Homotopy Type Theory Eudoxus real numbers > history (Rev #2, changes)

Showing changes from revision #1 to #2: Added | Removed | Changed

Contents

Whenever editing is allowed on the nLab again, this article should be ported over there.

Definition

Let the proposition that an endofunction f:f:\mathbb{Z} \to \mathbb{Z} over the integers is bounded be defined as follows:

In set theory

isBounded(f) C: m:|f(m)|<CisBounded(f) \coloneqq \left\Vert \sum_{C:\mathbb{Z}} \prod_{m:\mathbb{Z}} \vert f(m) \vert \lt C \ \right\Vert

An endofunction f: f:\mathbb{Z}^\mathbb{Z} over the integers is bounded if

and let the proposition that ff is almost linear be defined as follows:

C.m.|f(m)|<C\exists C \in \mathbb{Z}. \forall m \in \mathbb{Z}. \vert f(m) \vert \lt C
isAlmostLinear(f) C: m: n:|f(m+n)f(m)f(n)|<CisAlmostLinear(f) \coloneqq \left\Vert \sum_{C:\mathbb{Z}} \prod_{m:\mathbb{Z}} \prod_{n:\mathbb{Z}} \vert f(m + n) - f(m) - f(n) \vert \lt C \ \right\Vert

and ff is almost linear if

C.m.n.|f(m+n)f(m)f(n)|<C\exists C \in \mathbb{Z}. \forall m \in \mathbb{Z}. \forall n \in \mathbb{Z}. \vert f(m + n) - f(m) - f(n) \vert \lt C

Let the set of almost linear endofunctions over the integers be defined as

AL(){f |C.m.n.|f(m+n)f(m)f(n)|<C}AL(\mathbb{Z}) \coloneqq \{f\in \mathbb{Z}^\mathbb{Z} \vert \exists C \in \mathbb{Z}. \forall m \in \mathbb{Z}. \forall n \in \mathbb{Z}. \vert f(m + n) - f(m) - f(n) \vert \lt C \}

The set of Eudoxus real numbers is a set \mathbb{R} with a function ι AL()\iota \in \mathbb{R}^{AL(\mathbb{Z})} such that

fAL().gAL().(C.m.|f(m)g(m)|<C)(ι(f)=ι(g))\forall f \in AL(\mathbb{Z}). \forall g \in AL(\mathbb{Z}). (\exists C \in \mathbb{Z}. \forall m \in \mathbb{Z}. \vert f(m) - g(m) \vert \lt C) \implies (\iota(f) = \iota(g))

In homotopy type theory

Let the proposition that an endofunction f:f:\mathbb{Z} \to \mathbb{Z} over the integers is bounded be defined as follows:

isBounded(f) C: m:|f(m)|<CisBounded(f) \coloneqq \left\Vert \sum_{C:\mathbb{Z}} \prod_{m:\mathbb{Z}} \vert f(m) \vert \lt C \ \right\Vert

and let the proposition that ff is almost linear be defined as follows:

isAlmostLinear(f) C: m: n:|f(m+n)f(m)f(n)|<CisAlmostLinear(f) \coloneqq \left\Vert \sum_{C:\mathbb{Z}} \prod_{m:\mathbb{Z}} \prod_{n:\mathbb{Z}} \vert f(m + n) - f(m) - f(n) \vert \lt C \ \right\Vert

Let the type of almost linear endofunctions over the integers be defined as

AL() f:isAlmostLinear(f)AL(\mathbb{Z}) \coloneqq \sum_{f:\mathbb{Z} \to \mathbb{Z}} isAlmostLinear(f)

The type of Eudoxus real numbers, denoted as \mathbb{R}, is a higher inductive type generated by:

  • a function inj ι:AL() inj: \iota: AL(\mathbb{Z}) \to \mathbb{R}

  • a dependent product of functions from propositions to identities:

η: f:AL() g:AL()isBounded(fg)( inj ι(f)= inj ι(g)) \eta : \prod_{f:AL(\mathbb{Z})} \prod_{g:AL(\mathbb{Z})} isBounded(f - g) \to (inj(f) (\iota(f) = inj(g)) \iota(g))
  • A set-truncator
    τ 0: a: b:isProp(a=b)\tau_0: \prod_{a:\mathbb{R}} \prod_{b:\mathbb{R}} isProp(a=b)

See also

References

Revision on April 13, 2022 at 23:42:51 by Anonymous?. See the history of this page for a list of all contributions to it.