CHAPTER 7

Wess—Zumino—Witten Model

In this chapter, we give a construction of what is probably the best known
example of a modular functor. This modular functor is based on the category
of integrable representations of an affine Lie algebra and appears naturally in the
Wess—Zumino-Witten model of conformal field theory; abusing the language, we
will call it the WZW modular functor. The literature devoted to this measures in
hundreds of papers; the most prominent among them are [KZ], [MS1], [TUY],
[BFM]. For more detailed exposition of conformal field theory in general and
WZW model in particular, we refer the reader to [FMS] and references therein.

The main goal of this chapter is to prove the following result. Fix a simple
complex Lie algebra g, and let O'}g“t be the category of integrable modules of level
k € 7, over the corresponding affine Lie algebra g.

THEOREM 7.0.1. The category O}c“t has a structure of a modular tensor cate-
gory.

Of course, in this form the theorem is not very precise since we have not defined
the tensor product (which is usually called the fusion product, and denoted ®, to
distinguish it from the usual tensor product of vector spaces). We will give a precise
definition later (see Corollary 7.9.11).

Another important result, which, unfortunately, we will not prove, is the follow-
ing. Recall that in Section 3.3 we defined a structure of a modular tensor category
on a certain subquotient Ci"*(g, 5) of the category of representations of the quantum
group U,g, ¢ = e™/m*.

THEOREM 7.0.2 ([F]). The category O is equivalent to the category C™ (g, »)
as a modular tensor category for » = k+hY, where b is the dual Cozeter number

for g.

Because of the importance of these two theorems, we will comment here on
their history. They have appeared in somewhat vague form in physics literature in
the 1980s. The accurate construction of the tensor structure on O}c“t first appeared
in [MS1]; however, Moore and Seiberg did not give a complete proof.

To the best of our knowledge, there are three known proofs of Theorem 7.0.1.
The first one, which we present in this chapter, is based on the use of the notion
of modular functor. The corresponding modular functor (which, as we mentioned
above, naturally appears in the Wess—Zumino—Witten model of conformal field
theory) is defined in terms of the spaces of coinvariants. The crucial step in proving
that these spaces satisfy the axioms of a modular functor is checking the gluing
axiom, which was done by Tsuchiya, Ueno, and Yamada [TUY]. Another proof of
the gluing axiom can be obtained by suitably modifying the proof for the minimal
models given in [BFM].
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168 7. WESS-ZUMINO-WITTEN MODEL

The second proof of Theorem 7.0.1 was given by Finkelberg [F], who based
his approach on the series of papers of Kazhdan and Lusztig [KL]. They proved
that for negative integer level k, the category Oy is a ribbon category, which is
equivalent to the category C(g, ) of representations of the quantum group U,g.
Therefore, this category contains a subquotient category which is equivalent to the
MTC C"*(g, 5). Combining this result with a certain duality between the categories
Oy, and O_apv i, Finkelberg showed that this subquotient is dual to the category
O}ft, thus establishing simultaneously Theorems 7.0.1 and 7.0.2.

Finally, the third proof of Theorem 7.0.1, based on the theory of vertex operator
algebras, was recently given by Huang and Lepowsky [HL].

Unfortunately, none of these proofs is easy. Finkelberg’s proof is based on a 250
pages long series of papers [KL], which is very tersely written; few people (if any
at all) have expertise and patience to follow all the details of this proof. Similarly,
the proof of Huang and Lepowsky is heavily based on a number of their previous
papers on vertex operator algebras, which can sometimes get rather technical. The
modular functor approach seems to be the easiest of all three, but it still requires all
the formalism of modular functors and their relation with tensor categories (which
took the previous 140 pages of this book) and some non-trivial algebraic geometry
used in [TUY], also not an easy reading.

The proof given in this chapter is based on the modular functor approach; how-
ever, our proof of the gluing axiom follows the ideas of [BFM] rather than [TUY].
This proof was never published before; however, for the most part it closely follows
the arguments in [BFM], so all the credit belongs to Beilinson, Feigin, and Mazur.
Modifying their arguments for WZW model was rather straightforward; according
to private communications from Beilinson and Feigin, they intended to include the
proof for WZW model in the final version of the manuscript. Unfortunately, it is
not clear when (and if) such a final version appears, so we include this proof here.

7.1. Preliminaries on affine Lie algebras

The aim of this subsection is just to fix the notation, we refer to the book of
Kac [K1] for a comprehensive treatment.

Let g be a finite dimensional simple Lie algebra over C. We fix a Cartan
subalgebra ) C g and let (-, -) be an invariant bilinear form on g normalized so that
(o, ) = 2 for long roots of g. We will use the same notations (and notions) as in
Section 1.3.

Let g((t)) = g ®c C((t)) be the loop algebra of g. Then the affine Lie algebra
of g is

(7.1.1) g=9g((t)) ®CK
with commutation relations
[a® f,b® g] =[a,b] ® fg+ (a,b) Reso(df 9) K, [K,g] = 0.

For brevity, we often use the notation z[n] =2 ® t",z € g.

We let gt = tg[[t]], s~ = t~'g[t~!]. We have a decomposition of g into subal-
gebras

g=g ©ogoCK g .

We will be interested in g-modules of level k¥ € C, i.e., modules V such that
K|y = kidy; this is equivalent to considering modules over U (g), = Ug/Ug(K —k).
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We will denote by Oy the category of g-modules of level k& which have weight
decomposition with finite-dimensional weight subspaces, such that the action of g™
is locally nilpotent and the action of g is integrable.

Of special interest for us are two classes of modules from Of: Weyl modules
and integrable modules. Weyl module V¥, \ € Py, is defined by
(7.1.2) V= Indd s oo Vao
where V), is the irreducible finite-dimensional g-module with highest weight A, which
we consider as a module over g g™ & CK by letting g7 act as 0 and K act as kid.
The Weyl module is free over g—.

If k£ ¢ Q, then Weyl modules are irreducible and the category O is semisimple.
We will be mostly interested in the other extreme case k € Z . In this case, we can
also consider integrable highest-weight modules. We will denote by O'}g“t C Oy the
subcategory of integrable modules, i.e., such modules that for every root a, n € Z,
the action of e,[n] is locally nilpotent. It is known that O™ is semisimple with
simple objects L5, X € P¥, where P¥ is the positive Weyl alcove

(7.1.3) Pi={\ePs|(N0) <k},

see [K1]. (Note that P is the same set which we denoted by C in Section 3.3.)
The modules L% are irreducible and can be described as the quotient LY = V¥ /Zj,
where Z) is the unique maximal proper submodule of Vf. It is known that Z) is
generated by one vector: Zy = Ug(eg[—1])*T vy k, where a = k — (X, 60Y).

It is useful to note that both V¥ and L¥ have a natural Z_-grading (sometimes
called the homogeneous grading), defined by deg vy r = 0,degaln] =n,a € g,n € Z.
It is easy to see that homogeneous components of Vf (and, in fact, any module in
the category Oy ) are finite-dimensional.

Finally, we will define the duality in the category Oy, by DV = (V*), where V*
is the restricted dual to V, i.e. the direct sum of the dual spaces to homogeneous
components of V, and f is defined as follows: for a g module W, the module
W coincides with W as a vector space, and the action of g is twisted by the
automorphism

(7.1.4) i: z[n] = (—1)"z[-n], K- —-K.

It is easy to see that D is an anti-automorphism of the category Oy which preserves
Ot In particular, for an integrable module L%, DL is also an irreducible inte-
grable module, whose top homogeneous component is V. It is (non-canonically)
isomorphic to L* wo ()"

7.2. Reminders from algebraic geometry

In this section we briefly list some facts from algebraic geometry which will
be used below. All of them are quite standard, so a reader who has even basic
knowledge of algebraic geometry over C can safely skip this section.

All varieties considered in this section are considered with analytic topology;
as before, we use the words “manifold” and “non-singular variety” as synonyms.
For a variety S, we denote by Og the structure sheaf of S (i.e., the sheaf of analytic
functions on S). We assume that the reader is familiar with the notion of a O-
module and a coherent O-module. As usual, for a point s € S we define by Og s
the local ring at s, i.e. the ring of germs of analytic functions at s, and by my
the maximal ideal of this ring, which consists of functions vanishing at s. We also
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denote by (5575 the completion of the local ring with respect to topology given by
the powers of the maximal ideal. In particular, if dimS = 1, s € S is a regular
point, and t is a local parameter at s, i.e., an analytic function in a neighborhood
of s such that t(s) = 0, (dt)s # 0, then Og , ~ C[[t]].

For an Og-module F we define its fiber at point s € S to be Fs/m:F,. In
particular, if F is the sheaf of sections of a vector bundle F, then in this way
one recovers the fibers of F'. We will say that an O-module F is lisse if it is the
sheaf of sections of a finite-dimensional vector bundle. Note that every lisse sheaf
is coherent, but converse is not true.

In general, for an open subset U C S and a sheaf F on S, we denote by F(U)
the vector space of sections of F over U. However, in the case when U = C'\ D,
where C is compact and D is a divisor, and F—an O-module over C, we will
denote by F(C — D) the space of meromorphic sections of F over C which are
regular outside of D. We hope it won’t cause confusion.

We will use the following well known facts about complex curves. As before, all
the curves are assumed to be compact and non-singular (unless specified otherwise),
but not necesarily connected.

THEOREM 7.2.1 (Riemann-Roch). Let C' be a connected complex curve, and
Dl,- - -, Pn,q—distinct points of C (n > 0). Let us fix the principal parts of Laurent
expansions (f); € C((¢;))/C[[t]] near p;. Then there exists a function f € O(C —
{p1,...,Pn,q}) which has given principal parts of Laurent expansion ot p; and has
a pole at q. Moreover, the order of pole at q can be bounded by a constant which
only depends on the order of poles at p; and the genus of the curve C.

