Homotopy Type Theory limit of a net > history (Rev #11)

Contents

Definition

In premetric spaces

Let RR be a dense integral subdomain of the rational numbers \mathbb{Q} and let R +R_{+} be the positive terms of RR. Let SS be a R +R_{+}-premetric space. Given a directed type II, a term l:Sl:S is a limit of a net x:ISx: I \to S or that xx converges to ll if ll comes with a term

λ: ϵ:R + N:I i:I(iN)(x i ϵl)\lambda: \prod_{\epsilon:R_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (x_i \sim_{\epsilon} l) \Vert

The type of all limits of a net is defined as

limx l:S( ϵ:R + N:I i:I(iN)(x i ϵl))\lim x \coloneqq \sum_{l:S} \left(\prod_{\epsilon:R_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (x_i \sim_{\epsilon} l) \Vert\right)

A limit of a sequence a:Sa:\mathbb{N} \to S is usually written as

lim xa(x)\lim_{x \to \infty} a(x)

Cauchy approximations

Let RR be a dense integral subdomain of the rational numbers \mathbb{Q} and let R +R_{+} be the positive terms of RR.

A limit of a R +R_{+}-Cauchy approximation x:R +Sx: R_{+} \to S is a term l:Sl:S with

x:R +Sc(x): δ:R + η:R +x δ δηlx:R_{+} \to S \vdash c(x):\prod_{\delta:R_{+}} \prod_{\eta:R_{+}} x_\delta \sim_{\delta \oplus \eta} l

In convergence spaces

See also

Revision on March 31, 2022 at 04:50:57 by Anonymous?. See the history of this page for a list of all contributions to it.