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Characteristic Classes of Loop Group Bundles
and Generalized String Classes

A. ASADA

§0. Introduction

In a talk at the last colloquium the author treated the differential geometric
and non-abelian cohomological meanings of the logarithm of (complex)
matrix valued functions ([5]). In the continuation of that research we get
the following bijection: ,

By : H'(M,G4)/ exp(H® (M, g4)) = H* (M, QG,).

Here, M is a smooth (Hilbert) manifold, G = GL(n,C) (or U(n)), g its Lie
algebra, QG the (based) loop group over G. G, etc., mean the sheaves of
germs of smooth G, etc., valued functions over M. The bijection B, gives
natural meaning and examples of loop group bundles. Another important
example of a loop group bundle is the tangent bundle of the (based) loop
space 0M over M (cf. [11], [15], [22], [27]). On QM the Dirac-Ramond
operator (loop space version of the Dirac operator) is defined if and only if .
the structure group of the tangent bundle of QM is lifted on G, the basic
central extension of QG ([2], [15], [22]). The obstruction for this lifting was
named string class ([22], cf. [11], [15]). Its free part belongs to H3(QM, C)
and is mapped to the first (rational) Pontrjagin class of M by transgression.
(The torsion part needs a more delicate discussion, cf. [22], [25], [26].)
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In eEm article we give differential geometric descriptions of the string
class and its generalization (higher dimensional string classes) as follows:
Let £({gi;} be an QG-bundle over M, {6;} and {©;} a connection and its

m. ) V' ?

1
,\o ﬁHAm.vW.Q&\Q&lwv&ﬁ = nH\.». el /H\s..

Here, t is the loop variable; ¢’ = dg/dt and ©F = OA u AD. By using this
{¥;}, we obtain ,

0

1 1
\ ﬁ&AA.WQUE A %s\v - &—H\s = ,\ dHA@uE A %\v&ﬁ - &Gu.v
0

on U;NU;. This form is closed and its de Rham class ¢7(£) is determined b
¢. Especially, mﬁ@ is the original string class and it vanishes if and only wm
¢ has an g-valued connection. Here mm means the basic central extension
of Qg, the based loop algebra over g.

An QG-bundle ¢ over M induces a G-bundle £* over M x St W% the
correspondence

€= {g;} — & ={9;°}, 9i;°(z, 1) = (gi; (2))(t)-

On the other hand, a G-bundle ¢ over M ind
’ uces an LG-bundle ¢
QXM by the correspondence undle £~ over

E={ou} =& ={g"} (g™ (M) = g5 (1 (1))

Here LG means the free loop group over G. It is shown that ¢ is equivalent
to an 2G-bundle. By definition we get

()" = ev’ (£).

Here ev : QM x S* — M, ev( = i :
, ev(7,t) = 7y(¢) is the evaluat
also define the Gysin map ) uation map ([9]). We

v: H(M,Ga)/ exp(H®(M, gq)) — H* (M x S*,Gq) by

v(g) = (Bo(g))".

Since the inverse of the transgression 77! : H¥(M,C) — HY(QIM,C) is
the composition of the evaluation map and integration along S* Q.&,“?Sv
9y

Il

CHARACTERISTIC CLASSES OF LOOP GROUP BUNDLES 35

together with the properties of the Gysin map ([14], cf. [3], [4]), we obtain a
trinity of B-classes (Chern—Simons classes), string classes and transgressed
Chern classes. All of these results are formulated in terms of non-abelian
de Rham theory ([5], [6]). The use of non-abelian de Rham theory is essential
in these studies. For example, geometric studies of integrable forms are
mostly devoted to their monodromies. We can define the Gysin map for
integrable forms with non-trivial monodromies. Their images are not G-
bundles, but belong to H*(M x S 1. M?), the two-dimensional non-abelian
de Rham set of M x S'. On the other hand, as we have pointed out in our
talk at the last Colloquium, one-dimensional non-abelian de Rham theory
treats global properties of the equation

ef c AI.Hvﬁ. n _
d°f =df + M Dy @) =6,
do+9A0=0, (adf)(Q)=FfC—CF.
The local properties of this equation and of the equation

G = mxv,

are the same, but global properties differ. Differences are measured by
(integral) [-classes (g")-images of generators of H" (G, Z)) and 3-classes are
the origins of Chern classes via transgression (cf. [7]). These results together
with the Grassmannian model of the loop group ([23]) suggest that we may
identify Q.F.T. on M with the Chern-Simons actions and Q.F.T. on M x S*
with the topological actions or Q.F.T. on QM with the (stable) Yang—Mills
actions on the one hand, and Q.F.T. on M with the topological actions and
Q.F.T. on M x S* with the (stable) Chern-Simons actions, or Q.F.T. on
QM with the (stable) Chern-Simons actions on the other hand (cf. [8], [13],
[24], [24], [28]). It also suggests that complex representations of the group
of paths [QM] ([7), [18], [19], [21]) divides two-classes, one defines Q.F.T.
on M with the topological actions and the other defines Q.F.T. on M with
the Chern—Simons actions (cf. [19]).

dg = gb

This article is outlined as follows. In Sect. 1 we study Qg and Qg-valued
integrable forms and cohomologies with coefficients in M'qg and M* og the

sheaves of germs of Qg and Qg-valued integrable forms. In Sect. 2 we define
By and the Gysin map. Connections and Qg-valued connections of QG-

bundles are defined in Sect. 3. Properties of Qg-valued connections.and their



36 A. ASADA

curvatures give a prototype of the definitions of general string classes which
are also defined in Sect. 3. It seems that similar discussions may be possible
for the basic abelian extension valued connections of Map(s**~1 | @)-bundles
by using the results in [20]. (cf. [20]’) In Sect. 4, we show that string classes
of (L are the inverse-images of transgression of the Chern characters of ¢.

The equivalence of the B-classes of g and the string classes of B%(g) and the
existence of the Bott map

B: HO (M, M), /d* (RO (M, g4)) — H*(M, M?),

where M?! is the sheaf of germs of g-valued integrable forms and
H®(M, M), is a suitable subset of H°(M, M%), are shown in Sect. 5.
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obtained a non-linear equation with a parameter ([1], cf. [7]). In the study
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the starting points of this research. Another starting point is the relation
of geometry of loop spaces and non-abelian de Rham theory which was
suggested by S. I. Andersson and A. Connes. I would like to thank them.
Mensky’s book [19] gave many suggestions in this research. I would like to

thank Dr. Terazawa (Dep. Phys., Fac. Sci., Sinsyu Univ.) who taught the
author Mensky’s book.

§1. Non-abelian de Rham theory with respect to loop
groups :

1. Let G = G, be GL(n,C) and g = gn its Lie algebra. LG = LG,,
QG =0QG,, Lg = Lg, and Qg = Qg,, are free and based loop groups and
loop algebras over G and 9. _The basic central extensions of LG, QG, Lg
and Qg are denoted by NQ, @Q* Mm and mm, respectively.

If g (or ¢) is an LG-valued function (or an Lg-valued form) on a smooth
Hilbert manifold M, we define a G-valued function 9° (or a g-valued form
¢®) on M x &t by

(1)

9"(2,t) = (g(2))(t), C@t) =@, seM, tes,
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, e b b
C tion. We call g (or ¢) to be smooth on M if and only if g* (or ¢®)
onvention. |

is smooth on M x S*.

