Homotopy Type Theory integers > history (Rev #20, changes)

Showing changes from revision #19 to #20: Added | Removed | Changed

< integer

Definition

The integers \mathbb{Z} are the initial commutative ring structure on the natural numbers \mathbb{N}.

Commutative ring structure

A The commutative integers ring structure on \mathbb{N} \mathbb{Z} consists are of the an initial element commutative ring structure on the natural numbers1: 1:\mathbb{N} \mathbb{N} , . functions()+():×(-)+(-):\mathbb{N} \times \mathbb{N} \to \mathbb{N} and ()():×(-)\cdot(-):\mathbb{N} \times \mathbb{N} \to \mathbb{N}, and dependent products

assoc +: x: y: z:x+(y+z)= (x+y)+z\mathrm{assoc}_+:\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} \prod_{z:\mathbb{N}} x + (y + z) =_\mathbb{N} (x + y) + z

A commutative ring structure on \mathbb{N} consists of an element 1:1:\mathbb{N}, functions ()+():×(-)+(-):\mathbb{N} \times \mathbb{N} \to \mathbb{N} and ()():×(-)\cdot(-):\mathbb{N} \times \mathbb{N} \to \mathbb{N}, and dependent products

linv +: x:isEquiv(λy:.x+y)\mathrm{linv}_+:\prod_{x:\mathbb{N}} \mathrm{isEquiv}(\lambda y:\mathbb{N}.x + y)
rinv assoc +: x:isEquiv y: z:x+(λy:.y+z)= (x+y)+z \mathrm{rinv}_+:\prod_{x:\mathbb{N}} \mathrm{assoc}_+:\prod_{x:\mathbb{N}} \mathrm{isEquiv}(\lambda \prod_{y:\mathbb{N}} y:\mathbb{N}.y \prod_{z:\mathbb{N}} x + x) (y + z) =_\mathbb{N} (x + y) + z
ldist linv ,++: x: y:isEquiv z:x(λy + : z ) .= xy+ x y )z \mathrm{ldist}_{\cdot, \mathrm{linv}_+:\prod_{x:\mathbb{N}} +}:\prod_{x:\mathbb{N}} \mathrm{isEquiv}(\lambda \prod_{y:\mathbb{N}} y:\mathbb{N}.x \prod_{z:\mathbb{N}} x \cdot (y + z) y) =_\mathbb{N} x \cdot y + x \cdot z
rdist rinv ,++: x: y:isEquiv z:(λy + : z ) .x= yx+zx) \mathrm{rdist}_{\cdot, \mathrm{rinv}_+:\prod_{x:\mathbb{N}} +}:\prod_{x:\mathbb{N}} \mathrm{isEquiv}(\lambda \prod_{y:\mathbb{N}} y:\mathbb{N}.y \prod_{z:\mathbb{N}} (y + z) x) \cdot x =_\mathbb{N} y \cdot x + z \cdot x
lunit ldist ,1+: x:1 y: z:x(y+z)= xy+xz \mathrm{lunit}_{\cdot, \mathrm{ldist}_{\cdot, 1}:\prod_{x:\mathbb{N}} +}:\prod_{x:\mathbb{N}} 1 \prod_{y:\mathbb{N}} \cdot \prod_{z:\mathbb{N}} x \cdot (y + z) =_\mathbb{N} x \cdot y + x \cdot z
runit rdist ,1+: x:x y: z:(y+z)1x= yx+zx \mathrm{runit}_{\cdot, \mathrm{rdist}_{\cdot, 1}:\prod_{x:\mathbb{N}} +}:\prod_{x:\mathbb{N}} x \prod_{y:\mathbb{N}} \prod_{z:\mathbb{N}} (y + z) \cdot 1 x =_\mathbb{N} y \cdot x + z \cdot x
comm lunit ,1: x:x1 y x= yx \mathrm{comm}_{\cdot}:\prod_{x:\mathbb{N}} \mathrm{lunit}_{\cdot, x 1}:\prod_{x:\mathbb{N}} 1 \cdot y x =_\mathbb{N} y \cdot x
runit ,1: x:x1= x\mathrm{runit}_{\cdot, 1}:\prod_{x:\mathbb{N}} x \cdot 1 =_\mathbb{N} x

