spa
e, and the a
tion of

b

g is twisted by the

automorphism

\ : x[n℄ 7! (�1)

n

x[�n℄; K 7! �K:(7.1.4)

It is easy to see that D is an anti-automorphism of the 
ategory O

k

whi
h preserves

O

int

k

. In parti
ular, for an integrable module L

k

�

, DL

k

�

is also an irredu
ible inte-

grable module, whose top homogeneous 
omponent is V

�

�

. It is (non-
anoni
ally)

isomorphi
 to L

k

�w

0

(�)

.

7.2. Reminders from algebrai
 geometry

In this se
tion we brie
y list some fa
ts from algebrai
 geometry whi
h will

be used below. All of them are quite standard, so a reader who has even basi


knowledge of algebrai
 geometry over C 
an safely skip this se
tion.

All varieties 
onsidered in this se
tion are 
onsidered with analyti
 topology;

as before, we use the words \manifold" and \non-singular variety" as synonyms.

For a variety S, we denote by O

S

the stru
ture sheaf of S (i.e., the sheaf of analyti


fun
tions on S). We assume that the reader is familiar with the notion of a O-

module and a 
oherent O-module. As usual, for a point s 2 S we de�ne by O

S;s

the lo
al ring at s, i.e. the ring of germs of analyti
 fun
tions at s, and by m

s

the maximal ideal of this ring, whi
h 
onsists of fun
tions vanishing at s. We also
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denote by

b

O

S;s

the 
ompletion of the lo
al ring with respe
t to topology given by

the powers of the maximal ideal. In parti
ular, if dimS = 1, s 2 S is a regular

point, and t is a lo
al parameter at s, i.e., an analyti
 fun
tion in a neighborhood

of s su
h that t(s) = 0; (dt)

s

6= 0, then

b

O

S;s

' C [[t℄℄.

For an O

S

-module F we de�ne its �ber at point s 2 S to be F

s

=m

s

F

s

. In

parti
ular, if F is the sheaf of se
tions of a ve
tor bundle F , then in this way

one re
overs the �bers of F . We will say that an O-module F is lisse if it is the

sheaf of se
tions of a �nite-dimensional ve
tor bundle. Note that every lisse sheaf

is 
oherent, but 
onverse is not true.

In general, for an open subset U � S and a sheaf F on S, we denote by F(U)

the ve
tor spa
e of se
tions of F over U . However, in the 
ase when U = C nD,

where C is 
ompa
t and D is a divisor, and F|an O-module over C, we will

denote by F(C � D) the spa
e of meromorphi
 se
tions of F over C whi
h are

regular outside of D. We hope it won't 
ause 
onfusion.

We will use the following well known fa
ts about 
omplex 
urves. As before, all

the 
urves are assumed to be 
ompa
t and non-singular (unless spe
i�ed otherwise),

but not ne
esarily 
onne
ted.

Theorem 7.2.1 (Riemann-Ro
h). Let C be a 
onne
ted 
omplex 
urve, and

p

1

; : : : ; p

n

; q|distin
t points of C (n � 0). Let us �x the prin
ipal parts of Laurent

expansions (f)

i

2 C ((t

i

))=C [[t℄℄ near p

i

. Then there exists a fun
tion f 2 O(C �

fp

1

; : : : ; p

n

; qg) whi
h has given prin
ipal parts of Laurent expansion at p

i

and has

a pole at q. Moreover, the order of pole at q 
an be bounded by a 
onstant whi
h

only depends on the order of poles at p

i

and the genus of the 
urve C.

This theorem 
an be generalized to 
urve whi
h may have ordinary double

point singularities and may be dis
onne
ted. In this 
ase, we have to allow poles

at a 
olle
tion of points q

1

; : : : ; q

m

su
h that on every 
omponent of C there is at

least one of the points q

i

.

Theorem 7.2.2. Let C be a 
omplex 
urve (possibly dis
onne
ted and singu-

lar). Let q 2 C be a regular point, and t|a lo
al parameter at q. Then the ve
tor

spa
e

C ((t))=C [[t℄℄ +O(C � q);

is �nite dimensional. Moreover, there exists N 2 Z

+

whi
h only depends on the

topology of C su
h that

O(C � q) + C [[t℄℄ � t

�N

C [t

�1

℄ + C [[t℄℄:

7.3. Conformal blo
ks: de�nition

In this se
tion, we will de�ne the ve
tor spa
es of 
oinvariants; later we will

show that these ve
tor spa
es satisfy the axioms of a modular fun
tor. The basi


referen
es for this se
tion are [TUY℄, [Be℄ (with minor 
hanges).

Fix a 
ompa
t nonsingular 
omplex 
urve C (not ne
essarily 
onne
ted), a

�nite dimensional simple Lie algebra g, and a positive integer k.

Let p

1

; : : : ; p

n

be distin
t points on C with lo
al 
oordinates t

1

; : : : ; t

n

(re
all

that a lo
al 
oordinate at a point p is a holomorphi
 fun
tion t in a neighborhood

of p su
h that t(p) = 0; (dt)

p

6= 0). We will always assume that on every 
onne
ted


omponent of C there is at least one point. Let V

1

; : : : ; V

n

2 O

k

be some

b

g-modules

asso
iated to these points.
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We will use the notations

~p = (p

1

; : : : ; p

n

);

V = V

1


 : : :
 V

n

:

In parti
ular, if V

i

= L

k

�

i

are integrable modules, we will use the notation

~

� = (�

1

; : : : ; �

n

); L

k

~

�

= L

k

�

1


 � � � 
 L

k

�

n

:

Consider the Lie algebra

g(C � ~p) = g


C

O(C � ~p)(7.3.1)

of g-valued fun
tions on C whi
h are regular outside the points p

1

; : : : ; p

n

and

meromorphi
 at these points. We have Lie algebra homomorphisms




i

: g(C � ~p)! g((t))

given by Laurent expansion around the point p

i

in the lo
al 
oordinate t

i

. This

does not give a Lie algebra homomorphism g(C � ~p) !

b

g be
ause of the 
entral

term in de�nition of

b

g. However, by the Residue Theorem,

~
 = 


1

� � � � � 


n

: g(C � ~p)! g((t)) � � � � � g((t))


an be lifted to a homomorphism

~
 : g(C � ~p)! U(

b

g)

k


 � � � 
 U(

b

g)

k

; ~
(x) =

n

X

i=1

1
 � � � 
 


i

(x) 
 � � � 
 1:

In parti
ular, g(C � ~p) a
ts on V .

Definition 7.3.1. The spa
e of 
onformal blo
ks is the ve
tor spa
e of 
oin-

variants

�(C; ~p; V ) := V

g(C�~p)

= V=g(C � ~p)V:

We will write �(C; ~p;

~

t; V ) when we need to show the dependen
e on the 
hoi
e

of lo
al parameters

~

t = (t

1

; : : : ; t

n

).

It is easy to see that the 
onstru
tion above also makes perfe
t sense if we allow

t

i

be formal lo
al parameters at p

i

, i.e., t

i

2

b

O

p

i

; (dt

i

)

p

i

6= 0. Note that on
e t

i

is


hosen, one has

b

O

p

i

= C [[t

i

℄℄.

Lemma 7.3.2 (Beauville [Be℄). Let ~p, V be as above, and let q 2 C�~p, � 2 P

k

+

.

As before, let V

�

be the 
orresponding �nite-dimensional g-module, and let V

k

�

be

the Weyl module over

b

g. Then the in
lusion V

�

,! V

k

�

indu
es an isomorphism

(V 
 V

�

)

g(C�~p)

�

�! (V 
 V

k

�

)

g(C�~p�q)

= �(C; ~p [ q; V 
 V

k

�

);(7.3.2)

where g(C�~p) a
ts on V

�

via the evaluation map a
f 7! f(q)a, a 2 g, f 2 O(C�~p).

Proof. Sin
e the natural embedding V 
 V

�

,! V 
 V

k

�

is 
learly g(C � ~p)

equivariant, it indu
es a map from the left hand side of (7.3.2) to the right hand

side.

By the Riemann{Ro
h formula, there exists a fun
tion z on C regular outside

~p [ q and having a simple pole at the point q. Then

O(C � ~p� q) = O(C � ~p)�

1

M

i=1

C z

�i

;
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therefore g(C � ~p� q) ' g(C � ~p)�

b

g

�

.

By de�nition, V

k

�

is a free U(

b

g

�

)-module isomorphi
 to U(

b

g

�

)V

�

; hen
e, V

�

'

(V

k

�

)

b

g

� . Then (7.3.2) follows by tensoring with V and taking 
oinvariants with

respe
t to g(C � ~p).

Lemma 7.3.3. Let C be 
onne
ted, and let V

i

be quotients of Weyl modules:

V

i

= V

k

�

i

=I

i

(the ideals I

i

may be zero, maximal, or anything in between). As-

sume also that at least one of V

i

is integrable, i.e., equal to L

k

�

i

. Then the natural

surje
tion V = V

1


 � � � 
V

n

� L

k

�

1


 � � � 
L

k

�

n

= L

k

~

�

gives rise to an isomorphism

�(C; ~p; V )

�

�! �(C; ~p; L

k

~

�

):(7.3.3)

Proof. It suÆ
es to prove that

(L

k

�

1


 V

2


 � � � 
 V

n�1


 V

k

�

n

)

g(C�~p)

= (L

k

�

1


 V

2


 � � � 
 V

n�1


 L

k

�

n

)

g(C�~p)

:

Let Z = fv 2 V

k

�

n

j L

�

1


 � � � 
 V

n�1


 v � Im g(C � ~p)g. Obviously, this is a

submodule in V

k

�

n

; our goal is to prove that V

k

�

n

=Z is integrable. This is equivalent

to the following statement: for every root � and v 2 V

k

�

n

, one has (e

�

[�1℄)

N

v 2 Z

for N � 0 (in fa
t, it suÆ
es to 
he
k this for � = �). We leave it to the reader

to 
he
k that if we 
hoose f 2 C ((t)) su
h that f has �rst order pole at 0, then

the above 
ondition is equivalent to (e

�

f)

N

v 2 Z for N � 0 (in other words, the

notion of an integrable module does not depend on the 
hoi
e of lo
al parameter).

Now let f 2 O(C�p

1

�p

n

) be a fun
tion whi
h has a �rst order pole at p

n

. By

the Riemann{Ro
h theorem, su
h a fun
tion exists if we allow it to have a pole of

suÆ
iently high order at p

1

. Sin
e L

k

�

1

is integrable, and f is regular at p

2

; : : : ; p

n�1

,

we easily see that a
tion of e

�

f on L

k

�

1


� � � 
V

n�1

is lo
ally nilpotent. Therefore,

for any v

1

2 L

k

�

1

; : : : ; v

n

2 V

k

�

n

, one has v

1


 � � � 
 v

n�1


 (e

�

f)

N

v

n

2 Im g(C � ~p).

But this exa
tly means that (e

�

f)

N

v

n

2 Z for N � 0.

This theorem 
an be rewritten in more invariant terms. For a module V 2 O

k

,

denote by V

int

its maximal integrable quotient (it is easy to see that it is well-

de�ned). Then the previous lemma immediately implies the following 
orollary.

Corollary 7.3.4. Let V

i

2 O

I

k

NT , and at least one of V

i

is integrable. Then

�(C; ~p; V

1


 � � � 
 V

n

) = �(C; ~p; V

int

1


 � � � 
 V

int

n

):

Corollary 7.3.5. Let V = V

1

� � � 
 V

n

; V

i

2 O

int

k

. Then the embedding C =

V

0

,! L

k

0

indu
es an isomorphism

�(C; ~p; V ) ' �(C; ~p [ q; V 
 L

k

0

):(7.3.4)

Proof. This follows from Lemmas 7.3.2 and 7.3.3:

(V 
 L

k

0

)

g(C�~p�q)

' (V 
 V

k

0

)

g(C�~p�q)

' (V 
 C )

g(C�~p)

:

Having proved these results, we 
an prove now the following proposition.