&@ &s QRHQ &ﬂ &w are DWWWHH Q.@HHD w@@. Uu @ NHH@ ﬁ N H.U.Wu are mHHﬂDDWwH Hm .@
m.H:w A NH\ € mmHOOwW_..\ >~H hmlcm‘:&@&. MﬂwHHOﬁHOMH Q HBQCO@M an H\Qlcpw—u.@&. M:.HHOS.OHH

Mr y bove sense. An Mmé&cmm differential form ( is written
e al .

¢=(¢,B), ¢isan Lg-valued form, B is a usual form.

Q WH.
\’. MHH—OORWW N.\ Icm_u.‘wmﬁ H m:— m ‘w 1S mm_A— :v _vm _:_Q _.m—v_m or mmd um ﬁ

satisfies
(2) dd+0N0=0. i
[ is sai integrable (or flat) if i
L - 6 = (0, B) is said to be in
A smooth Lg-valued 1-form
satisfies | o
7+ 16,9 ie. dd+0A0=0,
' = =0, ie.
@  d+3;0.8

1! N
| te(6A6)dt=0.
&m+m\ r(

0

Lemma 1. (i) Let ¢ be an Lg-valued 1-form on M, then

H \ . .Nuq/l.wd/;a.
3) \oa@iv&uo, @NO,AA

(ii) If 6 is an integrable Lg-valued 1-form, then

d A\H tr(67*1 A m\v dt=0, p=>0.
0

. 2p+1)) dt, we have (3).
=1/(2p+ ”_.v,\. (tx(¢ ) » We
W@m A m\%zm a(e") Z (df)' by Convention, so we

4)

Proof. Since %o“ tr(¢? A ()
If § is integrable, then df =

get H |
d A \ H tr(6%+ >3v dt = — \ tr (6271 A (d6)’) dt
0

= \ Hos (@=+y A o) dt
0

| mﬁlw \ H Aﬁ%i.wz\&uo.
2p+3 Jo
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Definition 1. Let 6 be an integrable L-valued 1-form on M. Then we set

o®(0) = the de Rham class of \ H tr(0%771 A 0')dt 2r
. Q € B> (M, C).

By definition and (2)', we obtain
Proposition 1. (i) If = g 'dg on M, we have
5 i
( ) aP(f) = g Amvv.

Here €, is the 2p-dimensional m
generator of H* (QG isa
non-zero constant determined by the choice o%m () (e (23] and i
.o — — ﬁ‘
M“Wqu%&w g W&W and g = e/ on M, then o®(0) = 0 for all p
5 a'(0) =0 if and only if ¢ i L i .
3 such that & — (6.0) y if there exists an Lg-valued integrable 1-form

2. Let ¢ = ), (idz; be an L
i idT; g-valued 1-form on a (starlik i
hood U of the origin of a (separable) Hilbert space. ,E:Mz gwm_ mMW netghbor

E@ismeViQszig

P(f) =1, I°(f) =,

n=0

If ¢ is integrable, df = 0 and (f(z))(0) = ((z))(1), we get

I(9) = 1(¢g).

AP (f) = CE(f),  (pc(£)(2))(0) = (Pe(f)(x))(1).

HH@HHO& an HHH&@WH @UH@ N‘k = c@wﬂ.@ﬁ “_.lmCHHHH % 1S MC m:.w _:.‘ egra —v_.m ‘ __m _ S 10Ca _ %
@ bl

For a (scalar valued) 2-form ¢ = > Giides Adz;, I¢ is defined by
1
I¢ = @M.ﬂ@&a? I¢; H\o Mmmﬁm&?av%.
J

So we can define canonical local integration 8, of —1 /2 ! tr(f A m\v.& onU
- 0

if 6 is an integrable L
= g-valued 1-form. ey . )
Lg-valued 1-form on U, we can mmﬁss Hence, if § = (6, 6) is an integrable

%¢ — -1 -1 :
(0,8) = (g"'dg,c”  dec + f,), ¢ is a smooth C”-valued function.
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mewmmou,o we can associate a smooth LG-valued function (g, ¢), g ldg =90,
to 6. We note that since g(U) is contractible, p~ 1(g(U)) = g(U) xC", where
p: LG — LG is the projection. We set

(6) p(g) = g tdyg, g is an LG-valued (or a G-valued) function,

p1((g,0)) = Am;%,a-i? .w~ A\OH tr @:% A G-i,a\v d vv :

By definition, p is defined globally, but pr is defined only locally.
In the sequel, we use the following notations.
C't, LG; and LG;: the sheaves of germs of constant C", LG and LG valued
functions over M.

C 4, LG4 and LGy: the sheaves of germs of smooth C", LG an
fumetions over M.

&7 : the sheaf of germs of closed p-forms over M.

Mg Si \SHmm.. the sheaves of germs of integra
1-forms over M.

d LG valued

ble Lg and Lg valued

Stalks of these sheaves at x are denoted by C 4, etc. Then we have
the following commutative diagram with exact lines and columns.

0 0 0
(R B

0 — & - .>A~Mu = Ml — 0
(RGO

0 — Cy l.slv HQ& 2, LGy — 0
[ R

0o — C, — LG - LG — 0
1 1 !
0 0 0

Here p; is not a sheaf map (not continuous). But we have

51((Q)) = i(p(g)) = (0,9 " dg),

p(i(g,0) = i(Pr(g,¢)) = 9~ dg.

p and Py are right logarithmic derivations of g and (g, c). Corresponding

left logarithmic derivations pr and py,;, are given by

(6),pe(6) = (d9)g
/ pra((g,0) = AEAS,Q-&i w~ A\_ tr (pz(9) A (p2(9))) &vv.

0
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3. Definition 2. Let { = (¢,B) be an Lg-valued differential form and g is |

an LG-valued function. Then we define the adjoint action ¢9 ofgon( by

(7) (= AQ%I‘\O EQ\Q-J&V , 9= Q-HQ._

We also define the left adjoint action mm by

(7, 9¢ = ¢

By definition, if 0 is right integrable and locally takes the form § =
(97'dg, B), then 90 is left integrable, that is, we have

Ae8) - 519,55 = 0.

Let 4 = {U;} be a locally finite open covering of M, CP(4, M* 1g) and
CcP(y, .\SHML the sets of p-cochains with coefficients in M Lg and \Suwa. If
{wi; } belongs to C* (&, M 1;), then we define

= j _ -1
m&&» = Wik — Wik +€&§tf Wij = Gs; &.@&..

Similarly, if {&;;} belongs to C* (iU, M Hmmvv then we define
Owiji = Wig — Wik + W%, Wij = (955 dgij, Biz)-

Then we can define the cohomology sets H' (M, M* 1g) and H'(M, M*

(cf. [5], [6]).

