Homotopy Type Theory Dedekind cut structure > history (Rev #3, changes)

Showing changes from revision #2 to #3: Added | Removed | Changed

Defintion

Using the type of subsets in a universe

Given a type TT with a dense strict order <\lt , and given a pair ofsubtype s(PL,R):Sub 𝒰(T)×Sub 𝒰(T) (L, P:Sub_\mathcal{U}(T) R):Sub_\mathcal{U}(T) \times Sub_\mathcal{U}(T) in with a universe𝒰\mathcal{U} with monic function si L P:𝒯 𝒰( L P)T i_L:\mathcal{T}_\mathcal{U}(L) i_P:\mathcal{T}_\mathcal{U}(P) \to T , and let us define the following propositions:i R:𝒯 𝒰(R)Ti_R:\mathcal{T}_\mathcal{U}(R) \to T, let us define the following propositions:

DownwardsCloser Inhabitor 𝒰( L P) a:𝒯 𝒰(L)𝒯 𝒰 b:T(((b<a) c:𝒯 𝒰(L)ι L(c)=b)P) DownwardsCloser_\mathcal{U}(L) Inhabitor_\mathcal{U}(P) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \mathcal{T}_\mathcal{U}(P) \prod_{b:T} \left((b \lt a) \to \sum_{c:\mathcal{T}_\mathcal{U}(L)} \iota_L(c) = b\right)
UpwardsCloser DownwardsCloser 𝒰( R P) a:𝒯 𝒰( R P) b:T((a<b<a) c:𝒯 𝒰(R)fiberι R(cι P ) ,=b)) UpwardsCloser_\mathcal{U}(R) DownwardsCloser_\mathcal{U}(P) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(R)} \prod_{a:\mathcal{T}_\mathcal{U}(P)} \prod_{b:T} \left((a \left((b \lt b) a) \to \sum_{c:\mathcal{T}_\mathcal{U}(R)} fiber(\iota_P,b)\right) \iota_R(c) = b\right)
DownwardsOpener UpwardsCloser 𝒰( L P) a:𝒯 𝒰( L P) b:𝒯 𝒰T(L)a((a<b)fiber(ι P,b))<b DownwardsOpener_\mathcal{U}(L) UpwardsCloser_\mathcal{U}(P) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \prod_{a:\mathcal{T}_\mathcal{U}(P)} \sum_{b:\mathcal{T}_\mathcal{U}(L)} \prod_{b:T} a \left((a \lt b b) \to fiber(\iota_P,b)\right)
UpwardsOpener DownwardsOpener 𝒰( R P) a:𝒯 𝒰( R P) b:𝒯 𝒰( R P)b<a<b UpwardsOpener_\mathcal{U}(R) DownwardsOpener_\mathcal{U}(P) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(R)} \prod_{a:\mathcal{T}_\mathcal{U}(P)} \sum_{b:\mathcal{T}_\mathcal{U}(R)} \sum_{b:\mathcal{T}_\mathcal{U}(P)} b \lt a \lt b
Locator UpwardsOpener 𝒰( L P,R) a:T𝒯 𝒰(P) b:T𝒯 𝒰(P)((a<b) c:𝒯 𝒰(L)ι L(c)=a+ c:𝒯 𝒰(R)ι R(c)=b)b<a Locator_\mathcal{U}(L, UpwardsOpener_\mathcal{U}(P) R) \coloneqq \prod_{a:T} \prod_{a:\mathcal{T}_\mathcal{U}(P)} \prod_{b:T} \sum_{b:\mathcal{T}_\mathcal{U}(P)} \left((a b \lt b) \to \sum_{c:\mathcal{T}_\mathcal{U}(L)} \iota_L(c) = a + \sum_{c:\mathcal{T}_\mathcal{U}(R)} \iota_R(c) = b\right)
isTransitive 𝒰(L,R) a:𝒯 𝒰(L) b:𝒯 𝒰(R)(i L(a)<i L(b))isTransitive_\mathcal{U}(L, R) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \prod_{b:\mathcal{T}_\mathcal{U}(R)} (i_L(a) \lt i_L(b))
Bounder 𝒰(L,R)𝒯 𝒰(L)×𝒯 𝒰(R)Bounder_\mathcal{U}(L, R) \coloneqq \mathcal{T}_\mathcal{U}(L) \times \mathcal{T}_\mathcal{U}(R)

