Homotopy Type Theory pointwise continuous function > history (Rev #9, changes)

Showing changes from revision #8 to #9: Added | Removed | Changed

Contents

Definition

In rational numbers

Let \mathbb{Q} be the rational numbers , . and An let function I f: I f:\mathbb{Q} \to \mathbb{Q} be is aclosed interval in \mathbb{Q}. An function f:If:I \to \mathbb{Q} is continuous at a point c: I c:I c:\mathbb{Q}

isContinuousAt(f,c) ϵ: + x: I δ: +(|xc|<δ)(|f(x)f(c)|<ϵ) isContinuousAt(f, c) \coloneqq \prod_{\epsilon:\mathbb{Q}_{+}} \prod_{x:I} \prod_{x:\mathbb{Q}} \Vert \sum_{\delta:\mathbb{Q}_{+}} (\vert x - c \vert \lt \delta) \to (\vert f(x) - f(c) \vert \lt \epsilon) \Vert

ff is pointwise continuous in I I \mathbb{Q} if it is continuous at all points cc:

isPointwiseContinuous(f) c: IisContinuousAt(f,c) isPointwiseContinuous(f) \coloneqq \prod_{c:I} \prod_{c:\mathbb{Q}} isContinuousAt(f, c)

ff is uniformly continuous in I I \mathbb{Q} if

isUniformlyContinuous(f) ϵ: + δ: + x: I y: I(x δy)(f(x) ϵf(y)) isUniformlyContinuous(f) \coloneqq \prod_{\epsilon:\mathbb{Q}_{+}} \Vert \sum_{\delta:\mathbb{Q}_{+}} \prod_{x:I} \prod_{x:\mathbb{Q}} \prod_{y:I} \prod_{y:\mathbb{Q}} (x \sim_\delta y) \to (f(x) \sim_\epsilon f(y)) \Vert

In premetric spaces

Let RR be a dense integral subdomain of the rational numbers \mathbb{Q} and let R +R_{+} be the positive terms of RR. Let SS and TT be R +R_{+}-premetric spaces. A function f:STf:S \to T is continuous at a point c:Sc:S if the limit of ff approaching cc exists and is equal to f(c)f(c)

isContinuousAt(f,c)isContr ϵ:R + x:S δ:R +(lim xcx δc)(f(x)= ϵf(c)) isContinuousAt(f, c) \coloneqq isContr(\lim_{x \prod_{\epsilon:R_{+}} \prod_{x:S} \Vert \sum_{\delta:R_{+}} (x \sim_\delta c) \to c} (f(x) f(x) \sim_\epsilon = f(c)) \Vert

ff is pointwise continuous if it is continuous at all points cc:

isPointwiseContinuous(f) c:SisContinuousAt(f,c)isPointwiseContinuous(f) \coloneqq \prod_{c:S} isContinuousAt(f, c)

ff is uniformly continuous if

isUniformlyContinuous(f) ϵ:VR + δ:TR + x:S y:S(x δy)(f(x) ϵf(y)) isUniformlyContinuous(f) \coloneqq \prod_{\epsilon:V} \prod_{\epsilon:R_{+}} \Vert \sum_{\delta:T} \sum_{\delta:R_{+}} \prod_{x:S} \prod_{y:S} (x \sim_\delta y) \to (f(x) \sim_\epsilon f(y)) \Vert

Most general definition

Let SS be a type with a predicate S\to_S between the type of all nets in SS

I:𝒰isDirected(I)×(IS)\sum_{I:\mathcal{U}} isDirected(I) \times (I \to S)

and SS itself, and let TT be a type with a predicate T\to_T between the type of all nets in TT

I:𝒰isDirected(I)×(IT)\sum_{I:\mathcal{U}} isDirected(I) \times (I \to T)

and TT itself.

A function f:STf:S \to T is continuous at a point c:Sc:S

isContinuousAt(f,c) I:𝒰isDirected(I)× x:IS(x Sc)(fx Tf(c))isContinuousAt(f, c) \coloneqq \sum_{I:\mathcal{U}} isDirected(I) \times \prod_{x:I \to S} (x \to_S c) \to (f \circ x \to_T f(c))

ff is pointwise continuous if it is continuous at all points cc:

isPointwiseContinuous(f) c:SisContinuousAt(f,c)isPointwiseContinuous(f) \coloneqq \prod_{c:S} isContinuousAt(f, c)

See also

Revision on March 31, 2022 at 07:05:28 by Anonymous?. See the history of this page for a list of all contributions to it.