Lemma 2. If {w;;} € C* (4, M' ;) is a cocycle, that is dwijr = 0, then

Ty)

1/t ) \ \
(8) 2 \ tr AEEG ANWjk — Wik Awig’ + wi; 9% A (w;; 9%) v dt
0

1
=d A\ tr(wijgie g " v&v ,
0

E& = %@.IH&%&“ .QQ.Q.Q&QE. = n&.\: a constant Am .N\Qv
Proof. Since dw;;x = 0, we have
tr (wik Awie’ — win Awi’ + wig9 A (w95 ))

= 2tr(wi; %% (g5n " gik ' wir — 936~ *d(gi")-
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Then, since g;r ' gi; ' = GkiCikj, We get
tr(wiy % (gix~ gix'wie — gi " d(gsx") L
— — tr(cin; (dgi; d(gin gri))) = d(br(wis* gix ™" gik')- u

Corollary. If 6w, =0 and a 1-cocycle of scalar 1-forms {a;} satisfies
1
dagj + w\ tr(ou; Awi;')dt =0,
2 Jo
then the 2-cochain {B;;i } given by

1
]
9) Bijk = @ik — Ctik + Qij +\o tr(wijgie gix )t

belongs to Z* (84, 1), that is we have
(10) dBijx =0, Bijke = Bixe — Bire + Bije — Bigk = 0,

provided c;j,” = 0.

i ofine the. coboundary map &
By this Corollary we can de
HY (M, M* 1) — H>(M, ") by 6((({wi;}) = ({Bije}). Here {{¢}) means
the cohomology class of {¢}. Then we obtain

Proposition 2. The following diagram is commutative and each line is

aww HO(M, &) - HO(M, M3 ) = HO(M, M’ o) 2, HY(M,®")
T | A T
0 — HO(M,C 4) — HO(M,LGa) = H(M,LGy) — H'(M,C"a)
(M MY, S HY (M M 1) 5, H2(M, ') = H*(M,C)
T a 1
&, g (M, TG.) L HY(M,LG.) mm%\b C4) = HY(M,Z)
T

Hom(m (M), LG) = H'(M, LG,) = H* (M, Gy).

Note. We get the same commutative diagram with exact lines replacing
LG, Lg, etc., by QG, Qg, etc.
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§2. Geometric meanings of loop group bundles and Gysin
map in non-abelian de Rham theory

4. For a complex matrix A, we define linear maps F4

g — g and
Q\»”mrlvm@% .

> n-1
Fa(X) =X + MU% Soaxaret
n=2  \s=0

Cald) =X+ M%m.wsiviy

(ad A)(X) = [4,X] = AX — XA.

In [5] we showed
Lemma 3. (i) F4(X) is equal to e*G4(X). It is also shown that
Fs(X)=Gar(X)e?, Gar(X)=X —_— " (X).
>A v >,bA v mrhA v +WA§+HV.A@Q>V A.Nv
(ii) The Jacobian ofexp: g — G at A is Fy.
Corollary. (i) The Jacobian of exp : g — G is non-degenerate at A if and

only if A satisfies the following condition:

(%) @ Ai and \; are distinct proper values of A, then ﬂw.“;\( — ;) is not
integer.

(ii) A smooth G-valued function g on M is locally written as g=-¢el
where f is smooth g-valued function on some open set of M.

We denote by g, and G, the sheaves of germs of smooth g and G-valued
functions over M. Then exp : g — G induces a sheaf map exp : gq — Gy.

Its kernel sheaf is denotes by Ny 4. In [5], we defined the first cohomology
set of M with coefficients in Ny ; as follows: Let

6pNjr = Nje — N + g Tk {ny} e C(y, Nya),
{P,;} € C*(U,Gy).

By using this coboundary map, we can define H'(M, Ng,q). Then we hav
the following exact sequence:

O-— H°(M, Nga) — H°(M,g4) =5 H*(M,Ga) - H (M, Ny a).
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If 6pnije = 0, the relation
-1
U; x 2@ 2 A.Hv\;ﬁ&vv ~ AN\., w&. AHV\;ASV.NUS A&V + 14 A@.vv S Q‘u. X 2&;

is an equivalence relation. The quotient space of |JU; x Ny by this relation
is a fibre bundle over M with the fibre Ny. Hence we have

Lemma 4. If M is contractible, then exp : H°(M,ga) — H°(M,G,) is
onto.

Corollary 1. Let i : M — E be a smooth imbedding of M into a con-
tractible space E. Then we have

(10) exp(H*(M, 84)) =" (H*(E, Ga)).

Corollary 2. exp(H°(M,gq)) is a normal subgroup of H*(M,Gy) =
Map(M, G).

Note. In general exp(H®(M, ga)) is not a closed subgroup of Map(M, G)
(cf. [23)).

5. Let g be a smooth G-valued function on M. Then by Corollary of
Lemma 3, there is a locally finite open covering 4 = {U;} of M such that
g(z) = exp (2mv/—=1f; Aavvv f, is a smooth g-valued function on U;.

On (U; NU;) x C", we set

gij (z,2) = eli@lez o~ fi@logz 5 U, NU;, 2€C.

By definition g;;(z, 2) is single-valued and gi; (z,1) = I, the unit matrix.
Hence we can define a smooth QG-valued function gi;% on U; NU; by

(95" (@)(®) = gis (2, ).
If exp (2mv/=1f;1(x)) = exp (2mv/=1fiz2(x)), then we have

. .
gijz (z) = hi(2)giza (2)h;(x)
A?Aavv@v — 27 “Tfi2(e)t o2 “Tfin (@)t
Hence {g;; } defines an QG-bundle By (g) over M and its equivalence class as

an QG-bundle is determined by g. By definition, Bo(g) is trivial if g = ef,
f a smooth g-valued function on M.
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On the other hand, if g is an 2G-valued function, we define a Map(R, G)-
valued function g by

@@)() = (9(=)) (e

We note that (g(x))(0) = I for all z. If £ = {g;;} is an QG-bundle, then
we define a Map(R, G)-bundle ¢ by {g;;(z)}. Then, since Map(R, G) is a
contractible group, we can set

Gij (z) = hi(2)h;(z) ",

Qv,v tER.

hi(z) is a smooth Map(R, G)-valued

function on U;.

By definition we have (g;;(2))(t) = (gs;())(¢t + 1). Hence we have

-1 ~ ~ -1 ~

(hi(@)(®) ~ (ha(@)(t + 1)) = ((hs(@)(1)  (h(=)(t + 1))

Therefore we can define a smooth G-valued function g on M by

-1 ~

g(@) = (h:()(0)) " (hi(2)(1)) = hi(2)(1), @€ U;.
By the definition of By we get By(g) = £. Hence we obtain

Theorem 1. There is a bijection

By - HY(M,G,)/ exp(H° (M, g4)) & H (M, QGy).

Note. If g(z) = exp (2mv/=1f(z)), we have g(z)exp(f(z)logz)
ox@QAa:omnva&vm@gm

Gisi L (z,2) =e” fi(z)log z f;(z)log =

is also a single valued smooth function on (U; NU;) x C*. By using this
{gi;,L }, we can define an alternative bijection

.Woh : moﬁgq Q&V\QX@AmoAgu @&vv = mwﬁav Q&v
The relation between By and By, is given by

(11) Bo(9™') = Bor(g) (= (Bo(g)) ).
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We denote the connected component of the identity of H°(M,Gr4) =
H°(M,Gy4) by H*(M,Gpa), 1t contains exp(H®(M,gn,q)) and there is
amap k : H*(M,Gr4)/H*(M,Gry), = K'(M) (= K™'(M)). kis an
isomorphism if n is sufficiently large. Hence there is a homomorphism

. HY(M,G,q) — K' (M),

such that ker k!
sufficiently large.