Proposition 7.3.6. If V = V

1

� � �
V

n

; V

i

2 O

int

k

, then the spa
es of 
oinvariants

�(C; ~p; V ) are �nite dimensional.
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Proof. We may assume that C is 
onne
ted. Combining Lemma 7.3.2 and

7.3.3, we see that it suÆ
es to prove the statement for n = 1; V

1

= L

k

�

. It follows

from Theorem 7.2.2 that

b

g

+

+ g(C � p) �

b

g

+

+ t

�N

b

g

�

for N � 0. Therefore, it

suÆ
es to prove that the ve
tor spa
e

W

N

= L

k

�

=t

�N

b

g

�

V

�

is �nite-dimensional.

To prove this, note that one has a well-de�ned a
tion of

b

g

�0

= g[t

�1

℄ on W

N

,

whi
h fa
tors through the �nite-dimensional quotient a =

b

g

�0

=t

�N

b

g

�0

. Obviously,

W

N

= (Ua)v

�;k

. On the other hand, a is generated by e

�

; f

�

, e

�

t

�1

, and all of

these generators a
t nilpotently on W

N

. Thus, all we need is to prove the following

lemma.

Lemma 7.3.7. If a is a �nite-dimensional Lie algebra with generators x

1

; : : : ; x

n

,

and W is a 
y
li
 a-module su
h that the a
tion of x

i

in W is lo
ally nilpotent, then

W is �nite-dimensional.

To prove this lemma, we pass from the module W over Ua to the 
orre-

sponding graded module GrW over Gr(Ua) = S(a). Consider the variety S =

Supp(GrW ) � a

�

. Then it follows from the nilpoten
y 
ondition that x

i

, 
on-

sidered as a fun
tion on a

�

, vanishes on S. By Gabber's integrability theorem

[Gab℄, if x; y vanish on S, then [x; y℄ also vanishes. Therefore, S = f0g. But every

�nitely generated module over the polynomial ring, whi
h has a �nite support, is

�nite-dimensional. This proves the lemma, and thus, the proposition.

As an illustration, 
onsider the simplest 
ase C = P

1

.

Proposition 7.3.8. Let C = P

1

, p

1

; : : : ; p

n

|distin
t points on C.

(i) Let V

k

~

�

= V

k

�

1


: : :
V

k

�

n

, and V

~

�

= V

�

1


: : :
V

�

n

. Then the homomorphism

(V

~

�

)

g

! �(C; ~p; V

k

~

�

)

obtained by restri
ting the natural map V

k

~

�

! V

k

~

�

=g(C � ~p)V

k

~

�

, is an isomorphism.

(ii) Let z be a global 
oordinate on P

1

; assume that z(p

i

) is �nite. De�ne the

endomorphism T : V

~

�

! V

~

�

by

T (v

1


 � � � 
 v

n

) =

n

X

i=1

v

1


 � � � 
 z(p

i

) e

�

v

i


 � � � 
 v

n

Then one has an isomorphism

(V

�

1


 : : :
 V

�

n

)

g�CT

k+1 ' �(P

1

; ~p; L

k

~

�

):

Proof. Part (i) is proved in the same way as Lemma 7.3.2, if we also note

that for one point, g(P

1

� p) = g�

b

g

�

. As for part (ii), it 
an be dedu
ed from the

fa
t that L

k

�

= V

k

�

=U

b

g(e

�

[�1℄)

a+1

v

�;k

.

Let us relate this des
ription with the one usually given in the physi
s literature.

As before, let C = P

1

with global 
oordinate z, and let the marked points be

0; z

1

; : : : ; z

n

;1 with the lo
al parameters z; z� z

i

;�1=z respe
tively. Let us assign

to the points 0 and1 someO

k

-modules V

0

; V

1

respe
tively and assign to the points

z

1

; : : : ; z

n

Weyl modules V

k

�

1

; : : : ; V

k

�

n

. Then, by Lemma 7.3.2, we 
an repla
e in
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the de�nition of 
oinvariants V

k

�

i

by V

�

i

and the algebra g(P

1

� f0; z

i

;1g) by

g(P

1

� f0;1g) = g[z; z

�1

℄. Thus

(7.3.5) �(P

1

; 0; z

1

; : : : ; z

n

;1; V

0

; : : : ; V

1

)

= (V

0


 V

�

1


 : : :
 V

�

n


 V

1

)=

�

(x[n℄)

0

+

X

z

n

i

x

i

+ (�1)

n

(x[�n℄)

1

�

where n 2 Z; x 2 g, and notation x

i

means x a
ting on V

�

i

, et
. We 
an pass to

the dual spa
e �

�

whi
h will be a subspa
e in

Hom

C

(V

0


 V

�

1


 : : :
 V

�

n


 V

1

; C ) = Hom

C

(V

0


 V

�

1


 : : :
 V

�

n

;

[

DV

1

)

where




W is the 
ompletion of a W 2 O

k

with respe
t to the homogeneous grading.

Rewriting the 
oinvarian
e 
ondition, we get

�

�

= f� : V

0


 V

�

1


 : : :
 V

�

n

!

[

DV

1

j �(x[n℄ +

X

z

n

i

x

i

) = x[n℄�g

= Hom

g[t;t

�1

℄

(V

0


 V

�

1

(z

1

)
 : : : V

�

n

(z

n

);

[

DV

1

);

(7.3.6)

where, as before, V (z) is the evaluation representation.

For the 
ase g = sl

2

; n = 1 the dimensions of these spa
es (whi
h, as we will

show below, play the role of multipli
ity 
oeÆ
ients N

k

ij

for the modular 
ategory

O

int

k

) were 
al
ulated in [TK℄; their answer agrees with the formula for U

q

(sl

2

); q =

e

�i=(k+2)

given in (3.3.24)|as expe
ted from Theorem 7.0.2.

Remark 7.3.9. It is a natural question to generalize the de�nition of 
oinvari-

ants, whi
h 
an be viewed as Lie algebra homology in degree zero H

0

(g(C � ~p); V )

and 
onsider all homology spa
esH

�

(g(C�~p); V ). To the best of out knowledge, this

approa
h was �rst suggested by B. Feigin. One of the �rst results in this dire
tion,

proved in [Tel℄, is the vanishing theorem: if V

i

are Weyl modules, then all higher

homology vanish. In parti
ular, this theorem allows one to 
al
ulate dimensions of

the ve
tor spa
es of 
oinvariants �(C; ~p; L

k

~

�

), by writing for ea
h of L

k

�

i

a resolution


onsisting of Weyl modules, and then using the fa
t that for the Weyl modules,

dimension of the spa
e of 
oinvariants is known (see Lemma 7.3.8). This answer


oin
ides with the dimension of the spa
es of homomorphisms in the 
ategory of

representations of quantum group at root of unity (see Proposition 3.3.23).

The meaning of the higher homology spa
es (\higher 
onformal blo
ks")H

i

(g(C�

~p); V ) when V

i

are integrable and the role they play in 
onformal �eld theory is still

un
lear.

7.4. Flat 
onne
tion

In the previous se
tion, we have de�ned and studied some properties of the

ve
tor spa
es of 
oinvariants for a given 
urve C with marked points and 
hosen

lo
al parameters at these points. Now, let us study what happens with these

spa
es when we 
hange the lo
al parameters, or move the points. Let us assume

that we have a smooth family of pointed 
urves C

s

; s 2 S over a smooth base S.

As mentioned above, it means that we have a smooth manifold C

S

with a proper


at smooth morphism � : C

S

! S su
h that ea
h �ber C

s

= �

�1

(s) is a 
omplex


urve; we also have n non-interse
ting se
tions p

i

: S ! C

S

, and lo
al parameters

t

i

, whi
h are fun
tions in a neighborhood of p

i

(S) � C

S

su
h that p

i

(S) is the zero

lo
us of t

i

, and dt

i

6= 0 on p

i

(S). Su
h a data de�nes on ea
h �ber a stru
ture of a
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pointed 
omplex 
urve, with a lo
al parameter at ea
h pun
ture; as before, we will

assume taht on ea
h 
onne
ted 
omponent of C

s

there is at least one marked point.

Similarly to the 
onstru
tion of the previous se
tion, it is 
onvenient to allow t

i

to be

formal parameter, i.e. an element of the 
ompleted lo
al ring

b

O

C

S

;p

i

(S)

' O

S

[[t

i

℄℄.

We will denote by �

S

the sheaf of ve
tor �elds on S. We will also denote

by O(C

S

� ~p(S)) the sheaf on S whose se
tions over U � S are by de�nition

meromorphi
 fun
tions over �

�1

(U) � C

S

whi
h are regular outside of p

i

(S); when

S = fpointg, this 
oin
ides with the de�nition in the previous se
tion. In a similar

way, we de�ne g(C

S

� ~p(S));�(C

S

� ~p(S))|all of them are sheaves on S.

Throughout this se
tion, let us �x a family C

S

as above, 
hoose integrable

b

g-

modules V

1

; : : : ; V

n

2 O

int

k

, and let V = V

1


 V

n

. Then for every point s 2 S we


an de�ne the ve
tor spa
e of 
oinvariants

�

s

= �(C

s

; ~p(s); V ) = V=g(C

s

� ~p(s))V:(7.4.1)

The main goal of this se
tion is to prove the following theorem.

Theorem 7.4.1. Under the above assumptions, the ve
tor spa
es �

s

form a

ve
tor bundle �

S

over S whi
h 
arries a natural proje
tively 
at 
onne
tion. The

assignment S 7! �

S

is fun
torial in S: for every map  : S

0

! S and a family C

S

over S as before, there is a 
anoni
al isomorphism �

S

0

=  

�

(�

S

), where C

S

0

:=

 

�

(C

S

).

We remind that a 
onne
tion is 
alled proje
tively 
at if [r

X

;r

Y

℄ � r

[X;Y ℄

is an operator of multipli
ation by a fun
tion for any two ve
tor �elds X;Y on S.

The failure of the 
onne
tion to be 
at is, of 
ourse, related with the 
entral term

in the de�nition of

b

g: for k = 0, the 
onne
tion is 
at (but of little interest, sin
e

the only integrable module of level 0 is L

k

0

= C ). We will dis
uss this later.

The remaining part of this se
tion is devoted to the 
onstru
tion of the 
at


onne
tion and the proof of the theorem. For simpli
ity, we will assume that n = 1;

the general 
ase 
an be treated similarly. Our exposition follows [BFM℄ (somewhat

simpli�ed).

Lemma 7.4.2. The ve
tor spa
es �

s

form a O

S

-
oherent sheaf over S, i.e., there

exists a 
oherent sheaf �

S

su
h that �

s

= �

S

=I

s

�

S

, I

s

being the ideal of fun
tions

vanishing at s.

Proof. Let V

S

= O

S


V (usual algebrai
 ve
tor produ
t, no 
ompletions); this

is an O

S

-module, whi
h 
arries an O

S

-linear a
tion of the O

S

-module g(C

S

�p(S)).

De�ne the sheaf

�

S

= V

S

=g(C

S

� p(S))V

S

:(7.4.2)

It is obvious that lo
alizing �

S

at s 2 S, we get the ve
tor spa
e of 
oinvariants

�

s

. The 
oheren
y of �

S


an be proved in a way similar to the proof of �nite-

dimensionality of the spa
es �(C) in the previous se
tion, using the following lemma.

Lemma 7.4.3. Let A be a �nite-dimensional ve
tor bundle of Lie algebras over

S whi
h is generated (as a Lie algebra) by se
tions x

1

; : : : ; x

n

. Denote by A the

sheaf of se
tions of A. Let W be an O

S

-module with an O

S

-linear a
tion of A.

