Homotopy Type Theory limit of a function > history (Rev #5, changes)

Showing changes from revision #4 to #5: Added | Removed | Changed

Contents

Definition

In real rational numbers

Let \mathbb{R} \mathbb{Q} be a the type of real rational numbers and let + \mathbb{R}_{+} \mathbb{Q}_{+} be the positive real rational numbers. Thelimit of a function f: f:\mathbb{R} f:\mathbb{Q} \to \mathbb{R} \mathbb{Q} approaching a term c: c:\mathbb{R} c:\mathbb{Q} is a term L: L:\mathbb{R} L:\mathbb{Q} such that for all directed types II and nets x:I x:I \to \mathbb{R} \mathbb{Q} where cc is the limit of xx, LL is the limit of fxf \circ x, or written in type theory:

I:𝒰isDirected(I)× x:IisLimit(c,x)×isLimit(L,fx)\prod_{I:\mathcal{U}} isDirected(I) \times \prod_{x:I \to \mathbb{R}} isLimit(c, x) \times isLimit(L, f \circ x)

where

isLimit(c,x) ϵ: + N:I i:I(iN)(|x ic|<ϵ) isLimit(c,x) \coloneqq \prod_{\epsilon:\mathbb{R}_{+}} \prod_{\epsilon:\mathbb{Q}_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (\vert x_i - c \vert \lt \epsilon) \Vert
isLimit(L,fx) ϵ: + N:I i:I(iN)(|f(x i)L|<ϵ) isLimit(L,f \circ x) \coloneqq \prod_{\epsilon:\mathbb{R}_{+}} \prod_{\epsilon:\mathbb{Q}_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (\vert f(x_i) - L \vert \lt \epsilon) \Vert

The limit is usually written as

Llim xcf(x)L \coloneqq \lim_{x \to c} f(x)

In premetric spaces

Let TT be a type and let SS be a TT-premetric space and UU be a VV-premetric space. The limit of a function f:SUf:S \to U approaching a term c:Sc:S is a term L:UL:U such that for all directed types II and nets x:ISx:I \to S where cc is the limit of xx, LL is the limit of fxf \circ x, or written in type theory:

I:𝒰isDirected(I)× x:ISisLimit(c,x)×isLimit(L,fx)\prod_{I:\mathcal{U}} isDirected(I) \times \prod_{x:I \to S} isLimit(c, x) \times isLimit(L, f \circ x)

where

isLimit(c,x) ϵ:T N:I i:I(iN)(x i ϵc)isLimit(c,x) \coloneqq \prod_{\epsilon:T} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (x_i \sim_\epsilon c) \Vert
isLimit(L,fx) ϵ:V N:I i:I(iN)(f(x i) ϵL)isLimit(L,f \circ x) \coloneqq \prod_{\epsilon:V} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (f(x_i) \sim_\epsilon L) \Vert

The limit is usually written as

Llim xcf(x)L \coloneqq \lim_{x \to c} f(x)

In convergence spaces

See also

Revision on March 22, 2022 at 17:03:08 by Anonymous?. See the history of this page for a list of all contributions to it.