Given a pair of subtypes (L,R):Sub 𝒰(T)×Sub 𝒰(T)(L, R):Sub_\mathcal{U}(T) \times Sub_\mathcal{U}(T) in a universe 𝒰\mathcal{U} with monic functions i L:𝒯 𝒰(L)Ti_L:\mathcal{T}_\mathcal{U}(L) \to T and i R:𝒯 𝒰(R)Ti_R:\mathcal{T}_\mathcal{U}(R) \to T, let us define the following propositions:

Rounder 𝒰(L,R)DownwardsCloser 𝒰(L)×UpwardsCloser 𝒰(R)Rounder_\mathcal{U}(L, R) \coloneqq DownwardsCloser_\mathcal{U}(L) \times UpwardsCloser_\mathcal{U}(R)
Opener Locator 𝒰(L,R)DownwardsOpener 𝒰 a:T( b:TL((a<b)(fiber(ι L,A)+fiber(ι R,b))))×UpwardsOpener 𝒰(R) Opener_\mathcal{U}(L, Locator_\mathcal{U}(L, R) \coloneqq DownwardsOpener_\mathcal{U}(L) \prod_{a:T} \times \prod_{b:T} UpwardsOpener_\mathcal{U}(R) \left((a \lt b) \to (fiber(\iota_L,A) + fiber(\iota_R,b))\right)
isTransitive 𝒰(L,R) a:𝒯 𝒰(L) b:𝒯 𝒰(R)(i L(a)<i L(b))isTransitive_\mathcal{U}(L, R) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \prod_{b:\mathcal{T}_\mathcal{U}(R)} (i_L(a) \lt i_L(b))
Bounder 𝒰(L,R)Inhabitor 𝒰(L)×Inhabitor 𝒰(R)Bounder_\mathcal{U}(L, R) \coloneqq Inhabitor_\mathcal{U}(L) \times Inhabitor_\mathcal{U}(R)
Rounder 𝒰(L,R)DownwardsCloser 𝒰(L)×UpwardsCloser 𝒰(R)Rounder_\mathcal{U}(L, R) \coloneqq DownwardsCloser_\mathcal{U}(L) \times UpwardsCloser_\mathcal{U}(R)
Opener 𝒰(L,R)DownwardsOpener 𝒰(L)×UpwardsOpener 𝒰(R)Opener_\mathcal{U}(L, R) \coloneqq DownwardsOpener_\mathcal{U}(L) \times UpwardsOpener_\mathcal{U}(R)

The type of 𝒰\mathcal{U}-Dedekind cut structures on (L,R)(L, R) is defined as

DedekindCutStructure 𝒰(L,R)Bounder 𝒰(L,R)×Rounder 𝒰(L,R)×Opener 𝒰(L,R)×Locator 𝒰(L,R)×isTransitive 𝒰(L,R)DedekindCutStructure_\mathcal{U}(L, R) \coloneqq Bounder_\mathcal{U}(L, R) \times Rounder_\mathcal{U}(L, R) \times Opener_\mathcal{U}(L, R) \times Locator_\mathcal{U}(L, R) \times isTransitive_\mathcal{U}(L, R)

A 𝒰\mathcal{U}-Dedekind cut structure on (L,R)(L, R) is simply a term Δ:DedekindCutStructure 𝒰(L,R)\Delta:DedekindCutStructure_\mathcal{U}(L, R).

(L,R)(L, R) is said to have a 𝒰\mathcal{U}-Dedekind cut structure if there is a term δ:[DedekindCutStructure 𝒰(L,R)]\delta:\left[DedekindCutStructure_\mathcal{U}(L, R)\right].

Using sigma-frames

Given a typeTT with a dense strict order <\lt, and a $\sigma$-frame Σ\Sigma, an open subtype is a function P:TΣP:T \to \Sigma. Given an open subtype P:TΣP:T \to \Sigma, let us define the following types:

Type of Dedekind cut structures

Inhabitor Σ(P)fiber(P,)Inhabitor_\Sigma(P) \coloneqq fiber(P,\top)
isDownwardsClosed Σ(P) a:fiber(P,) b:T(b<a)(P(b)=)isDownwardsClosed_\Sigma(P) \coloneqq \prod_{a:fiber(P,\top)} \prod_{b:T} (b \lt a) \to (P(b) = \top)