Assume that W is lo
ally 
y
li
 (i.e., lo
ally there exists a se
tion w

0

2 W su
h

that W = Aw

0

) and a
tion of x

i

is lo
ally nilpotent: for every se
tion w, one has

x

N

i

w = 0 for N � 0. Then W is O

S

-
oherent.
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To prove this lemma, it suÆ
es to note that by Gabber's theorem, Supp(W)

is the zero se
tion of the bundle A

�

, and that every module over O

S

[x

1

; : : : ; x

m

℄

whose support is given by x

i

= 0, is O

S

-
oherent.

We will show that the sheaf �

S

has a natural stru
ture of a twisted D

S

-module,

i.e., a proje
tive a
tion of the sheaf �

S

of ve
tor �elds on S whi
h is 
ompatible

with the O

S

-module stru
ture: �(��) = (��)� + �(��); � 2 �

S

; � 2 O

S

. Sin
e it is

well known that every O-
oherent twisted D-module is in fa
t a sheaf of se
tions of

a ve
tor bundle with a proje
tively 
at 
onne
tion, this will establish the theorem.

To 
onstru
t an a
tion of �

S

on the sheaf of 
oinvariants, let us �rst 
onsider

the 
ase when we have a �xed 
urve C with a marked point p, and S is the set of all

possible 
hoi
es of a formal lo
al parameter t at p. This set has a natural stru
ture

of a proje
tive limit of the smooth manifolds S

(N)

= fN -jets of lo
al parameters

at pg. We have a tautologi
al family of 
urves C

S

= C � S over S, with the same

marked point p and with the formal lo
al parameter determined by s 2 S.

This S is a torsor over the pro-Lie group (i.e., a proje
tive limit of Lie groups)

K

0

= Aut C [[t℄℄ of 
hanges of lo
al parameter. This group 
an be expli
itly de-

s
ribed as the group of power series of the form a

1

t + a

2

t

2

+ : : : ; a

1

6= 0, with

the group operation being 
omposition; it a
ts on the set of formal lo
al param-

eters in an obvious way. The 
orresponding Lie algebra T

0

= LieK

0

is given by

T

0

= tC [[t℄℄�

t

(see [TUY, Se
tion 1.4℄ for pre
ise statements). Therefore, the tan-

gent spa
e to S at every point 
an be identi�ed with T

0

. or, equivalently, T

0

is the

spa
e of all K

0

left-invariant ve
tor �elds on S. Thus, to de�ne an a
tion of �

S

on

the bundle of 
oinvariants, one needs to de�ne an a
tion of T

0

.

Therefore, we see that the key step in this 
ase would be to de�ne an a
tion of

T

0

= tC [[t℄℄�

t

on V . In the general 
ase, we will in fa
t need an a
tion of a larger

Lie algebra T = C ((t))�

t

, whi
h is usually 
alled the Witt algebra. It has a natural

(topologi
al) basis L

n

= �t

n+1

�

t

, n 2 Z, with the 
ommutation relations

[L

m

; L

n

℄ = (m� n)L

m+n

:(7.4.3)

The subalgebra T

0

is generated by L

n

with n � 0. Similarly, we will also use the

subalgebras T

1

= t

2

C [[t℄℄�

t

, T

�1

= C [[t℄℄�

t

generated (as topologi
al Lie algebras)

by L

n

with n � 1 (respe
tively, n � �1).

It is indeed possible to de�ne a proje
tive a
tion of T on

b

g-modules. This is

known as the Sugawara 
onstru
tion. We formulate this result as a proposition,

referring the reader to [K1℄ for details and the proof.

Proposition 7.4.4. One 
an de�ne elements L

n

; n 2 Z, in a 
ertain 
omple-

tion of U(

b

g)

k

whi
h have the following properties:

(i) In every module V from the 
ategory O

k

, the a
tion of L

n

is well-de�ned,

and

[L

m

; L

n

℄ = (m� n)L

m+n

+ Æ

m+n;0

m

3

�m

12


;(7.4.4)

where


 =

k dim g

k + h

_

:(7.4.5)

(ii) The operator L

n

has degree n with respe
t to the homogeneous grading, and

[L

n

; a[m℄℄ = �ma[m+ n℄; a 2 g:(7.4.6)
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(iii) In the Weyl module V

k

�

(and thus, in L

k

�

), the operator L

0

a
ts by

L

0

v = (�

�

� deg v)v; �

�

=

h�; �+ 2�i

2(k + h

_

)

:(7.4.7)

Part (i) of this proposition 
an be reformulated as follows. Let

V ir = C ((t))�

t

� C 
(7.4.8)

as before, this ve
tor spa
e has topologi
al basis 
; L

n

= �t

n+1

�

t

; n 2 Z. We

de�ne the stru
ture of Lie algebra on V ir by (7.4.4) (it 
an also be de�ned in a


oordinate-free way, with the 
entral term given as a residue of the f

000

g). This

algebra is 
alled the Virasoro algebra and plays a 
entral role in 
onformal �eld

theory; by de�nition, it is a 
entral extension of the Witt algebra C ((t))�

t

. Thus,

part (i) 
laims that every module V 2 O

k

is naturally a module over V ir with the


entral 
harge equal to k dim g=(k + h

_

).

Note that when restri
ted to T

�1

= C [[t℄℄�

t

, the 
entral term in (7.4.4) van-

ishes; thus, T

�1

is a subalgebra in V ir and therefore a
ts on V . Hen
e, the same


onstru
tion also de�nes an a
tion T

0

on V . Considering T

0

as the Lie algebra of

left-invariant ve
tor �elds on the set S of all 
hoi
es of lo
al parameter at p, one

easily sees that this a
tion 
an be uniquely extended to the a
tion of the sheaf �

S

of all ve
tor �elds on S on the sheaf V

S

= O

S


 V .

Let us now 
onsider the general 
ase, when not only the lo
al parameter but

also the the 
urve itself is allowed to vary.

First of all, let C be a 
omplex 
urve, and t|a formal parameter at the point

p 2 C. Denote by �(C � p) the spa
e of meromorphi
 ve
tor �elds on C whi
h are

holomorphi
 outside of p. Then we have a Lie algebra homomorphism 


p

: �(C �

p)! T obtained by expanding a ve
tor �eld in a neighborhood of p in power series

in t. Similarly, if we have several marked points p

1

; : : : ; p

n

, we 
an de�ne a map




~p

=

M




p

i

: �(C � ~p)! T � � � � � T :(7.4.9)

On the other hand, Sugawara 
onstru
tion gives a proje
tive a
tion of the dire
t

sum T � � � �� T on V = V

1


 : : :
V

n

; thus, we get a proje
tive a
tion of �(C � ~p)

on V , whi
h we will also denote by 


~p

.

Lemma 7.4.5. (i) The a
tion of �(C � ~p) on V , given by 


~p

, is a true a
tion,

not a proje
tive one.

(ii) The a
tions of �(C � p) and g(C � p) on V agree as follows:

[


~p

(�); a
 f ℄ = a
 �(f); � 2 �(C � p); a
 f 2 g
O

S

:

(iii) The indu
ed a
tion of �(C � ~p) on the spa
e of 
oinvariants V

g(C�~p)

is

zero.

Proof. Part (i) follows from the fa
t that the 
entral term in (7.4.4) 
an be

written as a residue, and from the fa
t that the sum of residues of a meromorphi


1-form is equal to zero. The proof of part (ii) is immediate from (7.4.6). As for part

(iii), the simplest way to prove it is to note that �(C � ~p) is a simple Lie algebra

(see [BFM℄), and therefore has no non-trivial �nite-dimensional representations.

Of 
ourse, this is a very arti�
ial proof. A more natural proof 
an be obtained from

the theory of 
hiral algebras. For readers familiar with this theory, we point out

that the Sugawara 
onstru
tion in fa
t shows that the generating fun
tion L(z) =

P

n2Z

L

n

z

�n�2

is a �eld in the vertex operator algebra (=
hiral algebra on a formal
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pun
tured disk) generated by the Ka
{Moody 
urrents a(z) =

P

n2Z

(at

n

)z

�n�1

,

a 2 g (see, e.g., [K2℄); similarly, the Lie algebra �(C�p) is a subalgebra in the 
hiral

algebra asso
iated with the 
urve C � p. But sin
e this 
hiral algebra is generated

(in an appropriate sense) by the Ka
{Moody 
urrents, and these 
urrents a
t on

the spa
e of 
oinvariants by zero, this whole 
hiral algebra a
ts by zero. Details


an be found in [Gai℄.

Part (iii) of the lemma may seem dis
ouraging. Note, however, that what we

are looking for is an a
tion of �

S

on the bundle of 
oinvariants, not an a
tion of

�

C

, so we do not have a problem with the fa
t that �(C � p) a
ts by zero. In fa
t,

it will be useful to us.

In order to de�ne an a
tion of �

S

, we will �rst lift a ve
tor �eld on S to a

ve
tor �eld on C

S

, and then restri
t to a formal neighborhood of p.

Let � be a ve
tor �eld on S. Let us lift it to a ve
tor �eld

~

� on C

S

�p(S). Su
h

a lifting is always possible, whi
h follows from the fa
t that � : C

S

� p(S) ! S is

aÆne, and therefore de�nes an exa
t fun
tor on O-
oherent sheaves (this is where

we need to allow poles at p(S)!).

Let us 
onsider the ve
tor �eld

~

� in a neighborhood of one of the se
tions p

i

(S)

(\marked point"). Then the 
hoi
e of lo
al 
oordinate t

i

allows us to de�ne the

notion of horizontal ve
tor �eld: a ve
tor �eld v in a pun
tured neighborhood of

p

i

(S) is horizontal if v(t) = 0. Then we 
an de�ne \verti
al" 
omponent 


p

(

~

�) by

~

� = 


p

i

(

~

�) +

~

�

horiz

;

~

�

horiz

(t) = 0:

Note that while one 
an easily de�ne the notion of a verti
al ve
tor �led on C

S

(v

is verti
al if its proje
tion to S is zero), the notion of horizontal ve
tor �eld, nad

thus, of \verti
al 
omponent" 


p

i

(

~

�) depends on the 
hoi
e of lo
al parameter t

i

.

If we 
hoose lo
al 
oordinates x

i

on S, so that � =

P

f

i

(x)�

x

i

, then (x

i

; t) give

a 
oordinate system in a neighborhood of p

i

(S), and we 
an write

~

� = g(x; t)�

t

+

P

f

i

(x)�

x

i

. Then 


p

i

(

~

�) = g(x; t)�

t

. The fun
tion g(x; t) 
an have poles at t

i

= 0,

so it 
an be viewed as a lo
al se
tion of O

S

((t

i

)), and thus 


p

i

(

~

�) 2 O

S


 T .

Repeating this for all points p

i

, we de�ne




~p

(

~

�) =

X




p

i

(

~

�) 2 O

S


 (T � � � � � T )(7.4.10)

(for S = fptg, this 
oin
ides with the de�nition (7.4.9)).

Now, let us de�ne the a
tion of

~

� on V

S

= V 
O

S

by

~

�(fv) = (�(f))v + f

X

i




p

i

(

~

�)v;

where 


p

i

(

~

�) a
ts on V

i

by the Sugawara 
onstru
tion.

Lemma 7.4.6. The above de�ned a
tion of

~

� on V

S

has teh following properties:

1. It is 
ompatible with the stru
ture of O

S

-module: for f 2 O

S

; v 2 V

S

, one

has

~

�(fv) = (�(f))v + f

~

�(v).

2. It is 
ompatible with the a
tion of g(C

S

�~p

S

) on V

S

: if f 2 O

C

S

�~p(S)

; x 2 g,

then [

~

�; fx℄ = (

~

�(f))x.