This theorem can be generalized to curve which may have ordinary double
point singularities and may be disconnected. In this case, we have to allow poles
at a collection of points q1, ..., g, such that on every component of C' there is at
least one of the points g;.

THEOREM 7.2.2. Let C be a complex curve (possibly disconnected and singu-
lar). Let g € C be a regular point, and t—a local parameter at q. Then the vector
space

C(@®)/Cllt] +0(C = a),

is finite dimensional. Moreover, there exists N € Z, which only depends on the
topology of C' such that

O(C —q)+C[[t]] Dt NCt 1]+ C[[t]].
7.3. Conformal blocks: definition

In this section, we will define the vector spaces of coinvariants; later we will
show that these vector spaces satisfy the axioms of a modular functor. The basic
references for this section are [TUY], [Be] (with minor changes).

Fix a compact nonsingular complex curve C' (not necessarily connected), a
finite dimensional simple Lie algebra g, and a positive integer k.

Let p1,...,p, be distinct points on C with local coordinates ty,...,t, (recall
that a local coordinate at a point p is a holomorphic function ¢ in a neighborhood
of p such that ¢(p) = 0, (dt), # 0). We will always assume that on every connected
component of C' there is at least one point. Let Vi,...,V,, € Oy be some g-modules
associated to these points.
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We will use the notations

ﬁ: (pla"'vpn)v
V=Vo...0V,.

In particular, if V; = L’f\i are integrable modules, we will use the notation

—

A=\, 0), LE=If ©--0Lf .
Consider the Lie algebra
(7.3.1) g(C —p) =g®c O(C —p)

of g-valued functions on C which are regular outside the points p1,...,p, and
meromorphic at these points. We have Lie algebra homomorphisms

i 9(C = p) = a(())
given by Laurent expansion around the point p; in the local coordinate ¢;. This

does not give a Lie algebra homomorphism g(C — ) — @ because of the central
term in definition of g. However, by the Residue Theorem,

T=n&-Smm:e(C—p) =a(t) ©---Da((t))
can be lifted to a homomorphism

n

Y 9(C=p) = U@k @ @U@k, 7(%)221@---(29%(:3)@---@1,

i=1
In particular, g(C — ) acts on V.

DEFINITION 7.3.1. The space of conformal blocks is the vector space of coin-
variants

T(C,ﬁ, V) = Vg(O—ﬁ) = V/g(C — ﬁ)V.

We will write 7(C, 7, t, V') when we need to show the dependence on the choice
of local parameters t = (t1,...,t).

It is easy to see that the construction above also makes perfect sense if we allow
t; be formal local parameters at p;, i.e., t; € @pi, (dt;)p; # 0. Note that once ¢; is

~

chosen, one has O,, = C[[t;]].

LEMMA 7.3.2 (Beauville [Be]). Letp, V be as above, and let g € C—p, A € P¥.
As before, let Vy be the corresponding finite-dimensional g-module, and let V¥ be
the Weyl module over g. Then the inclusion Vy < V/\k induces an tsomorphism

(7.3.2) (V& Wac-—n = (VO V)gc—po = T(C;FUGV VL),
where g(C—p) acts on Vy via the evaluation map a® f — f(q)a, a € g, f € O(C—p).

PROOF. Since the natural embedding V ® V) < V ® V¥ is clearly g(C — p)
equivariant, it induces a map from the left hand side of (7.3.2) to the right hand
side.

By the Riemann—Roch formula, there exists a function z on C' regular outside
PU g and having a simple pole at the point ¢. Then

OC-p-q=0C-paPc,
i=1
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therefore g(C —j—q) ~g(C —p) ©¢".

By definition, V¥ is a free U (g™~ )-module isomorphic to U(g~)Vy; hence, V) =~
(V¥)g-. Then (7.3.2) follows by tensoring with V' and taking coinvariants with
respect to g(C — p). O

LEMMA 7.3.3. Let C be connected, and let V; be quotients of Weyl modules:
Vi = VAki /I; (the ideals I; may be zero, maximal, or anything in between). As-
sume also that at least one of V; is integrable, i.e., equal to L’f\ Then the natural
surjection V=V ®-- -0V, —» L’f\l Q- L’f\n = L’/% gives rise to an isomorphism

(7.3.3) 7(C, 5, V) = 7(C, 5, LY).

Proor. It suffices to prove that

(LA, @ Ve @@ Var @ VS Ja(c—p) = (LA, @ Ve @+ @ Vot ® LY Ja(c—p)-

Let Z ={veVF | Ly ® - @Vy1®v CImg(C — p)}. Obviously, this is a
submodule in V)\kn; our goal is to prove that an /Z is integrable. This is equivalent
to the following statement: for every root a and v € V{f , one has (eq[-1]))Vv € Z
for N > 0 (in fact, it suffices to check this for a = ). We leave it to the reader
to check that if we choose f € C((¢)) such that f has first order pole at 0, then
the above condition is equivalent to (e, f)Nv € Z for N > 0 (in other words, the
notion of an integrable module does not depend on the choice of local parameter).

Now let f € O(C —p; —py,) be a function which has a first order pole at p,,. By
the Riemann—Roch theorem, such a function exists if we allow it to have a pole of
sufficiently high order at p;. Since L’§1 is integrable, and f is regular at ps, ..., Pp—1,
we easily see that action of e, f on L’f\l ®---®V,_1 is locally nilpotent. Therefore,
for any v, € L’/{l,...,vn € V)\kn, one has v ® - - @ v, 1 @ (ea f)Nv, € Img(C — p).
But this exactly means that (eq f)Nv, € Z for N > 0. O

This theorem can be rewritten in more invariant terms. For a module V € Oy,
denote by V' its maximal integrable quotient (it is easy to see that it is well-
defined). Then the previous lemma immediately implies the following corollary.

COROLLARY 7.3.4. Let V; € OLNT, and at least one of V; is integrable. Then
T(CHVi® V) =T(Cp V™" @ o V).

COROLLARY 7.3.5. Let V = Vi ---®V,,V; € DL“‘“. Then the embedding C =
Vo < LE induces an isomorphism

(7.3.4) 7(C,p,V) ~7(C,fuU q,V & LF).
PRroOOF. This follows from Lemmas 7.3.2 and 7.3.3:
(V@ Li)go—5-a) = (VO V)gc—p-g = (VO Ogcp)-

Having proved these results, we can prove now the following proposition.

PROPOSITION 7.3.6. IfV = Vi ---®Vy, Vs € O, then the spaces of coinvariants
T(C,p, V) are finite dimensional.
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PRrOOF. We may assume that C' is connected. Combining Lemma 7.3.2 and
7.3.3, we see that it suffices to prove the statement for n = 1,V; = L§. It follows
from Theorem 7.2.2 that g+ + g(C — p) D gt +¢t~Ng~ for N > 0. Therefore, it
suffices to prove that the vector space

Wy =LY/t Ng Wy

is finite-dimensional.

To prove this, note that one has a well-defined action of g=° = g[t~] on Wy,
which factors through the finite-dimensional quotient a = g=<°/t=Vg=0. Obviously,
Wy = (Ua)vyrk. On the other hand, a is generated by eq, fa, €at !, and all of
these generators act nilpotently on Wy . Thus, all we need is to prove the following
lemma.

LEMMA 7.3.7. If ais a finite-dimensional Lie algebra with generators x1, ..., Ty,
and W is a cyclic a-module such that the action of x; in W is locally nilpotent, then
W is finite-dimensional.

To prove this lemma, we pass from the module W over Ua to the corre-
sponding graded module Gr W over Gr(Ua) = S(a). Consider the variety S =
Supp(Gr W) C a*. Then it follows from the nilpotency condition that x;, con-
sidered as a function on a*, vanishes on S. By Gabber’s integrability theorem
[Gab], if z,y vanish on S, then [z, y] also vanishes. Therefore, S = {0}. But every
finitely generated module over the polynomial ring, which has a finite support, is
finite-dimensional. This proves the lemma, and thus, the proposition. |

As an illustration, consider the simplest case C = P!,

PROPOSITION 7.3.8. Let C =P, py, ..., p,—distinct points on C.
(i) Let V){“ = V/\kl ®.. .®V>\kn ,and Vi = V3, ®...@Vy, . Then the homomorphism

(Vz)a = 7(C,5,V{)

obtained by restricting the natural map VX’“ — V){“/g(C —13‘)VX’“, is an isomorphism.

(ii) Let z be a global coordinate on P'; assume that z(p;) is finite. Define the
endomorphism T': Vi — Vi by

n
T ® - Qvy) =Y 01D 2(p;) gt @ -+ @ vy,
=1

Then one has an isomorphism
(V>\1 ®...R VAH>Q$CTI¢+1 ~ T(Pl,ﬁ, L§)

ProoF. Part (i) is proved in the same way as Lemma 7.3.2, if we also note
that for one point, g(P! —p) = g@® g~. As for part (ii), it can be deduced from the
fact that LY = V¥ /Ug(eg[—1])* vy k.- O

Let us relate this description with the one usually given in the physics literature.
As before, let C = P! with global coordinate z, and let the marked points be
0,21,...,2n,00 with the local parameters z, z — z;, —1/z respectively. Let us assign
to the points 0 and oo some Og-modules Vy, V., respectively and assign to the points
21,2, Weyl modules V¥ ... V¥ . Then, by Lemma 7.3.2, we can replace in
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the definition of coinvariants Vy by Vi, and the algebra g(P* — {0, z;,00}) by
g(P! — {0,00}) = g[z,27!]. Thus

(7.3.5) 7(PY,0,21,...,2%n,00, Vo, ..., Vao)
= (VoW ©...0W, @Vw)/(h])o + Z 2w + (=1)"(z[-n))oo)

where n € Z,x € g, and notation x; means z acting on V),, etc. We can pass to
the dual space 7* which will be a subspace in

Home (Vo @ Vy, ... @ Vy, @ Vi, C) = Home (Vo ® Vi, @ ... Vi, DVay)

where W is the completion of a W € Oy, with respect to the homogeneous grading.
Rewriting the coinvariance condition, we get

(7.3.6) Tr={P: OV, ®...0V,, = 17‘20 | ®(z[n] + szgcl) = z[n]®}
= Homg ;-11(Vo @ Vi, (21) ® ... W, (Zn),D/-V;),

where, as before, V' (z) is the evaluation representation.