= B°(H°(M,Ghra),/ exp(H°(M, g q)). k' is onto if n is

6. We denote by M! and M the sheaves of germs of right and left
integrable 1-forms. We have

M = p(Gq) = d°(ga), My = pr(Ga) = d°L(8a)-

Here p(g) = g~ *dg, pr(g9) = (dg)g~'. d° and d° are given by

dof = e Td(e’) &+M " +:_@§ (df),

denf = (de))e™ =df + M ———(ad )" (df)-

n=1

3+H

If 6 belongs to H°(M, M'), 7" (0) is integrated on M, the universal covering
space of M. Here m: M — M is the projection.

Definition 3. We set

HO(M, M")g = {8] 7" (6) = p(g), pr(g) € 7" (H*(M, M"1))}.

By definition # belongs to H°(M, M?*), if and only if 7" (f) = p(g) and
g satisfies

(12) 9° = Xo9 = 9Xo) o€ m(M), x€Hom(m(M),G).
Theorem 1°. There is a map B, HO(M,M*),/d*(H®,84)) —
H'(M, M'q,) such that the following diagram becomes commutative:

%E&iﬁmgz,evv B, méqusv

HO(M,Gy),/ exp(H*(M,82)) =% H'(M,QG,).
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Proof. By (1) we can take local integrations {g;} of € H(M, M), to
be
AHMV\ 9i = Cizg; = gjCij, on U; NU;.

We assume g; = exp (27rv/=1f;) on U; and set

hij(z,2) = efi@)Iog 2 o~ fi(@)log =
Then by (12)" we have
hij(z, 2)hsk (@, 2) hii (T, 2) = Cijcjncri.
Hence if we define p, (h,;)" by

-1t

(p(hia)" @) () = pu (s (2.2
p=(f(2,1) = ((z,8) " dy f(z, 1),

)

{pz(hi;)} becomes a cocycle. Hence we can define B, by
Bo(6)) = {p=(his)"} (= {p(hs))).

Then we have the Theorem by the definitions of B, and wo. n

By is not onto. We set H' (M, M*qy), to be the subset of H* (M, Mlgg)
whose representing cocycle {w;;} satisfies

_ d
wi; = gy dgij, %Q& (%) gjx (2)gri (z)) = 0.

Then we have

BY(H°(M, M"), /d*(H"(M, 84)) C H'(M, M'qy),.

If g is a smooth LG-valued function on M, we define a smooth G-valued
function g* on M x S! by

(13) g"(z,t) = (9())(#)-
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Since d(g?) contains derivation in ¢, (¢*) ' d(g®) is not determined by g~ dg.
If {w;; } is a representing cocycle of an element of H* (M, M*qg), and {g;,1 }
and {gi;2} are integrations of {w;; } such that

d d .

%@&L (%)gjk1 (T) kit (%)) = %Q&,m (%)gjk,2 (T)gri2 () = O,

the difference between T.Q&LJL%&LJ and Tb&.w@v»y&m&b& comes
from a representing cocycle of an element of H!(S*, M!). Since an ele-
ment of H*(S*, M?') is determined by a representation of (the universal
covering group of) [Q2S'.], the group of zero homotopic paths of S* ([7],
cf. [18], [19], [21]), H*(S', M!) vanishes. Hence we can define the map
h: H' (M, M'qy), — H' (M x §*, M) by

-1
({wi})' = AAGQJ &@siv.
Here {g;;} is assumed to be (gi;gjxgri) = 0. On the other hand, we define

b: HY(M,QG,) — HY(M x S*,G,) by {g:;}° = {g:;°}. Then we have the
commutative diagram .

HY (M, Mlqy), —- HY(M x §*,M?)
al g
HY(M,QG;) - HY (M x S, Gy).

Definition 4. We define Gysin maps v : H°(M,G4)/exp(H°(M,g4)) —
H'(M x §',Gq) and 5 : HO(M, M), /d*(H*(M,g4)) — H'(M x F*, M?)
by

7o) = (Bo(9D))’,  F((w)) = (Bo((w)))"-

By the definitions the following diagram is commutative:

moAgukuvo\&mAmoAgum&vv Pv muﬁg X %HT\SHV
o o]
H°(M,Gq)/ exp(H°(M,g4)) — H(M x S*,Gy).
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§3. Connections of loop group bundles and string classes

7. We can define connections and curvatures of loop group bundles and
elements of H'(M, M'q,) similarly as connections and curvatures of G-
bundles and elements of H*(M, M) (cf. [5], [6]). If M has a smooth
partition of unity subordinate to any locally finite open covering of M,
connections always exist. Next we define the connection form ﬁw& of an
element of H' (M, \Spmuv whose representing cocycle is {&;; } by the relation

(14) Wij = m&. — 6%, @ij = (9i; " dgij, Bij)-

Definition 5. Let ¢ be an 1G-bundle and ({®}) an element of
NHQSV\S_mgv such that

3@ = 0" (G @),
Then we say a connection of (W) to be a connection of &.

Note. Connections of elements of H*! Q\b\,\:wmv and LG-bundles are
similarly defined.

The curvature {6,} of {6} is defined by

N =

We set 8; = (6;,1:) and ©; = (©i,7;). Then (14) and (15) mean

(14) wij = 0; = gi; 16595,
1
Bi; =5 — A@ms + \ QQE&@:-J&V ;
0
(15)’ ©; = db; + 6; A6,

1

0

Proposition 3. (i) If {&;;} is a representing cocycle of an element of

H'(M, >\_Hmmvv then it has a connection.
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(ii) If {6:;} = {(6:,9:)} and {61} =
{@i;}, then

(16)

49

{(6i1,%:,1)} are connections of

0i1 =6, + iy
Vi1 =P + @,
(iii) If a oommns.ou of Nm-s,t:mm differential forms ,@L = {(®;,¢)}

satisfies ¢;% = ¢;, then we have

M =9 'Migij,
¢ is a global 1-form on M.

(17) dd; +10,,8,] = (s + [B:, )™ .

Proof. Let {e} be a smooth partition of unity subordinate to {U:}. Then
if we set @y; = (wp, Bri) and define
MU €k B,

%.. M CrWki,
U;NU, %0

U;nU, 40

Pi

we get wij = 0;—gi; 7" 0igi5 and Bij = ¥ — i+ Y ex [ tr(wiigi; gy~ )dt =
¥ — (¥ + \op tr(6:g:;'gi; " )dt. Hence we have (i). (ii) follows from (14)".

~ Since {6;} is a connection of {w;;}, we have dd; + 105, ¢;] = gi; " (deps +
[0:, 6il)g:;. Since 6; = g;;716,g;; + 9i; 1 dgi;, we get

1 1
&A\o 3@%&@&:&&0 l\ tr)d;’ ¢;)dt+
0
1 1
+ \ tr(6;' ¢ )dt — \ tr(deigi; gi; ™" )dt
0 0
1
- \o tr([6:, 4lgi; gi; 1 )dt.
Hence we have

d¢; + \ tr(0; 4, )dt
0

”&@ + & A\ ﬁHA.ﬁs..Q&\.QC.Iuv&ﬁv +.\ dmA%&%&\v&ﬂ
0

0

1 1
H&nl.\o SQ%\V&.T\O tr((des + [0, ¢i])gi; 91 )dt.

This shows (iii).

