Homotopy Type Theory modulated Cauchy real numbers > history (Rev #8)

Contents

Whenever editing is allowed on the nLab again, this article should be ported over there.

Definition

In set theory

Let \mathbb{Q} be the rational numbers \mathbb{Q} and let

+{x|0<x}\mathbb{Q}_{+} \coloneqq \{x \in \mathbb{Q} \vert 0 \lt x\}

be the positive rational numbers.

The Cauchy real numbers C\mathbb{R}_C is a set with a function ι C C()\iota \in {\mathbb{R}_C}^{C(\mathbb{Q})}, where C()C(\mathbb{Q}) is the set of Cauchy approximations in \mathbb{Q} and C C(){\mathbb{R}_C}^{C(\mathbb{Q})} is the set of functions with domain C()C(\mathbb{Q}) and codomain C\mathbb{R}_C, such that

aC().bC().(ϵ +.a ϵ ϵb ϵ)(ι(a)=ι(b))\forall a \in C(\mathbb{Q}). \forall b \in C(\mathbb{Q}). \left( \forall \epsilon \in \mathbb{Q}_{+}. a_\epsilon \sim_{\epsilon} b_\epsilon \right) \implies (\iota(a) = \iota(b))

where the premetric for ϵ: +\epsilon:\mathbb{Q}_{+} is defined as

a ϵb|a ϵb ϵ|<4ϵa \sim_{\epsilon} b \coloneqq \vert a_\epsilon - b_\epsilon \vert \lt 4 \epsilon

In homotopy type theory

Let \mathbb{Q} be the rational numbers and let

+ x:0<x\mathbb{Q}_{+} \coloneqq \sum_{x:\mathbb{Q}} 0 \lt x

be the positive rational numbers.

The Cauchy real numbers C\mathbb{R}_C are inductively generated by the following:

  • a function ι:C() C\iota: C(\mathbb{Q}) \to \mathbb{R}_C, where C()C(\mathbb{Q}) is the type of Cauchy approximations in \mathbb{Q}.

  • a dependent family of terms

    a:C(),b:C()eq C(a,b):( ϵ: +a ϵ ϵb ϵ)(ι(a)= Cι(b))a:C(\mathbb{Q}), b:C(\mathbb{Q}) \vdash eq_{\mathbb{R}_C}(a, b): \left( \prod_{\epsilon:\mathbb{Q}_{+}} a_\epsilon \sim_{\epsilon} b_\epsilon \right) \to (\iota(a) =_{\mathbb{R}_C} \iota(b))

    where the premetric for ϵ: +\epsilon:\mathbb{Q}_{+} is defined as

    a ϵb|a ϵb ϵ|<4ϵa \sim_{\epsilon} b \coloneqq \vert a_\epsilon - b_\epsilon \vert \lt 4 \epsilon
  • a family of dependent terms

    a: C,b: Cτ(a,b):isProp(a= Cb)a:\mathbb{R}_C, b:\mathbb{R}_C \vdash \tau(a, b): isProp(a =_{\mathbb{R}_C} b)

Comment

The Cauchy real numbers are sometimes defined using sequences x:x:\mathbb{N} \to \mathbb{Q}, y:y:\mathbb{N} \to \mathbb{Q} with modulus of Cauchy convergence M: +M:\mathbb{Q}_{+} \to \mathbb{N}, N: +N:\mathbb{Q}_{+} \to \mathbb{N} respectively. However, the composition of a sequence and a modulus of Cauchy convergence yields a Cauchy approximation, so one could define Cauchy approximations a: +a:\mathbb{Q}_{+} \to \mathbb{Q} as axMa \coloneqq x \circ M and b: +b:\mathbb{Q}_{+} \to \mathbb{Q} as byNb \coloneqq y \circ N, with x M(ϵ)=a ϵx_{M(\epsilon)} = a_\epsilon and y N(ϵ)=b ϵy_{N(\epsilon)} = b_\epsilon following from function evaluation. In fact, Cauchy approximations and sequences with a modulus of Cauchy convergence are inter-definable.

See also

References

Revision on April 14, 2022 at 00:31:02 by Anonymous?. See the history of this page for a list of all contributions to it.