For the case g = slo,n = 1 the dimensions of these spaces (which, as we will
show below, play the role of multiplicity coeflicients Ni’“j for the modular category
Oin%) were calculated in [TK]; their answer agrees with the formula for U, (sl2),q =
e™/(k+2) given in (3.3.24)—as expected from Theorem 7.0.2.

REMARK 7.3.9. It is a natural question to generalize the definition of coinvari-
ants, which can be viewed as Lie algebra homology in degree zero Ho(g(C — p),V)
and consider all homology spaces H,(g(C'—p), V). To the best of out knowledge, this
approach was first suggested by B. Feigin. One of the first results in this direction,
proved in [Tel], is the vanishing theorem: if V; are Weyl modules, then all higher
homology vanish. In particular, this theorem allows one to calculate dimensions of
the vector spaces of coinvariants 7(C, P, L’;), by writing for each of L’/{i a resolution
consisting of Weyl modules, and then using the fact that for the Weyl modules,
dimension of the space of coinvariants is known (see Lemma 7.3.8). This answer
coincides with the dimension of the spaces of homomorphisms in the category of
representations of quantum group at root of unity (see Proposition 3.3.23).

The meaning of the higher homology spaces (“higher conformal blocks”) H;(g(C —
P), V) when V; are integrable and the role they play in conformal field theory is still
unclear.

7.4. Flat connection

In the previous section, we have defined and studied some properties of the
vector spaces of coinvariants for a given curve C' with marked points and chosen
local parameters at these points. Now, let us study what happens with these
spaces when we change the local parameters, or move the points. Let us assume
that we have a smooth family of pointed curves Cs,s € S over a smooth base S.
As mentioned above, it means that we have a smooth manifold C's with a proper
flat smooth morphism 7 : Cs — S such that each fiber C; = 7 1(s) is a complex
curve; we also have n non-intersecting sections p; : S — Cg, and local parameters
t;, which are functions in a neighborhood of p;(S) C Cg such that p;(S) is the zero
locus of ¢;, and dt; # 0 on p;(S). Such a data defines on each fiber a structure of a
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pointed complex curve, with a local parameter at each puncture; as before, we will
assume taht on each connected component of C there is at least one marked point.
Similarly to the construction of the previous section, it is convenient to allow ¢; to be
formal parameter, i.e. an element of the completed local ring (505%( s) = Os|[ti]]-

We will denote by ©g the sheaf of vector fields on S. We will also denote
by O(Cs — p(S)) the sheaf on S whose sections over U C S are by definition
meromorphic functions over 7~ (U) C Cs which are regular outside of p;(S); when
S = {point}, this coincides with the definition in the previous section. In a similar
way, we define g(C's — p(9)), ©(Cs — p(S))—all of them are sheaves on S.

Throughout this section, let us fix a family Cs as above, choose integrable g-
modules Vi,...,V, € O and let V = V; ® V,,. Then for every point s € S we
can define the vector space of coinvariants

(7.4.1) s = 7(Cs,P(5), V) = V/g(Cs — p(s)) V.
The main goal of this section is to prove the following theorem.

THEOREM 7.4.1. Under the above assumptions, the vector spaces 5 form a
vector bundle Ts over S which carries a natural projectively flat connection. The
assignment S — Tg is functorial in S: for every map ¢: S' — S and a family Cs
over S as before, there is a canonical isomorphism 1s1 = V*(1s), where Cg =

Y*(Cs)-

We remind that a connection is called projectively flat if [Vx,Vy] — V[x y]
is an operator of multiplication by a function for any two vector fields X,Y on S.
The failure of the connection to be flat is, of course, related with the central term
in the definition of g: for & = 0, the connection is flat (but of little interest, since
the only integrable module of level 0 is L& = C). We will discuss this later.

The remaining part of this section is devoted to the construction of the flat
connection and the proof of the theorem. For simplicity, we will assume that n = 1;
the general case can be treated similarly. Our exposition follows [BFM] (somewhat
simplified).

LEMMA 7.4.2. The vector spaces 75 form a Og-coherent sheaf over S, i.e., there
exists o coherent sheaf Ts such that 75 = 15/IsTs, I being the ideal of functions
vanishing at s.

ProOF. Let Vg = Og®V (usual algebraic vector product, no completions); this
is an Og-module, which carries an Og-linear action of the Og-module g(Cs —p(.5)).
Define the sheaf

(7.4.2) TS = Vs/g(CS —p(S))Vs.

It is obvious that localizing 79 at s € S, we get the vector space of coinvariants
7¢. The coherency of 75 can be proved in a way similar to the proof of finite-
dimensionality of the spaces 7(C') in the previous section, using the following lemma.

LEMMA 7.4.3. Let A be a finite-dimensional vector bundle of Lie algebras over
S which is generated (as a Lie algebra) by sections z1,...,x,. Denote by A the
sheaf of sections of A. Let W be an Og-module with an Og-linear action of A.
Assume that W is locally cyclic (i.e., locally there exists a section wg € W such
that W = Awo) and action of x; is locally nilpotent: for every section w, one has
oNw =0 for N > 0. Then W is Og-coherent.
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To prove this lemma, it suffices to note that by Gabber’s theorem, Supp(WW)
is the zero section of the bundle A*  and that every module over Og[z1,...,Zy]
whose support is given by x; = 0, is Og-coherent. O

We will show that the sheaf 7¢ has a natural structure of a twisted Dg-module,
i.e., a projective action of the sheaf @g of vector fields on S which is compatible
with the Og-module structure: £(¢7) = (£@)T + ¢(é7),€ € Og, ¢ € Og. Since it is
well known that every O-coherent twisted D-module is in fact a sheaf of sections of
a vector bundle with a projectively flat connection, this will establish the theorem.

To construct an action of ®g on the sheaf of coinvariants, let us first consider
the case when we have a fixed curve C' with a marked point p, and S is the set of all
possible choices of a formal local parameter ¢ at p. This set has a natural structure
of a projective limit of the smooth manifolds SN) = { N-jets of local parameters
at p}. We have a tautological family of curves Cs = C' x S over S, with the same
marked point p and with the formal local parameter determined by s € S.

This S is a torsor over the pro-Lie group (i.e., a projective limit of Lie groups)
Ky = Aut C[[t]] of changes of local parameter. This group can be explicitly de-
scribed as the group of power series of the form ajt + ast?> + ...,a; # 0, with
the group operation being composition; it acts on the set of formal local param-
eters in an obvious way. The corresponding Lie algebra To = Lie K is given by
To = tC[[t]]0; (see [TUY, Section 1.4] for precise statements). Therefore, the tan-
gent space to S at every point can be identified with 7g. or, equivalently, 7y is the
space of all Ky left-invariant vector fields on S. Thus, to define an action of ©g on
the bundle of coinvariants, one needs to define an action of 7y.

Therefore, we see that the key step in this case would be to define an action of
To = tC[[t]]0; on V. In the general case, we will in fact need an action of a larger
Lie algebra 7 = C((t))0;, which is usually called the Witt algebra. It has a natural
(topological) basis L,, = —t""10;, n € Z, with the commutation relations

(7.4.3) (Lo, Ln] = (m = 1) Lynsn.

The subalgebra 7y is generated by L, with n > 0. Similarly, we will also use the
subalgebras 71 = t>C[[t]]0;, T-1 = C[[t]]0; generated (as topological Lie algebras)
by L, with n > 1 (respectively, n > —1).

It is indeed possible to define a projective action of 7 on g-modules. This is
known as the Sugawara construction. We formulate this result as a proposition,
referring the reader to [K1] for details and the proof.

PROPOSITION 7.4.4. One can define elements L,,n € Z, in a certain comple-
tion of U(g)x, which have the following properties:
(i) In every module V' from the category Oy, the action of L,, is well-defined,
and
3

m> —m
(7.4.4) (L, Ln] = (m —n) Lyt + dmtn0 ch
where

kdimg
4. = .
(7.45) R Y

(ii) The operator L, has degree n with respect to the homogeneous grading, and

(7.4.6) [Ly,alm]] = —ma[m + n], ac€g.
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iii) In the Weyl module V¥ (and thus, in L), the operator Ly acts by
A A

(7.4.7) Lov = (Ax — degv)v, Ay = %
Part (i) of this proposition can be reformulated as follows. Let
(7.4.8) Vir = C((¢))0; & Cc
as before, this vector space has topological basis ¢, L, = —t"t'0,,n € Z. We

define the structure of Lie algebra on Vir by (7.4.4) (it can also be defined in a
coordinate-free way, with the central term given as a residue of the f"'g). This
algebra is called the Virasoro algebra and plays a central role in conformal field
theory; by definition, it is a central extension of the Witt algebra C((¢))0;. Thus,
part (i) claims that every module V' € Oy, is naturally a module over Vir with the
central charge equal to kdimg/(k + hY).

Note that when restricted to 7_1 = C[[¢t]]0, the central term in (7.4.4) van-
ishes; thus, 7_; is a subalgebra in Vir and therefore acts on V. Hence, the same
construction also defines an action 7y on V. Considering 7y as the Lie algebra of
left-invariant vector fields on the set S of all choices of local parameter at p, one
easily sees that this action can be uniquely extended to the action of the sheaf ©g
of all vector fields on S on the sheaf Vg = Og @ V.

Let us now consider the general case, when not only the local parameter but
also the the curve itself is allowed to vary.

