Homotopy Type Theory ordered integral domain > history (Rev #3, changes)

Showing changes from revision #2 to #3: Added | Removed | Changed

Definition

erm…

With strict order

An ordered integral domain is a strictly ordered integralHeyting integral domain\mathbb{Z} -algebra such that for every element(a:A,+,,0,,1,#) (A, a:A +, -, 0, \cdot, 1, #) with such thatmax(a,a)>0\max(a, -a) \gt 0, there is an element b:Ab:A such that ab=1a \cdot b = 1.

  • a strict order <\lt

  • a term s:0<1s:0 \lt 1

  • two families of dependent terms

a:A,b:Aα(a,b):(0<a)×(0<b)(0<a+b)a:A, b:A \vdash \alpha(a, b): (0 \lt a) \times (0 \lt b) \to (0 \lt a + b)
a:A,b:Aμ(a,b):(0<a)×(0<b)(0<ab)a:A, b:A \vdash \mu(a, b): (0 \lt a) \times (0 \lt b) \to (0 \lt a \cdot b)

With positivity

An ordered integral domain is a Heyting integral domain with a predicate isPositive\mathrm{isPositive} such that

  • zero is not positive:
isPositive(0)\mathrm{isPositive}(0) \to \emptyset
  • one is positive:
isPositive(1)\mathrm{isPositive}(1)
  • for every term a:Aa:A, if aa is not positive and a-a is not positive, then a=0a = 0
a:A((isPositive(a))×(isPositive(a)))(a=0)\prod_{a:A} ((\mathrm{isPositive}(a) \to \emptyset) \times (\mathrm{isPositive}(-a) \to \emptyset)) \to (a = 0)
  • for every term a:Aa:A, if aa is positive, then a-a is not positive.
a:A b:AisPositive(a)(isPositive(a))\prod_{a:A} \prod_{b:A} \mathrm{isPositive}(a) \to (\mathrm{isPositive}(-a) \to \emptyset)
  • for every term a:Aa:A, b:Ab:A, if aa is positive, then either bb is positive or aba - b is positive.
a:A b:AisPositive(a)[isPositive(b)+isPositive(ab)]\prod_{a:A} \prod_{b:A} \mathrm{isPositive}(a) \to \left[\mathrm{isPositive}(b) + \mathrm{isPositive}(a - b)\right]
  • for every term a:Aa:A, b:Ab:A, if aa is positive and bb is positive, then a+ba + b is positive
a:A b:AisPositive(a)×isPositive(b)isPositive(a+b)\prod_{a:A} \prod_{b:A} \mathrm{isPositive}(a) \times \mathrm{isPositive}(b) \to \mathrm{isPositive}(a + b)
  • for every term a:Aa:A, b:Ab:A, if aa is positive and bb is positive, then aba \cdot b is positive
a:A b:AisPositive(a)×isPositive(b)isPositive(ab)\prod_{a:A} \prod_{b:A} \mathrm{isPositive}(a) \times \mathrm{isPositive}(b) \to \mathrm{isPositive}(a \cdot b)

Examples

See also

Revision on June 12, 2022 at 21:19:58 by Anonymous?. See the history of this page for a list of all contributions to it.