Homotopy Type Theory geometric algebra > history (Rev #4, changes)

Showing changes from revision #3 to #4: Added | Removed | Changed

Defintion

Given a commutative ring RR, a RR-geometric algebra is an aRRgraded $R$-module - and an algebra $R$-algebra AA with a canonical ring homomorphism ι i:RA \iota: i:R R \to A , with a an binary function() ():A×A\langle (-) \rangle_{(-)}: A \times \mathbb{N} \to Aisomorphism? called thegrade projection operatorj:A 0Rj:\langle A \rangle_0 \cong R such and that aquadratic form () 2:A 1R(-)^2:\langle A \rangle_1 \to R.

a:Aa= n:a n\prod_{a:A} a = \sum_{n:\mathbb{N}} \langle a \rangle_n

Every RR-geometric algebra is a RR-Clifford algebra.

a:A b:A n:a+b n=a n+b n\prod_{a:A} \prod_{b:A} \prod_{n:\mathbb{N}} \langle a + b \rangle_n = \langle a \rangle_n + \langle b \rangle_n
a:A c:A n:(c=c 0)×(ca n=ca n)\prod_{a:A} \prod_{c:A} \prod_{n:\mathbb{N}} (c = \langle c \rangle_0) \times (\langle c a \rangle_n = c \langle a \rangle_n)
a:A n:a n n=a n\prod_{a:A} \prod_{n:\mathbb{N}} \langle \langle a \rangle_n \rangle_n = \langle a \rangle_n
a:A m: n:(mn)×(a m n=0)\prod_{a:A} \prod_{m:\mathbb{N}} \prod_{n:\mathbb{N}} (m \neq n) \times (\langle \langle a \rangle_m \rangle_n = 0)

For a natural number n:n:\mathbb{N}, the image of () n\langle (-) \rangle_n under AA is called the nn-vector space and is denoted as A n\langle A \rangle_n.

A 0R\langle A \rangle_0 \cong R
v:A 1 r:A 0v 2=r\prod_{v:\langle A \rangle_1} \Vert \sum_{r:\langle A \rangle_0} v^2 = r \Vert

Terms of AA are called multivectors. The terms of A n\langle A \rangle_n are called nn-vectors, 00-vectors are called scalars and 11-vectors are just called vectors.

Every RR-geometric algebra is a RR-Clifford algebra.

See also

References

  • G. Aragón, J.L. Aragón, M.A. Rodríguez (1997), Clifford Algebras and Geometric Algebra, Advances in Applied Clifford Algebras Vol. 7 No. 2, pg 91–102, doi:10.1007/BF03041220, S2CID:120860757

Revision on May 10, 2022 at 16:38:59 by Anonymous?. See the history of this page for a list of all contributions to it.