First of all, let C' be a complex curve, and t—a formal parameter at the point
p € C. Denote by ©(C — p) the space of meromorphic vector fields on C' which are
holomorphic outside of p. Then we have a Lie algebra homomorphism v, : @(C —
p) — T obtained by expanding a vector field in a neighborhood of p in power series
in t. Similarly, if we have several marked points py,...,p,, we can define a map

(7.4.9) B=Pw:0C-p>Ta T

On the other hand, Sugawara construction gives a projective action of the direct
sum T @--- T onV =V, ®...®V,; thus, we get a projective action of ©(C — p)
on V, which we will also denote by .

LEMMA 7.4.5. (i) The action of @(C — p) on V, given by vz, is a true action,
not a projective one.
(ii) The actions of ©(C — p) and g(C — p) on V agree as follows:

[5(&),a® fl=a®{(f), £€0O(C—-p),a®fecgxOs.

(iii) The induced action of ©(C' — p) on the space of coinvariants Vyc—p) 8
zero.

Proor. Part (i) follows from the fact that the central term in (7.4.4) can be
written as a residue, and from the fact that the sum of residues of a meromorphic
1-form is equal to zero. The proof of part (ii) is immediate from (7.4.6). As for part
(iii), the simplest way to prove it is to note that ©(C — p) is a simple Lie algebra
(see [BFM]), and therefore has no non-trivial finite-dimensional representations.
Of course, this is a very artificial proof. A more natural proof can be obtained from
the theory of chiral algebras. For readers familiar with this theory, we point out
that the Sugawara construction in fact shows that the generating function L(z) =
> nez Lnz "% is a field in the vertex operator algebra (=chiral algebra on a formal
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punctured disk) generated by the Kac-Moody currents a(z) = Y, o5 (at™)z "1,
a € g (see, e.g., [K2]); similarly, the Lie algebra ©(C'—p) is a subalgebra in the chiral
algebra associated with the curve C' — p. But since this chiral algebra is generated
(in an appropriate sense) by the Kac-Moody currents, and these currents act on
the space of coinvariants by zero, this whole chiral algebra acts by zero. Details
can be found in [Gai]. O

Part (iii) of the lemma may seem discouraging. Note, however, that what we
are looking for is an action of ©g on the bundle of coinvariants, not an action of
©¢, so we do not have a problem with the fact that ©(C — p) acts by zero. In fact,
it will be useful to us.

In order to define an action of ©g, we will first lift a vector field on S to a
vector field on Cg, and then restrict to a formal neighborhood of p.

Let 8 be a vector field on S. Let us lift it to a vector field 6 on Cs —p(S). Such
a lifting is always possible, which follows from the fact that 7 : Cs — p(S) — S is
affine, and therefore defines an exact functor on O-coherent sheaves (this is where
we need to allow poles at p(S)!).

Let us consider the vector field 8 in a neighborhood of one of the sections p;(S)
(“marked point”). Then the choice of local coordinate ¢; allows us to define the
notion of horizontal vector field: a vector field v in a punctured neighborhood of

pi(S) is horizontal if v(¢t) = 0. Then we can define “vertical” component y,(6) by
é =5, (é) + éhoriz7 éhoriz (t) =0.

Note that while one can easily define the notion of a vertical vector filed on Cs (v
is vertical if its projection to S is zero), the notion of horizontal vector field, nad

thus, of “vertical component” ~,,(#) depends on the choice of local parameter ¢;.
If we choose local coordinates z; on S, so that 8 = > f;(x)0,,, then (z;,t) give
a coordinate system in a neighborhood of p;(S), and we can write 8 = g(z,t)0; +

> fi(z)Oy,. Then ~yp, (0) = g(x,t)0:. The function g(z,t) can have poles at t; =0,
so it can be viewed as a local section of Og((¢;)), and thus v,,(0) € Os @ T.
Repeating this for all points p;, we define

(7.4.10) %0 =D 1 (0) €Ose(Ta--aT)

(for S = {pt}, this coincides with the definition (7.4.9)).
Now, let us define the action of # on Vg =V ® Og by

O(fv) = OUNv + 1w @),

where -, (8) acts on V; by the Sugawara construction.

LEMMA 7.4.6. The above defined action of 6 on Vg has teh following properties:
1. It is compatible with the structure of Og-module: for f € Og,v € Vg, one

has 0(fv) = (6(f))v + f0(v).
2. It is compatible with the action of g(Cs —ps) on Vs: if f € Ocy_p(s),* € @,

then [0, fz] = (B(f))x.

Proor. The first part immediately follows from the definition; the second one
follows from Theorem 7.4.5(ii). O
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It immediately follows from part (ii) of this lemma that we have a well-defined
action of 8 on the bundle of coinvariants 7¢ = Vg /g(Cs — Ps)Vs.

PROPOSITION 7.4.7. The induced action of 9: on the bundle of coinvariants de-
pends only on 8 and not on the choice of lifting 8. It defines a projective action of

the Lie algebra ©g on the bundle of coinvariants, which agrees with the structure
of Os-module.

PROOF. The only non-trivial statement is the independence of the choice of
lifting. It follows from the fact that any two liftings differ by a vertical vector field.
On the other hand, it follows from Theorem 7.4.5(iii) that vertical fields act by
Z€ro. |

This completes the proof of Theorem 7.4.1. O

More careful analysis also allows one to calculate explicitly the failure of the
connection to be flat. Using the language of twisted D-modules developed in Sec-
tion 6.6 and the notion of determinant line bundle Qg defined in Section 6.7, the
result can be formulated as follows:

THEOREM 7.4.8. Under the assumptions of Theorem 7.4.1, the sheaf Ts carries
a natural structure of a Dge-module, where c is the Virasoro central charge defined
by (7.4.5).

We do not give a proof of this theorem, referring the reader to [BS]. The
proof is based on the fact that the central extension defining the Virasoro algebra
can be defined using the action of the Lie algebra of vector fields on the space
C(()) = @;C((t;)) and the “universal” cocycle defined by the the subspace C[[t]] =
@;C[[t;]] € C((t)). This cocycle was first discovered by Tate [Ta] and rediscovered
under different names by many authors (see [BS], [ACK]). On the other hand, it is
well known that for a connected smooth curve C one has C((t)) /(C[[t]]+O(C —p)) =
H!'(C,0). This gives a relation between this cocycle and the determinant line
bundle (recall that Q5 = det(H'(Cs,0))). Details can be found in [BS] or [BFM].

ExaAMPLE 7.4.9. Let us calculate this flat connection explicitly in the case when
the curve C is fixed but the point p is allowed to move. Let u be a local coordinate
on O, i.e. a biholomorphic map u: C° — U, where C° is some open subset of C,
and U an open subset of C. We will denote by z a global coordinate on C and thus,
on U. Let us define the following family of punctured curves over U: Cy =C x U,
p(z) = u~!(z), and the local parameter at p given by t = u — z (considered as a
function on C' x U). Note that both (z,u) and (z,t) can be considered as local
coordinates on C' x U.

In this case, every vector field f(z)9, on U admits a canonical horizontal lifting
to C' x U; in terms of the coordinate system (z,w) this lifting is given by f(z)0, —
f(z)0, +0-0,. When we rewrite this in terms of (z,t), we get f(2)(9, — O).
Therefore, the action of such a vector field on the bundle of coinvariants is given
by (f9.)(¢v) = f(0.¢)v + fPL_1v (recall that L_; € Vir corresponds to —9;). In
other words, the corresponding flat connection on U is induced from the connection
on V ® Og given by

V= d + L_le.
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It is easy to see that for several points, we get

(7.4.11) V=d+ ) (Lo1)idz,

where (L_1); stands for L_; acting in V;.

Note that in this case every vector field on S can be lifted to a regular vector
field on C's. Therefore, we only need to use the Sugawara construction for the fields
from C[[t]]0y = T_1. Since the central term in (7.4.4) vanishes when restricted to
T_1, we get a true action, not a projective one.

Let us consider even more special case than in the previous example, namely
when C' = P!, with marked points z1,...,2, # oo and local parameters given by
t; = z—z;. This defines a family of curves over X,, = C"\ diagonals. Assign to these
points Weyl modules V¥ , ..., V¥ . Then, by Proposition 7.3.8, the vector bundle of
coinvariants 7(P1, 2y, . . ., 2, V){“l yenes an) is a quotient of the trivial vector bundle
with the fiber (Vi, ®...® V), )q over X,,. Therefore, the construction above defines
a flat connection in this quotient bundle. Passing to the dual vector bundle, we see
get a flat connection in the vector subbundle

(T 20,z Vi V)T C (M @@ WA, ) = (VS @ 0 V))S
THEOREM 7.4.10 ([KZ]). The flat connection described above coincides with
the restriction of the KZ connection in VY ® ... @ VY | defined by (KZy,).

A proof of this theorem can be found in the original paper [KZ] (only recom-
mended for those familiar with the basics of conformal field theory). This proof is
also repeated in a number of sources, for example, in [EFK], in a language more
familiar to mathematicians. This theorem and comparison of the gluing isomor-
phisms, which we will do later, will be used to show that for k ¢ Q the functor of
coinvariants defined above for genus zero curves coincides with the modular func-
tor defining Drinfeld’s category—see Theorem 7.9.12. In particular, this modular
functor can be defined in a way which doesn’t refer to the affine Lie algebras at all.
Note, however, that for k ¢ Q this modular functor can not be extended to positive
genus.

