Homotopy Type Theory Dedekind cut structure > history (Rev #2, changes)

Showing changes from revision #1 to #2: Added | Removed | Changed

Defintion

Given a type TT with a dense strict order <\lt, a Dedekind cut structure is a pair of subtypes (L,R):Sub 𝒰(T)×Sub 𝒰(T)(L, R):Sub_\mathcal{U}(T) \times Sub_\mathcal{U}(T) in a universe 𝒰\mathcal{U} with monic functions i L:𝒯 𝒰(L)→Ti_L:\mathcal{T}_\mathcal{U}(L) \to T and i R:𝒯 𝒰(R)→Ti_R:\mathcal{T}_\mathcal{U}(R) \to T with

Using the type of subsets in a universe

  • a term ÎČ L:𝒯 𝒰(L)\beta_L:\mathcal{T}_\mathcal{U}(L)

  • a term ÎČ R:𝒯 𝒰(R)\beta_R:\mathcal{T}_\mathcal{U}(R)

  • a term

Given a type TT with a dense strict order <\lt and a pair of subtypes (L,R):Sub 𝒰(T)×Sub 𝒰(T)(L, R):Sub_\mathcal{U}(T) \times Sub_\mathcal{U}(T) in a universe 𝒰\mathcal{U} with monic functions i L:𝒯 𝒰(L)→Ti_L:\mathcal{T}_\mathcal{U}(L) \to T and i R:𝒯 𝒰(R)→Ti_R:\mathcal{T}_\mathcal{U}(R) \to T, let us define the following propositions:

Îș DownwardsCloser L 𝒰 : (L)≔∏ a:𝒯 𝒰(L)∏ b:T((b<a)→∑ c:𝒯 𝒰(L)Îč L(c)=b) \kappa_L: DownwardsCloser_\mathcal{U}(L) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \prod_{b:T} \left((b \lt a) \to \sum_{c:\mathcal{T}_\mathcal{U}(L)} \iota_L(c) = b\right)
UpwardsCloser 𝒰(R)≔∏ a:𝒯 𝒰(R)∏ b:T((a<b)→∑ c:𝒯 𝒰(R)Îč R(c)=b)UpwardsCloser_\mathcal{U}(R) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(R)} \prod_{b:T} \left((a \lt b) \to \sum_{c:\mathcal{T}_\mathcal{U}(R)} \iota_R(c) = b\right)
  • a term
DownwardsOpener 𝒰(L)≔∏ a:𝒯 𝒰(L)∑ b:𝒯 𝒰(L)a<bDownwardsOpener_\mathcal{U}(L) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \sum_{b:\mathcal{T}_\mathcal{U}(L)} a \lt b
UpwardsOpener 𝒰(R)≔∏ a:𝒯 𝒰(R)∑ b:𝒯 𝒰(R)b<aUpwardsOpener_\mathcal{U}(R) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(R)} \sum_{b:\mathcal{T}_\mathcal{U}(R)} b \lt a
Îș Locator R 𝒰 : (∏ a:𝒯 𝒰(R)L,R)≔∏ a:T∏ b:T((a<b)→∑ c:𝒯 𝒰(L)Îč L(c)=a+∑ c:𝒯 𝒰(R)Îč R(c)=b) \kappa_R: Locator_\mathcal{U}(L, \prod_{a:\mathcal{T}_\mathcal{U}(R)} R) \coloneqq \prod_{a:T} \prod_{b:T} \left((a \lt b) \to \sum_{c:\mathcal{T}_\mathcal{U}(L)} \iota_L(c) = a + \sum_{c:\mathcal{T}_\mathcal{U}(R)} \iota_R(c) = b\right)
isTransitive 𝒰(L,R)≔∏ a:𝒯 𝒰(L)∏ b:𝒯 𝒰(R)(i L(a)<i L(b))isTransitive_\mathcal{U}(L, R) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \prod_{b:\mathcal{T}_\mathcal{U}(R)} (i_L(a) \lt i_L(b))
  • a term
Bounder 𝒰(L,R)≔𝒯 𝒰(L)×𝒯 𝒰(R)Bounder_\mathcal{U}(L, R) \coloneqq \mathcal{T}_\mathcal{U}(L) \times \mathcal{T}_\mathcal{U}(R)
Rounder 𝒰(L,R)≔DownwardsCloser 𝒰(L)×UpwardsCloser 𝒰(R)Rounder_\mathcal{U}(L, R) \coloneqq DownwardsCloser_\mathcal{U}(L) \times UpwardsCloser_\mathcal{U}(R)
ω Opener L 𝒰 : (∏ a:𝒯 𝒰(L)L∑ b:𝒯 𝒰(L), a R < )b≔DownwardsOpener 𝒰(L)×UpwardsOpener 𝒰(R) \omega_L: Opener_\mathcal{U}(L, \prod_{a:\mathcal{T}_\mathcal{U}(L)} R) \sum_{b:\mathcal{T}_\mathcal{U}(L)} \coloneqq a DownwardsOpener_\mathcal{U}(L) \lt \times b UpwardsOpener_\mathcal{U}(R)
  • a term

Using sigma-frames

ω R:∏ a:𝒯 𝒰(R)∑ b:𝒯 𝒰(R)b<a\omega_R: \prod_{a:\mathcal{T}_\mathcal{U}(R)} \sum_{b:\mathcal{T}_\mathcal{U}(R)} b \lt a




  • a term

Type of Dedekind cut structures

λ L:∏ a:T∏ b:T((a<b)→∑ c:𝒯 𝒰(L)Îč L(c)=a+∑ c:𝒯 𝒰(R)Îč R(c)=b)\lambda_L: \prod_{a:T} \prod_{b:T} \left((a \lt b) \to \sum_{c:\mathcal{T}_\mathcal{U}(L)} \iota_L(c) = a + \sum_{c:\mathcal{T}_\mathcal{U}(R)} \iota_R(c) = b\right)

The type of Dedekind cut structures on (L,R)(L, R) is defined as

  • a term
DedekindCutStructure 𝒰(L,R)≔Bounder 𝒰(L,R)×Rounder 𝒰(L,R)×Opener 𝒰(L,R)×Locator 𝒰(L,R)×isTransitive 𝒰(L,R)DedekindCutStructure_\mathcal{U}(L, R) \coloneqq Bounder_\mathcal{U}(L, R) \times Rounder_\mathcal{U}(L, R) \times Opener_\mathcal{U}(L, R) \times Locator_\mathcal{U}(L, R) \times isTransitive_\mathcal{U}(L, R)
τ L:∏ a:𝒯 𝒰(L)∏ b:𝒯 𝒰(R)(i L(a)<i L(b))\tau_L: \prod_{a:\mathcal{T}_\mathcal{U}(L)} \prod_{b:\mathcal{T}_\mathcal{U}(R)} (i_L(a) \lt i_L(b))

A Dedekind cut structure on (L,R)(L, R) is simply a term Δ:DedekindCutStructure 𝒰(L,R)\Delta:DedekindCutStructure_\mathcal{U}(L, R).

(L,R)(L, R) is said to have a Dedekind cut structure if there is a term ή:[DedekindCutStructure 𝒰(L,R)]\delta:\left[DedekindCutStructure_\mathcal{U}(L, R)\right].

See also

Revision on April 21, 2022 at 19:46:24 by Anonymous?. See the history of this page for a list of all contributions to it.