Homotopy Type Theory algebraic limit field > history (Rev #2, changes)

Showing changes from revision #1 to #2: Added | Removed | Changed

Contents

Idea

A general structure where the various concepts in scalar calculus makes sense.

Definition

Let FF be a Heyting field and a function limit space. FF is a calculus field if the algebraic limit theorems are satisfied, i.e. if the limit preserves the field operations:

z: c:S(lim xc0(x)=0)z:\prod_{c:S} \left(\lim_{x \to c} 0(x) = 0\right)
a: c:S f:FuncWithLim(S, T F)(c) g:FuncWithLim(S, T F)(c)(lim xcf(x)+g(x)=lim xcf(x)+lim xcg(x)) a:\prod_{c:S} \prod_{f:FuncWithLim(S, T)(c)} F)(c)} \prod_{g:FuncWithLim(S, T)(c)} F)(c)} \left(\lim_{x \to c} f(x) + g(x) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)\right)
n: c:S f:FuncWithLim(S, T F)(c)(lim xcf(x)=lim xcf(x)) n:\prod_{c:S} \prod_{f:FuncWithLim(S, T)(c)} F)(c)} \left(\lim_{x \to c} -f(x) = -\lim_{x \to c} f(x) \right)
s: c:S f:FuncWithLim(S, T F)(c) g:FuncWithLim(S, T F)(c)(lim xcf(x)g(x)=lim xcf(x)lim xcg(x)) s:\prod_{c:S} \prod_{f:FuncWithLim(S, T)(c)} F)(c)} \prod_{g:FuncWithLim(S, T)(c)} F)(c)} \left(\lim_{x \to c} f(x) - g(x) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)\right)
α: c:S f:FuncWithLim(S, T F)(c) a:Z(lim xcaf(x)=a(lim xcf(x))) \alpha:\prod_{c:S} \prod_{f:FuncWithLim(S, T)(c)} F)(c)} \prod_{a:\mathbf{Z}} \prod_{a:\mathbb{Z}} \left(\lim_{x \to c} a f(x) = a \left(\lim_{x \to c} f(x)\right) \right)
o α: c:S(lim xc1(x)=1) f:FuncWithLim(S,F)(c) a:S(lim xcaf(x)=a(lim xcf(x))) o:\prod_{c:S} \alpha:\prod_{c:S} \prod_{f:FuncWithLim(S, F)(c)} \prod_{a:S} \left(\lim_{x \to c} 1(x) a f(x) = 1\right) a \left(\lim_{x \to c} f(x)\right) \right)
m o: c:S f:FuncWithLim(S,T)(c)(lim xc1(x)=1) g:FuncWithLim(S,T)(c)(lim xcf(x)g(x)=lim xcf(x)lim xcg(x)) m:\prod_{c:S} o:\prod_{c:S} \prod_{f:FuncWithLim(S, T)(c)} \prod_{g:FuncWithLim(S, T)(c)} \left(\lim_{x \to c} f(x) 1(x) \cdot g(x) = \lim_{x 1\right) \to c} f(x) \cdot \lim_{x \to c} g(x)\right)
p m: c:S f:FuncWithLim(S, T F)(c) n g:NFuncWithLim(S,F)(c)(lim xcf(x) nf(x)g(x)=(lim xcf(x)) nlim xcf(x)lim xcg(x)) p:\prod_{c:S} m:\prod_{c:S} \prod_{f:FuncWithLim(S, T)(c)} F)(c)} \prod_{n:\mathbf{N}} \prod_{g:FuncWithLim(S, F)(c)} \left(\lim_{x \to c} {f(x)}^n f(x) \cdot g(x) = {\left(\lim_{x \lim_{x \to c} f(x)\right)}^n f(x) \right) \cdot \lim_{x \to c} g(x)\right)
r p: c:S f:FuncWithLim(S, T F)(c)((lim xcf(x))#0) n:(lim xcf(x) n=(lim xcf(x)) n)(lim xcf(x) 1=(lim xcf(x)) 1) r:\prod_{c:S} p:\prod_{c:S} \prod_{f:FuncWithLim(S, T)(c)} F)(c)} \left(\left(\lim_{x \prod_{n:\mathbb{N}} \to c} f(x)\right) \# 0\right) \to \left(\lim_{x \to c} {f(x)}^{-1} {f(x)}^n = {\left(\lim_{x \to c} f(x)\right)}^{-1}\right) f(x)\right)}^n \right)
r: c:S f:FuncWithLim(S,F)(c)((lim xcf(x))#0)(lim xcf(x) 1=(lim xcf(x)) 1)r:\prod_{c:S} \prod_{f:FuncWithLim(S, F)(c)} \left(\left(\lim_{x \to c} f(x)\right) \# 0\right) \to \left(\lim_{x \to c} {f(x)}^{-1} = {\left(\lim_{x \to c} f(x)\right)}^{-1}\right)

See also

Revision on April 16, 2022 at 13:07:51 by Anonymous?. See the history of this page for a list of all contributions to it.