EXAMPLE 7.4.11. Let C,p,% be as before. Choose one of the points p; and
consider the family of curves C'x C* over C*, with the the marked points p;(z) = p;
and local parameters t;(z,z) = t;(z),z € C,z € C, except for i = j when we set
t;(xz,z) = t;(x)/z. By the construction of this section, the corresponding vector
bundle of coinvariants 7 has a canonical flat connection. An easy calculation,
similar to the one in Example 7.4.9, shows that this connection is induced from the
connection

dz
V=d+ (Lo)J7

in the trivial vector bundle with fiber V; ® ... ® V,,. In particular, the monodromy
of this connection around z = 0 is given by e?™L0 so if Vj is an irreducible module
with highest weight A, the monodromy operator is constant and equals e?™4x,
Note that if we pass from 1-jet of local parameter to tangent vector, we see
that the tangent vector is given by z0;,, and thus, as z goes around the origin
counterclocwise, so does the tangent vector. Recalling the relation between modular
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functor and tensor categories, we see that in the tensor category corresponding to
the WZW modular functor, the universal twist is given by

(7.4.12) Oy = €M id

(compare with Remark 3.1.20), which agrees with the formulas for universal twist
in Drinfeld’s category (Theorem 2.2.7) and in the category of representations of a
quantum group Exercise 2.2.6—which is another argument confirming equivalence
of these categories.

In fact, this vector bundle on C* admits a canonical extension to a vector
bundle on P!, and the connection has logarithmic singularities at 0, co. Indeed, we
can assume that V; = L’/{. Denote V = ®;+;V;. The fiber of 7 at point z € C* is
given by 7, = W, /g(C — p)W,, where W, = V ® L% does not depend on z. Note
that the subspace g(C — p)W. depends on z, since the choice of local coordinate
at p; depends on z. Let us choose a different trivialization of the vector bundle
V @ L%, namely, let us identify

VoLl - VoL,

v R v; - 298y @ ;.

In other words, in this trivialization constant sections are given by z9®8% vy @ vj.
Then one easily sees that in this trivialization, the subspace g(C' — p)W, does not
depend on z; thus, it also gives a trivialization of the vector bundle of coinvariants
on C*, and in this trivialization the flat connection is given by V = d + Axdz/z.
Therefore, this gives an extension of our vector bundle with a flat connection to P!,
and the connection has logarithmic singularities at 0, co.

Note that for this definition of extension to z = 0, a function of the form
fR) (11 ®...0v; ®...R®v,) defines a section holomorphic at 0 iff 2~ 4°8% f(z) is
regular at z = 0 (we assume that v; is homogeneous).

7.5. From local parameters to tangent vectors

In the previous section, we have studied properties of the vector spaces of
coinvariants for a curve C' with marked points and chosen local parameters at these
points, or a family of such curves. In this section we will show that the vector space
of coinvariants only depends on the 1-jet of local parameter: if ¢;,¢] are different
choices of local parameter at p; such that dp,t; = dp,t;, then the vector spaces
7(C,p,t, L) and 7(C, P, #, L) are canonically isomorphic, and similarly for families
of curves.

Let us start with the case when we only have one curve C; as before, for
simplicity we assume that it has only one marked point p. Let us fix a non-zero
tangent vector v € T,C and consider only such formal local parameters ¢ at p that
Oyt = 1; the set of formal local parameter form a pro-variety M. We want to show
that for such local parameters ¢, the vector spaces 7(C,p,t, L) can be canonically
identified. In order to do that, consider the family of curves Cpy = C' x M over
M, with a marked point p (which does not depend on m) and the local parameter
at p € C,, defined by m € M. As discussed in the previous section, this defines a
canonical flat connection on the bundle of coinvariants 7(C,p,t, £). We will show
that this vector bundle with a flat connection is trivial. Indeed, it is easy to see
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that M is a torsor over the group
K ={k € Aut C[[t] | (k(t))'(0) = 1}.

This group can be explicitly described as the group of all formal power series of the
form 1+ >°.° a;t’, with the group operation being substitution of one series into
another. The corresponding Lie algebra is Lie K = T; = t2C][[t]]0;.

Now the triviality of the flat connection follows from the following two easy
lemmas whose proofs are omitted.

LEMMA 7.5.1. Let a manifold M be a torsor over a Lie group K, and E be a
vector bundle with a flat connection over M. Then this flat connection is trivial iff
the action of Lie K by vector fields on E can be lifted to an action of K on E.

LEMMA 7.5.2. The action of Lie K1 = T; on an integrable module L, defined
by the Sugawara construction, can be integrated to an action of Ky on L.

Combining these two lemmas, we get that in our case, the flat connection
on the bundle of conformal blocks is trivial, and thus all the spaces 7(C,p,t, L)
are canonically isomorphic. Therefore, we can define the space of coinvariants
7(C, p,v, L) as the space of global flat sections of the bundle 7(C,p,t, L) on M.

REMARK 7.5.3. Note that the action of 7y usually can not be integrated to the
action of Aut C[[t]]. Indeed, in Aut C[[t]] one has e2™£0 = 1, but in a highest weight
g module with highest weight X, one has

e27r1L0 — 9}\ — 627r1AA

which is not equal to 1 unless Ay € Z. Therefore, we do need to specify a 1-jet of
local parameter.

Now let us consider families of curves. Let Cg,p(S) be a family of curves with
a fixed 1-jet of local parameter ¢ at p(S). If we fix a formal local parameter ¢ at
p(S) with given 1-jet, then, by the construction of the previous section, we get a
vector bundle of coinvariants with a flat connection over S. Let us show that these
vector bundles for different choices of ¢ can be canonically identified.

Using the same idea as in the case S = {point}, consider the pro-variety M =
{(s,t) | s € S}; obviously, M is a principal K;-bundle over S. The family Cg over
S defines a family Cj; over M and therefore defines a bundle of coinvariants 7,
with a flat connection over M. Our goal is to show that this flat connection is
trivial along the fibers of the projection M — S. A convenient framework for such
proofs is provided by the formalism of Harish—Chandra pairs.

DEFINITION 7.5.4. A Harish-Chandra pair is a pair (g, K), where g is a Lie
algebra, and K is a Lie group with the Lie algebra Lie K = C g. We also assume
that we are given an action Ad of K on g which agrees with both the standard Ad
action of K on ¢ and ad action of £ on g.

As usual, we define a module V over a Harish-Chandra pair (g, K) to be a
vector space which has an action of both g and K, and these actions agree on ¢.

These definitions can be suitably reformulated if we want to replace a Lie
algebra g by the sheaf of vector fields on a manifold M (or, more generally, by a Lie
algebroid over M—see [BFM]). Let us assume that we have a manifold M with a
free action of a Lie group K such that M is a principal K-bundle over a manifold
S. We denote by p : M — S the projection. Denote by O the sheaf of vector
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fields on M. Then for every U C M, we have a natural embedding ¢ C O (U),
which is a Lie algebra homomorphism. We also have an adjoint action of K on ©x.
Therefore, the pair (0,7, K) is a natural sheaf analogue of a Harish-Chandra pair.

DEFINITION 7.5.5. Let M, K, O, be as above. A finite-dimensional (0, K)-
module is a finite-dimensional vector bundle V' with a flat connection over M with
an action of K on V', which agrees an obvious sense with both the action of K on
M and with the action of € C Oy by vector fields on V.

(A not necessarily finite-dimensional (0, K)-module can be defined in a sim-
ilar way, replacing “vector bundle with a flat connection” by “D-module.)
Our main reason in developing this technique is the following lemma.

LEMMA 7.5.6. Any finite-dimensional (0 57, K)-module V' defines a vector bun-
dle with a flat connection VE on S = M/K.

PROOF. For every s € S, define the vector space VE = (T'(M;,V))¥X, where
M, = p~Y(s) is the fiber of the projection p: M — S. It is easy to see that these
vector spaces form a vector bundle over S of the same dimension as the original
bundle V' (it suffices to choose locally a section of the projection to show this).
Note that any section ¢ of this bundle is killed by the vertical vector fields; thus,
the quotient ©,,/0Y, = Og acts on V£, O

Now we have all the prerequisites to prove the following theorem.

THEOREM 7.5.7. Let C's be a family of pointed curves over a smooth base S,
and let L% ... Lk be some integrable modules assigned to these points. Then we
have a bundle of coinvariants s over S which carries a natural projectively flat
connection, and this bundle is functorial in S in the same sense as in Theorem 7.4.1.

Proor. Take M = {(s,t)},s € S,t-a local parameter at p € Cy with given
differential. Obviously, M is a K™—torsor over S, where K = Aut; C[[t]] and we
have a tautological family Cps of curves over M with marked points and a local
parameters at these points. By the construction of the previous section, this defines
a vector bundle with a projectively flat connection over M. By Lemma 7.5.2, this
connection is integrates to an action of K. Therefore, by Lemma 7.5.6, we have a
flat connection on S = M/K. O

COROLLARY 7.5.8. For a fized finite set A and a collection of modules LY €
O we have a vector bundle of coinvariants T({L¥}) over the moduli stack M, a,
which carries a natural projectively flat connection.

Asin Theorem 7.4.8, we can also explicitly describe the failure of the connection
to be flat by saying that the sheaf of sections of the vector bundle 7({L¥}) is a Dge-
module.

7.6. Families of curves over formal base

This section introduces some technical notions which will be used later for
proving the gluing axiom for the WZW modular functor. Namely, we will generalize
most of the results regarding the bundle of coinvariants to the case where the base
is an infinitesimal neighborhood of a divisor D.

Throughout this section, we fix a non-singular variety S and a smooth divisor
D c S. We also choose (locally) a function g on S such that the equation of D is
q =0, and dg # 0 on D. All our defintions and theorems will be local in S.
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The main subject of this section is the study of the n-th infinitesimal neighbor-
hood D™ of D in S, where n is a fixed non-negative integer. As before, we will not
really define D(™; instead, we will define the structure sheaf of D(®) O-modules
on D™ family of curves over D™ etc.

DEFINITION 7.6.1. The structure sheaf of D(™ is the sheaf of algebras Og) on
D defined by O = Og/¢"+ 0s.

One also defines in an obvious way a notion of Og)—module; it is called lisse
if it is locally free module of finite rank. Every sheaf F over S defines a sheaf
F) over D™ in an obvious way: F(") = Fp/q ™ Fp. Tt is easy to see that if
F is Og-coherent, then F() is finitely generated, and if F is lisse then so is F(™).
Unfortunately, the functor F — F( is not exact on Og-modules. However, we
have the following result.

