Homotopy Type Theory limit of a function > history (Rev #4)

Contents

Definition

In real numbers

Let \mathbb{R} be a type of real numbers and let +\mathbb{R}_{+} be the positive real numbers. The limit of a function f:f:\mathbb{R} \to \mathbb{R} approaching a term c:c:\mathbb{R} is a term L:L:\mathbb{R} such that for all directed types II and nets x:Ix:I \to \mathbb{R} where cc is the limit of xx, LL is the limit of fxf \circ x, or written in type theory:

I:𝒰isDirected(I)× x:IisLimit(c,x)×isLimit(L,fx)\prod_{I:\mathcal{U}} isDirected(I) \times \prod_{x:I \to \mathbb{R}} isLimit(c, x) \times isLimit(L, f \circ x)

where

isLimit(c,x) ϵ: + N:I i:I(iN)(|x ic|<ϵ)isLimit(c,x) \coloneqq \prod_{\epsilon:\mathbb{R}_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (\vert x_i - c \vert \lt \epsilon) \Vert
isLimit(L,fx) ϵ: + N:I i:I(iN)(|f(x i)L|<ϵ)isLimit(L,f \circ x) \coloneqq \prod_{\epsilon:\mathbb{R}_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (\vert f(x_i) - L \vert \lt \epsilon) \Vert

The limit is usually written as

Llim xcf(x)L \coloneqq \lim_{x \to c} f(x)

In premetric spaces

Let TT be a type and let SS be a TT-premetric space and UU be a VV-premetric space. The limit of a function f:SUf:S \to U approaching a term c:Sc:S is a term L:UL:U such that for all directed types II and nets x:ISx:I \to S where cc is the limit of xx, LL is the limit of fxf \circ x, or written in type theory:

I:𝒰isDirected(I)× x:ISisLimit(c,x)×isLimit(L,fx)\prod_{I:\mathcal{U}} isDirected(I) \times \prod_{x:I \to S} isLimit(c, x) \times isLimit(L, f \circ x)

where

isLimit(c,x) ϵ:T N:I i:I(iN)(x i ϵc)isLimit(c,x) \coloneqq \prod_{\epsilon:T} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (x_i \sim_\epsilon c) \Vert
isLimit(L,fx) ϵ:V N:I i:I(iN)(f(x i) ϵL)isLimit(L,f \circ x) \coloneqq \prod_{\epsilon:V} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (f(x_i) \sim_\epsilon L) \Vert

The limit is usually written as

Llim xcf(x)L \coloneqq \lim_{x \to c} f(x)

In convergence spaces

See also

Revision on March 22, 2022 at 16:22:42 by Anonymous?. See the history of this page for a list of all contributions to it.