The type of all commutative ring structures on \mathbb{N} is given by

comm : x:xy= yx\mathrm{comm}_{\cdot}:\prod_{x:\mathbb{N}} x \cdot y =_\mathbb{N} y \cdot x
CRingStr() 1: +:× :×( x: y:v z:x+(y+z)= (x+y)+z) ×( x:isEquiv(λy:.x+y))×( x:isEquiv(λy:.y+x)) ×( x: y: z:x(y+z)= xy+xz)×( x: y: z:(y+z)x= yx+zx) ×( x:1x= x)×( x:Rx1= x)×( x:Rxy= yx)\mathrm{CRingStr}(\mathbb{N}) \coloneqq \begin{array}{c} \sum_{1:\mathbb{N}} \sum_{+:\mathbb{N} \times \mathbb{N} \to \mathbb{N}} \sum_{\cdot:\mathbb{N} \times \mathbb{N} \to \mathbb{N}} \left(\prod_{x:\mathbb{N}} \prod_{y:v} \prod_{z:\mathbb{N}} x + (y + z) =_\mathbb{N} (x + y) + z\right) \\ \times \left(\prod_{x:\mathbb{N}} \mathrm{isEquiv}(\lambda y:\mathbb{N}.x + y)\right) \times \left(\prod_{x:\mathbb{N}} \mathrm{isEquiv}(\lambda y:\mathbb{N}.y + x)\right) \\ \times \left(\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} \prod_{z:\mathbb{N}} x \cdot (y + z) =_\mathbb{N} x \cdot y + x \cdot z\right) \times \left(\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} \prod_{z:\mathbb{N}} (y + z) \cdot x =_\mathbb{N} y \cdot x + z \cdot x\right) \\ \times \left(\prod_{x:\mathbb{N}} 1 \cdot x =_\mathbb{N} x\right) \times \left(\prod_{x:R} x \cdot 1 =_\mathbb{N} x\right) \times \left(\prod_{x:R} x \cdot y =_\mathbb{N} y \cdot x\right) \end{array}

The type of all commutative ring structures on \mathbb{N} is given by

A commutative ring homomorphism between two commutative ring structures A:CRingStr()A:\mathrm{CRingStr}(\mathbb{N}) and B:CRingStr()B:\mathrm{CRingStr}(\mathbb{N}) consists of a function f:f:\mathbb{N} \to \mathbb{N} and dependent products

CRingStr() 1: +:× :×( x: y:v z:x+(y+z)= (x+y)+z) ×( x:isEquiv(λy:.x+y))×( x:isEquiv(λy:.y+x)) ×( x: y: z:x(y+z)= xy+xz)×( x: y: z:(y+z)x= yx+zx) ×( x:1x= x)×( x:Rx1= x)×( x:Rxy= yx)\mathrm{CRingStr}(\mathbb{N}) \coloneqq \begin{array}{c} \sum_{1:\mathbb{N}} \sum_{+:\mathbb{N} \times \mathbb{N} \to \mathbb{N}} \sum_{\cdot:\mathbb{N} \times \mathbb{N} \to \mathbb{N}} \left(\prod_{x:\mathbb{N}} \prod_{y:v} \prod_{z:\mathbb{N}} x + (y + z) =_\mathbb{N} (x + y) + z\right) \\ \times \left(\prod_{x:\mathbb{N}} \mathrm{isEquiv}(\lambda y:\mathbb{N}.x + y)\right) \times \left(\prod_{x:\mathbb{N}} \mathrm{isEquiv}(\lambda y:\mathbb{N}.y + x)\right) \\ \times \left(\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} \prod_{z:\mathbb{N}} x \cdot (y + z) =_\mathbb{N} x \cdot y + x \cdot z\right) \times \left(\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} \prod_{z:\mathbb{N}} (y + z) \cdot x =_\mathbb{N} y \cdot x + z \cdot x\right) \\ \times \left(\prod_{x:\mathbb{N}} 1 \cdot x =_\mathbb{N} x\right) \times \left(\prod_{x:R} x \cdot 1 =_\mathbb{N} x\right) \times \left(\prod_{x:R} x \cdot y =_\mathbb{N} y \cdot x\right) \end{array}
x: y:f(x+ Ay)= f(x)+ Bf(y)\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} f(x +_A y) =_\mathbb{N} f(x) +_B f(y)