LEMMA 7.6.2. (i)Let F be an Og-coherent sheaf such that its restriction to
S\ D is lisse and for every n > 0, FM) s lisse. Then F is lisse.

(ii) For every short exzact sequence of quasicoherent Og-modules 0 — & — F —
G — 0 such that G is Og-coherent, the sequence 0 — £ — F) - G 5 0 s
also exact.

The proof of this lemma is left as an exercise to the reader.

EXAMPLE 7.6.3. Assume that dim S = 1. Then D = point, ng) = Clq]/(q™T1),

and Ogl) is just a module over this algebra.

We can also define vector fields and D-modules for D(™. Note, however, that
the only vector fields on S that can be restricted to D) are those tangent to D:
the vector field 8, can not be restricted to D(™ as it does not preserve the relation
¢"*t! = 0. Thus, we can define an analogue of DZ-module, but not of a Dg-module
(recall that DY is generated by Og and vector fields tangent to D, see (6.3.5)).
Thus, we give the following definition:

(7.6.1) D%(n) =Dg/q"*' DY

For example, for dim S =1, DY, is generated by Og) = Clq]/(¢"*!) and ¢d,.
Since a flat connection on S with logarithmic singularities at D is the same as
a lisse sheaf on S with an action of D, it is natural to give the following definition.

DEFINITION 7.6.4. A flat connection on D™ with logarithmic singularities at
D (log D-connnection for short) is a lisse sheaf on D™ with a structure of DY), -
module.

We have the following obvious lemma.

LeEMMA 7.6.5. (i) Everylog D flat connection on S defines a log D flat connec-
tion DU by F s F)

(ii) If the connection F is reqular—i.e., has no poles at all—then q0, acts by
zero in FOO = F/qF.

Now let us define families of curves over D(™ and the bundles of coinvariants.

DEFINITION 7.6.6. A family of curves over D(™ is the following collection of
data:
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— a family Cp of stable complex curves over D

— a sheaf of algebras Ogl [2 on Cp with a structure of a flat ng) -module such
that O /qO8) = Oc,.

The family is called non-singular if the family C'p is non-singular.

In a similar way, one can define a notion of families with marked points and
local parameters at these points by adding to the data above a collection of points
p; € Cy and local parameters t; € (’)1(9?) such that ¢;(p;) = 0 mod g, (dt;),, # 0
mod ¢g. We can also define an analogue of the Og-sheaf O(Cs — p(S)). Namely,
we define Og)—module O (C — p) to be the space of global sections on C'p of the
sheaf O(C?) [t 1)

Obviously, every family of curves over S defines a family of curves over D(™):
it suffices to take O(él) = Ocs/q" ™ Ocy; we will call this restriction of the family
Cs to D(")). It turns out that if Cp is non-singular, then this statement can be
reversed.

LEMMA 7.6.7. Locally in S, every non-singular family of curves over D™ can

be obtained as a restriction of an analytic family of curves over a neighborhood of
D inS.

Let us give an example of a singular family over D).

EXAMPLE 7.6.8. Let dim S = 1, and let C's be a family of curves over S such
that Cy is smooth for s # D, and Cp is the curve with one double point a, so that
in a neighbohood of a, Cs has local coordinates ¢1,t; and the projection is given
by g = tits; thus, Cy is given by equation t1t5 = 0.

Let us describe the corresponding family of curves over D). In this case, the
curve Cp is singular—it has double point a. To describe the sheaf Ogl ) , note that
its stalk at a point b # a is given by ng)b ~0cp® 0([;” (note: this doesn’t define
the sheaf yet, as we haven’t defined the gluing maps—they depend on the map
7w: Cs — S). However, the stalk at the double point is different:

(7.6.2) O = Oty t)/ (trt2)",

where O(t1,t2) is the ring of germs of analytic functions in ¢, ¢s near the origin
tp =t =0.

To relate the stalk at the double point with the stalks at nearby points, let
us describe O™ (U), where U is a punctured neighborhood of a in Cp. Since in
a neighborhood of a, the curve Cp consists of two components given by equations
to = 0 and t; = 0, every small enough U can be presented as U = Uy U Us, where
Uy =UnNn{t: =0},Us = U N{t; =0}. Thus, t; is a coordinate on U; and t» is a
coordinate on Us. From this it is easy to show that

O (Uy) = O(Uy) ® OF) ~ O(U) @ (Clta]/ (t2)" )

where the isomorphism is given by f(t;)g* = f(t1)t¥t5, and similarly for Us. Thus:

oM (1) = (O(Ul) ® ((C[tz]/(tz)"+1)> & (O(U2> ® (@[m/(tl)"“))

-~
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Now it is easy to see that for f(t1,t2) € O(ég, its restriction to the punctured
neighborhood of a is given by

(7.6.3) il s () @ (the) = (1)l @ (k) F gk

In particular, if [ > n, then restriction of ¥t} to U; is zero, and if k > n, then
restriction of t¥t} to Us is zero.

For every family Cs over S with marked points and modules V; € Oi"* assigned
to these points we have a sheaf of coinvariants 7(Cg) over S which gives rise to the
sheaf 70" over D" if C's is a smooth family, then 7(") is lisse. It follows from
Lemma 7.6.2(ii) that this module can be defined in terms of the n-th infinitesimal
neighborhood of D, namely

(7.6.4) M =y g (c — gy,

where g™ (C — ) = g ® O™(C — ), and VW) =V @ O
Therefore, it is natural to take this formula as the definition of the sheaf of
coinvariants for families over D).

PROPOSITION 7.6.9. Let C'py be a family of curves with marked points over
D™ with local parameters at these points, and integrable g-modules assigned to
these points. Let (") be the O([?) -module defined by (7.6.4). Assume that Cp is
nonsingular. Then 7(™) is lisse and has a natural structure of a projective D%(n)-
module such that the action of q0y on 70 = T(")/qT(”) is zero.

Proor. By Lemma 7.6.7, such a family can be obtained as a restriction of
some analytic family. Now existence of the flat connection and the fact that 7(™ is
lisse immediately follow from Theorem 7.4.1 and Lemma 7.6.7. To prove that g0,
acts by zero on 79, just note that for the analytic family, we have a well-defined
action of §,, and thus ¢d, =0 mod g.

It is also important to note that the structure of D°

Dn
completely in terms of D), without extending this to a family on S. Let (") (C —
) be the space of global sections (on Cp) of the sheaf of derivations of O (C'—p)—
this is the infinitesimal analogue of the algebra of vector fields. Then we can lift any
vector field § on S which is tangent to D—in particular, the vector field ¢0,—to a
“vector field” § € O (C — ). The easiest way to prove this is to use Lemma, 7.6.7.

As in the analytic case (see proof of Theorem 7.4.1), define the action of 6 on
the bundle of coinvariants by

,-module can be defined

0(fv) = @O(f))v+f vai (9)(v)-

The same arguments as in Theorem 7.4.1 show that this is indeed defines the

structure of a projective DY, ,,-module on the sheaf of coinvariants. O

7.7. Coinvariants for singular curves

In this section, we give a description of the vector space 7(C, p, V) for a singular
curve C. This description will be used in the next section to prove that the bundle of
conformal blocks satisfies the gluing axiom and in particular has regular singularities
on the boundary of the moduli space.
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Let C, 7, T be stable singular curve with marked points and local parameters at
these points. Choose modules Vi, ..., V,, € O™ assigned to these points. We define
the space of coinvariants 7(C,p, V') (or, for brevity, 7(C,V')) by the same formula
as for non-singular curves (see Definition 7.3.1). For simplicity, let us only consider
the case when C has only one double point; general case is completely parallel.

Denote by CV the normalization of C, i.e. the non-singular curve such that C
is obtained by identifying points a’,a” € C. Let us choose the local coordinates
t', t" near a’,a”.

THEOREM 7.7.1. The map

Vo @Vve(leDprt)
A

v1®...®vn»—>@vl®...®vn®1,\,

where DL’;\ is defined as in Section 7.1, and 1y € V) ® V¥ C L’f\ ® DL’;\ is the
canonical g-invariant vector, induces an isomorphism of the spaces of coinvariants

7(C, V)~ @ 7(CY,V® L} ® DLY)

AEPY
with the modules LY, DL% assigned to the points a',a" respectively.

Proor. The basic observation is that O(C —p) = {f € O(CY —p) | f(a') =
f(a")}. Therefore,

(7.7.1) gC—P) ={feT| (Vo ®va)f € (@ @7 & A(g)) Ca®d}

where A(g) = {z @z}, z €g, ' =g(CY —p—d —a").
Next, let us define the Ugy ® Ugg-module U as follows:

U = Ind?®=V% C1

where U C U,g@Uyg is the subalgebra generated by gt ®1,10g", ®1+1®z,z € g,
which acts trivially on C:

(7.7.2) @roDl=>19g)1=(e®1+1®al=0.

(By Poincare-Birkhoff-Witt theorem, U is isomorphic to Ug ® (Ug™)®? as a
graded vector space.)

Since U is a (U(g)x)®?-module, we can define the space of coinvariants 7(C" , pU
aUad,VeU).

LEMMA 7.7.2. The map v — v®1 is an isomorphism 7(C,V) = 7(CV,VaU).

The proof of this lemma is more or less standard: one has to check that this
map is well-defined, which follows from (7.7.2); injectivity follows from the fact that
U is free over Ug~ ® Ug~. Proof of surjectivity is is only slightly more difficult:
it suffices to prove that for every v € V,u € u one can find v' € V such that
v@u=v'®1 modIm T. It follows from the fact that for every a®b € g g, u €
u there exists a function f € I' such that (y4 & 4 )(f)u = au, and therefore
0@ (a® b)u = — (/) .