8. By straightforward calculations we obtain
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Lemma 5. Let {#;} be a connection form of {w;;} = gi; 1dgij, a repre-
senting cocycle of an element of H' (M, M' 1), then

1
(18) \ tr (09 Aws +wig A6 —wii Mgi ™ giss 057 ]=
0
~20;d(gs; )9:; " + 20:9i5 945~ (dgij)gi; ') dt=0.
Proposition 4. The coordinate transformation law 0,% = ®u. and Bianchi

identity de, + E(j @L = hold for the Lg-valued curvature form .ﬁ@h That
is, we have

1
(19) 0; =g 'O, Y=Y +\ tr(©igi; 9 1)dt,
] 0
1
0

Proof. We need only to show the second equalities of (19) and (20). Since
we obtain

d(v; — i)
1! ! .
= — M,\ S,ES. >€§.\v&w+/\ ﬁHA&%&.QGMQ&lH - %w&ﬁbﬁ.\vb&lun*l
0 0
+0igi; 95 (9dii)gi; 1)t
we have
MAGQ -¥,)
1 1
N \ tr(8; A9 — 0; AOi' — wijwis )dt + m\ tr(dbigsi 9i ' —
0 0 .

— 0,d(gi;) 95 + 059595 (£9:5)9i5 b)dt.

Since 8; = gi; ' 0:gi; +wi;, we get the second equality of (19) by this equality
and Lemma 5. .

By the definition of ¥; we have d¥; = %OH tr(df; A 6;")dt. Hence by

Lemma 1, we obtain the second equality of (20). =

The second equalities of (19) and (20) are rewritten as
1
Auwv\ \ dHA®&®&\©¢|J& =¥, -7,
0

1
(20)' d¥; = \ tr(©; A 8;")dt.
0
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We generalize ﬁwv\ and Awov\ as follows: Let {©;} be a curvature form of
{wi;} = {gs; dgi; }. Then we set

1
Ppij = \ tr(©,%gi;'gi; " ')dt, P =6Ar. N0,
0

{#p.ij } is a 1-cochain of 2p-forms, and we have by straightforward calcula-
tions

Lemma 6. As a 1-cochain of 2p-forms, we obtain
. v
Obp.ijk H\o tr(OrPeki; crij T )AE,  Cijk = Gij Gk Ini-

Corollary. If {w;;} is a representing cocycle of an element of
H'(M, M'qy),, then there exists a 0-chain of 2p-forms {¥,,;} such that

1
ANHV ,\ nHAA..WwE.Q@.\%&le&& = fH\?u — eﬁ,«..
0

Lemma 7. Let {0;} be a connection form of {w;;} = {g:; *dgi; }, {©:} the
curvature form of {#;}. Then we have

1 .
ANNV d A\ ﬁA@%Q& \.Q&luv&“v
: 0
1 o1
_ \ (07 A6 )dt — \ £2(0:% A 6 )dt.
0 0
Proof. By the Bianchi identity we get d(©;?) + [6;,0,?] = 0. Hence we
have L
d A\ ﬁm..A®sA%@®\b&. -1 v&uv
0

1
= ‘\M tr([O7, %LS\S\M + @%&@:\ms.i -
— 0,79 wi;gi; ' )dt.

Then, since w;; = 0; — g;; ' 0:gi;, this right hand side is equal to

1
\m tr([©:7,019:;'9:; 1 — ((8;°) A, + (0;7) gi; ' 0igi;) dt

= \o tr ((0%) A6 — (857) A6;) dt.
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Hence we have (22). =

Corollary. Let {¥,;} be the 0-cochain determined by the Corollary of
Lemma 6. Then the 0-cochain of (2p + 1)-forms {¢,;({w})} defined by

A 1
b, :({w}) = \ 62(0:7 A 0;')dt — T, ;,
0 S

gives a global closed (2p + 1)-form ¢,({w}) on M.

Proof. We need only to show
d A ) tr(87 A mb&v 0. Since [, tr((©7) A©;)dt
[ tr ((©7) Adb;)dt = — J) tr ((©:7)" A 6;2) dt. Hence we get

d A \o (@7 A mb&v

1
- \ tr (16, ©:7] A8 — (O.7) A62) dt
0

0, we have

H !
\ tr A@@ A6 NBi+0, AB) — O A (6:%) v dt = 0.
0

9. Theorem 2. Let {w;;} be a representing cocycle of an element of
HY(M, M'qy),, and Ch” AAEVJ the p-th Chern character of (w)' € HP(M x
S, M*) ([5], [6]). Then we have

(@) (gl =~ @rV=I) R [ Crt (()) db

Proof. For an Qg-valued differential form { = > G, ... 5, dzs, A ... Adz;,,
we set
ﬁv = MU ﬁs.f.:_s.u v&&? VAR &va .

By using smooth partition of unity, for a connection form {6;} of {w;;}, we
can construct a connection form {6;%} of {w;;"} such that

0:" = 6;> + f dt.

The curvature form {©,%} of {6,%} takes the form

0
v . — — .V
&.\.s + Es T\.L @ﬂms

v dt.

@% ”@% + A
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By the Bianchi identity, we have tr ((8;%)” A [6;2, fi) = tr
Hence we have

! 1
\o tr Q@.:E v&
—p+1) \ (0.7 A0 )dt + (p 4 1) \ (02 A (dfit
+16:%, Evvwa o
- (p+1) \p tr(©;? A6;")dt + (p+1)d A\H SA@..ub.j&V .
Here f# is the hQ.M&:mm function defined by o

(24) (F#(2))(t) = f(=,1).
Since f; satisfies @&Juum\wn@ad = f; — (9s JL\E&ﬁ we get

1 1 1
\v aHA®&ﬁ.\.§.%v&w - \ oi@%.\w%v&ﬂ = \ nHA©a.ﬁ©&\.Q@.ru v&ﬂ
0 0 0

Hence we obtain

1 1
\ &u.A@.».E.\..m*v&w - E?.». \, HHAG&B\-.%VA&N - —H\??
0 0
on U; NU;. Therefore we have (23). m

A&A@uv@\mv.

Definition 6. The de Rham class of ¢,({w}) is called the p-th string class
of (w) and denoted ¢ ((w)). If ¢ is an QG-bundle over M, then we denote
cP(p"(€)) by e (¢ and call it the p-th string class of £

String classes of the elements of H™(M. yM'Lg) and LG-bundles are
similarly defined. By using the notation & ((w)), (23) is rewritten as

(23) P(w) = — 2rv=T)"™ pt [ opt AE,V dt.
.Ww

By the definition of ¢! ((w)) and Proposition 2 we have

Theorem 3. The image of (w) by the coboundary map §
HY(M, M'qq) — H*(M,®") = H*(M,C) is & ((w))
Corollary 1. (w) is in the image of j* : m;?\t\,\tmuv — HY (M, M'qy)
if and only if ¢*((w)) = 0.

Corollar

/mm.mgmb e =o.

S

e s b (rc‘fﬁq/y

y 2. If the structure group of an Q0G-bundle ¢ can be lifted up
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84. Lifting of G-bundles on loop spaces

10. We denote by LM and QM the free and the based loop spaces over
M, smooth Hilbert manifold modelled V. We assume that LM consists of
Sobolev 1-loops {cf. [7]). Then if we set H(S') = {y € H'(S"), (0) =
~v(1)} and H'(SY), = {y € H}(S'), 7(0) = v(1) = 0}, LM and QM are
Hilbert manifolds modeled by H'(S*)®V and H'(S'),®V. The connected
component of the unit loop of QM is denoted by QM.

