Homotopy Type Theory limit of a function > history (Rev #8)

Contents

Definition

In rational numbers

Let \mathbb{Q} be the rational numbers and let +\mathbb{Q}_{+} be the positive rational numbers. The limit of a function f:f:\mathbb{Q} \to \mathbb{Q} approaching a term c:c:\mathbb{Q} is a term L:L:\mathbb{Q} such that for all directed types II and nets x:Ix:I \to \mathbb{Q} where cc is the limit of xx, LL is the limit of fxf \circ x, or written in type theory:

I:𝒰isDirected(I)× x:IisLimit(c,x)×isLimit(L,fx)\prod_{I:\mathcal{U}} isDirected(I) \times \prod_{x:I \to \mathbb{Q}} isLimit(c, x) \times isLimit(L, f \circ x)

where

isLimit(c,x) ϵ: + N:I i:I(iN)(|x ic|<ϵ)isLimit(c,x) \coloneqq \prod_{\epsilon:\mathbb{Q}_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (\vert x_i - c \vert \lt \epsilon) \Vert
isLimit(L,fx) ϵ: + N:I i:I(iN)(|f(x i)L|<ϵ)isLimit(L,f \circ x) \coloneqq \prod_{\epsilon:\mathbb{Q}_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (\vert f(x_i) - L \vert \lt \epsilon) \Vert

The limit is usually written as

Llim xcf(x)L \coloneqq \lim_{x \to c} f(x)

In Archimedean ordered fields

Let FF be an Archimedean ordered field and let F +F_{+} be the positive terms of FF. The limit of a function f:FFf:\F \to F approaching a term c:Fc:F is a term L:FL:F such that for all directed types II and nets x:IFx:I \to F where cc is the limit of xx, LL is the limit of fxf \circ x, or written in type theory:

I:𝒰isDirected(I)× x:IFisLimit(c,x)×isLimit(L,fx)\prod_{I:\mathcal{U}} isDirected(I) \times \prod_{x:I \to F} isLimit(c, x) \times isLimit(L, f \circ x)

where

isLimit(c,x) ϵ:F + N:I i:I(iN)(|x ic|<ϵ)isLimit(c,x) \coloneqq \prod_{\epsilon:F_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (\vert x_i - c \vert \lt \epsilon) \Vert
isLimit(L,fx) ϵ:F + N:I i:I(iN)(|f(x i)L|<ϵ)isLimit(L,f \circ x) \coloneqq \prod_{\epsilon:F_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (\vert f(x_i) - L \vert \lt \epsilon) \Vert

The limit is usually written as

Llim xcf(x)L \coloneqq \lim_{x \to c} f(x)

Most general definition

Let SS be a type with a predicate isLimit SisLimit_S between the type of all nets in SS

I:𝒰isDirected(I)×(IS)\sum_{I:\mathcal{U}} isDirected(I) \times (I \to S)

and SS itself, and let TT be a type with a predicate isLimit TisLimit_T between the type of all nets in TT

I:𝒰isDirected(I)×(IT)\sum_{I:\mathcal{U}} isDirected(I) \times (I \to T)

and TT itself.

The limit of a function f:STf:S \to T approaching a term c:Sc:S is a term L:TL:T such that for all directed types II and nets x:ISx:I \to S where cc is a limit of xx, LL is a limit of fxf \circ x, or written in type theory:

I:𝒰isDirected(I)× x:ISisLimit S(x,c)×isLimit T(fx,L)\prod_{I:\mathcal{U}} isDirected(I) \times \prod_{x:I \to S} isLimit_S(x, c) \times isLimit_T(f \circ x, L)

See also

Revision on April 7, 2022 at 02:38:13 by Anonymous?. See the history of this page for a list of all contributions to it.