LEMMA 7.7.3. Mazimal integrable quotient of U is equal to @)‘epi LY@ DL%.
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Indeed, let us define the homomorphism of (U(g)x)®? modules 7 : U — @ Lk ®
DLY by 1 — @1, (since U is the induced module, this uniquely defines 7). It is an
easy exercise to show that € 1, is a cyclic vector in @ Lk @ DL% (with respect to
the action of g g), and therefore, the above map is surjective; thus, @ L @ DLE is
indeed an integrable quotient of U. On the other hand, every integrable (U (g)z)®2-
module is of the form ®>\7u€Pi Ny, LE X LI’j. Since U is generated by a vector 1

which is A(g) invariant, it easily follows that any integrable quotient of U must
have Ny , < 9y 4+ Details are left to the reader.

These two lemmas, combined with Lemma, 7.3.3, give the proof of the theorem.

O

7.8. Bundle of coinvariants for a singular family

In this section, we continue the study of coinvariants for singular curves. This
time, we will consider a family of pointed curves Cg over a smooth base S such
that C; is stable and non-singular for S\ D, and C; is a stable singular curve with
one double point for s € D, where D is a smooth divisor in S (without loss of
generality we may assume that D is connected). As before, we assume that we
have some integrable modules V7, ...,V,, assigned to the marked points py,...,p,.
Then, by the construction of the previous sections, this data defines a vector bundle
of coinvariants 7 = 7(Cg, 5, V) over S\ D.

Let us extend 7 to the whole of S as an O-module. Define the sheaf 7 on S in
the obvious way, as in Lemma 7.4.2. The restriction of this sheaf to S\ D is lisse,
and its fiber at a point s € D is the vector space 7(Cy, P, V) which was discussed in
the previous section. The same arguments as before show that g is Og-coherent
sheaf. The goal of this section is to prove the following theorem, which is the key
step in proving the gluing axiom.

THEOREM 7.8.1. Under the assumptions above, the sheaf Tg is lisse.

The remaining part of this section is devoted to the proof of this theorem. Note
that by Theorem 7.4.1, the restriction of 7 to S \ D is lisse, so the only problem is
analyzing the behavior of 7 at D.

PRrOOF. The proof consists of several steps. The main idea is to use the results
of the previous section, relating coinvariants for the singular fibers Cs,s € D with
the coinvariants for nonsingular curve C; obtained by normalization of Cs, and
extend it to an isomorphism of sheaves of coinvariants in some neighborhood of
D. Unfortunately, it is impossible to do this directly: we can not extend CV to a
family of nonsingular curves C¢ over S with a natural map C¢ — Cs. However,
this becomes possible if instead of constructing a family over S we restrict ourselves
to an infinitesimal neighborhood of D, as defined in Section 7.6, which is sufficient
for our purposes. For simplicity, we will assume that S is a disk in the complex
plane with coordinate ¢ and D = {0}. The general case can be treated quite
similarly; however, it is not even necessary to do that due to Lemma 6.3.13. We
will choose coordinates t1,t; in the neighborhood of the double point ¢ € C's such
that t1t2 = ¢ (this is always possible).

By Lemma 7.6.2, it suffices to prove that for every n > 0, the module 7(™ over
ng) defined by (7.6.4) for our family of curves is free of finite rank.

In order to prove that 7(") is free over Ogl), let us construct another family
CV of curves over D™, Namely, take Cy to be the normalization of Cp; this is
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a nonsingular curve with the same marked points as Cp, plus two more marked
points which we denote a’,a”. The choice of local coordinates t1,t, on Cs defines
local coordinates t1,ts in the neighborhood of a’ € CV (respectively, a”).

Now, let us define the sheaf Oglv) as follows. Let U = Cy\{d',a"} = Co\{a}. By
definition, let (’)(C"V)|U = O(C")|U. To extend it to the points a’,a”, define the stalks
O((:) =0(t) ®O(§), where O(t;) is the ring of germs of analytic functions in ¢; in a
neighborhood of #; = 0, and similarly for a”’. Obviously, each f € (’)((;,l) also defines
a section of O(cnv) |t on some punctured neighborhood of a' by t; — t1,q + t1t2, and

thus we can glue the sheaf Og? from its restriction to U and stalks at a',a”. This
defines on C"V a structure of a family of curves over D(™); this family is non-singular.
Now let us assign the modules L%, DL to the points o, a” and take direct sum

over all \ € P_{f. By Proposition 7.6.9, this defines a lisse module 7V over Og).

ProrosiTiON 7.8.2. The map

¢: VW oy
(7.8.1) V= Z g Ny @ exi ® e
A

where ey ; s a homogeneous basis in L’f\, and e, s the dual basis in DL’;\, induces
an isomorphism of O([?) -modules T(" — V(1)

PROOF. First of all, we have to check that this map descends to the bundle of
coinvariants. To do this, note that it is immediate from the definition that we have

an embedding A : O (C —p) — O (CV — p — a' — a"). Near the double point
this map is given by

0" (C - p) — (C((tl Nllal] ® C((L‘z))[[a]]) /(q"th)
thtl sty @ ek gk

(compare with (7.6.3)). We leave it to the reader to check that in fact the image
of this embedding is analytic functions.
It is also easy to show by explicit calculation that the vector

(7.8.2) wy =Y q BNy @6} ; € (L @ DLE)™

(2

is invariant under the image of the embedding

allts, 21/ (t22)" " — (9((751))[(1] ® 9((752))[(1]> /a" .
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Indeed, it suffices to show this for «zt't5',x € g. In this case, it follows from the
following sequence of identities:

(z[n — m]q™ ® 1+1 @ x[m — n]g" )w
= (@[n—mlg" @1+ 1@z[m—nl¢") (g 1 ®1)) ers el

2
= (¢ 4@ 1) (z[n —m]¢" ® 1+ 1@ z[m — n)q") Zem ®ey,;
i

= ("o D -m @1+ 1@z —m])l
=0,

where 1 =3, ex; ® e, 1s considered as a vector in a certain completion of L’f\ ®
(L%)*. Note that in the last line we replaced DLE by (L%)*, which resulted in
replacing z[m — n] by x[n — m]—see (7.1.4). We leave it to the reader to check that
the fact that 1 does not lie in LY ® (L5)* but only in some completion does not
cause any problems.

Therefore, if f € g (Cs — p),v € V, then ¢(f(v)) = A(f)¢(v) and thus the
map ¢ descends to the space of coinvariants; we will denote the corresponding map
also by ¢.

Now the proof of proposition is easy. Indeed, we have a morphism of (9([?)—
modules ¢ : 7 — V(W By Theorem 7.7.1, ¢ induces an isomorphism on the
fibers at zero 7(" /qr(®) S 7V JqrV(W) - Since 7V is free over O([?), this im-
mediately implies that ¢ is surjective. To prove that ¢ is injective, choose a basis
Vly.-., U i T(”)/qr("). Since 7V(" is free, this implies that vy, ..., v are linearly
independent over Ogl). On the other hand, it follows from the definition that the
module K = 7" /(vy, ..., v;) satisfies ¢K = K; since ¢"T' = 0, this implies K = 0.
Thus, 7(") is freely generated by vy, ..., vy. Therefore, ¢ is an isomorphism, which
completes the proof of the proposition. O

Since by Proposition 7.6.9 the sheaf 7V(") is lisse, this proposition implies that
the same holds for 7(") and thus completes the proof of Theorem 7.8.1. |

7.9. Proof of the gluing axiom

In this section we give a proof of the gluing axiom for the WZW modular
functor. Recall that this axiom describes the behaviour of the bundle of coinvariants
in a neighborhood of the boundary of the moduli space; in particular, it claims
that the connection has first regular singularities at the boundary, and describes
the specialization of this connection.

Recall that the boundary of the moduli space consists of the stable curves with
ordinary double points (see Section 6.2) and that it suffices to check the regularity
condition for an open part of the boundary. Thus, we need to prove regularity and
calculate specialization of the connection in 7g, where S, Cg, D, ... are same as in
the beginning of the previous section. By the construction of the previous sections,
Tg carries a natural projectively flat connection over S\ D. Also, we have shown
in the previous section that 7g is lisse, i.e., is a sheaf of sections of a vector bundle
on S.

THEOREM 7.9.1. Under the assumptions above, the connection in Ts has loga-
rithmic singularities at D.
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PRrROOF. As before, choose a local coordinate ¢ in a neighborhood of D such
that ¢ = 0 is the equation of D. Recall (see (6.3.5)) that DY C Dg be the subsheaf
generated (as sheaf of algebras) by Og and vector fields which are tangent to D.

PROPOSITION 7.9.2. The sheaf T has a natural structure of a D%-module.

This proposition is a generalization of Theorem 7.4.1, and is proved in the same
way. The only change is that instead of claiming that any vector field on S can be
lifted to a vector field on Cs — p(S), we use the following lemma.

LEMMA 7.9.3. Let 6 be vector field on S which is tangent to D. Then locally
in S, such a field can be lifted to a vector field on C's which has poles at the marked
points.

ExaAMPLE 7.9.4. Let S be a neighborhood of zero in C, with coordinate g¢,
D = {0}. As before, introduce coordinates t;,%» near the double point in Cg such
that ¢ = t1t2. Then in the neighborhood of the double point, the lifting of the vector
field ¢0y must be of the form «t,0;, + Bt20;, for some «, 8 satisfying o + 5 = 1.