If g is a smooth G-valued function on M, we define a smooth LG-valued
function g% on LM by

(25) (g" (M)(@) = g(v(2))-

We also define QG-valued functions ¢ = g% and ¢, on M by

@25 ¢%() = 9(v(0) " (),  9%L(v) =g (m)g(v(0) .

Since g(v(0)) is a constant, we have

Lemma 8. If0 = g"*dg = h™'dh, then we have

d(g") = (h") " d(h"),
-1

d(¢%) = (g%) "d(g").

Corollary. If § is an integrable form on M, then we can define an {g-
valued integrable form 6* on QM. by
(26) o0 = (¢*) 'g(g"), 6=g 'dgonU.

Proof. We need only to show that there exists an open covering {U} of M
such that 6 is integrated on U and {QU} covers QM,. If v belongs to QM,,

then + is homotopie to 0. Hence it has a neighborhood U(7) such that 6 is
integrated on U(v). Since v € QU(), we have the Corollary. =

By this Corollary we get a map L: HY(M,M') — H°(QM,, M gy).
We can also define the maps L : HY(M,G,;) — H'(QM,.,QG,) and L :
H (M, M) - H'(QM., M'Qg). Then we have
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Lemma 9. (i) M?@»A.\St\sgvv is contained in H'(QM,, M'qy),.
((ii) We can define L to be the map L : H*(M,G4) — H (M, LG,).
(ili) The following diagrams are commutative:

%Eﬂ,\s& = HYQM., M) o HOQM,, ML)
P : u\ﬂ

L
m.ocg“ Q&v E.OAS.NE.@“N\Q&Y

H (M, M') = HY(QM., Mlq) -5 HYQM., M'p,)
L, s H
H'(M,G,) - HY(QM,, LG,).
Proof. (i) and (iii) follow from the definitions. Since a complex. vector
bundle over S' is always trivial, we have (ii). m

Lemma 10. Let ev: QM. x S* — M be the evaluation map given by

ev(y,t) = (t)
([9]). Then we have

(27) (g")" = ev'(g),

Proof. Since (g* VWAS t) = (9% (7))(t) = g(7(t)), we have the first equality.
Then we obtain the second equality by the definitions of % and 5 m

va: = ev"(0).

11. Since ((z) € A’V" ® g if { is a g-valued p-form, if we define (% by
M@ = ¢(r(®)),

¢*(7) belongs to Map(S*, A?V" ®g). Since Map(S*, APV" ® g) is contained
in A?(Map(S*,V")) ® g, we may regard (% as a p-form on LM. Since we
get v

FE(v+sn)(t) = F(v(t)) + s(df(v(1)), n(t)) + o(s),
we have
(28) d(fr) = (df)*.
I£¢=3 G, i, dzi, A... Adz;,, we may write
¢ = M@r..;@ Ldy, DAL A &a@.uhv

Hence we obtain

dz’ = d(z*).
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Lemma 11. Let {6;} be a connection of ({w;;}) € H(M, M?'). Then
{6;*} becomes a connections form of {w;;*} and its curvature is {©;%},
where {©;} is the curvature of {6;}. ,

Theorem 4. Let (w) be an element of H' (M, M?*). Then we have
(29) @ Qevd = — 2nv=D)" plr(CRPH ((w))).

Here 77! : H*'(M,C) — HY(2M,,C) is the inverse of the transgression
map.

Proof. Since the diagram
He* (M,C) — = e H91(QM, x S',C)

Tt s
HY(QM,,C)
is commutative ([9], [10]), we have by (23) and (27)
le AEJ - (2nv=T)"™" : Ch+! AAE&,V
~ (2nv/=1)™ o (v (@)
- Awﬁz\uvst p!7~ 1 (Ch* ((w))). u

Corollary. Let c,({w)) be the p-th Chern class of (w) (cf. [5], [6]). Then
(w)* is in the j"-image if and only if

c1*((w)) = 2e2((w))-

Especially, £* has an Qg-valued connection if and only if ¢,%(€) = 2¢,(&).

12. The map L is also defined for real vector bundles (In this case, L
is only defined as the map from H' (M,GL(R),) — H' (@M., LGL(R),)).
We denote by TM the tangent bundle of M. Then we have

(30) (TM)* =T(QM,).
Therefore, denoting by T°M the complexification of TM, we get
(30)' (TCM)" = TS(QM,).

By (30)" and the Corollary of Theorem 4 we obtain (cf. [11], [15], [22],
[26], [27])
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Theorem 5. QM, has an Qg-valued connection if and only if p; (M) = 0.
Here p; (M) means the first (rational) Pontrjagin class of M.

Note. The condition that QM, has an mmém_zma connection is weaker
than the condition T€(Q2M,) comes from an QG-bundle. Since we are

working in de Rham cohomology, torsion parts of cohomology classes are
ignored.

Theorem 4 shows that the ¢,((w)) are recovered from (w)* if p > 2.
We can also recover ¢; ((w)) from {w)” as follows: We denote by QG, the
connected component of the identity of QG. The sheaf of germs of smooth

QGo-valued functions is denoted by 2Go,4 and set p(2Go 4) = Mlag,. Then
if we set

(31) #6) = % \ tr(6)dt,

we have the following commutative diagram with exact lines:

0 — Emao LN Mg, 5 ¢ — 0
I T
0 — ch,& |ﬁ|v bQ& LN N~ — 0.

By this diagram, we obtain the following commutative diagram of cohomol-
ogy sets:

HY(M, M'qy,) 5 HI(M,Miq) 5 H(M,C)

T . T B T
HY(M,QGoq) - HY(M,QG,) - HY(M,z).
Therefore we can define characteristic classes 7 ((w)) € H'(M, C) and
R'(§) € H' (M, z) for (w) € H' (M, Mq,) and € € H (M, QG,).

Theorem 4°. (i) 7 ((w)) is equal to 0 if and only if (w) is in the i"-image.
(i1) 7 (p(€)) is an integral class.
(iii) Let 7 : H?*(M,C) — H*(QM,,C) be the inverse of the trans-

gression. Then we have

(29) 7 (") = 20v=Tr (e (@))).
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Proof. (i) and (ii) follow from the definition. If {w;;} is a representing
cocycle of {(w) € HY(M, M), {trw,;} represents ¢;((w)) in H*(M,®*).
Hence we have (29)" by (30) and the definition of 771.

, Theorems 4 and 4’ show that L : H*(M,G,;) — H(QM,,0QG,) is
injective if M is torsionfree. At this stage we do not know whether L is
injective or not in general.

§5. The relation between (3-classes and string classes and the
Bott map in non-abelian de Rham theory :

13. For an integrable form 6 on M, we have defined its Chern-Simons
type characteristic classes 87(6) € H?*"1(M,C) as the de Rham class of

(p— 1)1/ (2mv/=1)" (2p — 1)1tx(6*1) (cf. [7]). We know

(32) BP(0) =g (ep) if =g 'dg,

where e, is the (2p — 1)-th generator of H™ (G, Z). By (32), 87(0) is equal
to 0 if g = ef on M. Hence (-classes are defined as characteristic classes of
the elements of H°(M, M*)/d*(H°(M, g4)) (cf. [7]).