A commutative ring homomorphism between two commutative ring structures A:CRingStr()A:\mathrm{CRingStr}(\mathbb{N}) and B:CRingStr()B:\mathrm{CRingStr}(\mathbb{N}) consists of a function f:f:\mathbb{N} \to \mathbb{N} and dependent products

x: y:f(x Ay)= f(x) Bf(y)\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} f(x \cdot_A y) =_\mathbb{N} f(x) \cdot_B f(y)
x: y:f(1 Ax+ Ay)= 1 Bf(x)+ Bf(y) f(1_A) \prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} f(x +_A y) =_\mathbb{N} 1_B f(x) +_B f(y)
x: y:f(x Ay)= f(x) Bf(y)\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} f(x \cdot_A y) =_\mathbb{N} f(x) \cdot_B f(y)

The type of commutative ring homomorphisms between commutative ring structures A:CRingStr()A:\mathrm{CRingStr}(\mathbb{N}) and B:CRingStr()B:\mathrm{CRingStr}(\mathbb{N}) is given by

f(1 A)= 1 Bf(1_A) =_\mathbb{N} 1_B
CRingHom()(A,B) f:( x: y:f(x+ Ay)= f(x)+ Bf(y)) ×( x: y:f(x Ay)= f(x) Bf(y))×(f(1 A)= S1 B)\mathrm{CRingHom}(\mathbb{N})(A, B) \coloneqq \begin{array}{c} \sum_{f:\mathbb{N} \to \mathbb{N}} \left(\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} f(x +_A y) =_\mathbb{N} f(x) +_B f(y)\right) \\ \times \left(\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} f(x \cdot_A y) =_\mathbb{N} f(x) \cdot_B f(y)\right) \times \left(f(1_A) =_S 1_B\right) \end{array}

The type of commutative ring homomorphisms between commutative ring structures A:CRingStr()A:\mathrm{CRingStr}(\mathbb{N}) and B:CRingStr()B:\mathrm{CRingStr}(\mathbb{N}) is given by

The initial commutative ring structure on \mathbb{N} is a commutative ring structure :CRingStr()\mathbb{Z}:\mathrm{CRingStr}(\mathbb{N}) such that for all commutative ring structures R:CRingStr()R:\mathrm{CRingStr}(\mathbb{N}) the type of commutative ring homomorphisms CRingHom()(,R)\mathrm{CRingHom}(\mathbb{N})(\mathbb{Z}, R) is contractible:

CRingHom()(A,B) f:( x: y:f(x+ Ay)= f(x)+ Bf(y)) ×( x: y:f(x Ay)= f(x) Bf(y))×(f(1 A)= 1 B)\mathrm{CRingHom}(\mathbb{N})(A, B) \coloneqq \begin{array}{c} \sum_{f:\mathbb{N} \to \mathbb{N}} \left(\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} f(x +_A y) =_\mathbb{N} f(x) +_B f(y)\right) \\ \times \left(\prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} f(x \cdot_A y) =_\mathbb{N} f(x) \cdot_B f(y)\right) \times \left(f(1_A) =_\mathbb{N} 1_B\right) \end{array}
:CRingStr() R:CRingStr()isContr(CRingHom()(,R))\sum_{\mathbb{Z}:\mathrm{CRingStr}(\mathbb{N})} \prod_{R:\mathrm{CRingStr}(\mathbb{N})} \mathrm{isContr}(\mathrm{CRingHom}(\mathbb{N})(\mathbb{Z}, R))

The initial commutative ring structure on \mathbb{N} is a commutative ring structure :CRingStr()\mathbb{Z}:\mathrm{CRingStr}(\mathbb{N}) such that for all commutative ring structures R:CRingStr()R:\mathrm{CRingStr}(\mathbb{N}) the type of commutative ring homomorphisms CRingHom()(,R)\mathrm{CRingHom}(\mathbb{N})(\mathbb{Z}, R) is contractible:

:CRingStr() R:CRingStr()isContr(CRingHom()(,R))\sum_{\mathbb{Z}:\mathrm{CRingStr}(\mathbb{N})} \prod_{R:\mathrm{CRingStr}(\mathbb{N})} \mathrm{isContr}(\mathrm{CRingHom}(\mathbb{N})(\mathbb{Z}, R))

Euclidean domain structure

In fact, the integers are the initial ordered integral domain structure on \mathbb{N}

Revision on November 22, 2023 at 14:48:41 by .?. See the history of this page for a list of all contributions to it.