This proposition, along with the fact that g is lisse, immediately implies the
statement of the theorem. O

EXAMPLE 7.9.5. Let S be a neighborhood of zero in C, with coordinate q.
Define the family Cs C CP? x S by the equation

w = qu?, (u:v:w)€eCP?, gq€8

with the marked points p;(q) = (1:0:0),p2(q) = (0:1:0), and local parameters
at these points t; = w/u,ts = w/v. The same argument as in Example 6.2.4
shows that for ¢ # 0, the curve C, is isomorphic to a sphere P!, with marked
points p; = 0,ps = oo and local parameters z,1/z respectively. For ¢ = 0, the
fiber Cy consists of two components, each of them isomorphic to a sphere P!, with
coordinates z' = u/w, z" = v/w respectively, which have one common point z' =
2" = 0. The marked points p; and ps are the points co’, 00" —infinite points of the
first and the second spheres respectively, with local coordinates t; = 1/z',to = 1/2"
respectively.
It is easy to see that any vector field of the form

0 =auby + fvl, +q0;, a+pB=1

defines a vector field on Cg which is a lifting of the vector field ¢, on S. Rewriting
¥ in terms of coordinates t1,q, we get ¥ = —at10y, + ¢0,, and thus v, (0) = aLo.
Similarly, expansion near ps gives v,,(0) = SLo. Therefore, the action of ¢, on
coinvariants is given by a(Lo)p, + B(Lo)p,-

This statement also has an infinitesimal analogue. Recall the notation 7(") =
75/q" 75 (see the previous section). This is a lisse ng) -module. It immediately
follows from Proposition 7.9.2 that 7() has a natural action of the sheaf of algebras
D%(n) =Dg/¢"'D.

Similar result also holds for the sheaf 7V(") described in the previous section:
it follows from Proposition 7.6.9 that 7V(") has a natural structure of a projective
D%(n)—module. Let us twist this action, defining a new action of ¢d, by adding to
the old action the constant Ay, defined by (7.4.7) (cf. Example 7.4.11). We will
denote this new action by VV.
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Note that a lifting of the vector field ¢d, to C})

follows: lift ¢8, to a derivation @ of O™ (C — j); as was discussed in Example 7.9.4,
this lifting in a neighborhood of the double point has the form at; 9y, + St20;,, o +
B = 1. Define v¥ by v¥ = ¢ on CV \ {d',a"} = Cy \ {a}, and v¥ = at;0;, + 0,
at a'; similarly, let & = St20:, + q0y at a”. It is easy to check that this defines an
element of (™ (CV — p).

) can be explicilty described as

EXAMPLE 7.9.6. Under the assumptions of Example 7.9.5, the lifting of the
vector field ¢d, is given by v¥ = az'd, + ¢0, on the first component, and by
vV = B2"0.,, + qdy on the second one. Therefore, its action on the bundle of
coinvariants is given by

(7.9.1) Vo, = 49y + a((Lo)p, — (Lo)ar) + B((Lo)p, — (Lo)ar) + Ax.

PROPOSITION 7.9.7. The isomorphism ¢: 7™ — 7V defined by (7.8.1), is

. . 0
an isomorphism of D, ., -modules.

Proor. It suffices to check that ¢ commutes with the action of the vector field
g0,. To prove this, it suffices to check that

Vﬁaq (v @wy) = (Vga,v) @ wy
where wy was defined in (7.8.2). But this is immediate from the definition of VV:
Vo, (0 @ wy) = (Vga,v) ® wy = v ® (¢0g — a(Lo)ar — B(Lo)ar + Ax)w)
=v® (—d+ Ax —a(Lo)e — B(Lo)ar )wx
=0.
O

Now let us calculate the specialization of the connection in 7g. Let us recall
the definition of the specialization functor, slightly modifying it for our needs. As
in Chapter 6, assume that (F, V) is flat connection with first order poles at D. As
before, we denote by F the sheaf of sections of F', and F(© = FlqF. FO s a

sheaf on D which has a natural action of the sheaf of algebras DY) = D% /qDY. It
turns out that the specialization SppF can be defined using only F(© as follows.

LEMMA 7.9.8. Let (G,V) be a vector bundle on the normal bundle ND with
a monodromic log D flat connection, and let i be a homeomorphism identifying a
neighborhood of D in S with a neighborhood of D in ND, as in (6.2.8). Then
an isomorphism of vector bundles with connections SppF — G is the same as an

)

isomorphism of ngo -modules

(7.9.2) FO .60,

As before, we leave the proof of this lemma to the reader.

Now we need to calculate the specialization of the vector bundle of coinvariants
Ts. To do so, recall first that by Lemma 6.2.5, the normal bundle to D is ND =
{(d,v)},d € D,v € Tél)C’d ® T(§2)C’d, where Cy is the curve with one double point
a, and T™M T are the tangent spaces to the two components of Cy at a. Choice
of coordinate ¢ on S and coordinates t1,t2 on Cg such that t1t5 = ¢ gives an
identification of a neighborhood of D in S with a neighborhood of D in ND by

7 (d, q) = (d7 q8t1 ® 8t2)7
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or, passing from vectors to covectors,

dt; ® dtz)
7{1 .

Now, let us define a family of pointed curves over ND by Cy4,4 = C) with the

parameters at a’, a” given by t1/q,t>. This defines a bundle of coinvariants 7 on a
neighborhood of D in S.

(7.9.3) i: (d,q) — (d,

THEOREM 7.9.9. The map
Os@V = Onp® Y VLo DL}

(7.9.4) A
Fls)o =Y fli(s)v @ wy
A

where 1) € V\ ® V¥ C LY ® DL% is the canonical g-invariant vector, gives rise to

an isomorphism of DESO) -modules Té«o) — 70,

PRrROOF. We will use as an intermediate step the sheaf 7V(°) introduced in the
previous section. By Proposition 7.9.7, the isomorphism ¢: 7(9 — 7V(©)  defined
by (7.8.1) is an isomorphism of Dg)—modules. On the other hand, let us show that
the map V @ Lk @ DLY — V @ L% @ DL, given by

!
v®v'®v”»—>qdeg”v®v'®v”

gives rise to an isomorphism of 7V(®) and 7(® as D9-modules. Indeed, let us
compare the action of the vector field ¢d, on both spaces. For 7(0) it is given by
—(Lo)qr, and for 7V(©) | it is given by

Yar (0¥) + 70 (07) + Y i (07) + A

It follows from Proposition 7.6.9 that the only non-zero term in this sum is Ay,
and therefore, (7.9.4) is indeed an isomorphism of modules.

Combining the isomorphisms 7(9) — 7V(©) — 70 we get the statement of the
theorem. O

Now we can prove the main result of this chapter.

THEOREM 7.9.10. The sheaves of coinvariants T(C,p,V;), Vi € O, form a
modular functor with additive central charge c.

PRrOOF. According to Definition 6.4.1, we need to define the gluing isomor-
phism and the vacuum propagation isomorphism for the spaces of coinvariants.
Vacuum propagation isomorphism is given by Corollary 7.3.5; the gluing isomor-
phism is obtained by combining Lemma 7.9.8 and Theorem 7.9.9. Checking all the
compatibility conditions for these isomorphisms is trivial. O

For technical reasons, it is more convenient to pass to the dual sheaf
7(C,5,Vi) = (r(C,5,DV)) "

Obviously, the previous theorem immediately implies that the sheaves 7*(C, g, V;)
also form a modular functor with the additive central charge ¢. This functor will
be called Wess-Zumino-Witten modular functor.

As a corollary, we have proved the theorem formulated in the introduction to
this chapter.
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COROLLARY 7.9.11. The category O has a structure of a modular tensor

2ﬂ'iLo

category, with 1 = Lk 6, = e , and the tensor product @ defined by

Hompi (1,1 @ ... ® V) = (r(C, DV ® ... @ DV,,))"
where C' is the “standard” n-punctured sphere, as in (6.4.3).

As a matter of fact, we have not yet proved the rigidity (recall that modular
functor only defines weak rigidity); however, it can be shown that this category is
indeed rigid.

A weaker version of this result is the following:

THEOREM 7.9.12. Letk ¢ Q. Then the vector spaces of coinvariants (C, p, V){“)
define a genus zero modular functor. The corresponding ribbon category is the Drin-
feld’s category.

ProOOF. The proof is obtained by noticing that we have used integrability of
L’f\ only in two places: when checking finite-dimensionality of the spaces of coinvari-
ants, and in the proof of Theorem 7.7.1, identifying the coinvariants for a singular
curve C and its normalization C'V. On the other hand, if we restrict ourselves to
genus zero curves, then the vector spaces of coinvariants are finite-dimensional by
Proposition 7.3.8. It is also easy to show that the proof of Theorem 7.7.1 remains
valid for k ¢ Q if we replace @ L5 ® DL% by (infinite) sum Dicr, V¥ & DV

The fact that the corresponding category is exactly the Drinfeld’s category
follows from comparison of this modular functor with the modular functor defining
Drinfeld category (see Proposition 6.5.4). Indeed, Proposition 7.3.8 shows that the
corresponding vector spaces of conformal blocks can be identified, Theorem 7.4.10
shows that this identification preserves the flat connections, and Theorem 7.9.9
shows that the gluing map for these two modular functors also coincides. O

REMARK 7.9.13. One can note that we have most of the arguments above were
quite general and didn’t use much information about the coinvarints. Most of the
time we were only using the action of the Virasoro algebra on integrable modules,
given by the Sugawara construction. The only places were we actually used the
definition of coinvariants and properties of integrable modules were the proof of
finite-dimensionality of the vector spaces of coinvariants and the proof of Theo-
rem 7.7.1, identifying the coinvariants for a singular curve C' and its normalization
CV. Thus, if we could repeat these two steps in other setups—for example, re-
placing the category O}c“t by a suitable category of Virasoro modules—we would
again get a modular functor. Indeed, it is rather easy to modify these arguments
to define the modular functor related to the so-called minimal models of Conformal
Field Theory, in which the modules L’f\ are replaced by irreducible unitary modules
over Vir with a suitable central charge. If we try to pursue this idea as far as we
can and see what is the most general situation in which we can apply the same
proof, we will arrive at the notion of Rational Conformal Field Theory (or, to be
more precise, the holomorphic (chiral) half of RCFT). The number of references on
this subject is tremendous; some of the more suitable for mathematical audience
are [Hua], influential but unpublished manuscript [BFM], and [Gai]. For more
physical exposition and extra references, see [FMS].