If 6 belongs to H°(M, M?'),, then its Gysin-image 5(0) € H'(M x
S, M) is defined. By the definition of 7, (6)|M x (S' — {0}) is trivial
and it has a connection form {¢;} such that ,

Gz, t) =d ?@5 hi(z)t,  onUsx (S'—{0}) =U; x (0,1). |

Here 6 = h; ™' dh; holds on U;. Since ||6;]| is bounded on U; x (0, 1), ¢; defin
a current on U; x S*. Moreover, {tr ((d¢; + ¢ A ¢))} defines a curren
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M x §', 1t is computed as follows:
[tr (G + G A G)P) (D)
=tim [ [ tcn @ o n gy
+PCPTT) A ) 4 tr(¢,2P) A )
= Ww\% \me dtr($ AT
= lim \s (G2 (2,1 =) A W(2,1 - ) = tr((# (,0)) A B, )

- \ (606,27 1) A (s, 0).
M
Mwm a MNKQEHH of currents {¢;} gives a connection of ¥(6). Therefore the
e am  class of {tr((d¢ + ¢ A G)P)} (as  a current) is

(27v/=1)" p! Ch?(5(8)). On the other h i
. : and, by the residu
([4]), we have the mozoéwwmmxmoﬁmm@smuom e Sact Seduence

H*1 (M, C) 2% g (M x §1,¢) 2, H* (M x (S* - {0}),C).
By Kiinneth’ formula, denoting e? the generator of H” (8%,C), we get
H)M x §,C) = g2-! (M,C)®e' & H (M,C) ® ¢°.
Therefore we obtain by the definitions of 6m and ¢ (cf. [4])

(33) bn - H"Y(M,C) = H* ' (M,C) @ ¢! (CH(M x S*,C))
i: H(M,C) ® e & H? (M x (8* = {0}),0).

mmuomﬁ&sQOvmmawvwmmmbﬁmavSSA
ﬁ l
GAH‘W Ovu we mmd Y curren ”NJE,AV N..guﬁ AﬂH\v - .\.g A.A.Rv A

(31) o (510 = FE= s (o)),
heorem 6. We have
5) @Bo(l6D) = ~ (2ny=T)" 2D g )

(p+1)!
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Proof. Since 5(8) = Bo([6])" and 6y is an isomorphism by (33), we have
Theorem 6 by (34) and (23). = :

Corollary. If¢ is a loop group bundle and g is a G-valued function on M
such that £ = By(g), then
N%AMV - _ Awﬁ)\”ﬂvﬁ.fu Awﬁn_n Hv_ x

Aﬁn_l “_.v_ g Ammi-uv.

(36)

Note. In [7], we defined maps
X : H'(M,Gq) — H°(QM.,Ga)/ exp(H*(QM., 84)),
X : HY(M, M') — H(QM,, M*)/d(H° (M., g4)).
X(€) and X (¢) are represented by representative functions of QM, and
M., the universal covering space of QM,, respectively ([7]). On the other
hand, (B,) ™ (¢%) = g is given by

9=h()(h(v)"", onlj
m&.n = S\slv m&nsv@v = gi;(7(t mod 1)).

Therefore we obtain

(37) X(€) = (Bo) (1),

14. Weset H, = AM:VO € ﬂ.@ and H- = AM:AO caenm’ 7Tt
Then we have H 1(S')y = H, ® H-. The algebra of all bounded linear
operatorson H, is denoted by B(H, ). The ideal of all compact operators of
‘B(H ) is denoted by C(H..). We also use the following notations (cf. [12)]):

Cal = B(H,)/C(H,),
F = F(H,)/C(H,), |
The connected component of the identity of F is denoted by Fy. By the
imbedding of QG in GL.s the restricted general linear group on H!(S'),
(cf. [23]), the (1,1)-component of g € QG represents an element of Fy, that
is, (1.1)-component of g has an inverse by a compact perturbation, if and

only if g € QG,. We also set

F(H,) is the set of Fredholm operators.

K ={T e€GL(H,)|T=1+C, C is a compact operator}.

T ———EEEE

CHARACTERISTIC CLASSES OF Loop GROUP BUNDLES 61

K contains GL(00) = UGL

n as .
quence is exact: @ dense subgroup and the following se-

ol&ﬂ’v@hﬁm+vllvmuclo.

Si 1

0, 1y ) = 0} by theorem of Kuiper (17, 4

tions ow % _MH& H?( .\_\.M.\—Mw MQW Hw&_u.mmuaém by this sequence (for the m@ma.‘
yfAg) CI. y . H

germs of smooth K and Fy valued mwuoﬁwﬂm.ﬁ bt and Koy are the sheaves of

Definiti :

v%mEM:.“MWm“. hmM q: HY(M, Goa) - HY(M, Fy4) be the map induced
Aryge jection uo the (1,1)-component of th elements of NGy and 6, -
Ly s Foa) - H (M, K,), the coboundary map in the left handed -
abelian cohomology sets (cf. [6]). Then we set e

Awmv mwl L= &,h q.

By is similarly defined.

3 1
L WW N@ W\N w to be a map Wmﬂg\mms non-abelian de Rham sets as follows:
e - w u.:mt and \wm Ho& be the image sheaves of K,, GL(H,)
an ,&H Y M. plg) =g dg, and its induced map p. We also mmM
kL = pr(Ky), where pr(g) = (dg)g™1, and the induced map of ¢ by g

Then we have the following Commutative diagram:
1
HY(M, %Qﬁ ) = B4Ry L gy K,)
. ] o1 wl

1 1 q
H(M Mag) = H (M, Migy) 2o, HA (M, My ).

Hence if we define B!, . mﬂﬁgv.\sgsuv = muAgviﬂﬁhv by

38) =
A v ) .muh = bbmv

we have the following Commutative diagram:

H (M, M) 2y HY (M, M 1)
b‘—, mnﬂ “
mHANE.. aQO.&v w,wv mwmgy .mw'&vb.
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Definition 8. We define the maps

By : HY(M,G,)/ exp(H*(M,g4)) — H*(M, Kq),
By : HY (M, M), /d°(H(M, ga)) — H* (M, M' k1)

by

(39) B, =B';By, Bi=B"1B.

Here B, means Byr. Br and Wm are similarly defined.

Tt seems that we may replace K by GLw (= GL(00)) and M'k
Ml (= M!yey). If this is true, B, maps (a subset of) the first non-
abelian de Rham set of M into the (stable) third non-abelian de Rham
set of M. Hence we may say By to be the (left) Bott map in bos-&v@:.mb
de Rham theory. In [6], to get a good de Rham correspondence in the third
non-abelian de Rham theory, pairing of the elements of the right handed
and left handed third non-abelian de Rham sets was considered. We expect
that the meaning of this pairing will be clarified via B and the definition of

HO(M, M%),
15. By using the Grassmannian model of QG ([23]) we define the maps
gr:H°(M,QGq) — H'(M,G« 4),
Q umWAEv Q&v hand mo,mggﬁwovmv\méﬁgv Qoobhv.
These maps m.Hm lifted as the maps
g7 HO (M, M'qq) — H'(M,M'=),
Q:HY (M, M") — H' (M, M'qq_ )/ H (M, p(QG= 0.4))-

By using gr and Q we define w’ : H*(M,QG4) — H'(OM,, G 4) by

= gr (B (©))")

By Theorem 1 we can  define
HY (M, Mq)" — H (M., ML) of w* by

(40) w®(€)

the  lift &@°

(@) () = (B (@))),  HM M) =ImB.
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Then by (2) and (35) we have
N@AAEVV - _ Awﬁ./\llu.vﬁ+u Awﬁn_. Hv_

(41) pl(p + 1)!