Proof. The �rst part immediately follows from the de�nition; the se
ond one

follows from Theorem 7.4.5(ii).
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It immediately follows from part (ii) of this lemma that we have a well-de�ned

a
tion of

~

� on the bundle of 
oinvariants �

S

= V

S

=g(C

S

� ~p

S

)V

S

.

Proposition 7.4.7. The indu
ed a
tion of

~

� on the bundle of 
oinvariants de-

pends only on � and not on the 
hoi
e of lifting

~

�. It de�nes a proje
tive a
tion of

the Lie algebra �

S

on the bundle of 
oinvariants, whi
h agrees with the stru
ture

of O

S

-module.

Proof. The only non-trivial statement is the independen
e of the 
hoi
e of

lifting. It follows from the fa
t that any two liftings di�er by a verti
al ve
tor �eld.

On the other hand, it follows from Theorem 7.4.5(iii) that verti
al �elds a
t by

zero.

This 
ompletes the proof of Theorem 7.4.1.

More 
areful analysis also allows one to 
al
ulate expli
itly the failure of the


onne
tion to be 
at. Using the language of twisted D-modules developed in Se
-

tion 6.6 and the notion of determinant line bundle Q

S

de�ned in Se
tion 6.7, the

result 
an be formulated as follows:

Theorem 7.4.8. Under the assumptions of Theorem 7.4.1, the sheaf �

S


arries

a natural stru
ture of a D

Q




-module, where 
 is the Virasoro 
entral 
harge de�ned

by (7.4.5).

We do not give a proof of this theorem, referring the reader to [BS℄. The

proof is based on the fa
t that the 
entral extension de�ning the Virasoro algebra


an be de�ned using the a
tion of the Lie algebra of ve
tor �elds on the spa
e

C ((

~

t)) = �

i

C ((t

i

)) and the \universal" 
o
y
le de�ned by the the subspa
e C [[

~

t℄℄ =

�

i

C [[t

i

℄℄ � C ((

~

t)). This 
o
y
le was �rst dis
overed by Tate [Ta℄ and redis
overed

under di�erent names by many authors (see [BS℄, [ACK℄). On the other hand, it is

well known that for a 
onne
ted smooth 
urve C one has C ((

~

t))=(C [[

~

t℄℄+O(C�~p)) =

H

1

(C;O). This gives a relation between this 
o
y
le and the determinant line

bundle (re
all that Q

s

= det(H

1

(C

s

;O))). Details 
an be found in [BS℄ or [BFM℄.

Example 7.4.9. Let us 
al
ulate this 
at 
onne
tion expli
itly in the 
ase when

the 
urve C is �xed but the point p is allowed to move. Let u be a lo
al 
oordinate

on C, i.e. a biholomorphi
 map u : C

0

! U , where C

0

is some open subset of C,

and U an open subset of C . We will denote by z a global 
oordinate on C and thus,

on U . Let us de�ne the following family of pun
tured 
urves over U : C

U

= C �U ,

p(z) = u

�1

(z), and the lo
al parameter at p given by t = u � z (
onsidered as a

fun
tion on C � U). Note that both (z; u) and (z; t) 
an be 
onsidered as lo
al


oordinates on C � U .

In this 
ase, every ve
tor �eld f(z)�

z

on U admits a 
anoni
al horizontal lifting

to C �U ; in terms of the 
oordinate system (z; u) this lifting is given by f(z)�

z

7!

f(z)�

z

+ 0 � �

u

. When we rewrite this in terms of (z; t), we get f(z)(�

z

� �

t

).

Therefore, the a
tion of su
h a ve
tor �eld on the bundle of 
oinvariants is given

by (f�

z

)(�v) = f(�

z

�)v + f�L

�1

v (re
all that L

�1

2 V ir 
orresponds to ��

t

). In

other words, the 
orresponding 
at 
onne
tion on U is indu
ed from the 
onne
tion

on V 
O

S

given by

r = d+ L

�1

dz:
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It is easy to see that for several points, we get

r = d+

X

i

(L

�1

)

i

dz

i

;(7.4.11)

where (L

�1

)

i

stands for L

�1

a
ting in V

i

.

Note that in this 
ase every ve
tor �eld on S 
an be lifted to a regular ve
tor

�eld on C

S

. Therefore, we only need to use the Sugawara 
onstru
tion for the �elds

from C [[t℄℄�

t

= T

�1

. Sin
e the 
entral term in (7.4.4) vanishes when restri
ted to

T

�1

, we get a true a
tion, not a proje
tive one.

Let us 
onsider even more spe
ial 
ase than in the previous example, namely

when C = P

1

, with marked points z

1

; : : : ; z

n

6= 1 and lo
al parameters given by

t

i

= z�z

i

. This de�nes a family of 
urves overX

n

= C

n

ndiagonals. Assign to these

points Weyl modules V

k

�

1

; : : : ; V

k

�

n

. Then, by Proposition 7.3.8, the ve
tor bundle of


oinvariants �(P

1

; z

1

; : : : ; z

n

; V

k

�

1

; : : : ; V

k

�

n

) is a quotient of the trivial ve
tor bundle

with the �ber (V

�

1


 : : :
V

�

n

)

g

over X

n

. Therefore, the 
onstru
tion above de�nes

a 
at 
onne
tion in this quotient bundle. Passing to the dual ve
tor bundle, we see

get a 
at 
onne
tion in the ve
tor subbundle

�

�(P

1

; z

1

; : : : ; z

n

;V

k

�

1

; : : : ; V

k

�

n

)

�

�

�

�

V

�

1


 : : :
 V

�

n

�

�

g

= (V

�

�

1


 : : :
 V

�

�

n

)

g

Theorem 7.4.10 ([KZ℄). The 
at 
onne
tion des
ribed above 
oin
ides with

the restri
tion of the KZ 
onne
tion in V

�

�

1


 : : :
 V

�

�

n

, de�ned by (KZ

n

).

A proof of this theorem 
an be found in the original paper [KZ℄ (only re
om-

mended for those familiar with the basi
s of 
onformal �eld theory). This proof is

also repeated in a number of sour
es, for example, in [EFK℄, in a language more

familiar to mathemati
ians. This theorem and 
omparison of the gluing isomor-

phisms, whi
h we will do later, will be used to show that for k =2 Q the fun
tor of


oinvariants de�ned above for genus zero 
urves 
oin
ides with the modular fun
-

tor de�ning Drinfeld's 
ategory|see Theorem 7.9.12. In parti
ular, this modular

fun
tor 
an be de�ned in a way whi
h doesn't refer to the aÆne Lie algebras at all.

Note, however, that for k =2 Q this modular fun
tor 
an not be extended to positive

genus.

Example 7.4.11. Let C; ~p;

~

t be as before. Choose one of the points p

j

and


onsider the family of 
urves C�C

�

over C

�

, with the the marked points p

i

(z) = p

i

and lo
al parameters t

i

(x; z) = t

i

(x); x 2 C; z 2 C , ex
ept for i = j when we set

t

i

(x; z) = t

i

(x)=z. By the 
onstru
tion of this se
tion, the 
orresponding ve
tor

bundle of 
oinvariants � has a 
anoni
al 
at 
onne
tion. An easy 
al
ulation,

similar to the one in Example 7.4.9, shows that this 
onne
tion is indu
ed from the


onne
tion

r = d+ (L

0

)

j

dz

z

in the trivial ve
tor bundle with �ber V

1


 : : :
 V

n

. In parti
ular, the monodromy

of this 
onne
tion around z = 0 is given by e

2�iL

0

, so if V

j

is an irredu
ible module

with highest weight �, the monodromy operator is 
onstant and equals e

2�i�

�

.

Note that if we pass from 1-jet of lo
al parameter to tangent ve
tor, we see

that the tangent ve
tor is given by z�

t

j

, and thus, as z goes around the origin


ounter
lo
wise, so does the tangent ve
tor. Re
alling the relation between modular
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fun
tor and tensor 
ategories, we see that in the tensor 
ategory 
orresponding to

the WZW modular fun
tor, the universal twist is given by

�

L

k

�

= e

2�i�

�

id

L

k

�

(7.4.12)

(
ompare with Remark 3.1.20), whi
h agrees with the formulas for universal twist

in Drinfeld's 
ategory (Theorem 2.2.7) and in the 
ategory of representations of a

quantum group Exer
ise 2.2.6|whi
h is another argument 
on�rming equivalen
e

of these 
ategories.

In fa
t, this ve
tor bundle on C

�

admits a 
anoni
al extension to a ve
tor

bundle on P

1

, and the 
onne
tion has logarithmi
 singularities at 0;1. Indeed, we


an assume that V

j

= L

k

�

. Denote V = 


i6=j

V

i

. The �ber of � at point z 2 C

�

is

given by �

z

= W

z

=g(C � ~p)W

z

, where W

z

= V 
 L

k

�

does not depend on z. Note

that the subspa
e g(C � ~p)W

z

depends on z, sin
e the 
hoi
e of lo
al 
oordinate

at p

j

depends on z. Let us 
hoose a di�erent trivialization of the ve
tor bundle

V 
 L

k

�

, namely, let us identify

V 
 L

k

�

! (V 
 L

k

�

)

z

;

v 
 v

j

7! z

deg v

j

v 
 v

j

:

In other words, in this trivialization 
onstant se
tions are given by z

deg v

j

v 
 v

j

.

Then one easily sees that in this trivialization, the subspa
e g(C � ~p)W

z

does not

depend on z; thus, it also gives a trivialization of the ve
tor bundle of 
oinvariants

on C

�

, and in this trivialization the 
at 
onne
tion is given by r = d +�

�

dz=z.

Therefore, this gives an extension of our ve
tor bundle with a 
at 
onne
tion to P

1

,

and the 
onne
tion has logarithmi
 singularities at 0;1.

Note that for this de�nition of extension to z = 0, a fun
tion of the form

f(z)(v

1


 : : :
 v

j


 : : :
 v

n

) de�nes a se
tion holomorphi
 at 0 i� z

�deg v

j

f(z) is

regular at z = 0 (we assume that v

j

is homogeneous).

7.5. From lo
al parameters to tangent ve
tors

In the previous se
tion, we have studied properties of the ve
tor spa
es of


oinvariants for a 
urve C with marked points and 
hosen lo
al parameters at these

points, or a family of su
h 
urves. In this se
tion we will show that the ve
tor spa
e

of 
oinvariants only depends on the 1-jet of lo
al parameter: if t

i

; t

0

i

are di�erent


hoi
es of lo
al parameter at p

i

su
h that d

p

i

t

i

= d

p

i

t

0

i

, then the ve
tor spa
es

�(C; ~p;

~

t;L) and �(C; ~p;

~

t

0

;L) are 
anoni
ally isomorphi
, and similarly for families

of 
urves.

Let us start with the 
ase when we only have one 
urve C; as before, for

simpli
ity we assume that it has only one marked point p. Let us �x a non-zero

tangent ve
tor v 2 T

p

C and 
onsider only su
h formal lo
al parameters t at p that

�

v

t = 1; the set of formal lo
al parameter form a pro-varietyM . We want to show

that for su
h lo
al parameters t, the ve
tor spa
es �(C; p; t;L) 
an be 
anoni
ally

identi�ed. In order to do that, 
onsider the family of 
urves C

M

= C �M over

M , with a marked point p (whi
h does not depend on m) and the lo
al parameter

at p 2 C

m

de�ned by m 2 M . As dis
ussed in the previous se
tion, this de�nes a


anoni
al 
at 
onne
tion on the bundle of 
oinvariants �(C; p; t;L). We will show

that this ve
tor bundle with a 
at 
onne
tion is trivial. Indeed, it is easy to see
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that M is a torsor over the group

K

1

= fk 2 Aut C [[t℄℄ j (k(t))

0

(0) = 1g:

This group 
an be expli
itly des
ribed as the group of all formal power series of the

form 1 +

P

1

2

a

i

t

i

, with the group operation being substitution of one series into

another. The 
orresponding Lie algebra is LieK = T

1

= t

2

C [[t℄℄�

t

.

