Homotopy Type Theory Sandbox (Rev #71, changes)

Showing changes from revision #70 to #71: Added | Removed | Changed

Commutative algebra

Cancellative Trivial elements ring

Given A a commutative ringRR , a is terme:Re:Rtrivial is ifleft cancellative0=10 = 1 if for all a:Ra:R and b:Rb:R, ea=ebe \cdot a = e \cdot b implies a=ba = b.

isLeftCancellative(e) a:R b:R(ea=eb)(a=b)\mathrm{isLeftCancellative}(e) \coloneqq \prod_{a:R} \prod_{b :R}(e \cdot a = e \cdot b) \to (a = b)

Discrete rings

A term commutative ringe:R e:R R is right discrete cancellative if for all elements a x:R a:R x:R and b y:R b:R y:R , either a xe= b ye a x \cdot e = b y \cdot e , implies or a x= b y a x = b y implies 0=10 = 1.

isRightCancellative x:R y:R( e x=y) + a:R b:R( a xe= b ye)(a0=b1) \mathrm{isRightCancellative}(e) \prod_{x:R} \coloneqq \prod_{y:R} \prod_{a:R} (x \prod_{b :R}(a \cdot e = b y) \cdot + e) (x = y) \to (a (0 = b) 1)

An term e:Re:R is cancellative if it is both left cancellative and right cancellative.

Regular elements

isCancellative(e)isLeftCancellative(e)×isRightCancellative(e)\mathrm{isCancellative}(e) \coloneqq \mathrm{isLeftCancellative}(e) \times \mathrm{isRightCancellative}(e)

Given a commutative ring RR, a term e:Re:R is left regular if for all a:Ra:R and b:Rb:R, ea=ebe \cdot a = e \cdot b implies a=ba = b.

The monoid of cancellative elements in RR is the subset of all cancellative elements in RR

isLeftRegular(e) a:R b:R(ea=eb)(a=b)\mathrm{isLeftRegular}(e) \coloneqq \prod_{a:R} \prod_{b:R} (e \cdot a = e \cdot b) \to (a = b)
Can(R) e:RisCancellative(e)\mathrm{Can}(R) \coloneqq \sum_{e:R} \mathrm{isCancellative}(e)

A term e:Re:R is right regular if for all a:Ra:R and b:Rb:R, ae=bea \cdot e = b \cdot e implies a=ba = b.

isRightRegular(e) a:R b:R(ae=be)(a=b)\mathrm{isRightRegular}(e) \coloneqq \prod_{a:R} \prod_{b:R} (a \cdot e = b \cdot e) \to (a = b)

An term e:Re:R is regular if it is both left regular and right regular.

isRegular(e)isLeftRegular(e)×isRightRegular(e)\mathrm{isRegular}(e) \coloneqq \mathrm{isLeftRegular}(e) \times \mathrm{isRightRegular}(e)

The multiplicative monoid of regular elements in RR is the submonoid of all regular elements in RR

Reg(R) e:RisRegular(e)\mathrm{Reg}(R) \coloneqq \sum_{e:R} \mathrm{isRegular}(e)

Invertible elements

Given a commutative ring RR, a term e:Re:R is left invertible if the fiber of right multiplication by ee at 11 is inhabited.

isLeftInvertible(e) a:R[ a:Rae=1]ae=1 \mathrm{isLeftInvertible}(e) \coloneqq \sum_{a:R} \left[\sum_{a:R} a \cdot e = 1 1\right]

A term e:Re:R is right invertible if the fiber of left multiplication by ee at 11 is inhabited.

isRightInvertible(e) a:R[ a:Rea=1]ea=1 \mathrm{isRightInvertible}(e) \coloneqq \sum_{a:R} \left[\sum_{a:R} e \cdot a = 1 1\right]

An term e:Re:R is invertible or a unit if it is both left invertible and right invertible.

isInvertible(e)isLeftInvertible(e)×isRightInvertible(e)\mathrm{isInvertible}(e) \coloneqq \mathrm{isLeftInvertible}(e) \times \mathrm{isRightInvertible}(e)

The multiplicative group of units invertible elements inRR is the subset subgroup of all units invertible elements inRR

R × e:RisInvertible(e)R^\times \coloneqq \sum_{e:R} \mathrm{isInvertible}(e)

Non-cancellative Non-regular and non-invertible elements

Given An a element commutative ringx:R R x:R , the is monoid non-regular of if cancellative elements in R x R x is being denoted regular as implies thatCan0 ( =R1) \mathrm{Can}(R) 0 = 1 with injection i:Can(R)Ri:\mathrm{Can}(R) \to R and the group of units is denoted as R ×R^\times with injection j:R ×Rj:R^\times \to R. An element xRx \in R is non-cancellative if for all elements yCan(R)y \in \mathrm{Can}(R), if i(y)=xi(y) = x, then 0=10 = 1. An element xRx \in R is non-invertible if for all elements yR ×y \in R^\times, if j(y)=xj(y) = x, then 0=10 = 1.

A commutative ring is an integral domain if every non-cancellative element is equal to zero. A commutative ring is a field if every non-invertible element is equal to zero.

isNonRegular(x)isRegular(x)(0=1)\mathrm{isNonRegular}(x) \coloneqq \mathrm{isRegular}(x) \to (0 = 1)

An element x:Rx:R is non-invertible if xx being invertible implies that 0=10 = 1

isNonInvertible(x)isInvertible(x)(0=1)\mathrm{isNonInvertible}(x) \coloneqq \mathrm{isInvertible}(x) \to (0 = 1)

Zero is always a non-regular and non-invertible element of RR. By definition of non-regular and non-invertible, if 00 is regular or invertible, then the ring RR is trivial.

A commutative ring is integral if every non-regular element is equal to zero. A commutative ring is a field if every non-invertible element is equal to zero.

References

  • Frank Quinn, Proof Projects for Teachers (pdf)

  • Henri Lombardi, Claude Quitté, Commutative algebra: Constructive methods (Finite projective modules) (arXiv:1605.04832)

Revision on June 19, 2022 at 22:54:27 by Anonymous?. See the history of this page for a list of all contributions to it.