T H (G (@ ((w))))-

In conclusion, our results are summarized as the trinity of B-classes
(Chern—Simons classes), string classes and transgressed Chern classes on
the one hand, and the following two types of trinities of non-abelian de Rham
sets (with characteristic classes) on the other hand.

(I). (a). The first non-abelian de Rham set over M.
(b). The second non-abelian de Rham set over M x S.
| (c). The stable second non-abelian de Rham set over QM.

From (a), (b) is mapped by the Gysin map and (c) is mapped by the
inverse of transgression. Their composition is the evaluation map.

(II). (a). The second non-abelian de Rham set over M.
(b). The stable first non-abelian de Rham set over M x S*.
(c). The first non-abelian de Rham set over QM.

Note. In both cases trinities are not in the strict sense. In fact, we do
not know whether the Gysin map, etc., are bijective or not.

(I) and (II) are visualized as the commutativity of the following dia-
grams: .

HO(M, MY), /d*(HO (M, g4) —— 9o HY(M x S*, M?)

v 5 {
EQQSEHBv\%ﬁmohg,mahvv/ mwﬁiu.\.iﬂomv:

moAisi_sv\%BEs p(QGoa)) — méiwify

m.HA.NE.T\/\va llllll'.m.oAE X .Wf\»\?oov\
e &AEﬁE»x S, 9o a))
moAbgﬁ.\,\“Hv\&mﬁ.&.oﬁbgmvm&vv moﬁgv.\/\:bma& v\
mﬁv H®(M, p(2G 0,4))
HY(QM,, M'gy) — o méﬁ«si\
. &wAm‘OAbEm,@oou&vv.
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Note. The Bott map relates the third non-abelian de Rham set and the
first non-abelian de Rham set. Hence we may regard the third non-abelian
de Rham theory to be a gauge theory on QM. (Loop gauge theory) or on
M x S (cf. [8]).

References

[1]. ABE, K., On tortal torsion and a generic property of closed regular curves in
Riemannian manifolds, Preprint.

[2]. ALVAREZ, O., KILLINGBACK, T. P., MANGANO, M. and WINDEY, P., String
theory and loop space index theorems, Commun. Math. Phys., bf 111 (1987),
1-10.

[3]. ANDERSSON, S. I., Pseudodifferential operators and characteristic classes for
non-abelian cohomology, Lect. Notes in Math., 1045 (1984), 1-10.

[4). Asapa, A., Currents and residue exact sequences, Journ. Fac. Sci. Shinshu
univ., 3 (1968), 85-151.

[5]. Asapa, A., Non abelian de Rham theories, Coll. Math. Soc. Jénos Bolyai
46, Topics in Differential Geometry, 83-115, North-Holland, 1988.

[6]. Asapa, A., Non abelian de Rham theory, Proc. Prospects of Math. Sci.,
World Sci., 1988. 13-40.

[7]. AsADA, A., Integrable forms on iterrated loop spaces and higher dimensional
non abelian de Rham theory, Lect. Notes in Math., 1910 (1989), 27-51.

[8]. AwWADA, M. A., The exact equivalence of Chern—Simons theory with fermionic
string theory, Phys. Lett., B221 (1989), 21-26.

[9]. BoNoLA, L., CoTTA-RAMUSIANO, P., RINALDI, M. and STASHEFF, J.,
The evaluation map in field theory, sigma-models and strings, I, II, Commun.
Math. Phys., 112 (1987), 237-282, 114 (1988), 381-437.

[10]. BorT, R., The space of loops on a Lie group, Michigan Math. Journ., 5
(1958), 35-61.

[11]. CoquEREAUX, R. and PiLcH, K., String structures on loop bundles, Com-

mun. Math. Phys., 120 (1989), 353-378.

[12]. DoucLAs. R. G., Banach Algebra Techniques in Operator Theory, Academic
Press, 1972.

[13]. FLORATOS, E. G., ILIOPOULOS, J. and TIKTOPOULOS, G., A note on SU()
classical Yang-Mills theories, Phys. Lett., B217 (1989), 285-288.

[14]. GysiN, W., Zur Homologie Theorie des Abbildungen und Faserungen von
Zmuimmm:wmw%mc, Commet. Math. Helv., 14 (1941), 61-121.

CHARACTERISTIC CLASSES OF LOOP GROUP BUNDLES 65

[15]. KILLINGBACK, T. P., World-sheet anomalies and loo
, , p geometry, Nucl. Phys.,
B288 (1987), 578-588. ¢ y e v

[16]. KiLLINGBACK, T. P., Quantum Chern-Simons theory, Phys. Lett., B2
) ’ ) . 2] 19
(1989), 448-456. e e

[17]. KuiPER, N. H., The homotopy type of the unitary group of Hilbert space,
Topology 3 (1965), 19-30.

[18]. LASHOF, R., Classification of fibre bundles by the loop space of the base, Ann.
Math., 64 (1956), 436-446.

[19]. MENSKY, M. B., Group of paths, Observations, Fields and Particles, Moscow
1983 (in Russian). ,

[20]. Emowmm.mmo.z, J. and RAJEEV, S. G., Current algebras in D + 1-dimensions
and determinant bundles over infinite-dimensional Grassmannians Commun.
Math. Phys., 116 (1988), 365-400.

[20]. ”H_>z>x>.v M. and Fuj1, K., Universal Schwinger cocycles of current algebras
in (D + 1)-dimensions, Preprint.

[21]. MILNOR, J., Construction of universal bundles, I. Ann. Math., 63 (1956)
272-284. “ ,

[22]. PiLcH, K. and WARNER, N. P., String structure and the index of the Dirac—
Ramond operator on orbifolds, Commun. Math. Phys., 115 (1988), 191-212.

[23]. PRESSLEY, A. and SEGAL, G., Loop Groups, Oxford, 1986.

[24]. wtmmf S. G., An exactly integrable algebraic model for (3 + 1)-dimensional
Yang-Mills theory, Phys. Lett., 209 (1988), 53-58.

[24]’. TANAKA, M. and Fuui, K., Note on algebraic analogue of Yang-Mills-Higgs
theory, Preprint.

[25]. TauBEs, C. H., S* actions and elliptic
, , genera, Commun. Math. Phys.
(1989), 455-526. ve. 122

[26]. VaFa, C., Modular invariance and discrete torsion on orbif
, C., olds, Nucl. Phys.
B273 (1986), 592-606. ‘ o

[27]. WITTEN, E., Global anomalies in strin, jes
, E., g theory, Anomalies, Geomet d
Topology, 61-99, World Sci., 1985. . v

[28]. WITTEN, E., Quantum field theory and the Jones i
, E., . polynomial, C .
Math. Phys., 121 (1989), 351-399. Y o

Added in proof. Prof. Michor kindly remarked:
(i) By his result, we need not the Convention.

(ii) Lemma 3 occurs in Varadarajan’s book Lie groups, Lie algebras and
their Representations.