Now the triviality of the 
at 
onne
tion follows from the following two easy

lemmas whose proofs are omitted.

Lemma 7.5.1. Let a manifold M be a torsor over a Lie group K, and E be a

ve
tor bundle with a 
at 
onne
tion over M . Then this 
at 
onne
tion is trivial i�

the a
tion of LieK by ve
tor �elds on E 
an be lifted to an a
tion of K on E.

Lemma 7.5.2. The a
tion of LieK

1

= T

1

on an integrable module L, de�ned

by the Sugawara 
onstru
tion, 
an be integrated to an a
tion of K

1

on L.

Combining these two lemmas, we get that in our 
ase, the 
at 
onne
tion

on the bundle of 
onformal blo
ks is trivial, and thus all the spa
es �(C; p; t;L)

are 
anoni
ally isomorphi
. Therefore, we 
an de�ne the spa
e of 
oinvariants

�(C; p; v;L) as the spa
e of global 
at se
tions of the bundle �(C; p; t;L) on M .

Remark 7.5.3. Note that the a
tion of T

0

usually 
an not be integrated to the

a
tion of Aut C [[t℄℄. Indeed, in Aut C [[t℄℄ one has e

2�iL

0

= 1, but in a highest weight

b

g module with highest weight �, one has

e

2�iL

0

=: �

�

= e

2�i�

�

whi
h is not equal to 1 unless �

�

2 Z. Therefore, we do need to spe
ify a 1-jet of

lo
al parameter.

Now let us 
onsider families of 
urves. Let C

S

; p(S) be a family of 
urves with

a �xed 1-jet of lo
al parameter t at p(S). If we �x a formal lo
al parameter t at

p(S) with given 1-jet, then, by the 
onstru
tion of the previous se
tion, we get a

ve
tor bundle of 
oinvariants with a 
at 
onne
tion over S. Let us show that these

ve
tor bundles for di�erent 
hoi
es of t 
an be 
anoni
ally identi�ed.

Using the same idea as in the 
ase S = fpointg, 
onsider the pro-variety M =

f(s; t) j s 2 Sg; obviously, M is a prin
ipal K

1

-bundle over S. The family C

S

over

S de�nes a family C

M

over M and therefore de�nes a bundle of 
oinvariants �

M

with a 
at 
onne
tion over M . Our goal is to show that this 
at 
onne
tion is

trivial along the �bers of the proje
tion M ! S. A 
onvenient framework for su
h

proofs is provided by the formalism of Harish{Chandra pairs.

Definition 7.5.4. A Harish{Chandra pair is a pair (g;K), where g is a Lie

algebra, and K is a Lie group with the Lie algebra LieK = k � g. We also assume

that we are given an a
tion Ad of K on g whi
h agrees with both the standard Ad

a
tion of K on k and ad a
tion of k on g.

As usual, we de�ne a module V over a Harish{Chandra pair (g;K) to be a

ve
tor spa
e whi
h has an a
tion of both g and K, and these a
tions agree on k.

These de�nitions 
an be suitably reformulated if we want to repla
e a Lie

algebra g by the sheaf of ve
tor �elds on a manifoldM (or, more generally, by a Lie

algebroid over M|see [BFM℄). Let us assume that we have a manifold M with a

free a
tion of a Lie group K su
h that M is a prin
ipal K-bundle over a manifold

S. We denote by p : M ! S the proje
tion. Denote by �

M

the sheaf of ve
tor
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�elds on M . Then for every U � M , we have a natural embedding k � �

M

(U),

whi
h is a Lie algebra homomorphism. We also have an adjoint a
tion of K on �

X

.

Therefore, the pair (�

M

;K) is a natural sheaf analogue of a Harish-Chandra pair.

Definition 7.5.5. Let M;K;�

M

be as above. A �nite-dimensional (�

M

;K)-

module is a �nite-dimensional ve
tor bundle V with a 
at 
onne
tion over M with

an a
tion of K on V , whi
h agrees an obvious sense with both the a
tion of K on

M and with the a
tion of k � �

M

by ve
tor �elds on V .

(A not ne
essarily �nite-dimensional (�

M

;K)-module 
an be de�ned in a sim-

ilar way, repla
ing \ve
tor bundle with a 
at 
onne
tion" by \D-module.)

Our main reason in developing this te
hnique is the following lemma.

Lemma 7.5.6. Any �nite-dimensional (�

M

;K)-module V de�nes a ve
tor bun-

dle with a 
at 
onne
tion V

K

on S =M=K.

Proof. For every s 2 S, de�ne the ve
tor spa
e V

K

s

= (�(M

s

; V ))

K

, where

M

s

= p

�1

(s) is the �ber of the proje
tion p : M ! S. It is easy to see that these

ve
tor spa
es form a ve
tor bundle over S of the same dimension as the original

bundle V (it suÆ
es to 
hoose lo
ally a se
tion of the proje
tion to show this).

Note that any se
tion � of this bundle is killed by the verti
al ve
tor �elds; thus,

the quotient �

M

=�

v

M

= �

S

a
ts on V

K

.

Now we have all the prerequisites to prove the following theorem.

Theorem 7.5.7. Let C

S

be a family of pointed 
urves over a smooth base S,

and let L

k

1

; : : : ; L

k

n

be some integrable modules assigned to these points. Then we

have a bundle of 
oinvariants �

S

over S whi
h 
arries a natural proje
tively 
at


onne
tion, and this bundle is fun
torial in S in the same sense as in Theorem 7.4.1.

Proof. Take M = f(s; t)g; s 2 S; t{a lo
al parameter at p 2 C

s

with given

di�erential. Obviously, M is a K

n

{torsor over S, where K = Aut

1

C [[t℄℄ and we

have a tautologi
al family C

M

of 
urves over M with marked points and a lo
al

parameters at these points. By the 
onstru
tion of the previous se
tion, this de�nes

a ve
tor bundle with a proje
tively 
at 
onne
tion over M . By Lemma 7.5.2, this


onne
tion is integrates to an a
tion of K. Therefore, by Lemma 7.5.6, we have a


at 
onne
tion on S =M=K.

Corollary 7.5.8. For a �xed �nite set A and a 
olle
tion of modules L

k

a

2

O

int

k

, we have a ve
tor bundle of 
oinvariants �(fL

k

a

g) over the moduli sta
k M

�;A

,

whi
h 
arries a natural proje
tively 
at 
onne
tion.

As in Theorem 7.4.8, we 
an also expli
itly des
ribe the failure of the 
onne
tion

to be 
at by saying that the sheaf of se
tions of the ve
tor bundle �(fL

k

a

g) is a D

Q




-

module.

7.6. Families of 
urves over formal base

This se
tion introdu
es some te
hni
al notions whi
h will be used later for

proving the gluing axiom for the WZW modular fun
tor. Namely, we will generalize

most of the results regarding the bundle of 
oinvariants to the 
ase where the base

is an in�nitesimal neighborhood of a divisor D.

Throughout this se
tion, we �x a non-singular variety S and a smooth divisor

D � S. We also 
hoose (lo
ally) a fun
tion q on S su
h that the equation of D is

q = 0, and dq 6= 0 on D. All our de�ntions and theorems will be lo
al in S.
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The main subje
t of this se
tion is the study of the n-th in�nitesimal neighbor-

hood D

(n)

of D in S, where n is a �xed non-negative integer. As before, we will not

really de�ne D

(n)

; instead, we will de�ne the stru
ture sheaf of D

(n)

, O-modules

on D

(n)

, family of 
urves over D

(n)

, et
.

Definition 7.6.1. The stru
ture sheaf of D

(n)

is the sheaf of algebras O

(n)

D

on

D de�ned by O

(n)

D

= O

S

=q

n+1

O

S

.

One also de�nes in an obvious way a notion of O

(n)

D

-module; it is 
alled lisse

if it is lo
ally free module of �nite rank. Every sheaf F over S de�nes a sheaf

F

(n)

over D

(n)

in an obvious way: F

(n)

= F

D

=q

n+1

F

D

. It is easy to see that if

F is O

S

-
oherent, then F

(n)

is �nitely generated, and if F is lisse then so is F

(n)

.

Unfortunately, the fun
tor F 7! F

(n)

is not exa
t on O

S

-modules. However, we

have the following result.

Lemma 7.6.2. (i)Let F be an O

S

-
oherent sheaf su
h that its restri
tion to

S nD is lisse and for every n � 0, F

(n)

is lisse. Then F is lisse.

(ii) For every short exa
t sequen
e of quasi
oherent O

S

-modules 0! E ! F !

G ! 0 su
h that G is O

S

-
oherent, the sequen
e 0 ! E

(n)

! F

(n)

! G

(n)

! 0 is

also exa
t.

The proof of this lemma is left as an exer
ise to the reader.

Example 7.6.3. Assume that dimS = 1. ThenD = point, O

(n)

D

= C [q℄=(q

n+1

),

and O

(n)

D

is just a module over this algebra.

We 
an also de�ne ve
tor �elds and D-modules for D

(n)

. Note, however, that

the only ve
tor �elds on S that 
an be restri
ted to D

(n)

are those tangent to D:

the ve
tor �eld �

q


an not be restri
ted to D

(n)

as it does not preserve the relation

q

n+1

= 0. Thus, we 
an de�ne an analogue of D

0

S

-module, but not of a D

S

-module

(re
all that D

0

S

is generated by O

S

and ve
tor �elds tangent to D, see (6.3.5)).

Thus, we give the following de�nition:

D

0

D

(n)

= D

0

S

=q

n+1

D

0

S

(7.6.1)

For example, for dimS = 1, D

0

D

(n)

is generated by O

(n)

D

= C [q℄=(q

n+1

) and q�

q

.

Sin
e a 
at 
onne
tion on S with logarithmi
 singularities at D is the same as

a lisse sheaf on S with an a
tion of D

0

S

, it is natural to give the following de�nition.

Definition 7.6.4. A 
at 
onne
tion on D

(n)

with logarithmi
 singularities at

D (log D-
onnne
tion for short) is a lisse sheaf on D

(n)

with a stru
ture of D

0

D

(n)

-

module.

We have the following obvious lemma.

Lemma 7.6.5. (i) Every log D 
at 
onne
tion on S de�nes a log D 
at 
onne
-

tion D

(n)

by F 7! F

(n)

(ii) If the 
onne
tion F is regular|i.e., has no poles at all|then q�

q

a
ts by

zero in F

(0)

= F=qF .

Now let us de�ne families of 
urves over D

(n)

and the bundles of 
oinvariants.

Definition 7.6.6. A family of 
urves over D

(n)

is the following 
olle
tion of

data:
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{ a family C

D

of stable 
omplex 
urves over D

{ a sheaf of algebras O

(n)

C

D

on C

D

with a stru
ture of a 
at O

(n)

D

-module su
h

that O

(n)

C

D

=qO

(n)

C

D

= O

C

D

.

The family is 
alled non-singular if the family C

D

is non-singular.

In a similar way, one 
an de�ne a notion of families with marked points and

lo
al parameters at these points by adding to the data above a 
olle
tion of points

p

i

2 C

0

and lo
al parameters t

i

2 O

(n)

p

i

su
h that t

i

(p

i

) = 0 mod q; (dt

i

)

p

i

6= 0

mod q. We 
an also de�ne an analogue of the O

S

-sheaf O(C

S

� ~p(S)). Namely,

we de�ne O

(n)

D

-module O

(n)

(C � ~p) to be the spa
e of global se
tions on C

D

of the

sheaf O

(n)

C

[t

�1

i

℄.