The type of Dedekind cut structures on (L,R)(L, R) is defined as

isUpwardsClosed Σ(P) a:Tfiber(P,) b:T(a<b)(P(b)=)isUpwardsClosed_\Sigma(P) \coloneqq \prod_{a:Tfiber(P,\top)} \prod_{b:T} (a \lt b) \to (P(b) = \top)
DownwardsOpener Σ(P) a:fiber(P,) b:fiber(P,)(a<b)DownwardsOpener_\Sigma(P) \coloneqq \prod_{a:fiber(P,\top)} \sum_{b:fiber(P,\top)} (a \lt b)
DedekindCutStructure UpwardsOpener 𝒰 Σ( L P,R)Bounder 𝒰 a:fiber(P,) b:fiber(P,)( L b , < R a)×Rounder 𝒰(L,R)×Opener 𝒰(L,R)×Locator 𝒰(L,R)×isTransitive 𝒰(L,R) DedekindCutStructure_\mathcal{U}(L, UpwardsOpener_\Sigma(P) R) \coloneqq Bounder_\mathcal{U}(L, \prod_{a:fiber(P,\top)} R) \sum_{b:fiber(P,\top)} \times (b Rounder_\mathcal{U}(L, \lt R) a) \times Opener_\mathcal{U}(L, R) \times Locator_\mathcal{U}(L, R) \times isTransitive_\mathcal{U}(L, R)

A Given Dedekind a cut pair structure of on open subtypes(L,R):(TΣ)×(TΣ) (L, R) R):(T \to \Sigma) \times (T \to \Sigma) is in simply a term universe Δ 𝒰:DedekindCutStructure 𝒰(L,R) \Delta:DedekindCutStructure_\mathcal{U}(L, \mathcal{U} R) . , let us define the following types:

(L,R)(L, R) is said to have a Dedekind cut structure if there is a term δ:[DedekindCutStructure 𝒰(L,R)]\delta:\left[DedekindCutStructure_\mathcal{U}(L, R)\right].

Locator Σ(L,R) a:T b:T((a<b)((L(a)=)+(R(b)=)))Locator_\Sigma(L, R) \coloneqq \prod_{a:T} \prod_{b:T} \left((a \lt b) \to ((L(a) = \top) + (R(b) = \top))\right)
isTransitive Σ(L,R) a:fiber(L,) b:fiber(R,)(a<b)isTransitive_\Sigma(L, R) \coloneqq \prod_{a:fiber(L,\top)} \prod_{b:fiber(R,\top)} (a \lt b)
Bounder Σ(L,R)Inhabitor Σ(L)×Inhabitor Σ(R)Bounder_\Sigma(L, R) \coloneqq Inhabitor_\Sigma(L) \times Inhabitor_\Sigma(R)
isRounded Σ(L,R)isDownwardsClosed Σ(L)×isUpwardsClosed Σ(R)isRounded_\Sigma(L, R) \coloneqq isDownwardsClosed_\Sigma(L) \times isUpwardsClosed_\Sigma(R)
Opener Σ(L,R)DownwardsOpener Σ(L)×UpwardsOpener Σ(R)Opener_\Sigma(L, R) \coloneqq DownwardsOpener_\Sigma(L) \times UpwardsOpener_\Sigma(R)

The type of Σ\Sigma-Dedekind cut structures on (L,R)(L, R) is defined as

isDedekindCut Σ(L,R)Bounder Σ(L,R)×Opener Σ(L,R)×isRounded Σ(L,R)×Locator Σ(L,R)×isTransitive Σ(L,R)isDedekindCut_\Sigma(L, R) \coloneqq Bounder_\Sigma(L, R) \times Opener_\Sigma(L, R) \times isRounded_\Sigma(L, R) \times Locator_\Sigma(L, R) \times isTransitive_\Sigma(L, R)

A Σ\Sigma-Dedekind cut structure on (L,R)(L, R) is simply a term Δ:DedekindCutStructure Σ(L,R)\Delta:DedekindCutStructure_\Sigma(L, R).

(L,R)(L, R) is said to have a Σ\Sigma-Dedekind cut structure if there is a term δ:[DedekindCutStructure Σ(L,R)]\delta:\left[DedekindCutStructure_\Sigma(L, R)\right].

See also

References

Revision on April 21, 2022 at 21:12:55 by Anonymous?. See the history of this page for a list of all contributions to it.