Homotopy Type Theory commutative monoid > history (Rev #3, changes)

Showing changes from revision #2 to #3: Added | Removed | Changed

Definition

A commutative monoid or commutative A 3A_3-algebra in sets consists of

  • A type AA,
  • A basepoint e:Ae:A
  • A binary operation μ:AAA\mu : A \to A \to A
  • A left unitor
    λ: (a:A)μ(e,a)=a\lambda:\prod_{(a:A)} \mu(e,a)=a
  • A right unitor
    ρ: (a:A)μ(a,e)=a\rho:\prod_{(a:A)} \mu(a,e)=a
  • An asssociator
    α: (a:A) (b:A) (c:A)μ(μ(a,b),c)=μ(a,μ(b,c))\alpha:\prod_{(a:A)} \prod_{(b:A)} \prod_{(c:A)} \mu(\mu(a, b),c)=\mu(a,\mu(b,c))
  • A commutator
    κ: (a:A) (b:A)μ(a,b)=μ(b,a)\kappa:\prod_{(a:A)} \prod_{(b:A)} \mu(a, b)=\mu(b, a)
  • A 0-truncator
    τ 0: (a:A) (b:A) (c:a=b) (d:a=b) (x:c=d) (y:c=d)x=y\tau_0: \prod_{(a:A)} \prod_{(b:A)} \prod_{(c:a=b)} \prod_{(d:a=b)} \sum_{(x:c=d)} \prod_{(y:c=d)} x=y

Examples

  • The integers are an commutative monoid.

See also

Revision on February 6, 2022 at 02:49:44 by Anonymous?. See the history of this page for a list of all contributions to it.