Obviously, every family of 
urves over S de�nes a family of 
urves over D

(n)

:

it suÆ
es to take O

(n)

C

= O

C

S

=q

n+1

O

C

S

; we will 
all this restri
tion of the family

C

S

to D

(n)

). It turns out that if C

D

is non-singular, then this statement 
an be

reversed.

Lemma 7.6.7. Lo
ally in S, every non-singular family of 
urves over D

(n)


an

be obtained as a restri
tion of an analyti
 family of 
urves over a neighborhood of

D in S.

?!

Let us give an example of a singular family over D

(n)

.

Example 7.6.8. Let dimS = 1, and let C

S

be a family of 
urves over S su
h

that C

s

is smooth for s 6= D, and C

D

is the 
urve with one double point a, so that

in a neighbohood of a, C

S

has lo
al 
oordinates t

1

; t

2

and the proje
tion is given

by q = t

1

t

2

; thus, C

0

is given by equation t

1

t

2

= 0.

Let us des
ribe the 
orresponding family of 
urves over D

(n)

. In this 
ase, the


urve C

D

is singular|it has double point a. To des
ribe the sheaf O

(n)

C

, note that

its stalk at a point b 6= a is given by O

(n)

C;b

' O

C;b


O

(n)

D

(note: this doesn't de�ne

the sheaf yet, as we haven't de�ned the gluing maps|they depend on the map

� : C

S

! S). However, the stalk at the double point is di�erent:

O

(n)

C;a

= O(t

1

; t

2

)=(t

1

t

2

)

n+1

;(7.6.2)

where O(t

1

; t

2

) is the ring of germs of analyti
 fun
tions in t

1

; t

2

near the origin

t

1

= t

2

= 0.

To relate the stalk at the double point with the stalks at nearby points, let

us des
ribe O

(n)

(U), where U is a pun
tured neighborhood of a in C

D

. Sin
e in

a neighborhood of a, the 
urve C

D


onsists of two 
omponents given by equations

t

2

= 0 and t

1

= 0, every small enough U 
an be presented as U = U

1

t U

2

, where

U

1

= U \ ft

2

= 0g; U

2

= U \ ft

1

= 0g. Thus, t

1

is a 
oordinate on U

1

and t

2

is a


oordinate on U

2

. From this it is easy to show that

O

(n)

(U

1

) = O(U

1

)
O

(n)

D

' O(U

1

)
 (C [t

2

℄=(t

2

)

n+1

)

where the isomorphism is given by f(t

1

)q

k

7! f(t

1

)t

k

1

t

k

2

, and similarly for U

2

. Thus:

O

(n)

(U) =

�

O(U

1

)
 (C [t

2

℄=(t

2

)

n+1

)

�

�

�

O(U

2

)
 (C [t

1

℄=(t

1

)

n+1

)

�
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Now it is easy to see that for f(t

1

; t

2

) 2 O

(n)

C;a

, its restri
tion to the pun
tured

neighborhood of a is given by

t

k

1

t

l

2

7! (t

k

1

t

l

2

)� (t

k

1

t

l

2

) = (t

1

)

k�l

q

l

� (t

2

)

l�k

q

k

(7.6.3)

In parti
ular, if l > n, then restri
tion of t

k

1

t

l

2

to U

1

is zero, and if k > n, then

restri
tion of t

k

1

t

l

2

to U

2

is zero.

For every family C

S

over S with marked points and modules V

i

2 O

int

k

assigned

to these points we have a sheaf of 
oinvariants �(C

S

) over S whi
h gives rise to the

sheaf �

(n)

over D

(n)

; if C

S

is a smooth family, then �

(n)

is lisse. It follows from

Lemma 7.6.2(ii) that this module 
an be de�ned in terms of the n-th in�nitesimal

neighborhood of D, namely

�

(n)

= V

(n)

=g

(n)

(C � ~p)V

(n)

;(7.6.4)

where g

(n)

(C � ~p) = g
O

(n)

(C � ~p), and V

(n)

= V 
O

(n)

D

.

Therefore, it is natural to take this formula as the de�nition of the sheaf of


oinvariants for families over D

(n)

.

Proposition 7.6.9. Let C

D

(n)

be a family of 
urves with marked points over

D

(n)

, with lo
al parameters at these points, and integrable

b

g-modules assigned to

these points. Let �

(n)

be the O

(n)

D

-module de�ned by (7.6.4). Assume that C

D

is

nonsingular. Then �

(n)

is lisse and has a natural stru
ture of a proje
tive D

0

D

(n)

-

module su
h that the a
tion of q�

q

on �

(0)

= �

(n)

=q�

(n)

is zero.

Proof. By Lemma 7.6.7, su
h a family 
an be obtained as a restri
tion of

some analyti
 family. Now existen
e of the 
at 
onne
tion and the fa
t that �

(n)

is

lisse immediately follow from Theorem 7.4.1 and Lemma 7.6.7. To prove that q�

q

a
ts by zero on �

(0)

, just note that for the analyti
 family, we have a well-de�ned

a
tion of �

q

, and thus q�

q

= 0 mod q.

It is also important to note that the stru
ture of D

0

D

(n)

-module 
an be de�ned


ompletely in terms of D

(n)

, without extending this to a family on S. Let �

(n)

(C�

~p) be the spa
e of global se
tions (on C

D

) of the sheaf of derivations of O

(n)

(C�~p)|

this is the in�nitesimal analogue of the algebra of ve
tor �elds. Then we 
an lift any

ve
tor �eld � on S whi
h is tangent to D|in parti
ular, the ve
tor �eld q�

q

|to a

\ve
tor �eld"

~

� 2 �

(n)

(C�~p). The easiest way to prove this is to use Lemma 7.6.7.

As in the analyti
 
ase (see proof of Theorem 7.4.1), de�ne the a
tion of � on

the bundle of 
oinvariants by

�(fv) = (�(f))v + f

X

i




p

i

(

~

�)(v):

The same arguments as in Theorem 7.4.1 show that this is indeed de�nes the

stru
ture of a proje
tive D

0

D

(n)

-module on the sheaf of 
oinvariants.

7.7. Coinvariants for singular 
urves

In this se
tion, we give a des
ription of the ve
tor spa
e �(C; ~p; V ) for a singular


urve C. This des
ription will be used in the next se
tion to prove that the bundle of


onformal blo
ks satis�es the gluing axiom and in parti
ular has regular singularities

on the boundary of the moduli spa
e.
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Let C; ~p;

~

t be stable singular 
urve with marked points and lo
al parameters at

these points. Choose modules V

1

; : : : ; V

n

2 O

int

k

assigned to these points. We de�ne

the spa
e of 
oinvariants �(C; ~p; V ) (or, for brevity, �(C; V )) by the same formula

as for non-singular 
urves (see De�nition 7.3.1). For simpli
ity, let us only 
onsider

the 
ase when C has only one double point; general 
ase is 
ompletely parallel.

Denote by C

_

the normalization of C, i.e. the non-singular 
urve su
h that C

is obtained by identifying points a

0

; a

00

2 C. Let us 
hoose the lo
al 
oordinates

t

0

; t

00

near a

0

; a

00

.

Theorem 7.7.1. The map

V !

M

�

V 
 (L

k

�


DL

k

�

)

v

1


 : : :
 v

n

7!

M

v

1


 : : :
 v

n


 1

�

;

where DL

k

�

is de�ned as in Se
tion 7.1, and 1

�

2 V

�


 V

�

�

� L

k

�


 DL

k

�

is the


anoni
al g-invariant ve
tor, indu
es an isomorphism of the spa
es of 
oinvariants

�(C; V ) '

M

�2P

k

+

�(C

_

; V 
 L

k

�


DL

k

�

)

with the modules L

k

�

; DL

k

�

assigned to the points a

0

; a

00

respe
tively.

Proof. The basi
 observation is that O(C � ~p) = ff 2 O(C

_

� ~p) j f(a

0

) =

f(a

00

)g. Therefore,

g(C � ~p) = ff 2

~

� j (


a

0

� 


a

00

)f 2

�

b

g

+

�

b

g

+

��(g)

�

�

b

g�

b

gg(7.7.1)

where �(g) = fx� xg; x 2 g,

~

� = g(C

_

� ~p� a

0

� a

00

).

Next, let us de�ne the U

b

g

k


 U

b

g

k

-module U as follows:

U = Ind

U

b

g

k


U

b

g

k

~

U

C 1

where

~

U � U

k

b

g
U

k

b

g is the subalgebra generated by

b

g

+


1; 1


b

g

+

; x
1+1
x; x 2 g,

whi
h a
ts trivially on C :

(

b

g

+


 1)1 = (1


b

g

+

)1 = (a
 1 + 1
 a)1 = 0:(7.7.2)

(By Poin
are-Birkho�-Witt theorem, U is isomorphi
 to Ug 
 (U

b

g

�

)


2

as a

graded ve
tor spa
e.)

Sin
e U is a (U(

b

g)

k

)


2

-module, we 
an de�ne the spa
e of 
oinvariants �(C

_

; ~p[

a

0

[ a

00

; V 
 U).

Lemma 7.7.2. The map v 7! v
1 is an isomorphism �(C; V )

�

�! �(C

_

; V 
U).

The proof of this lemma is more or less standard: one has to 
he
k that this

map is well-de�ned, whi
h follows from (7.7.2); inje
tivity follows from the fa
t that

U is free over U

b

g

�


 U

b

g

�

. Proof of surje
tivity is is only slightly more diÆ
ult:

it suÆ
es to prove that for every v 2 V; u 2 u one 
an �nd v

0

2 V su
h that

v
u � v

0


1 mod Im

~

�. It follows from the fa
t that for every a� b 2

b

g�

b

g; u 2

u there exists a fun
tion f 2 � su
h that (


q

0

� 


q

00

)(f)u = au, and therefore

v 
 (a� b)u � �(


~p

f)v 
 u.

Lemma 7.7.3. Maximal integrable quotient of U is equal to

L

�2P

k

+

L

k

�


DL

k

�

.
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Indeed, let us de�ne the homomorphism of (U(

b

g)

k

)


2

modules � : U !

L

L

k

�




DL

k

�

by 1 7!

L

1

�

(sin
e U is the indu
ed module, this uniquely de�nes �). It is an

easy exer
ise to show that

L

1

�

is a 
y
li
 ve
tor in

L

L

k

�


DL

k

�

(with respe
t to

the a
tion of

b

g�

b

g), and therefore, the above map is surje
tive; thus,

L

L

k

�


DL

k

�

is

indeed an integrable quotient of U . On the other hand, every integrable (U(

b

g)

k

)


2

-

module is of the form

L

�;�2P

k

+

N

��

L

k

�

� L

k

�

. Sin
e U is generated by a ve
tor 1

whi
h is �(g) invariant, it easily follows that any integrable quotient of U must

have N

�;�

� Æ

�;�

�

. Details are left to the reader.

These two lemmas, 
ombined with Lemma 7.3.3, give the proof of the theorem.

7.8. Bundle of 
oinvariants for a singular family

In this se
tion, we 
ontinue the study of 
oinvariants for singular 
urves. This

time, we will 
onsider a family of pointed 
urves C

S

over a smooth base S su
h

that C

s

is stable and non-singular for S nD, and C

s

is a stable singular 
urve with

one double point for s 2 D, where D is a smooth divisor in S (without loss of

generality we may assume that D is 
onne
ted). As before, we assume that we

have some integrable modules V

1

; : : : ; V

n

assigned to the marked points p

1

; : : : ; p

n

.

Then, by the 
onstru
tion of the previous se
tions, this data de�nes a ve
tor bundle

of 
oinvariants � = �(C

S

; ~p; V ) over S nD.

Let us extend � to the whole of S as an O-module. De�ne the sheaf � on S in

the obvious way, as in Lemma 7.4.2. The restri
tion of this sheaf to S nD is lisse,

and its �ber at a point s 2 D is the ve
tor spa
e �(C

s

; ~p; V ) whi
h was dis
ussed in

the previous se
tion. The same arguments as before show that �

S

is O

S

-
oherent

sheaf. The goal of this se
tion is to prove the following theorem, whi
h is the key

step in proving the gluing axiom.

Theorem 7.8.1. Under the assumptions above, the sheaf �

S

is lisse.

The remaining part of this se
tion is devoted to the proof of this theorem. Note

that by Theorem 7.4.1, the restri
tion of � to S nD is lisse, so the only problem is

analyzing the behavior of � at D.

Proof. The proof 
onsists of several steps. The main idea is to use the results

of the previous se
tion, relating 
oinvariants for the singular �bers C

s

; s 2 D with

the 
oinvariants for nonsingular 
urve C

_

s

obtained by normalization of C

s

, and

extend it to an isomorphism of sheaves of 
oinvariants in some neighborhood of

D. Unfortunately, it is impossible to do this dire
tly: we 
an not extend C

_

to a

family of nonsingular 
urves C

_

S

over S with a natural map C

_

S

! C

S

. However,

this be
omes possible if instead of 
onstru
ting a family over S we restri
t ourselves

to an in�nitesimal neighborhood of D, as de�ned in Se
tion 7.6, whi
h is suÆ
ient

for our purposes. For simpli
ity, we will assume that S is a disk in the 
omplex

plane with 
oordinate q and D = f0g. The general 
ase 
an be treated quite

similarly; however, it is not even ne
essary to do that due to Lemma 6.3.13. We

will 
hoose 
oordinates t

1

; t

2

in the neighborhood of the double point a 2 C

S

su
h

that t

1

t

2

= q (this is always possible).

By Lemma 7.6.2, it suÆ
es to prove that for every n � 0, the module �

(n)

over

O

(n)

D

de�ned by (7.6.4) for our family of 
urves is free of �nite rank.

In order to prove that �

(n)

is free over O

(n)

D

, let us 
onstru
t another family

C

_

of 
urves over D

(n)

. Namely, take C

_

0

to be the normalization of C

0

; this is
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a nonsingular 
urve with the same marked points as C

0

, plus two more marked

points whi
h we denote a

0

; a

00

. The 
hoi
e of lo
al 
oordinates t

1

; t

2

on C

S

de�nes

lo
al 
oordinates t

1

; t

2

in the neighborhood of a

0

2 C

_

(respe
tively, a

00

).

Now, let us de�ne the sheafO

(n)

C

_

as follows. Let U = C

_

0

nfa

0

; a

00

g = C

0

nfag. By

de�nition, let O

(n)

C

_

j

U

= O

(n)

C

j

U

. To extend it to the points a

0

; a

00

, de�ne the stalks

O

(n)

a

0

= O(t

1

)
O

(n)

D

, where O(t

1

) is the ring of germs of analyti
 fun
tions in t

1

in a

neighborhood of t

1

= 0, and similarly for a

00

. Obviously, ea
h f 2 O

(n)

a

0

also de�nes

a se
tion of O

(n)

C

_

j

U

on some pun
tured neighborhood of a

0

by t

1

7! t

1

; q 7! t

1

t

2

, and

thus we 
an glue the sheaf O

(n)

C

_

from its restri
tion to U and stalks at a

0

; a

00

. This

de�nes on C

_

a stru
ture of a family of 
urves overD

(n)

; this family is non-singular.

Now let us assign the modules L

k

�

; DL

k

�

to the points a

0

; a

00

and take dire
t sum

over all � 2 P

k

+

. By Proposition 7.6.9, this de�nes a lisse module �

_(n)

over O

(n)

D

.

Proposition 7.8.2. The map

� : V

(n)

! V

(n)

v 7!

X

�;i

q

�deg e

�;i

v 
 e

�;i


 e

�

�;i

;

(7.8.1)

where e

�;i

is a homogeneous basis in L

k

�

, and e

�

�;i

is the dual basis in DL

k

�

, indu
es

an isomorphism of O

(n)

D

-modules �

(n)

! �

_(n)

.

Proof. First of all, we have to 
he
k that this map des
ends to the bundle of


oinvariants. To do this, note that it is immediate from the de�nition that we have

an embedding A : O

(n)

(C � p) ,! O

(n)

(C

_

� p� a

0

� a

00

). Near the double point

this map is given by

O

(n)

(C � p)!

�

C ((t

1

))[[q℄℄� C ((t

2

))[[q℄℄

�

=(q

n+1

)

t

k

1

t

l

2

7! t

k�l

1

q

l

� t

l�k

2

q

k

(
ompare with (7.6.3)). We leave it to the reader to 
he
k that in fa
t the image

of this embedding is analyti
 fun
tions.

It is also easy to show by expli
it 
al
ulation that the ve
tor

w

�

=

X

i

q

� deg e

�;i

e

�;i


 e

�

�;i

2 (L

k

�


DL

k

�

)

(n)

(7.8.2)

is invariant under the image of the embedding

g[[t

1

; t

2

℄℄=(t

1

t

2

)

n+1

!

�

g((t

1

))[q℄� g((t

2

))[q℄

�

=q

n+1

:
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Indeed, it suÆ
es to show this for xt

n

1

t

m

2

; x 2 g. In this 
ase, it follows from the

following sequen
e of identities:

(x[n�m℄q

m


 1+1
 x[m� n℄q

n

)w

�

= (x[n�m℄q

m


 1 + 1
 x[m� n℄q

n

)(q

�d


 1)

X

i

e

�;i


 e

�

�;i

= (q

�d


 1)(x[n�m℄q

n


 1 + 1
 x[m� n℄q

n

)

X

i

e

�;i


 e

�

�;i

= (q

�d+n


 1)(x[n�m℄
 1 + 1
 x[n�m℄)1

= 0;

where 1 =

P

i

e

�;i


 e

�

�;i

is 
onsidered as a ve
tor in a 
ertain 
ompletion of L

k

�




(L

k

�

)

�

. Note that in the last line we repla
ed DL

k

�

by (L

k

�

)

�

, whi
h resulted in

repla
ing x[m�n℄ by x[n�m℄|see (7.1.4). We leave it to the reader to 
he
k that?!

the fa
t that 1 does not lie in L

k

�


 (L

k

�

)

�

but only in some 
ompletion does not


ause any problems.

Therefore, if f 2 g

(n)

(C

S

� ~p); v 2 V , then �(f(v)) = A(f)�(v) and thus the

map � des
ends to the spa
e of 
oinvariants; we will denote the 
orresponding map

also by �.

Now the proof of proposition is easy. Indeed, we have a morphism of O

(n)

D

-

modules � : �

(n)

! �

_(n)

. By Theorem 7.7.1, � indu
es an isomorphism on the

�bers at zero �

(n)

=q�

(n)

�

�! �

_(n)

=q�

_(n)

. Sin
e �

_(n)

is free over O

(n)

D

, this im-

mediately implies that � is surje
tive. To prove that � is inje
tive, 
hoose a basis

v

1

; : : : ; v

k

in �

(n)

=q�

(n)

. Sin
e �

_(n)

is free, this implies that v

1

; : : : ; v

k

are linearly

independent over O

(n)

D

. On the other hand, it follows from the de�nition that the

module K = �

(n)

=hv

1

; : : : ; v

k

i satis�es qK = K; sin
e q

n+1

= 0, this implies K = 0.

Thus, �

(n)

is freely generated by v

1

; : : : ; v

k

. Therefore, � is an isomorphism, whi
h


ompletes the proof of the proposition.

Sin
e by Proposition 7.6.9 the sheaf �

_(n)

is lisse, this proposition implies that

the same holds for �

(n)

and thus 
ompletes the proof of Theorem 7.8.1.

7.9. Proof of the gluing axiom

In this se
tion we give a proof of the gluing axiom for the WZW modular

fun
tor. Re
all that this axiom des
ribes the behaviour of the bundle of 
oinvariants

in a neighborhood of the boundary of the moduli spa
e; in parti
ular, it 
laims

that the 
onne
tion has �rst regular singularities at the boundary, and des
ribes

the spe
ialization of this 
onne
tion.

Re
all that the boundary of the moduli spa
e 
onsists of the stable 
urves with

ordinary double points (see Se
tion 6.2) and that it suÆ
es to 
he
k the regularity


ondition for an open part of the boundary. Thus, we need to prove regularity and


al
ulate spe
ialization of the 
onne
tion in �

S

, where S;C

S

; D; : : : are same as in

the beginning of the previous se
tion. By the 
onstru
tion of the previous se
tions,

�

S


arries a natural proje
tively 
at 
onne
tion over S nD. Also, we have shown

in the previous se
tion that �

S

is lisse, i.e., is a sheaf of se
tions of a ve
tor bundle

on S.

Theorem 7.9.1. Under the assumptions above, the 
onne
tion in �

S

has loga-

rithmi
 singularities at D.
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Proof. As before, 
hoose a lo
al 
oordinate q in a neighborhood of D su
h

that q = 0 is the equation of D. Re
all (see (6.3.5)) that D

0

S

� D

S

be the subsheaf

generated (as sheaf of algebras) by O

S

and ve
tor �elds whi
h are tangent to D.

Proposition 7.9.2. The sheaf � has a natural stru
ture of a D

0

S

-module.

This proposition is a generalization of Theorem 7.4.1, and is proved in the same

way. The only 
hange is that instead of 
laiming that any ve
tor �eld on S 
an be

lifted to a ve
tor �eld on C

S

� ~p(S), we use the following lemma.

Lemma 7.9.3. Let � be ve
tor �eld on S whi
h is tangent to D. Then lo
ally

in S, su
h a �eld 
an be lifted to a ve
tor �eld on C

S

whi
h has poles at the marked

points.

Example 7.9.4. Let S be a neighborhood of zero in C , with 
oordinate q,

D = f0g. As before, introdu
e 
oordinates t

1

; t

2

near the double point in C

S

su
h

that q = t

1

t

2

. Then in the neighborhood of the double point, the lifting of the ve
tor

�eld q�

q

must be of the form �t

1

�

t

1

+ �t

2

�

t

2

for some �; � satisfying �+ � = 1.

This proposition, along with the fa
t that �

S

is lisse, immediately implies the

statement of the theorem.

Example 7.9.5. Let S be a neighborhood of zero in C , with 
oordinate q.

De�ne the family C

S

� CP

2

� S by the equation

uv = qw

2

; (u : v : w) 2 CP

2

; q 2 S

with the marked points p

1

(q) = (1 : 0 : 0); p

2

(q) = (0 : 1 : 0), and lo
al parameters

at these points t

1

= w=u; t

2

= w=v. The same argument as in Example 6.2.4

shows that for q 6= 0, the 
urve C

q

is isomorphi
 to a sphere P

1

, with marked

points p

1

= 0; p

2

= 1 and lo
al parameters z; 1=z respe
tively. For q = 0, the

�ber C

0


onsists of two 
omponents, ea
h of them isomorphi
 to a sphere P

1

, with


oordinates z

0

= u=w; z

00

= v=w respe
tively, whi
h have one 
ommon point z

0

=

z

00

= 0. The marked points p

1

and p

2

are the points1

0

;1

00

|in�nite points of the

�rst and the se
ond spheres respe
tively, with lo
al 
oordinates t

1

= 1=z

0

; t

2

= 1=z

00

respe
tively.

It is easy to see that any ve
tor �eld of the form

~v = �u�

u

+ �v�

v

+ q�

q

; �+ � = 1

de�nes a ve
tor �eld on C

S

whi
h is a lifting of the ve
tor �eld q�

q

on S. Rewriting

~v in terms of 
oordinates t

1

; q, we get ~v = ��t

1

�

t

1

+ q�

q

, and thus 


p

1

(~v) = �L

0

.

Similarly, expansion near p

2

gives 


p

2

(~v) = �L

0

. Therefore, the a
tion of q�

q

on


oinvariants is given by �(L

0

)

p

1

+ �(L

0

)

p

2

.

This statement also has an in�nitesimal analogue. Re
all the notation �

(n)

=

�

S

=q

n+1

�

S

(see the previous se
tion). This is a lisse O

(n)

D

-module. It immediately

follows from Proposition 7.9.2 that �

(n)

has a natural a
tion of the sheaf of algebras

D

0

D

(n)

= D

0

S

=q

n+1

D

0

S

.

Similar result also holds for the sheaf �

_(n)

des
ribed in the previous se
tion:

it follows from Proposition 7.6.9 that �

_(n)

has a natural stru
ture of a proje
tive

D

0

D

(n)

-module. Let us twist this a
tion, de�ning a new a
tion of q�

q

by adding to

the old a
tion the 
onstant �

�

, de�ned by (7.4.7) (
f. Example 7.4.11). We will

denote this new a
tion by r

_

.



192 7. WESS{ZUMINO{WITTEN MODEL

Note that a lifting of the ve
tor �eld q�

q

to C

_

D

(n)


an be expli
ilty des
ribed as

follows: lift q�

q

to a derivation ~v of O

(n)

(C�~p); as was dis
ussed in Example 7.9.4,

this lifting in a neighborhood of the double point has the form �t

1

�

t

1

+�t

2

�

t

2

; �+

� = 1. De�ne v

_

by v

_

= ~v on C

_

n fa

0

; a

00

g = C

0

n fag, and v

_

= �t

1

�

t

1

+ q�

q

at a

0

; similarly, let ~v = �t

2

�

t

2

+ q�

q

at a

00

. It is easy to 
he
k that this de�nes an

element of �

(n)

(C

_

� ~p).

Example 7.9.6. Under the assumptions of Example 7.9.5, the lifting of the

ve
tor �eld q�

q

is given by v

_

= �z

0

�

z

0

+ q�

q

on the �rst 
omponent, and by

v

_

= �z

00

�

z

00

+ q�

q

on the se
ond one. Therefore, its a
tion on the bundle of


oinvariants is given by

r

_

q�

q

= q�

q

+ �

�

(L

0

)

p

1

� (L

0

)

a

0

�

+ �

�

(L

0

)

p

2

� (L

0

)

a

00

�

+�

�

:(7.9.1)

Proposition 7.9.7. The isomorphism � : �

(n)

! �

_(n)

, de�ned by (7.8.1), is

an isomorphism of D

0

D

(n)

-modules.

Proof. It suÆ
es to 
he
k that � 
ommutes with the a
tion of the ve
tor �eld

q�

q

. To prove this, it suÆ
es to 
he
k that

r

_

q�

q

(v 
 w

�

) = (r

q�

q

v)
 w

�

where w

�

was de�ned in (7.8.2). But this is immediate from the de�nition of r

_

:

r

_

q�

q

(v 
 w

�

)� (r

q�

q

v)
 w

�

= v 
 (q�

q

� �(L

0

)

a

0

� �(L

0

)

a

00

+�

�

)w

�

= v 
 (�d+�

�

� �(L

0

)

a

0

� �(L

0

)

a

00

)w

�

= 0:

Now let us 
al
ulate the spe
ialization of the 
onne
tion in �

S

. Let us re
all

the de�nition of the spe
ialization fun
tor, slightly modifying it for our needs. As

in Chapter 6, assume that (F;r) is 
at 
onne
tion with �rst order poles at D. As

before, we denote by F the sheaf of se
tions of F , and F

(0)

= F=qF . F

(0)

is a

sheaf on D whi
h has a natural a
tion of the sheaf of algebras D

(0)

D

= D

0

S

=qD

0

S

. It

turns out that the spe
ialization Sp

D

F 
an be de�ned using only F

(0)

as follows.

Lemma 7.9.8. Let (G;

~

r) be a ve
tor bundle on the normal bundle ND with

a monodromi
 log D 
at 
onne
tion, and let i be a homeomorphism identifying a

neighborhood of D in S with a neighborhood of D in ND, as in (6.2.8). Then

an isomorphism of ve
tor bundles with 
onne
tions Sp

D

F ! G is the same as an

isomorphism of D

(0)

S

-modules

F

(0)

! i

�

G

(0)

:(7.9.2)

As before, we leave the proof of this lemma to the reader.

Now we need to 
al
ulate the spe
ialization of the ve
tor bundle of 
oinvariants

�

S

. To do so, re
all �rst that by Lemma 6.2.5, the normal bundle to D is ND =

f(d; v)g; d 2 D; v 2 T

(1)

a

C

d


 T

(2)

a

C

d

, where C

d

is the 
urve with one double point

a, and T

(1)

; T

(2)

are the tangent spa
es to the two 
omponents of C

d

at a. Choi
e

of 
oordinate q on S and 
oordinates t

1

; t

2

on C

S

su
h that t

1

t

2

= q gives an

identi�
ation of a neighborhood of D in S with a neighborhood of D in ND by

i : (d; q) 7! (d; q�

t

1


 �

t

2

);
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or, passing from ve
tors to 
ove
tors,

i : (d; q) 7! (d;

dt

1


 dt

2

q

):(7.9.3)

Now, let us de�ne a family of pointed 
urves over ND by C

d;q

= C

_

d

with the

parameters at a

0

; a

00

given by t

1

=q; t

2

. This de�nes a bundle of 
oinvariants ~� on a

neighborhood of D in S.

Theorem 7.9.9. The map

O

S


 V ! O

ND




X

�

V 
 L

k

�


DL

k

�

f(s)v 7!

X

�

f(i(s))v 
 w

�

(7.9.4)

where 1

�

2 V

�


 V

�

�

� L

k

�


DL

k

�

is the 
anoni
al g-invariant ve
tor, gives rise to

an isomorphism of D

(0)

S

-modules �

(0)

S

! ~�

(0)

.

Proof. We will use as an intermediate step the sheaf �

_(0)

introdu
ed in the

previous se
tion. By Proposition 7.9.7, the isomorphism � : �

(0)

! �

_(0)

, de�ned

by (7.8.1) is an isomorphism of D

(0)

D

-modules. On the other hand, let us show that

the map V 
 L

k

�


DL

k

�

! V 
 L

k

�


DL

k

�

, given by

v 
 v

0


 v

00

7! q

deg v

0

v 
 v

0


 v

00

gives rise to an isomorphism of �

_(0)

and ~�

(0)

as D

0

D

-modules. Indeed, let us


ompare the a
tion of the ve
tor �eld q�

q

on both spa
es. For ~�

(0)

it is given by

�(L

0

)

a

0

, and for �

_(0)

, it is given by




a

0

(v

_

) + 


a

0

(v

_

) +

X




p

i

(v

_

) + �

�

:

It follows from Proposition 7.6.9 that the only non-zero term in this sum is �

�

,

and therefore, (7.9.4) is indeed an isomorphism of modules.

Combining the isomorphisms �

(0)

! �

_(0)

! ~�

(0)

, we get the statement of the

theorem.

Now we 
an prove the main result of this 
hapter.

Theorem 7.9.10. The sheaves of 
oinvariants �(C; ~p; V

i

), V

i

2 O

int

k

, form a

modular fun
tor with additive 
entral 
harge 
.

Proof. A

ording to De�nition 6.4.1, we need to de�ne the gluing isomor-

phism and the va
uum propagation isomorphism for the spa
es of 
oinvariants.

Va
uum propagation isomorphism is given by Corollary 7.3.5; the gluing isomor-

phism is obtained by 
ombining Lemma 7.9.8 and Theorem 7.9.9. Che
king all the


ompatibility 
onditions for these isomorphisms is trivial.

For te
hni
al reasons, it is more 
onvenient to pass to the dual sheaf

�

�

(C; ~p; V

i

) =

�

�(C; ~p;DV

i

)

�

�

:

Obviously, the previous theorem immediately implies that the sheaves �

�

(C; ~p; V

i

)

also form a modular fun
tor with the additive 
entral 
harge 
. This fun
tor will

be 
alled Wess-Zumino-Witten modular fun
tor.

As a 
orollary, we have proved the theorem formulated in the introdu
tion to

this 
hapter.
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Corollary 7.9.11. The 
ategory O

int

k

has a stru
ture of a modular tensor


ategory, with 1 = L

k

0

; �

V

= e

2�iL

0

, and the tensor produ
t

:


 de�ned by

Hom

O

int

k

(1; V

1

:


 : : :

:


 V

n

) =

�

�(C;DV

1


 : : :
DV

n

)

�

�

where C is the \standard" n-pun
tured sphere, as in (6.4.3).

As a matter of fa
t, we have not yet proved the rigidity (re
all that modular

fun
tor only de�nes weak rigidity); however, it 
an be shown that this 
ategory is

indeed rigid.?!

A weaker version of this result is the following:

Theorem 7.9.12. Let k =2 Q. Then the ve
tor spa
es of 
oinvariants �(C; ~p; V

k

~

�

)

de�ne a genus zero modular fun
tor. The 
orresponding ribbon 
ategory is the Drin-

feld's 
ategory.

Proof. The proof is obtained by noti
ing that we have used integrability of

L

k

�

only in two pla
es: when 
he
king �nite-dimensionality of the spa
es of 
oinvari-

ants, and in the proof of Theorem 7.7.1, identifying the 
oinvariants for a singular


urve C and its normalization C

_

. On the other hand, if we restri
t ourselves to

genus zero 
urves, then the ve
tor spa
es of 
oinvariants are �nite-dimensional by

Proposition 7.3.8. It is also easy to show that the proof of Theorem 7.7.1 remains

valid for k =2 Q if we repla
e

L

L

k

�


DL

k

�

by (in�nite) sum

L

�2P

+

V

k

�


DV

k

�

.

The fa
t that the 
orresponding 
ategory is exa
tly the Drinfeld's 
ategory

follows from 
omparison of this modular fun
tor with the modular fun
tor de�ning

Drinfeld 
ategory (see Proposition 6.5.4). Indeed, Proposition 7.3.8 shows that the


orresponding ve
tor spa
es of 
onformal blo
ks 
an be identi�ed, Theorem 7.4.10

shows that this identi�
ation preserves the 
at 
onne
tions, and Theorem 7.9.9

shows that the gluing map for these two modular fun
tors also 
oin
ides.

Remark 7.9.13. One 
an note that we have most of the arguments above were

quite general and didn't use mu
h information about the 
oinvarints. Most of the

time we were only using the a
tion of the Virasoro algebra on integrable modules,

given by the Sugawara 
onstru
tion. The only pla
es were we a
tually used the

de�nition of 
oinvariants and properties of integrable modules were the proof of

�nite-dimensionality of the ve
tor spa
es of 
oinvariants and the proof of Theo-

rem 7.7.1, identifying the 
oinvariants for a singular 
urve C and its normalization

C

_

. Thus, if we 
ould repeat these two steps in other setups|for example, re-

pla
ing the 
ategory O

int

k

by a suitable 
ategory of Virasoro modules|we would

again get a modular fun
tor. Indeed, it is rather easy to modify these arguments

to de�ne the modular fun
tor related to the so-
alled minimal models of Conformal

Field Theory, in whi
h the modules L

k

�

are repla
ed by irredu
ible unitary modules

over V ir with a suitable 
entral 
harge. If we try to pursue this idea as far as we


an and see what is the most general situation in whi
h we 
an apply the same

proof, we will arrive at the notion of Rational Conformal Field Theory (or, to be

more pre
ise, the holomorphi
 (
hiral) half of RCFT). The number of referen
es on

this subje
t is tremendous; some of the more suitable for mathemati
al audien
e

are [Hua℄, in
uential but unpublished manus
ript [BFM℄, and [Gai℄. For more

physi
al exposition and extra referen
es, see [FMS℄.


